linux/include/linux/netdevice.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the Interfaces handler.
   7 *
   8 * Version:     @(#)dev.h       1.0.10  08/12/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
  14 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  15 *              Bjorn Ekwall. <bj0rn@blox.se>
  16 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
  17 *
  18 *              This program is free software; you can redistribute it and/or
  19 *              modify it under the terms of the GNU General Public License
  20 *              as published by the Free Software Foundation; either version
  21 *              2 of the License, or (at your option) any later version.
  22 *
  23 *              Moved to /usr/include/linux for NET3
  24 */
  25#ifndef _LINUX_NETDEVICE_H
  26#define _LINUX_NETDEVICE_H
  27
  28#include <linux/timer.h>
  29#include <linux/bug.h>
  30#include <linux/delay.h>
  31#include <linux/atomic.h>
  32#include <linux/prefetch.h>
  33#include <asm/cache.h>
  34#include <asm/byteorder.h>
  35
  36#include <linux/percpu.h>
  37#include <linux/rculist.h>
  38#include <linux/dmaengine.h>
  39#include <linux/workqueue.h>
  40#include <linux/dynamic_queue_limits.h>
  41
  42#include <linux/ethtool.h>
  43#include <net/net_namespace.h>
  44#include <net/dsa.h>
  45#ifdef CONFIG_DCB
  46#include <net/dcbnl.h>
  47#endif
  48#include <net/netprio_cgroup.h>
  49
  50#include <linux/netdev_features.h>
  51#include <linux/neighbour.h>
  52#include <uapi/linux/netdevice.h>
  53#include <uapi/linux/if_bonding.h>
  54#include <uapi/linux/pkt_cls.h>
  55
  56struct netpoll_info;
  57struct device;
  58struct phy_device;
  59/* 802.11 specific */
  60struct wireless_dev;
  61/* 802.15.4 specific */
  62struct wpan_dev;
  63struct mpls_dev;
  64/* UDP Tunnel offloads */
  65struct udp_tunnel_info;
  66struct bpf_prog;
  67
  68void netdev_set_default_ethtool_ops(struct net_device *dev,
  69                                    const struct ethtool_ops *ops);
  70
  71/* Backlog congestion levels */
  72#define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
  73#define NET_RX_DROP             1       /* packet dropped */
  74
  75/*
  76 * Transmit return codes: transmit return codes originate from three different
  77 * namespaces:
  78 *
  79 * - qdisc return codes
  80 * - driver transmit return codes
  81 * - errno values
  82 *
  83 * Drivers are allowed to return any one of those in their hard_start_xmit()
  84 * function. Real network devices commonly used with qdiscs should only return
  85 * the driver transmit return codes though - when qdiscs are used, the actual
  86 * transmission happens asynchronously, so the value is not propagated to
  87 * higher layers. Virtual network devices transmit synchronously; in this case
  88 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
  89 * others are propagated to higher layers.
  90 */
  91
  92/* qdisc ->enqueue() return codes. */
  93#define NET_XMIT_SUCCESS        0x00
  94#define NET_XMIT_DROP           0x01    /* skb dropped                  */
  95#define NET_XMIT_CN             0x02    /* congestion notification      */
  96#define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
  97
  98/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
  99 * indicates that the device will soon be dropping packets, or already drops
 100 * some packets of the same priority; prompting us to send less aggressively. */
 101#define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
 102#define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 103
 104/* Driver transmit return codes */
 105#define NETDEV_TX_MASK          0xf0
 106
 107enum netdev_tx {
 108        __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
 109        NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
 110        NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
 111};
 112typedef enum netdev_tx netdev_tx_t;
 113
 114/*
 115 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
 116 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
 117 */
 118static inline bool dev_xmit_complete(int rc)
 119{
 120        /*
 121         * Positive cases with an skb consumed by a driver:
 122         * - successful transmission (rc == NETDEV_TX_OK)
 123         * - error while transmitting (rc < 0)
 124         * - error while queueing to a different device (rc & NET_XMIT_MASK)
 125         */
 126        if (likely(rc < NET_XMIT_MASK))
 127                return true;
 128
 129        return false;
 130}
 131
 132/*
 133 *      Compute the worst-case header length according to the protocols
 134 *      used.
 135 */
 136
 137#if defined(CONFIG_HYPERV_NET)
 138# define LL_MAX_HEADER 128
 139#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
 140# if defined(CONFIG_MAC80211_MESH)
 141#  define LL_MAX_HEADER 128
 142# else
 143#  define LL_MAX_HEADER 96
 144# endif
 145#else
 146# define LL_MAX_HEADER 32
 147#endif
 148
 149#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
 150    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
 151#define MAX_HEADER LL_MAX_HEADER
 152#else
 153#define MAX_HEADER (LL_MAX_HEADER + 48)
 154#endif
 155
 156/*
 157 *      Old network device statistics. Fields are native words
 158 *      (unsigned long) so they can be read and written atomically.
 159 */
 160
 161struct net_device_stats {
 162        unsigned long   rx_packets;
 163        unsigned long   tx_packets;
 164        unsigned long   rx_bytes;
 165        unsigned long   tx_bytes;
 166        unsigned long   rx_errors;
 167        unsigned long   tx_errors;
 168        unsigned long   rx_dropped;
 169        unsigned long   tx_dropped;
 170        unsigned long   multicast;
 171        unsigned long   collisions;
 172        unsigned long   rx_length_errors;
 173        unsigned long   rx_over_errors;
 174        unsigned long   rx_crc_errors;
 175        unsigned long   rx_frame_errors;
 176        unsigned long   rx_fifo_errors;
 177        unsigned long   rx_missed_errors;
 178        unsigned long   tx_aborted_errors;
 179        unsigned long   tx_carrier_errors;
 180        unsigned long   tx_fifo_errors;
 181        unsigned long   tx_heartbeat_errors;
 182        unsigned long   tx_window_errors;
 183        unsigned long   rx_compressed;
 184        unsigned long   tx_compressed;
 185};
 186
 187
 188#include <linux/cache.h>
 189#include <linux/skbuff.h>
 190
 191#ifdef CONFIG_RPS
 192#include <linux/static_key.h>
 193extern struct static_key rps_needed;
 194#endif
 195
 196struct neighbour;
 197struct neigh_parms;
 198struct sk_buff;
 199
 200struct netdev_hw_addr {
 201        struct list_head        list;
 202        unsigned char           addr[MAX_ADDR_LEN];
 203        unsigned char           type;
 204#define NETDEV_HW_ADDR_T_LAN            1
 205#define NETDEV_HW_ADDR_T_SAN            2
 206#define NETDEV_HW_ADDR_T_SLAVE          3
 207#define NETDEV_HW_ADDR_T_UNICAST        4
 208#define NETDEV_HW_ADDR_T_MULTICAST      5
 209        bool                    global_use;
 210        int                     sync_cnt;
 211        int                     refcount;
 212        int                     synced;
 213        struct rcu_head         rcu_head;
 214};
 215
 216struct netdev_hw_addr_list {
 217        struct list_head        list;
 218        int                     count;
 219};
 220
 221#define netdev_hw_addr_list_count(l) ((l)->count)
 222#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
 223#define netdev_hw_addr_list_for_each(ha, l) \
 224        list_for_each_entry(ha, &(l)->list, list)
 225
 226#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
 227#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
 228#define netdev_for_each_uc_addr(ha, dev) \
 229        netdev_hw_addr_list_for_each(ha, &(dev)->uc)
 230
 231#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
 232#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
 233#define netdev_for_each_mc_addr(ha, dev) \
 234        netdev_hw_addr_list_for_each(ha, &(dev)->mc)
 235
 236struct hh_cache {
 237        u16             hh_len;
 238        u16             __pad;
 239        seqlock_t       hh_lock;
 240
 241        /* cached hardware header; allow for machine alignment needs.        */
 242#define HH_DATA_MOD     16
 243#define HH_DATA_OFF(__len) \
 244        (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
 245#define HH_DATA_ALIGN(__len) \
 246        (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
 247        unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
 248};
 249
 250/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
 251 * Alternative is:
 252 *   dev->hard_header_len ? (dev->hard_header_len +
 253 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
 254 *
 255 * We could use other alignment values, but we must maintain the
 256 * relationship HH alignment <= LL alignment.
 257 */
 258#define LL_RESERVED_SPACE(dev) \
 259        ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 260#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
 261        ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 262
 263struct header_ops {
 264        int     (*create) (struct sk_buff *skb, struct net_device *dev,
 265                           unsigned short type, const void *daddr,
 266                           const void *saddr, unsigned int len);
 267        int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
 268        int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
 269        void    (*cache_update)(struct hh_cache *hh,
 270                                const struct net_device *dev,
 271                                const unsigned char *haddr);
 272        bool    (*validate)(const char *ll_header, unsigned int len);
 273};
 274
 275/* These flag bits are private to the generic network queueing
 276 * layer; they may not be explicitly referenced by any other
 277 * code.
 278 */
 279
 280enum netdev_state_t {
 281        __LINK_STATE_START,
 282        __LINK_STATE_PRESENT,
 283        __LINK_STATE_NOCARRIER,
 284        __LINK_STATE_LINKWATCH_PENDING,
 285        __LINK_STATE_DORMANT,
 286};
 287
 288
 289/*
 290 * This structure holds boot-time configured netdevice settings. They
 291 * are then used in the device probing.
 292 */
 293struct netdev_boot_setup {
 294        char name[IFNAMSIZ];
 295        struct ifmap map;
 296};
 297#define NETDEV_BOOT_SETUP_MAX 8
 298
 299int __init netdev_boot_setup(char *str);
 300
 301/*
 302 * Structure for NAPI scheduling similar to tasklet but with weighting
 303 */
 304struct napi_struct {
 305        /* The poll_list must only be managed by the entity which
 306         * changes the state of the NAPI_STATE_SCHED bit.  This means
 307         * whoever atomically sets that bit can add this napi_struct
 308         * to the per-CPU poll_list, and whoever clears that bit
 309         * can remove from the list right before clearing the bit.
 310         */
 311        struct list_head        poll_list;
 312
 313        unsigned long           state;
 314        int                     weight;
 315        unsigned int            gro_count;
 316        int                     (*poll)(struct napi_struct *, int);
 317#ifdef CONFIG_NETPOLL
 318        spinlock_t              poll_lock;
 319        int                     poll_owner;
 320#endif
 321        struct net_device       *dev;
 322        struct sk_buff          *gro_list;
 323        struct sk_buff          *skb;
 324        struct hrtimer          timer;
 325        struct list_head        dev_list;
 326        struct hlist_node       napi_hash_node;
 327        unsigned int            napi_id;
 328};
 329
 330enum {
 331        NAPI_STATE_SCHED,       /* Poll is scheduled */
 332        NAPI_STATE_DISABLE,     /* Disable pending */
 333        NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
 334        NAPI_STATE_HASHED,      /* In NAPI hash (busy polling possible) */
 335        NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
 336};
 337
 338enum gro_result {
 339        GRO_MERGED,
 340        GRO_MERGED_FREE,
 341        GRO_HELD,
 342        GRO_NORMAL,
 343        GRO_DROP,
 344};
 345typedef enum gro_result gro_result_t;
 346
 347/*
 348 * enum rx_handler_result - Possible return values for rx_handlers.
 349 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
 350 * further.
 351 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
 352 * case skb->dev was changed by rx_handler.
 353 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
 354 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
 355 *
 356 * rx_handlers are functions called from inside __netif_receive_skb(), to do
 357 * special processing of the skb, prior to delivery to protocol handlers.
 358 *
 359 * Currently, a net_device can only have a single rx_handler registered. Trying
 360 * to register a second rx_handler will return -EBUSY.
 361 *
 362 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
 363 * To unregister a rx_handler on a net_device, use
 364 * netdev_rx_handler_unregister().
 365 *
 366 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
 367 * do with the skb.
 368 *
 369 * If the rx_handler consumed the skb in some way, it should return
 370 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
 371 * the skb to be delivered in some other way.
 372 *
 373 * If the rx_handler changed skb->dev, to divert the skb to another
 374 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
 375 * new device will be called if it exists.
 376 *
 377 * If the rx_handler decides the skb should be ignored, it should return
 378 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
 379 * are registered on exact device (ptype->dev == skb->dev).
 380 *
 381 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
 382 * delivered, it should return RX_HANDLER_PASS.
 383 *
 384 * A device without a registered rx_handler will behave as if rx_handler
 385 * returned RX_HANDLER_PASS.
 386 */
 387
 388enum rx_handler_result {
 389        RX_HANDLER_CONSUMED,
 390        RX_HANDLER_ANOTHER,
 391        RX_HANDLER_EXACT,
 392        RX_HANDLER_PASS,
 393};
 394typedef enum rx_handler_result rx_handler_result_t;
 395typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
 396
 397void __napi_schedule(struct napi_struct *n);
 398void __napi_schedule_irqoff(struct napi_struct *n);
 399
 400static inline bool napi_disable_pending(struct napi_struct *n)
 401{
 402        return test_bit(NAPI_STATE_DISABLE, &n->state);
 403}
 404
 405/**
 406 *      napi_schedule_prep - check if NAPI can be scheduled
 407 *      @n: NAPI context
 408 *
 409 * Test if NAPI routine is already running, and if not mark
 410 * it as running.  This is used as a condition variable to
 411 * insure only one NAPI poll instance runs.  We also make
 412 * sure there is no pending NAPI disable.
 413 */
 414static inline bool napi_schedule_prep(struct napi_struct *n)
 415{
 416        return !napi_disable_pending(n) &&
 417                !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
 418}
 419
 420/**
 421 *      napi_schedule - schedule NAPI poll
 422 *      @n: NAPI context
 423 *
 424 * Schedule NAPI poll routine to be called if it is not already
 425 * running.
 426 */
 427static inline void napi_schedule(struct napi_struct *n)
 428{
 429        if (napi_schedule_prep(n))
 430                __napi_schedule(n);
 431}
 432
 433/**
 434 *      napi_schedule_irqoff - schedule NAPI poll
 435 *      @n: NAPI context
 436 *
 437 * Variant of napi_schedule(), assuming hard irqs are masked.
 438 */
 439static inline void napi_schedule_irqoff(struct napi_struct *n)
 440{
 441        if (napi_schedule_prep(n))
 442                __napi_schedule_irqoff(n);
 443}
 444
 445/* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
 446static inline bool napi_reschedule(struct napi_struct *napi)
 447{
 448        if (napi_schedule_prep(napi)) {
 449                __napi_schedule(napi);
 450                return true;
 451        }
 452        return false;
 453}
 454
 455void __napi_complete(struct napi_struct *n);
 456void napi_complete_done(struct napi_struct *n, int work_done);
 457/**
 458 *      napi_complete - NAPI processing complete
 459 *      @n: NAPI context
 460 *
 461 * Mark NAPI processing as complete.
 462 * Consider using napi_complete_done() instead.
 463 */
 464static inline void napi_complete(struct napi_struct *n)
 465{
 466        return napi_complete_done(n, 0);
 467}
 468
 469/**
 470 *      napi_hash_add - add a NAPI to global hashtable
 471 *      @napi: NAPI context
 472 *
 473 * Generate a new napi_id and store a @napi under it in napi_hash.
 474 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL).
 475 * Note: This is normally automatically done from netif_napi_add(),
 476 * so might disappear in a future Linux version.
 477 */
 478void napi_hash_add(struct napi_struct *napi);
 479
 480/**
 481 *      napi_hash_del - remove a NAPI from global table
 482 *      @napi: NAPI context
 483 *
 484 * Warning: caller must observe RCU grace period
 485 * before freeing memory containing @napi, if
 486 * this function returns true.
 487 * Note: core networking stack automatically calls it
 488 * from netif_napi_del().
 489 * Drivers might want to call this helper to combine all
 490 * the needed RCU grace periods into a single one.
 491 */
 492bool napi_hash_del(struct napi_struct *napi);
 493
 494/**
 495 *      napi_disable - prevent NAPI from scheduling
 496 *      @n: NAPI context
 497 *
 498 * Stop NAPI from being scheduled on this context.
 499 * Waits till any outstanding processing completes.
 500 */
 501void napi_disable(struct napi_struct *n);
 502
 503/**
 504 *      napi_enable - enable NAPI scheduling
 505 *      @n: NAPI context
 506 *
 507 * Resume NAPI from being scheduled on this context.
 508 * Must be paired with napi_disable.
 509 */
 510static inline void napi_enable(struct napi_struct *n)
 511{
 512        BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
 513        smp_mb__before_atomic();
 514        clear_bit(NAPI_STATE_SCHED, &n->state);
 515        clear_bit(NAPI_STATE_NPSVC, &n->state);
 516}
 517
 518/**
 519 *      napi_synchronize - wait until NAPI is not running
 520 *      @n: NAPI context
 521 *
 522 * Wait until NAPI is done being scheduled on this context.
 523 * Waits till any outstanding processing completes but
 524 * does not disable future activations.
 525 */
 526static inline void napi_synchronize(const struct napi_struct *n)
 527{
 528        if (IS_ENABLED(CONFIG_SMP))
 529                while (test_bit(NAPI_STATE_SCHED, &n->state))
 530                        msleep(1);
 531        else
 532                barrier();
 533}
 534
 535enum netdev_queue_state_t {
 536        __QUEUE_STATE_DRV_XOFF,
 537        __QUEUE_STATE_STACK_XOFF,
 538        __QUEUE_STATE_FROZEN,
 539};
 540
 541#define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
 542#define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
 543#define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
 544
 545#define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
 546#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
 547                                        QUEUE_STATE_FROZEN)
 548#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
 549                                        QUEUE_STATE_FROZEN)
 550
 551/*
 552 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
 553 * netif_tx_* functions below are used to manipulate this flag.  The
 554 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
 555 * queue independently.  The netif_xmit_*stopped functions below are called
 556 * to check if the queue has been stopped by the driver or stack (either
 557 * of the XOFF bits are set in the state).  Drivers should not need to call
 558 * netif_xmit*stopped functions, they should only be using netif_tx_*.
 559 */
 560
 561struct netdev_queue {
 562/*
 563 * read-mostly part
 564 */
 565        struct net_device       *dev;
 566        struct Qdisc __rcu      *qdisc;
 567        struct Qdisc            *qdisc_sleeping;
 568#ifdef CONFIG_SYSFS
 569        struct kobject          kobj;
 570#endif
 571#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 572        int                     numa_node;
 573#endif
 574        unsigned long           tx_maxrate;
 575        /*
 576         * Number of TX timeouts for this queue
 577         * (/sys/class/net/DEV/Q/trans_timeout)
 578         */
 579        unsigned long           trans_timeout;
 580/*
 581 * write-mostly part
 582 */
 583        spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
 584        int                     xmit_lock_owner;
 585        /*
 586         * Time (in jiffies) of last Tx
 587         */
 588        unsigned long           trans_start;
 589
 590        unsigned long           state;
 591
 592#ifdef CONFIG_BQL
 593        struct dql              dql;
 594#endif
 595} ____cacheline_aligned_in_smp;
 596
 597static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
 598{
 599#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 600        return q->numa_node;
 601#else
 602        return NUMA_NO_NODE;
 603#endif
 604}
 605
 606static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
 607{
 608#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 609        q->numa_node = node;
 610#endif
 611}
 612
 613#ifdef CONFIG_RPS
 614/*
 615 * This structure holds an RPS map which can be of variable length.  The
 616 * map is an array of CPUs.
 617 */
 618struct rps_map {
 619        unsigned int len;
 620        struct rcu_head rcu;
 621        u16 cpus[0];
 622};
 623#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
 624
 625/*
 626 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
 627 * tail pointer for that CPU's input queue at the time of last enqueue, and
 628 * a hardware filter index.
 629 */
 630struct rps_dev_flow {
 631        u16 cpu;
 632        u16 filter;
 633        unsigned int last_qtail;
 634};
 635#define RPS_NO_FILTER 0xffff
 636
 637/*
 638 * The rps_dev_flow_table structure contains a table of flow mappings.
 639 */
 640struct rps_dev_flow_table {
 641        unsigned int mask;
 642        struct rcu_head rcu;
 643        struct rps_dev_flow flows[0];
 644};
 645#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
 646    ((_num) * sizeof(struct rps_dev_flow)))
 647
 648/*
 649 * The rps_sock_flow_table contains mappings of flows to the last CPU
 650 * on which they were processed by the application (set in recvmsg).
 651 * Each entry is a 32bit value. Upper part is the high-order bits
 652 * of flow hash, lower part is CPU number.
 653 * rps_cpu_mask is used to partition the space, depending on number of
 654 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
 655 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
 656 * meaning we use 32-6=26 bits for the hash.
 657 */
 658struct rps_sock_flow_table {
 659        u32     mask;
 660
 661        u32     ents[0] ____cacheline_aligned_in_smp;
 662};
 663#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
 664
 665#define RPS_NO_CPU 0xffff
 666
 667extern u32 rps_cpu_mask;
 668extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
 669
 670static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
 671                                        u32 hash)
 672{
 673        if (table && hash) {
 674                unsigned int index = hash & table->mask;
 675                u32 val = hash & ~rps_cpu_mask;
 676
 677                /* We only give a hint, preemption can change CPU under us */
 678                val |= raw_smp_processor_id();
 679
 680                if (table->ents[index] != val)
 681                        table->ents[index] = val;
 682        }
 683}
 684
 685#ifdef CONFIG_RFS_ACCEL
 686bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
 687                         u16 filter_id);
 688#endif
 689#endif /* CONFIG_RPS */
 690
 691/* This structure contains an instance of an RX queue. */
 692struct netdev_rx_queue {
 693#ifdef CONFIG_RPS
 694        struct rps_map __rcu            *rps_map;
 695        struct rps_dev_flow_table __rcu *rps_flow_table;
 696#endif
 697        struct kobject                  kobj;
 698        struct net_device               *dev;
 699} ____cacheline_aligned_in_smp;
 700
 701/*
 702 * RX queue sysfs structures and functions.
 703 */
 704struct rx_queue_attribute {
 705        struct attribute attr;
 706        ssize_t (*show)(struct netdev_rx_queue *queue,
 707            struct rx_queue_attribute *attr, char *buf);
 708        ssize_t (*store)(struct netdev_rx_queue *queue,
 709            struct rx_queue_attribute *attr, const char *buf, size_t len);
 710};
 711
 712#ifdef CONFIG_XPS
 713/*
 714 * This structure holds an XPS map which can be of variable length.  The
 715 * map is an array of queues.
 716 */
 717struct xps_map {
 718        unsigned int len;
 719        unsigned int alloc_len;
 720        struct rcu_head rcu;
 721        u16 queues[0];
 722};
 723#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
 724#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
 725       - sizeof(struct xps_map)) / sizeof(u16))
 726
 727/*
 728 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
 729 */
 730struct xps_dev_maps {
 731        struct rcu_head rcu;
 732        struct xps_map __rcu *cpu_map[0];
 733};
 734#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
 735    (nr_cpu_ids * sizeof(struct xps_map *)))
 736#endif /* CONFIG_XPS */
 737
 738#define TC_MAX_QUEUE    16
 739#define TC_BITMASK      15
 740/* HW offloaded queuing disciplines txq count and offset maps */
 741struct netdev_tc_txq {
 742        u16 count;
 743        u16 offset;
 744};
 745
 746#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
 747/*
 748 * This structure is to hold information about the device
 749 * configured to run FCoE protocol stack.
 750 */
 751struct netdev_fcoe_hbainfo {
 752        char    manufacturer[64];
 753        char    serial_number[64];
 754        char    hardware_version[64];
 755        char    driver_version[64];
 756        char    optionrom_version[64];
 757        char    firmware_version[64];
 758        char    model[256];
 759        char    model_description[256];
 760};
 761#endif
 762
 763#define MAX_PHYS_ITEM_ID_LEN 32
 764
 765/* This structure holds a unique identifier to identify some
 766 * physical item (port for example) used by a netdevice.
 767 */
 768struct netdev_phys_item_id {
 769        unsigned char id[MAX_PHYS_ITEM_ID_LEN];
 770        unsigned char id_len;
 771};
 772
 773static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
 774                                            struct netdev_phys_item_id *b)
 775{
 776        return a->id_len == b->id_len &&
 777               memcmp(a->id, b->id, a->id_len) == 0;
 778}
 779
 780typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
 781                                       struct sk_buff *skb);
 782
 783/* These structures hold the attributes of qdisc and classifiers
 784 * that are being passed to the netdevice through the setup_tc op.
 785 */
 786enum {
 787        TC_SETUP_MQPRIO,
 788        TC_SETUP_CLSU32,
 789        TC_SETUP_CLSFLOWER,
 790        TC_SETUP_MATCHALL,
 791};
 792
 793struct tc_cls_u32_offload;
 794
 795struct tc_to_netdev {
 796        unsigned int type;
 797        union {
 798                u8 tc;
 799                struct tc_cls_u32_offload *cls_u32;
 800                struct tc_cls_flower_offload *cls_flower;
 801                struct tc_cls_matchall_offload *cls_mall;
 802        };
 803};
 804
 805/* These structures hold the attributes of xdp state that are being passed
 806 * to the netdevice through the xdp op.
 807 */
 808enum xdp_netdev_command {
 809        /* Set or clear a bpf program used in the earliest stages of packet
 810         * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
 811         * is responsible for calling bpf_prog_put on any old progs that are
 812         * stored. In case of error, the callee need not release the new prog
 813         * reference, but on success it takes ownership and must bpf_prog_put
 814         * when it is no longer used.
 815         */
 816        XDP_SETUP_PROG,
 817        /* Check if a bpf program is set on the device.  The callee should
 818         * return true if a program is currently attached and running.
 819         */
 820        XDP_QUERY_PROG,
 821};
 822
 823struct netdev_xdp {
 824        enum xdp_netdev_command command;
 825        union {
 826                /* XDP_SETUP_PROG */
 827                struct bpf_prog *prog;
 828                /* XDP_QUERY_PROG */
 829                bool prog_attached;
 830        };
 831};
 832
 833/*
 834 * This structure defines the management hooks for network devices.
 835 * The following hooks can be defined; unless noted otherwise, they are
 836 * optional and can be filled with a null pointer.
 837 *
 838 * int (*ndo_init)(struct net_device *dev);
 839 *     This function is called once when a network device is registered.
 840 *     The network device can use this for any late stage initialization
 841 *     or semantic validation. It can fail with an error code which will
 842 *     be propagated back to register_netdev.
 843 *
 844 * void (*ndo_uninit)(struct net_device *dev);
 845 *     This function is called when device is unregistered or when registration
 846 *     fails. It is not called if init fails.
 847 *
 848 * int (*ndo_open)(struct net_device *dev);
 849 *     This function is called when a network device transitions to the up
 850 *     state.
 851 *
 852 * int (*ndo_stop)(struct net_device *dev);
 853 *     This function is called when a network device transitions to the down
 854 *     state.
 855 *
 856 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
 857 *                               struct net_device *dev);
 858 *      Called when a packet needs to be transmitted.
 859 *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
 860 *      the queue before that can happen; it's for obsolete devices and weird
 861 *      corner cases, but the stack really does a non-trivial amount
 862 *      of useless work if you return NETDEV_TX_BUSY.
 863 *      Required; cannot be NULL.
 864 *
 865 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
 866 *              netdev_features_t features);
 867 *      Adjusts the requested feature flags according to device-specific
 868 *      constraints, and returns the resulting flags. Must not modify
 869 *      the device state.
 870 *
 871 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
 872 *                         void *accel_priv, select_queue_fallback_t fallback);
 873 *      Called to decide which queue to use when device supports multiple
 874 *      transmit queues.
 875 *
 876 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
 877 *      This function is called to allow device receiver to make
 878 *      changes to configuration when multicast or promiscuous is enabled.
 879 *
 880 * void (*ndo_set_rx_mode)(struct net_device *dev);
 881 *      This function is called device changes address list filtering.
 882 *      If driver handles unicast address filtering, it should set
 883 *      IFF_UNICAST_FLT in its priv_flags.
 884 *
 885 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
 886 *      This function  is called when the Media Access Control address
 887 *      needs to be changed. If this interface is not defined, the
 888 *      MAC address can not be changed.
 889 *
 890 * int (*ndo_validate_addr)(struct net_device *dev);
 891 *      Test if Media Access Control address is valid for the device.
 892 *
 893 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
 894 *      Called when a user requests an ioctl which can't be handled by
 895 *      the generic interface code. If not defined ioctls return
 896 *      not supported error code.
 897 *
 898 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
 899 *      Used to set network devices bus interface parameters. This interface
 900 *      is retained for legacy reasons; new devices should use the bus
 901 *      interface (PCI) for low level management.
 902 *
 903 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
 904 *      Called when a user wants to change the Maximum Transfer Unit
 905 *      of a device. If not defined, any request to change MTU will
 906 *      will return an error.
 907 *
 908 * void (*ndo_tx_timeout)(struct net_device *dev);
 909 *      Callback used when the transmitter has not made any progress
 910 *      for dev->watchdog ticks.
 911 *
 912 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
 913 *                      struct rtnl_link_stats64 *storage);
 914 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
 915 *      Called when a user wants to get the network device usage
 916 *      statistics. Drivers must do one of the following:
 917 *      1. Define @ndo_get_stats64 to fill in a zero-initialised
 918 *         rtnl_link_stats64 structure passed by the caller.
 919 *      2. Define @ndo_get_stats to update a net_device_stats structure
 920 *         (which should normally be dev->stats) and return a pointer to
 921 *         it. The structure may be changed asynchronously only if each
 922 *         field is written atomically.
 923 *      3. Update dev->stats asynchronously and atomically, and define
 924 *         neither operation.
 925 *
 926 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
 927 *      If device supports VLAN filtering this function is called when a
 928 *      VLAN id is registered.
 929 *
 930 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
 931 *      If device supports VLAN filtering this function is called when a
 932 *      VLAN id is unregistered.
 933 *
 934 * void (*ndo_poll_controller)(struct net_device *dev);
 935 *
 936 *      SR-IOV management functions.
 937 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
 938 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
 939 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
 940 *                        int max_tx_rate);
 941 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
 942 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
 943 * int (*ndo_get_vf_config)(struct net_device *dev,
 944 *                          int vf, struct ifla_vf_info *ivf);
 945 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
 946 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
 947 *                        struct nlattr *port[]);
 948 *
 949 *      Enable or disable the VF ability to query its RSS Redirection Table and
 950 *      Hash Key. This is needed since on some devices VF share this information
 951 *      with PF and querying it may introduce a theoretical security risk.
 952 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
 953 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
 954 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
 955 *      Called to setup 'tc' number of traffic classes in the net device. This
 956 *      is always called from the stack with the rtnl lock held and netif tx
 957 *      queues stopped. This allows the netdevice to perform queue management
 958 *      safely.
 959 *
 960 *      Fiber Channel over Ethernet (FCoE) offload functions.
 961 * int (*ndo_fcoe_enable)(struct net_device *dev);
 962 *      Called when the FCoE protocol stack wants to start using LLD for FCoE
 963 *      so the underlying device can perform whatever needed configuration or
 964 *      initialization to support acceleration of FCoE traffic.
 965 *
 966 * int (*ndo_fcoe_disable)(struct net_device *dev);
 967 *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
 968 *      so the underlying device can perform whatever needed clean-ups to
 969 *      stop supporting acceleration of FCoE traffic.
 970 *
 971 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
 972 *                           struct scatterlist *sgl, unsigned int sgc);
 973 *      Called when the FCoE Initiator wants to initialize an I/O that
 974 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
 975 *      perform necessary setup and returns 1 to indicate the device is set up
 976 *      successfully to perform DDP on this I/O, otherwise this returns 0.
 977 *
 978 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
 979 *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
 980 *      indicated by the FC exchange id 'xid', so the underlying device can
 981 *      clean up and reuse resources for later DDP requests.
 982 *
 983 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
 984 *                            struct scatterlist *sgl, unsigned int sgc);
 985 *      Called when the FCoE Target wants to initialize an I/O that
 986 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
 987 *      perform necessary setup and returns 1 to indicate the device is set up
 988 *      successfully to perform DDP on this I/O, otherwise this returns 0.
 989 *
 990 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
 991 *                             struct netdev_fcoe_hbainfo *hbainfo);
 992 *      Called when the FCoE Protocol stack wants information on the underlying
 993 *      device. This information is utilized by the FCoE protocol stack to
 994 *      register attributes with Fiber Channel management service as per the
 995 *      FC-GS Fabric Device Management Information(FDMI) specification.
 996 *
 997 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
 998 *      Called when the underlying device wants to override default World Wide
 999 *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1000 *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1001 *      protocol stack to use.
1002 *
1003 *      RFS acceleration.
1004 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1005 *                          u16 rxq_index, u32 flow_id);
1006 *      Set hardware filter for RFS.  rxq_index is the target queue index;
1007 *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1008 *      Return the filter ID on success, or a negative error code.
1009 *
1010 *      Slave management functions (for bridge, bonding, etc).
1011 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1012 *      Called to make another netdev an underling.
1013 *
1014 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1015 *      Called to release previously enslaved netdev.
1016 *
1017 *      Feature/offload setting functions.
1018 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1019 *      Called to update device configuration to new features. Passed
1020 *      feature set might be less than what was returned by ndo_fix_features()).
1021 *      Must return >0 or -errno if it changed dev->features itself.
1022 *
1023 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1024 *                    struct net_device *dev,
1025 *                    const unsigned char *addr, u16 vid, u16 flags)
1026 *      Adds an FDB entry to dev for addr.
1027 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1028 *                    struct net_device *dev,
1029 *                    const unsigned char *addr, u16 vid)
1030 *      Deletes the FDB entry from dev coresponding to addr.
1031 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1032 *                     struct net_device *dev, struct net_device *filter_dev,
1033 *                     int idx)
1034 *      Used to add FDB entries to dump requests. Implementers should add
1035 *      entries to skb and update idx with the number of entries.
1036 *
1037 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1038 *                           u16 flags)
1039 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1040 *                           struct net_device *dev, u32 filter_mask,
1041 *                           int nlflags)
1042 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1043 *                           u16 flags);
1044 *
1045 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1046 *      Called to change device carrier. Soft-devices (like dummy, team, etc)
1047 *      which do not represent real hardware may define this to allow their
1048 *      userspace components to manage their virtual carrier state. Devices
1049 *      that determine carrier state from physical hardware properties (eg
1050 *      network cables) or protocol-dependent mechanisms (eg
1051 *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1052 *
1053 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1054 *                             struct netdev_phys_item_id *ppid);
1055 *      Called to get ID of physical port of this device. If driver does
1056 *      not implement this, it is assumed that the hw is not able to have
1057 *      multiple net devices on single physical port.
1058 *
1059 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1060 *                            struct udp_tunnel_info *ti);
1061 *      Called by UDP tunnel to notify a driver about the UDP port and socket
1062 *      address family that a UDP tunnel is listnening to. It is called only
1063 *      when a new port starts listening. The operation is protected by the
1064 *      RTNL.
1065 *
1066 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1067 *                            struct udp_tunnel_info *ti);
1068 *      Called by UDP tunnel to notify the driver about a UDP port and socket
1069 *      address family that the UDP tunnel is not listening to anymore. The
1070 *      operation is protected by the RTNL.
1071 *
1072 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1073 *                               struct net_device *dev)
1074 *      Called by upper layer devices to accelerate switching or other
1075 *      station functionality into hardware. 'pdev is the lowerdev
1076 *      to use for the offload and 'dev' is the net device that will
1077 *      back the offload. Returns a pointer to the private structure
1078 *      the upper layer will maintain.
1079 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1080 *      Called by upper layer device to delete the station created
1081 *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1082 *      the station and priv is the structure returned by the add
1083 *      operation.
1084 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1085 *                                    struct net_device *dev,
1086 *                                    void *priv);
1087 *      Callback to use for xmit over the accelerated station. This
1088 *      is used in place of ndo_start_xmit on accelerated net
1089 *      devices.
1090 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1091 *                                         struct net_device *dev
1092 *                                         netdev_features_t features);
1093 *      Called by core transmit path to determine if device is capable of
1094 *      performing offload operations on a given packet. This is to give
1095 *      the device an opportunity to implement any restrictions that cannot
1096 *      be otherwise expressed by feature flags. The check is called with
1097 *      the set of features that the stack has calculated and it returns
1098 *      those the driver believes to be appropriate.
1099 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1100 *                           int queue_index, u32 maxrate);
1101 *      Called when a user wants to set a max-rate limitation of specific
1102 *      TX queue.
1103 * int (*ndo_get_iflink)(const struct net_device *dev);
1104 *      Called to get the iflink value of this device.
1105 * void (*ndo_change_proto_down)(struct net_device *dev,
1106 *                               bool proto_down);
1107 *      This function is used to pass protocol port error state information
1108 *      to the switch driver. The switch driver can react to the proto_down
1109 *      by doing a phys down on the associated switch port.
1110 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1111 *      This function is used to get egress tunnel information for given skb.
1112 *      This is useful for retrieving outer tunnel header parameters while
1113 *      sampling packet.
1114 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1115 *      This function is used to specify the headroom that the skb must
1116 *      consider when allocation skb during packet reception. Setting
1117 *      appropriate rx headroom value allows avoiding skb head copy on
1118 *      forward. Setting a negative value resets the rx headroom to the
1119 *      default value.
1120 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1121 *      This function is used to set or query state related to XDP on the
1122 *      netdevice. See definition of enum xdp_netdev_command for details.
1123 *
1124 */
1125struct net_device_ops {
1126        int                     (*ndo_init)(struct net_device *dev);
1127        void                    (*ndo_uninit)(struct net_device *dev);
1128        int                     (*ndo_open)(struct net_device *dev);
1129        int                     (*ndo_stop)(struct net_device *dev);
1130        netdev_tx_t             (*ndo_start_xmit)(struct sk_buff *skb,
1131                                                  struct net_device *dev);
1132        netdev_features_t       (*ndo_features_check)(struct sk_buff *skb,
1133                                                      struct net_device *dev,
1134                                                      netdev_features_t features);
1135        u16                     (*ndo_select_queue)(struct net_device *dev,
1136                                                    struct sk_buff *skb,
1137                                                    void *accel_priv,
1138                                                    select_queue_fallback_t fallback);
1139        void                    (*ndo_change_rx_flags)(struct net_device *dev,
1140                                                       int flags);
1141        void                    (*ndo_set_rx_mode)(struct net_device *dev);
1142        int                     (*ndo_set_mac_address)(struct net_device *dev,
1143                                                       void *addr);
1144        int                     (*ndo_validate_addr)(struct net_device *dev);
1145        int                     (*ndo_do_ioctl)(struct net_device *dev,
1146                                                struct ifreq *ifr, int cmd);
1147        int                     (*ndo_set_config)(struct net_device *dev,
1148                                                  struct ifmap *map);
1149        int                     (*ndo_change_mtu)(struct net_device *dev,
1150                                                  int new_mtu);
1151        int                     (*ndo_neigh_setup)(struct net_device *dev,
1152                                                   struct neigh_parms *);
1153        void                    (*ndo_tx_timeout) (struct net_device *dev);
1154
1155        struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1156                                                     struct rtnl_link_stats64 *storage);
1157        struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1158
1159        int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1160                                                       __be16 proto, u16 vid);
1161        int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1162                                                        __be16 proto, u16 vid);
1163#ifdef CONFIG_NET_POLL_CONTROLLER
1164        void                    (*ndo_poll_controller)(struct net_device *dev);
1165        int                     (*ndo_netpoll_setup)(struct net_device *dev,
1166                                                     struct netpoll_info *info);
1167        void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1168#endif
1169#ifdef CONFIG_NET_RX_BUSY_POLL
1170        int                     (*ndo_busy_poll)(struct napi_struct *dev);
1171#endif
1172        int                     (*ndo_set_vf_mac)(struct net_device *dev,
1173                                                  int queue, u8 *mac);
1174        int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1175                                                   int queue, u16 vlan, u8 qos);
1176        int                     (*ndo_set_vf_rate)(struct net_device *dev,
1177                                                   int vf, int min_tx_rate,
1178                                                   int max_tx_rate);
1179        int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1180                                                       int vf, bool setting);
1181        int                     (*ndo_set_vf_trust)(struct net_device *dev,
1182                                                    int vf, bool setting);
1183        int                     (*ndo_get_vf_config)(struct net_device *dev,
1184                                                     int vf,
1185                                                     struct ifla_vf_info *ivf);
1186        int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1187                                                         int vf, int link_state);
1188        int                     (*ndo_get_vf_stats)(struct net_device *dev,
1189                                                    int vf,
1190                                                    struct ifla_vf_stats
1191                                                    *vf_stats);
1192        int                     (*ndo_set_vf_port)(struct net_device *dev,
1193                                                   int vf,
1194                                                   struct nlattr *port[]);
1195        int                     (*ndo_get_vf_port)(struct net_device *dev,
1196                                                   int vf, struct sk_buff *skb);
1197        int                     (*ndo_set_vf_guid)(struct net_device *dev,
1198                                                   int vf, u64 guid,
1199                                                   int guid_type);
1200        int                     (*ndo_set_vf_rss_query_en)(
1201                                                   struct net_device *dev,
1202                                                   int vf, bool setting);
1203        int                     (*ndo_setup_tc)(struct net_device *dev,
1204                                                u32 handle,
1205                                                __be16 protocol,
1206                                                struct tc_to_netdev *tc);
1207#if IS_ENABLED(CONFIG_FCOE)
1208        int                     (*ndo_fcoe_enable)(struct net_device *dev);
1209        int                     (*ndo_fcoe_disable)(struct net_device *dev);
1210        int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1211                                                      u16 xid,
1212                                                      struct scatterlist *sgl,
1213                                                      unsigned int sgc);
1214        int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1215                                                     u16 xid);
1216        int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1217                                                       u16 xid,
1218                                                       struct scatterlist *sgl,
1219                                                       unsigned int sgc);
1220        int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1221                                                        struct netdev_fcoe_hbainfo *hbainfo);
1222#endif
1223
1224#if IS_ENABLED(CONFIG_LIBFCOE)
1225#define NETDEV_FCOE_WWNN 0
1226#define NETDEV_FCOE_WWPN 1
1227        int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1228                                                    u64 *wwn, int type);
1229#endif
1230
1231#ifdef CONFIG_RFS_ACCEL
1232        int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1233                                                     const struct sk_buff *skb,
1234                                                     u16 rxq_index,
1235                                                     u32 flow_id);
1236#endif
1237        int                     (*ndo_add_slave)(struct net_device *dev,
1238                                                 struct net_device *slave_dev);
1239        int                     (*ndo_del_slave)(struct net_device *dev,
1240                                                 struct net_device *slave_dev);
1241        netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1242                                                    netdev_features_t features);
1243        int                     (*ndo_set_features)(struct net_device *dev,
1244                                                    netdev_features_t features);
1245        int                     (*ndo_neigh_construct)(struct net_device *dev,
1246                                                       struct neighbour *n);
1247        void                    (*ndo_neigh_destroy)(struct net_device *dev,
1248                                                     struct neighbour *n);
1249
1250        int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1251                                               struct nlattr *tb[],
1252                                               struct net_device *dev,
1253                                               const unsigned char *addr,
1254                                               u16 vid,
1255                                               u16 flags);
1256        int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1257                                               struct nlattr *tb[],
1258                                               struct net_device *dev,
1259                                               const unsigned char *addr,
1260                                               u16 vid);
1261        int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1262                                                struct netlink_callback *cb,
1263                                                struct net_device *dev,
1264                                                struct net_device *filter_dev,
1265                                                int idx);
1266
1267        int                     (*ndo_bridge_setlink)(struct net_device *dev,
1268                                                      struct nlmsghdr *nlh,
1269                                                      u16 flags);
1270        int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1271                                                      u32 pid, u32 seq,
1272                                                      struct net_device *dev,
1273                                                      u32 filter_mask,
1274                                                      int nlflags);
1275        int                     (*ndo_bridge_dellink)(struct net_device *dev,
1276                                                      struct nlmsghdr *nlh,
1277                                                      u16 flags);
1278        int                     (*ndo_change_carrier)(struct net_device *dev,
1279                                                      bool new_carrier);
1280        int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1281                                                        struct netdev_phys_item_id *ppid);
1282        int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1283                                                          char *name, size_t len);
1284        void                    (*ndo_udp_tunnel_add)(struct net_device *dev,
1285                                                      struct udp_tunnel_info *ti);
1286        void                    (*ndo_udp_tunnel_del)(struct net_device *dev,
1287                                                      struct udp_tunnel_info *ti);
1288        void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1289                                                        struct net_device *dev);
1290        void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1291                                                        void *priv);
1292
1293        netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1294                                                        struct net_device *dev,
1295                                                        void *priv);
1296        int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1297        int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1298                                                      int queue_index,
1299                                                      u32 maxrate);
1300        int                     (*ndo_get_iflink)(const struct net_device *dev);
1301        int                     (*ndo_change_proto_down)(struct net_device *dev,
1302                                                         bool proto_down);
1303        int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1304                                                       struct sk_buff *skb);
1305        void                    (*ndo_set_rx_headroom)(struct net_device *dev,
1306                                                       int needed_headroom);
1307        int                     (*ndo_xdp)(struct net_device *dev,
1308                                           struct netdev_xdp *xdp);
1309};
1310
1311/**
1312 * enum net_device_priv_flags - &struct net_device priv_flags
1313 *
1314 * These are the &struct net_device, they are only set internally
1315 * by drivers and used in the kernel. These flags are invisible to
1316 * userspace; this means that the order of these flags can change
1317 * during any kernel release.
1318 *
1319 * You should have a pretty good reason to be extending these flags.
1320 *
1321 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1322 * @IFF_EBRIDGE: Ethernet bridging device
1323 * @IFF_BONDING: bonding master or slave
1324 * @IFF_ISATAP: ISATAP interface (RFC4214)
1325 * @IFF_WAN_HDLC: WAN HDLC device
1326 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1327 *      release skb->dst
1328 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1329 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1330 * @IFF_MACVLAN_PORT: device used as macvlan port
1331 * @IFF_BRIDGE_PORT: device used as bridge port
1332 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1333 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1334 * @IFF_UNICAST_FLT: Supports unicast filtering
1335 * @IFF_TEAM_PORT: device used as team port
1336 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1337 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1338 *      change when it's running
1339 * @IFF_MACVLAN: Macvlan device
1340 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1341 *      underlying stacked devices
1342 * @IFF_IPVLAN_MASTER: IPvlan master device
1343 * @IFF_IPVLAN_SLAVE: IPvlan slave device
1344 * @IFF_L3MDEV_MASTER: device is an L3 master device
1345 * @IFF_NO_QUEUE: device can run without qdisc attached
1346 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1347 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1348 * @IFF_TEAM: device is a team device
1349 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1350 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1351 *      entity (i.e. the master device for bridged veth)
1352 * @IFF_MACSEC: device is a MACsec device
1353 */
1354enum netdev_priv_flags {
1355        IFF_802_1Q_VLAN                 = 1<<0,
1356        IFF_EBRIDGE                     = 1<<1,
1357        IFF_BONDING                     = 1<<2,
1358        IFF_ISATAP                      = 1<<3,
1359        IFF_WAN_HDLC                    = 1<<4,
1360        IFF_XMIT_DST_RELEASE            = 1<<5,
1361        IFF_DONT_BRIDGE                 = 1<<6,
1362        IFF_DISABLE_NETPOLL             = 1<<7,
1363        IFF_MACVLAN_PORT                = 1<<8,
1364        IFF_BRIDGE_PORT                 = 1<<9,
1365        IFF_OVS_DATAPATH                = 1<<10,
1366        IFF_TX_SKB_SHARING              = 1<<11,
1367        IFF_UNICAST_FLT                 = 1<<12,
1368        IFF_TEAM_PORT                   = 1<<13,
1369        IFF_SUPP_NOFCS                  = 1<<14,
1370        IFF_LIVE_ADDR_CHANGE            = 1<<15,
1371        IFF_MACVLAN                     = 1<<16,
1372        IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1373        IFF_IPVLAN_MASTER               = 1<<18,
1374        IFF_IPVLAN_SLAVE                = 1<<19,
1375        IFF_L3MDEV_MASTER               = 1<<20,
1376        IFF_NO_QUEUE                    = 1<<21,
1377        IFF_OPENVSWITCH                 = 1<<22,
1378        IFF_L3MDEV_SLAVE                = 1<<23,
1379        IFF_TEAM                        = 1<<24,
1380        IFF_RXFH_CONFIGURED             = 1<<25,
1381        IFF_PHONY_HEADROOM              = 1<<26,
1382        IFF_MACSEC                      = 1<<27,
1383};
1384
1385#define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1386#define IFF_EBRIDGE                     IFF_EBRIDGE
1387#define IFF_BONDING                     IFF_BONDING
1388#define IFF_ISATAP                      IFF_ISATAP
1389#define IFF_WAN_HDLC                    IFF_WAN_HDLC
1390#define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1391#define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1392#define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1393#define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1394#define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1395#define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1396#define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1397#define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1398#define IFF_TEAM_PORT                   IFF_TEAM_PORT
1399#define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1400#define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1401#define IFF_MACVLAN                     IFF_MACVLAN
1402#define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1403#define IFF_IPVLAN_MASTER               IFF_IPVLAN_MASTER
1404#define IFF_IPVLAN_SLAVE                IFF_IPVLAN_SLAVE
1405#define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1406#define IFF_NO_QUEUE                    IFF_NO_QUEUE
1407#define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1408#define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1409#define IFF_TEAM                        IFF_TEAM
1410#define IFF_RXFH_CONFIGURED             IFF_RXFH_CONFIGURED
1411#define IFF_MACSEC                      IFF_MACSEC
1412
1413/**
1414 *      struct net_device - The DEVICE structure.
1415 *              Actually, this whole structure is a big mistake.  It mixes I/O
1416 *              data with strictly "high-level" data, and it has to know about
1417 *              almost every data structure used in the INET module.
1418 *
1419 *      @name:  This is the first field of the "visible" part of this structure
1420 *              (i.e. as seen by users in the "Space.c" file).  It is the name
1421 *              of the interface.
1422 *
1423 *      @name_hlist:    Device name hash chain, please keep it close to name[]
1424 *      @ifalias:       SNMP alias
1425 *      @mem_end:       Shared memory end
1426 *      @mem_start:     Shared memory start
1427 *      @base_addr:     Device I/O address
1428 *      @irq:           Device IRQ number
1429 *
1430 *      @carrier_changes:       Stats to monitor carrier on<->off transitions
1431 *
1432 *      @state:         Generic network queuing layer state, see netdev_state_t
1433 *      @dev_list:      The global list of network devices
1434 *      @napi_list:     List entry used for polling NAPI devices
1435 *      @unreg_list:    List entry  when we are unregistering the
1436 *                      device; see the function unregister_netdev
1437 *      @close_list:    List entry used when we are closing the device
1438 *      @ptype_all:     Device-specific packet handlers for all protocols
1439 *      @ptype_specific: Device-specific, protocol-specific packet handlers
1440 *
1441 *      @adj_list:      Directly linked devices, like slaves for bonding
1442 *      @all_adj_list:  All linked devices, *including* neighbours
1443 *      @features:      Currently active device features
1444 *      @hw_features:   User-changeable features
1445 *
1446 *      @wanted_features:       User-requested features
1447 *      @vlan_features:         Mask of features inheritable by VLAN devices
1448 *
1449 *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1450 *                              This field indicates what encapsulation
1451 *                              offloads the hardware is capable of doing,
1452 *                              and drivers will need to set them appropriately.
1453 *
1454 *      @mpls_features: Mask of features inheritable by MPLS
1455 *
1456 *      @ifindex:       interface index
1457 *      @group:         The group the device belongs to
1458 *
1459 *      @stats:         Statistics struct, which was left as a legacy, use
1460 *                      rtnl_link_stats64 instead
1461 *
1462 *      @rx_dropped:    Dropped packets by core network,
1463 *                      do not use this in drivers
1464 *      @tx_dropped:    Dropped packets by core network,
1465 *                      do not use this in drivers
1466 *      @rx_nohandler:  nohandler dropped packets by core network on
1467 *                      inactive devices, do not use this in drivers
1468 *
1469 *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1470 *                              instead of ioctl,
1471 *                              see <net/iw_handler.h> for details.
1472 *      @wireless_data: Instance data managed by the core of wireless extensions
1473 *
1474 *      @netdev_ops:    Includes several pointers to callbacks,
1475 *                      if one wants to override the ndo_*() functions
1476 *      @ethtool_ops:   Management operations
1477 *      @ndisc_ops:     Includes callbacks for different IPv6 neighbour
1478 *                      discovery handling. Necessary for e.g. 6LoWPAN.
1479 *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1480 *                      of Layer 2 headers.
1481 *
1482 *      @flags:         Interface flags (a la BSD)
1483 *      @priv_flags:    Like 'flags' but invisible to userspace,
1484 *                      see if.h for the definitions
1485 *      @gflags:        Global flags ( kept as legacy )
1486 *      @padded:        How much padding added by alloc_netdev()
1487 *      @operstate:     RFC2863 operstate
1488 *      @link_mode:     Mapping policy to operstate
1489 *      @if_port:       Selectable AUI, TP, ...
1490 *      @dma:           DMA channel
1491 *      @mtu:           Interface MTU value
1492 *      @type:          Interface hardware type
1493 *      @hard_header_len: Maximum hardware header length.
1494 *
1495 *      @needed_headroom: Extra headroom the hardware may need, but not in all
1496 *                        cases can this be guaranteed
1497 *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1498 *                        cases can this be guaranteed. Some cases also use
1499 *                        LL_MAX_HEADER instead to allocate the skb
1500 *
1501 *      interface address info:
1502 *
1503 *      @perm_addr:             Permanent hw address
1504 *      @addr_assign_type:      Hw address assignment type
1505 *      @addr_len:              Hardware address length
1506 *      @neigh_priv_len:        Used in neigh_alloc()
1507 *      @dev_id:                Used to differentiate devices that share
1508 *                              the same link layer address
1509 *      @dev_port:              Used to differentiate devices that share
1510 *                              the same function
1511 *      @addr_list_lock:        XXX: need comments on this one
1512 *      @uc_promisc:            Counter that indicates promiscuous mode
1513 *                              has been enabled due to the need to listen to
1514 *                              additional unicast addresses in a device that
1515 *                              does not implement ndo_set_rx_mode()
1516 *      @uc:                    unicast mac addresses
1517 *      @mc:                    multicast mac addresses
1518 *      @dev_addrs:             list of device hw addresses
1519 *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1520 *      @promiscuity:           Number of times the NIC is told to work in
1521 *                              promiscuous mode; if it becomes 0 the NIC will
1522 *                              exit promiscuous mode
1523 *      @allmulti:              Counter, enables or disables allmulticast mode
1524 *
1525 *      @vlan_info:     VLAN info
1526 *      @dsa_ptr:       dsa specific data
1527 *      @tipc_ptr:      TIPC specific data
1528 *      @atalk_ptr:     AppleTalk link
1529 *      @ip_ptr:        IPv4 specific data
1530 *      @dn_ptr:        DECnet specific data
1531 *      @ip6_ptr:       IPv6 specific data
1532 *      @ax25_ptr:      AX.25 specific data
1533 *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1534 *
1535 *      @last_rx:       Time of last Rx
1536 *      @dev_addr:      Hw address (before bcast,
1537 *                      because most packets are unicast)
1538 *
1539 *      @_rx:                   Array of RX queues
1540 *      @num_rx_queues:         Number of RX queues
1541 *                              allocated at register_netdev() time
1542 *      @real_num_rx_queues:    Number of RX queues currently active in device
1543 *
1544 *      @rx_handler:            handler for received packets
1545 *      @rx_handler_data:       XXX: need comments on this one
1546 *      @ingress_queue:         XXX: need comments on this one
1547 *      @broadcast:             hw bcast address
1548 *
1549 *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1550 *                      indexed by RX queue number. Assigned by driver.
1551 *                      This must only be set if the ndo_rx_flow_steer
1552 *                      operation is defined
1553 *      @index_hlist:           Device index hash chain
1554 *
1555 *      @_tx:                   Array of TX queues
1556 *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1557 *      @real_num_tx_queues:    Number of TX queues currently active in device
1558 *      @qdisc:                 Root qdisc from userspace point of view
1559 *      @tx_queue_len:          Max frames per queue allowed
1560 *      @tx_global_lock:        XXX: need comments on this one
1561 *
1562 *      @xps_maps:      XXX: need comments on this one
1563 *
1564 *      @offload_fwd_mark:      Offload device fwding mark
1565 *
1566 *      @watchdog_timeo:        Represents the timeout that is used by
1567 *                              the watchdog (see dev_watchdog())
1568 *      @watchdog_timer:        List of timers
1569 *
1570 *      @pcpu_refcnt:           Number of references to this device
1571 *      @todo_list:             Delayed register/unregister
1572 *      @link_watch_list:       XXX: need comments on this one
1573 *
1574 *      @reg_state:             Register/unregister state machine
1575 *      @dismantle:             Device is going to be freed
1576 *      @rtnl_link_state:       This enum represents the phases of creating
1577 *                              a new link
1578 *
1579 *      @destructor:            Called from unregister,
1580 *                              can be used to call free_netdev
1581 *      @npinfo:                XXX: need comments on this one
1582 *      @nd_net:                Network namespace this network device is inside
1583 *
1584 *      @ml_priv:       Mid-layer private
1585 *      @lstats:        Loopback statistics
1586 *      @tstats:        Tunnel statistics
1587 *      @dstats:        Dummy statistics
1588 *      @vstats:        Virtual ethernet statistics
1589 *
1590 *      @garp_port:     GARP
1591 *      @mrp_port:      MRP
1592 *
1593 *      @dev:           Class/net/name entry
1594 *      @sysfs_groups:  Space for optional device, statistics and wireless
1595 *                      sysfs groups
1596 *
1597 *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1598 *      @rtnl_link_ops: Rtnl_link_ops
1599 *
1600 *      @gso_max_size:  Maximum size of generic segmentation offload
1601 *      @gso_max_segs:  Maximum number of segments that can be passed to the
1602 *                      NIC for GSO
1603 *
1604 *      @dcbnl_ops:     Data Center Bridging netlink ops
1605 *      @num_tc:        Number of traffic classes in the net device
1606 *      @tc_to_txq:     XXX: need comments on this one
1607 *      @prio_tc_map    XXX: need comments on this one
1608 *
1609 *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1610 *
1611 *      @priomap:       XXX: need comments on this one
1612 *      @phydev:        Physical device may attach itself
1613 *                      for hardware timestamping
1614 *
1615 *      @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1616 *      @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1617 *
1618 *      @proto_down:    protocol port state information can be sent to the
1619 *                      switch driver and used to set the phys state of the
1620 *                      switch port.
1621 *
1622 *      FIXME: cleanup struct net_device such that network protocol info
1623 *      moves out.
1624 */
1625
1626struct net_device {
1627        char                    name[IFNAMSIZ];
1628        struct hlist_node       name_hlist;
1629        char                    *ifalias;
1630        /*
1631         *      I/O specific fields
1632         *      FIXME: Merge these and struct ifmap into one
1633         */
1634        unsigned long           mem_end;
1635        unsigned long           mem_start;
1636        unsigned long           base_addr;
1637        int                     irq;
1638
1639        atomic_t                carrier_changes;
1640
1641        /*
1642         *      Some hardware also needs these fields (state,dev_list,
1643         *      napi_list,unreg_list,close_list) but they are not
1644         *      part of the usual set specified in Space.c.
1645         */
1646
1647        unsigned long           state;
1648
1649        struct list_head        dev_list;
1650        struct list_head        napi_list;
1651        struct list_head        unreg_list;
1652        struct list_head        close_list;
1653        struct list_head        ptype_all;
1654        struct list_head        ptype_specific;
1655
1656        struct {
1657                struct list_head upper;
1658                struct list_head lower;
1659        } adj_list;
1660
1661        struct {
1662                struct list_head upper;
1663                struct list_head lower;
1664        } all_adj_list;
1665
1666        netdev_features_t       features;
1667        netdev_features_t       hw_features;
1668        netdev_features_t       wanted_features;
1669        netdev_features_t       vlan_features;
1670        netdev_features_t       hw_enc_features;
1671        netdev_features_t       mpls_features;
1672        netdev_features_t       gso_partial_features;
1673
1674        int                     ifindex;
1675        int                     group;
1676
1677        struct net_device_stats stats;
1678
1679        atomic_long_t           rx_dropped;
1680        atomic_long_t           tx_dropped;
1681        atomic_long_t           rx_nohandler;
1682
1683#ifdef CONFIG_WIRELESS_EXT
1684        const struct iw_handler_def *wireless_handlers;
1685        struct iw_public_data   *wireless_data;
1686#endif
1687        const struct net_device_ops *netdev_ops;
1688        const struct ethtool_ops *ethtool_ops;
1689#ifdef CONFIG_NET_SWITCHDEV
1690        const struct switchdev_ops *switchdev_ops;
1691#endif
1692#ifdef CONFIG_NET_L3_MASTER_DEV
1693        const struct l3mdev_ops *l3mdev_ops;
1694#endif
1695#if IS_ENABLED(CONFIG_IPV6)
1696        const struct ndisc_ops *ndisc_ops;
1697#endif
1698
1699        const struct header_ops *header_ops;
1700
1701        unsigned int            flags;
1702        unsigned int            priv_flags;
1703
1704        unsigned short          gflags;
1705        unsigned short          padded;
1706
1707        unsigned char           operstate;
1708        unsigned char           link_mode;
1709
1710        unsigned char           if_port;
1711        unsigned char           dma;
1712
1713        unsigned int            mtu;
1714        unsigned short          type;
1715        unsigned short          hard_header_len;
1716
1717        unsigned short          needed_headroom;
1718        unsigned short          needed_tailroom;
1719
1720        /* Interface address info. */
1721        unsigned char           perm_addr[MAX_ADDR_LEN];
1722        unsigned char           addr_assign_type;
1723        unsigned char           addr_len;
1724        unsigned short          neigh_priv_len;
1725        unsigned short          dev_id;
1726        unsigned short          dev_port;
1727        spinlock_t              addr_list_lock;
1728        unsigned char           name_assign_type;
1729        bool                    uc_promisc;
1730        struct netdev_hw_addr_list      uc;
1731        struct netdev_hw_addr_list      mc;
1732        struct netdev_hw_addr_list      dev_addrs;
1733
1734#ifdef CONFIG_SYSFS
1735        struct kset             *queues_kset;
1736#endif
1737        unsigned int            promiscuity;
1738        unsigned int            allmulti;
1739
1740
1741        /* Protocol-specific pointers */
1742
1743#if IS_ENABLED(CONFIG_VLAN_8021Q)
1744        struct vlan_info __rcu  *vlan_info;
1745#endif
1746#if IS_ENABLED(CONFIG_NET_DSA)
1747        struct dsa_switch_tree  *dsa_ptr;
1748#endif
1749#if IS_ENABLED(CONFIG_TIPC)
1750        struct tipc_bearer __rcu *tipc_ptr;
1751#endif
1752        void                    *atalk_ptr;
1753        struct in_device __rcu  *ip_ptr;
1754        struct dn_dev __rcu     *dn_ptr;
1755        struct inet6_dev __rcu  *ip6_ptr;
1756        void                    *ax25_ptr;
1757        struct wireless_dev     *ieee80211_ptr;
1758        struct wpan_dev         *ieee802154_ptr;
1759#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1760        struct mpls_dev __rcu   *mpls_ptr;
1761#endif
1762
1763/*
1764 * Cache lines mostly used on receive path (including eth_type_trans())
1765 */
1766        unsigned long           last_rx;
1767
1768        /* Interface address info used in eth_type_trans() */
1769        unsigned char           *dev_addr;
1770
1771#ifdef CONFIG_SYSFS
1772        struct netdev_rx_queue  *_rx;
1773
1774        unsigned int            num_rx_queues;
1775        unsigned int            real_num_rx_queues;
1776#endif
1777
1778        unsigned long           gro_flush_timeout;
1779        rx_handler_func_t __rcu *rx_handler;
1780        void __rcu              *rx_handler_data;
1781
1782#ifdef CONFIG_NET_CLS_ACT
1783        struct tcf_proto __rcu  *ingress_cl_list;
1784#endif
1785        struct netdev_queue __rcu *ingress_queue;
1786#ifdef CONFIG_NETFILTER_INGRESS
1787        struct list_head        nf_hooks_ingress;
1788#endif
1789
1790        unsigned char           broadcast[MAX_ADDR_LEN];
1791#ifdef CONFIG_RFS_ACCEL
1792        struct cpu_rmap         *rx_cpu_rmap;
1793#endif
1794        struct hlist_node       index_hlist;
1795
1796/*
1797 * Cache lines mostly used on transmit path
1798 */
1799        struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1800        unsigned int            num_tx_queues;
1801        unsigned int            real_num_tx_queues;
1802        struct Qdisc            *qdisc;
1803        unsigned long           tx_queue_len;
1804        spinlock_t              tx_global_lock;
1805        int                     watchdog_timeo;
1806
1807#ifdef CONFIG_XPS
1808        struct xps_dev_maps __rcu *xps_maps;
1809#endif
1810#ifdef CONFIG_NET_CLS_ACT
1811        struct tcf_proto __rcu  *egress_cl_list;
1812#endif
1813#ifdef CONFIG_NET_SWITCHDEV
1814        u32                     offload_fwd_mark;
1815#endif
1816
1817        /* These may be needed for future network-power-down code. */
1818        struct timer_list       watchdog_timer;
1819
1820        int __percpu            *pcpu_refcnt;
1821        struct list_head        todo_list;
1822
1823        struct list_head        link_watch_list;
1824
1825        enum { NETREG_UNINITIALIZED=0,
1826               NETREG_REGISTERED,       /* completed register_netdevice */
1827               NETREG_UNREGISTERING,    /* called unregister_netdevice */
1828               NETREG_UNREGISTERED,     /* completed unregister todo */
1829               NETREG_RELEASED,         /* called free_netdev */
1830               NETREG_DUMMY,            /* dummy device for NAPI poll */
1831        } reg_state:8;
1832
1833        bool dismantle;
1834
1835        enum {
1836                RTNL_LINK_INITIALIZED,
1837                RTNL_LINK_INITIALIZING,
1838        } rtnl_link_state:16;
1839
1840        void (*destructor)(struct net_device *dev);
1841
1842#ifdef CONFIG_NETPOLL
1843        struct netpoll_info __rcu       *npinfo;
1844#endif
1845
1846        possible_net_t                  nd_net;
1847
1848        /* mid-layer private */
1849        union {
1850                void                                    *ml_priv;
1851                struct pcpu_lstats __percpu             *lstats;
1852                struct pcpu_sw_netstats __percpu        *tstats;
1853                struct pcpu_dstats __percpu             *dstats;
1854                struct pcpu_vstats __percpu             *vstats;
1855        };
1856
1857        struct garp_port __rcu  *garp_port;
1858        struct mrp_port __rcu   *mrp_port;
1859
1860        struct device           dev;
1861        const struct attribute_group *sysfs_groups[4];
1862        const struct attribute_group *sysfs_rx_queue_group;
1863
1864        const struct rtnl_link_ops *rtnl_link_ops;
1865
1866        /* for setting kernel sock attribute on TCP connection setup */
1867#define GSO_MAX_SIZE            65536
1868        unsigned int            gso_max_size;
1869#define GSO_MAX_SEGS            65535
1870        u16                     gso_max_segs;
1871
1872#ifdef CONFIG_DCB
1873        const struct dcbnl_rtnl_ops *dcbnl_ops;
1874#endif
1875        u8                      num_tc;
1876        struct netdev_tc_txq    tc_to_txq[TC_MAX_QUEUE];
1877        u8                      prio_tc_map[TC_BITMASK + 1];
1878
1879#if IS_ENABLED(CONFIG_FCOE)
1880        unsigned int            fcoe_ddp_xid;
1881#endif
1882#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1883        struct netprio_map __rcu *priomap;
1884#endif
1885        struct phy_device       *phydev;
1886        struct lock_class_key   *qdisc_tx_busylock;
1887        struct lock_class_key   *qdisc_running_key;
1888        bool                    proto_down;
1889};
1890#define to_net_dev(d) container_of(d, struct net_device, dev)
1891
1892#define NETDEV_ALIGN            32
1893
1894static inline
1895int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1896{
1897        return dev->prio_tc_map[prio & TC_BITMASK];
1898}
1899
1900static inline
1901int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1902{
1903        if (tc >= dev->num_tc)
1904                return -EINVAL;
1905
1906        dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1907        return 0;
1908}
1909
1910static inline
1911void netdev_reset_tc(struct net_device *dev)
1912{
1913        dev->num_tc = 0;
1914        memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1915        memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1916}
1917
1918static inline
1919int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1920{
1921        if (tc >= dev->num_tc)
1922                return -EINVAL;
1923
1924        dev->tc_to_txq[tc].count = count;
1925        dev->tc_to_txq[tc].offset = offset;
1926        return 0;
1927}
1928
1929static inline
1930int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1931{
1932        if (num_tc > TC_MAX_QUEUE)
1933                return -EINVAL;
1934
1935        dev->num_tc = num_tc;
1936        return 0;
1937}
1938
1939static inline
1940int netdev_get_num_tc(struct net_device *dev)
1941{
1942        return dev->num_tc;
1943}
1944
1945static inline
1946struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1947                                         unsigned int index)
1948{
1949        return &dev->_tx[index];
1950}
1951
1952static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1953                                                    const struct sk_buff *skb)
1954{
1955        return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1956}
1957
1958static inline void netdev_for_each_tx_queue(struct net_device *dev,
1959                                            void (*f)(struct net_device *,
1960                                                      struct netdev_queue *,
1961                                                      void *),
1962                                            void *arg)
1963{
1964        unsigned int i;
1965
1966        for (i = 0; i < dev->num_tx_queues; i++)
1967                f(dev, &dev->_tx[i], arg);
1968}
1969
1970#define netdev_lockdep_set_classes(dev)                         \
1971{                                                               \
1972        static struct lock_class_key qdisc_tx_busylock_key;     \
1973        static struct lock_class_key qdisc_running_key;         \
1974        static struct lock_class_key qdisc_xmit_lock_key;       \
1975        static struct lock_class_key dev_addr_list_lock_key;    \
1976        unsigned int i;                                         \
1977                                                                \
1978        (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;      \
1979        (dev)->qdisc_running_key = &qdisc_running_key;          \
1980        lockdep_set_class(&(dev)->addr_list_lock,               \
1981                          &dev_addr_list_lock_key);             \
1982        for (i = 0; i < (dev)->num_tx_queues; i++)              \
1983                lockdep_set_class(&(dev)->_tx[i]._xmit_lock,    \
1984                                  &qdisc_xmit_lock_key);        \
1985}
1986
1987struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1988                                    struct sk_buff *skb,
1989                                    void *accel_priv);
1990
1991/* returns the headroom that the master device needs to take in account
1992 * when forwarding to this dev
1993 */
1994static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1995{
1996        return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1997}
1998
1999static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2000{
2001        if (dev->netdev_ops->ndo_set_rx_headroom)
2002                dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2003}
2004
2005/* set the device rx headroom to the dev's default */
2006static inline void netdev_reset_rx_headroom(struct net_device *dev)
2007{
2008        netdev_set_rx_headroom(dev, -1);
2009}
2010
2011/*
2012 * Net namespace inlines
2013 */
2014static inline
2015struct net *dev_net(const struct net_device *dev)
2016{
2017        return read_pnet(&dev->nd_net);
2018}
2019
2020static inline
2021void dev_net_set(struct net_device *dev, struct net *net)
2022{
2023        write_pnet(&dev->nd_net, net);
2024}
2025
2026static inline bool netdev_uses_dsa(struct net_device *dev)
2027{
2028#if IS_ENABLED(CONFIG_NET_DSA)
2029        if (dev->dsa_ptr != NULL)
2030                return dsa_uses_tagged_protocol(dev->dsa_ptr);
2031#endif
2032        return false;
2033}
2034
2035/**
2036 *      netdev_priv - access network device private data
2037 *      @dev: network device
2038 *
2039 * Get network device private data
2040 */
2041static inline void *netdev_priv(const struct net_device *dev)
2042{
2043        return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2044}
2045
2046/* Set the sysfs physical device reference for the network logical device
2047 * if set prior to registration will cause a symlink during initialization.
2048 */
2049#define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
2050
2051/* Set the sysfs device type for the network logical device to allow
2052 * fine-grained identification of different network device types. For
2053 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2054 */
2055#define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
2056
2057/* Default NAPI poll() weight
2058 * Device drivers are strongly advised to not use bigger value
2059 */
2060#define NAPI_POLL_WEIGHT 64
2061
2062/**
2063 *      netif_napi_add - initialize a NAPI context
2064 *      @dev:  network device
2065 *      @napi: NAPI context
2066 *      @poll: polling function
2067 *      @weight: default weight
2068 *
2069 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2070 * *any* of the other NAPI-related functions.
2071 */
2072void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2073                    int (*poll)(struct napi_struct *, int), int weight);
2074
2075/**
2076 *      netif_tx_napi_add - initialize a NAPI context
2077 *      @dev:  network device
2078 *      @napi: NAPI context
2079 *      @poll: polling function
2080 *      @weight: default weight
2081 *
2082 * This variant of netif_napi_add() should be used from drivers using NAPI
2083 * to exclusively poll a TX queue.
2084 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2085 */
2086static inline void netif_tx_napi_add(struct net_device *dev,
2087                                     struct napi_struct *napi,
2088                                     int (*poll)(struct napi_struct *, int),
2089                                     int weight)
2090{
2091        set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2092        netif_napi_add(dev, napi, poll, weight);
2093}
2094
2095/**
2096 *  netif_napi_del - remove a NAPI context
2097 *  @napi: NAPI context
2098 *
2099 *  netif_napi_del() removes a NAPI context from the network device NAPI list
2100 */
2101void netif_napi_del(struct napi_struct *napi);
2102
2103struct napi_gro_cb {
2104        /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2105        void    *frag0;
2106
2107        /* Length of frag0. */
2108        unsigned int frag0_len;
2109
2110        /* This indicates where we are processing relative to skb->data. */
2111        int     data_offset;
2112
2113        /* This is non-zero if the packet cannot be merged with the new skb. */
2114        u16     flush;
2115
2116        /* Save the IP ID here and check when we get to the transport layer */
2117        u16     flush_id;
2118
2119        /* Number of segments aggregated. */
2120        u16     count;
2121
2122        /* Start offset for remote checksum offload */
2123        u16     gro_remcsum_start;
2124
2125        /* jiffies when first packet was created/queued */
2126        unsigned long age;
2127
2128        /* Used in ipv6_gro_receive() and foo-over-udp */
2129        u16     proto;
2130
2131        /* This is non-zero if the packet may be of the same flow. */
2132        u8      same_flow:1;
2133
2134        /* Used in tunnel GRO receive */
2135        u8      encap_mark:1;
2136
2137        /* GRO checksum is valid */
2138        u8      csum_valid:1;
2139
2140        /* Number of checksums via CHECKSUM_UNNECESSARY */
2141        u8      csum_cnt:3;
2142
2143        /* Free the skb? */
2144        u8      free:2;
2145#define NAPI_GRO_FREE             1
2146#define NAPI_GRO_FREE_STOLEN_HEAD 2
2147
2148        /* Used in foo-over-udp, set in udp[46]_gro_receive */
2149        u8      is_ipv6:1;
2150
2151        /* Used in GRE, set in fou/gue_gro_receive */
2152        u8      is_fou:1;
2153
2154        /* Used to determine if flush_id can be ignored */
2155        u8      is_atomic:1;
2156
2157        /* 5 bit hole */
2158
2159        /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2160        __wsum  csum;
2161
2162        /* used in skb_gro_receive() slow path */
2163        struct sk_buff *last;
2164};
2165
2166#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2167
2168struct packet_type {
2169        __be16                  type;   /* This is really htons(ether_type). */
2170        struct net_device       *dev;   /* NULL is wildcarded here           */
2171        int                     (*func) (struct sk_buff *,
2172                                         struct net_device *,
2173                                         struct packet_type *,
2174                                         struct net_device *);
2175        bool                    (*id_match)(struct packet_type *ptype,
2176                                            struct sock *sk);
2177        void                    *af_packet_priv;
2178        struct list_head        list;
2179};
2180
2181struct offload_callbacks {
2182        struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2183                                                netdev_features_t features);
2184        struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2185                                                 struct sk_buff *skb);
2186        int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2187};
2188
2189struct packet_offload {
2190        __be16                   type;  /* This is really htons(ether_type). */
2191        u16                      priority;
2192        struct offload_callbacks callbacks;
2193        struct list_head         list;
2194};
2195
2196/* often modified stats are per-CPU, other are shared (netdev->stats) */
2197struct pcpu_sw_netstats {
2198        u64     rx_packets;
2199        u64     rx_bytes;
2200        u64     tx_packets;
2201        u64     tx_bytes;
2202        struct u64_stats_sync   syncp;
2203};
2204
2205#define __netdev_alloc_pcpu_stats(type, gfp)                            \
2206({                                                                      \
2207        typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2208        if (pcpu_stats) {                                               \
2209                int __cpu;                                              \
2210                for_each_possible_cpu(__cpu) {                          \
2211                        typeof(type) *stat;                             \
2212                        stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2213                        u64_stats_init(&stat->syncp);                   \
2214                }                                                       \
2215        }                                                               \
2216        pcpu_stats;                                                     \
2217})
2218
2219#define netdev_alloc_pcpu_stats(type)                                   \
2220        __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2221
2222enum netdev_lag_tx_type {
2223        NETDEV_LAG_TX_TYPE_UNKNOWN,
2224        NETDEV_LAG_TX_TYPE_RANDOM,
2225        NETDEV_LAG_TX_TYPE_BROADCAST,
2226        NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2227        NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2228        NETDEV_LAG_TX_TYPE_HASH,
2229};
2230
2231struct netdev_lag_upper_info {
2232        enum netdev_lag_tx_type tx_type;
2233};
2234
2235struct netdev_lag_lower_state_info {
2236        u8 link_up : 1,
2237           tx_enabled : 1;
2238};
2239
2240#include <linux/notifier.h>
2241
2242/* netdevice notifier chain. Please remember to update the rtnetlink
2243 * notification exclusion list in rtnetlink_event() when adding new
2244 * types.
2245 */
2246#define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
2247#define NETDEV_DOWN     0x0002
2248#define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
2249                                   detected a hardware crash and restarted
2250                                   - we can use this eg to kick tcp sessions
2251                                   once done */
2252#define NETDEV_CHANGE   0x0004  /* Notify device state change */
2253#define NETDEV_REGISTER 0x0005
2254#define NETDEV_UNREGISTER       0x0006
2255#define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
2256#define NETDEV_CHANGEADDR       0x0008
2257#define NETDEV_GOING_DOWN       0x0009
2258#define NETDEV_CHANGENAME       0x000A
2259#define NETDEV_FEAT_CHANGE      0x000B
2260#define NETDEV_BONDING_FAILOVER 0x000C
2261#define NETDEV_PRE_UP           0x000D
2262#define NETDEV_PRE_TYPE_CHANGE  0x000E
2263#define NETDEV_POST_TYPE_CHANGE 0x000F
2264#define NETDEV_POST_INIT        0x0010
2265#define NETDEV_UNREGISTER_FINAL 0x0011
2266#define NETDEV_RELEASE          0x0012
2267#define NETDEV_NOTIFY_PEERS     0x0013
2268#define NETDEV_JOIN             0x0014
2269#define NETDEV_CHANGEUPPER      0x0015
2270#define NETDEV_RESEND_IGMP      0x0016
2271#define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2272#define NETDEV_CHANGEINFODATA   0x0018
2273#define NETDEV_BONDING_INFO     0x0019
2274#define NETDEV_PRECHANGEUPPER   0x001A
2275#define NETDEV_CHANGELOWERSTATE 0x001B
2276#define NETDEV_UDP_TUNNEL_PUSH_INFO     0x001C
2277#define NETDEV_CHANGE_TX_QUEUE_LEN      0x001E
2278
2279int register_netdevice_notifier(struct notifier_block *nb);
2280int unregister_netdevice_notifier(struct notifier_block *nb);
2281
2282struct netdev_notifier_info {
2283        struct net_device *dev;
2284};
2285
2286struct netdev_notifier_change_info {
2287        struct netdev_notifier_info info; /* must be first */
2288        unsigned int flags_changed;
2289};
2290
2291struct netdev_notifier_changeupper_info {
2292        struct netdev_notifier_info info; /* must be first */
2293        struct net_device *upper_dev; /* new upper dev */
2294        bool master; /* is upper dev master */
2295        bool linking; /* is the notification for link or unlink */
2296        void *upper_info; /* upper dev info */
2297};
2298
2299struct netdev_notifier_changelowerstate_info {
2300        struct netdev_notifier_info info; /* must be first */
2301        void *lower_state_info; /* is lower dev state */
2302};
2303
2304static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2305                                             struct net_device *dev)
2306{
2307        info->dev = dev;
2308}
2309
2310static inline struct net_device *
2311netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2312{
2313        return info->dev;
2314}
2315
2316int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2317
2318
2319extern rwlock_t                         dev_base_lock;          /* Device list lock */
2320
2321#define for_each_netdev(net, d)         \
2322                list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2323#define for_each_netdev_reverse(net, d) \
2324                list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2325#define for_each_netdev_rcu(net, d)             \
2326                list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2327#define for_each_netdev_safe(net, d, n) \
2328                list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2329#define for_each_netdev_continue(net, d)                \
2330                list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2331#define for_each_netdev_continue_rcu(net, d)            \
2332        list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2333#define for_each_netdev_in_bond_rcu(bond, slave)        \
2334                for_each_netdev_rcu(&init_net, slave)   \
2335                        if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2336#define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2337
2338static inline struct net_device *next_net_device(struct net_device *dev)
2339{
2340        struct list_head *lh;
2341        struct net *net;
2342
2343        net = dev_net(dev);
2344        lh = dev->dev_list.next;
2345        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2346}
2347
2348static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2349{
2350        struct list_head *lh;
2351        struct net *net;
2352
2353        net = dev_net(dev);
2354        lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2355        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2356}
2357
2358static inline struct net_device *first_net_device(struct net *net)
2359{
2360        return list_empty(&net->dev_base_head) ? NULL :
2361                net_device_entry(net->dev_base_head.next);
2362}
2363
2364static inline struct net_device *first_net_device_rcu(struct net *net)
2365{
2366        struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2367
2368        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2369}
2370
2371int netdev_boot_setup_check(struct net_device *dev);
2372unsigned long netdev_boot_base(const char *prefix, int unit);
2373struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2374                                       const char *hwaddr);
2375struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2376struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2377void dev_add_pack(struct packet_type *pt);
2378void dev_remove_pack(struct packet_type *pt);
2379void __dev_remove_pack(struct packet_type *pt);
2380void dev_add_offload(struct packet_offload *po);
2381void dev_remove_offload(struct packet_offload *po);
2382
2383int dev_get_iflink(const struct net_device *dev);
2384int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2385struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2386                                      unsigned short mask);
2387struct net_device *dev_get_by_name(struct net *net, const char *name);
2388struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2389struct net_device *__dev_get_by_name(struct net *net, const char *name);
2390int dev_alloc_name(struct net_device *dev, const char *name);
2391int dev_open(struct net_device *dev);
2392int dev_close(struct net_device *dev);
2393int dev_close_many(struct list_head *head, bool unlink);
2394void dev_disable_lro(struct net_device *dev);
2395int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2396int dev_queue_xmit(struct sk_buff *skb);
2397int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2398int register_netdevice(struct net_device *dev);
2399void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2400void unregister_netdevice_many(struct list_head *head);
2401static inline void unregister_netdevice(struct net_device *dev)
2402{
2403        unregister_netdevice_queue(dev, NULL);
2404}
2405
2406int netdev_refcnt_read(const struct net_device *dev);
2407void free_netdev(struct net_device *dev);
2408void netdev_freemem(struct net_device *dev);
2409void synchronize_net(void);
2410int init_dummy_netdev(struct net_device *dev);
2411
2412DECLARE_PER_CPU(int, xmit_recursion);
2413#define XMIT_RECURSION_LIMIT    10
2414
2415static inline int dev_recursion_level(void)
2416{
2417        return this_cpu_read(xmit_recursion);
2418}
2419
2420struct net_device *dev_get_by_index(struct net *net, int ifindex);
2421struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2422struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2423int netdev_get_name(struct net *net, char *name, int ifindex);
2424int dev_restart(struct net_device *dev);
2425int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2426
2427static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2428{
2429        return NAPI_GRO_CB(skb)->data_offset;
2430}
2431
2432static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2433{
2434        return skb->len - NAPI_GRO_CB(skb)->data_offset;
2435}
2436
2437static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2438{
2439        NAPI_GRO_CB(skb)->data_offset += len;
2440}
2441
2442static inline void *skb_gro_header_fast(struct sk_buff *skb,
2443                                        unsigned int offset)
2444{
2445        return NAPI_GRO_CB(skb)->frag0 + offset;
2446}
2447
2448static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2449{
2450        return NAPI_GRO_CB(skb)->frag0_len < hlen;
2451}
2452
2453static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2454                                        unsigned int offset)
2455{
2456        if (!pskb_may_pull(skb, hlen))
2457                return NULL;
2458
2459        NAPI_GRO_CB(skb)->frag0 = NULL;
2460        NAPI_GRO_CB(skb)->frag0_len = 0;
2461        return skb->data + offset;
2462}
2463
2464static inline void *skb_gro_network_header(struct sk_buff *skb)
2465{
2466        return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2467               skb_network_offset(skb);
2468}
2469
2470static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2471                                        const void *start, unsigned int len)
2472{
2473        if (NAPI_GRO_CB(skb)->csum_valid)
2474                NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2475                                                  csum_partial(start, len, 0));
2476}
2477
2478/* GRO checksum functions. These are logical equivalents of the normal
2479 * checksum functions (in skbuff.h) except that they operate on the GRO
2480 * offsets and fields in sk_buff.
2481 */
2482
2483__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2484
2485static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2486{
2487        return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2488}
2489
2490static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2491                                                      bool zero_okay,
2492                                                      __sum16 check)
2493{
2494        return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2495                skb_checksum_start_offset(skb) <
2496                 skb_gro_offset(skb)) &&
2497                !skb_at_gro_remcsum_start(skb) &&
2498                NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2499                (!zero_okay || check));
2500}
2501
2502static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2503                                                           __wsum psum)
2504{
2505        if (NAPI_GRO_CB(skb)->csum_valid &&
2506            !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2507                return 0;
2508
2509        NAPI_GRO_CB(skb)->csum = psum;
2510
2511        return __skb_gro_checksum_complete(skb);
2512}
2513
2514static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2515{
2516        if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2517                /* Consume a checksum from CHECKSUM_UNNECESSARY */
2518                NAPI_GRO_CB(skb)->csum_cnt--;
2519        } else {
2520                /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2521                 * verified a new top level checksum or an encapsulated one
2522                 * during GRO. This saves work if we fallback to normal path.
2523                 */
2524                __skb_incr_checksum_unnecessary(skb);
2525        }
2526}
2527
2528#define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2529                                    compute_pseudo)                     \
2530({                                                                      \
2531        __sum16 __ret = 0;                                              \
2532        if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2533                __ret = __skb_gro_checksum_validate_complete(skb,       \
2534                                compute_pseudo(skb, proto));            \
2535        if (__ret)                                                      \
2536                __skb_mark_checksum_bad(skb);                           \
2537        else                                                            \
2538                skb_gro_incr_csum_unnecessary(skb);                     \
2539        __ret;                                                          \
2540})
2541
2542#define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2543        __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2544
2545#define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2546                                             compute_pseudo)            \
2547        __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2548
2549#define skb_gro_checksum_simple_validate(skb)                           \
2550        __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2551
2552static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2553{
2554        return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2555                !NAPI_GRO_CB(skb)->csum_valid);
2556}
2557
2558static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2559                                              __sum16 check, __wsum pseudo)
2560{
2561        NAPI_GRO_CB(skb)->csum = ~pseudo;
2562        NAPI_GRO_CB(skb)->csum_valid = 1;
2563}
2564
2565#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2566do {                                                                    \
2567        if (__skb_gro_checksum_convert_check(skb))                      \
2568                __skb_gro_checksum_convert(skb, check,                  \
2569                                           compute_pseudo(skb, proto)); \
2570} while (0)
2571
2572struct gro_remcsum {
2573        int offset;
2574        __wsum delta;
2575};
2576
2577static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2578{
2579        grc->offset = 0;
2580        grc->delta = 0;
2581}
2582
2583static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2584                                            unsigned int off, size_t hdrlen,
2585                                            int start, int offset,
2586                                            struct gro_remcsum *grc,
2587                                            bool nopartial)
2588{
2589        __wsum delta;
2590        size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2591
2592        BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2593
2594        if (!nopartial) {
2595                NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2596                return ptr;
2597        }
2598
2599        ptr = skb_gro_header_fast(skb, off);
2600        if (skb_gro_header_hard(skb, off + plen)) {
2601                ptr = skb_gro_header_slow(skb, off + plen, off);
2602                if (!ptr)
2603                        return NULL;
2604        }
2605
2606        delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2607                               start, offset);
2608
2609        /* Adjust skb->csum since we changed the packet */
2610        NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2611
2612        grc->offset = off + hdrlen + offset;
2613        grc->delta = delta;
2614
2615        return ptr;
2616}
2617
2618static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2619                                           struct gro_remcsum *grc)
2620{
2621        void *ptr;
2622        size_t plen = grc->offset + sizeof(u16);
2623
2624        if (!grc->delta)
2625                return;
2626
2627        ptr = skb_gro_header_fast(skb, grc->offset);
2628        if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2629                ptr = skb_gro_header_slow(skb, plen, grc->offset);
2630                if (!ptr)
2631                        return;
2632        }
2633
2634        remcsum_unadjust((__sum16 *)ptr, grc->delta);
2635}
2636
2637struct skb_csum_offl_spec {
2638        __u16           ipv4_okay:1,
2639                        ipv6_okay:1,
2640                        encap_okay:1,
2641                        ip_options_okay:1,
2642                        ext_hdrs_okay:1,
2643                        tcp_okay:1,
2644                        udp_okay:1,
2645                        sctp_okay:1,
2646                        vlan_okay:1,
2647                        no_encapped_ipv6:1,
2648                        no_not_encapped:1;
2649};
2650
2651bool __skb_csum_offload_chk(struct sk_buff *skb,
2652                            const struct skb_csum_offl_spec *spec,
2653                            bool *csum_encapped,
2654                            bool csum_help);
2655
2656static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2657                                        const struct skb_csum_offl_spec *spec,
2658                                        bool *csum_encapped,
2659                                        bool csum_help)
2660{
2661        if (skb->ip_summed != CHECKSUM_PARTIAL)
2662                return false;
2663
2664        return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2665}
2666
2667static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2668                                             const struct skb_csum_offl_spec *spec)
2669{
2670        bool csum_encapped;
2671
2672        return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2673}
2674
2675static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2676{
2677        static const struct skb_csum_offl_spec csum_offl_spec = {
2678                .ipv4_okay = 1,
2679                .ip_options_okay = 1,
2680                .ipv6_okay = 1,
2681                .vlan_okay = 1,
2682                .tcp_okay = 1,
2683                .udp_okay = 1,
2684        };
2685
2686        return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2687}
2688
2689static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2690{
2691        static const struct skb_csum_offl_spec csum_offl_spec = {
2692                .ipv4_okay = 1,
2693                .ip_options_okay = 1,
2694                .tcp_okay = 1,
2695                .udp_okay = 1,
2696                .vlan_okay = 1,
2697        };
2698
2699        return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2700}
2701
2702static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2703                                  unsigned short type,
2704                                  const void *daddr, const void *saddr,
2705                                  unsigned int len)
2706{
2707        if (!dev->header_ops || !dev->header_ops->create)
2708                return 0;
2709
2710        return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2711}
2712
2713static inline int dev_parse_header(const struct sk_buff *skb,
2714                                   unsigned char *haddr)
2715{
2716        const struct net_device *dev = skb->dev;
2717
2718        if (!dev->header_ops || !dev->header_ops->parse)
2719                return 0;
2720        return dev->header_ops->parse(skb, haddr);
2721}
2722
2723/* ll_header must have at least hard_header_len allocated */
2724static inline bool dev_validate_header(const struct net_device *dev,
2725                                       char *ll_header, int len)
2726{
2727        if (likely(len >= dev->hard_header_len))
2728                return true;
2729
2730        if (capable(CAP_SYS_RAWIO)) {
2731                memset(ll_header + len, 0, dev->hard_header_len - len);
2732                return true;
2733        }
2734
2735        if (dev->header_ops && dev->header_ops->validate)
2736                return dev->header_ops->validate(ll_header, len);
2737
2738        return false;
2739}
2740
2741typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2742int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2743static inline int unregister_gifconf(unsigned int family)
2744{
2745        return register_gifconf(family, NULL);
2746}
2747
2748#ifdef CONFIG_NET_FLOW_LIMIT
2749#define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2750struct sd_flow_limit {
2751        u64                     count;
2752        unsigned int            num_buckets;
2753        unsigned int            history_head;
2754        u16                     history[FLOW_LIMIT_HISTORY];
2755        u8                      buckets[];
2756};
2757
2758extern int netdev_flow_limit_table_len;
2759#endif /* CONFIG_NET_FLOW_LIMIT */
2760
2761/*
2762 * Incoming packets are placed on per-CPU queues
2763 */
2764struct softnet_data {
2765        struct list_head        poll_list;
2766        struct sk_buff_head     process_queue;
2767
2768        /* stats */
2769        unsigned int            processed;
2770        unsigned int            time_squeeze;
2771        unsigned int            received_rps;
2772#ifdef CONFIG_RPS
2773        struct softnet_data     *rps_ipi_list;
2774#endif
2775#ifdef CONFIG_NET_FLOW_LIMIT
2776        struct sd_flow_limit __rcu *flow_limit;
2777#endif
2778        struct Qdisc            *output_queue;
2779        struct Qdisc            **output_queue_tailp;
2780        struct sk_buff          *completion_queue;
2781
2782#ifdef CONFIG_RPS
2783        /* input_queue_head should be written by cpu owning this struct,
2784         * and only read by other cpus. Worth using a cache line.
2785         */
2786        unsigned int            input_queue_head ____cacheline_aligned_in_smp;
2787
2788        /* Elements below can be accessed between CPUs for RPS/RFS */
2789        struct call_single_data csd ____cacheline_aligned_in_smp;
2790        struct softnet_data     *rps_ipi_next;
2791        unsigned int            cpu;
2792        unsigned int            input_queue_tail;
2793#endif
2794        unsigned int            dropped;
2795        struct sk_buff_head     input_pkt_queue;
2796        struct napi_struct      backlog;
2797
2798};
2799
2800static inline void input_queue_head_incr(struct softnet_data *sd)
2801{
2802#ifdef CONFIG_RPS
2803        sd->input_queue_head++;
2804#endif
2805}
2806
2807static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2808                                              unsigned int *qtail)
2809{
2810#ifdef CONFIG_RPS
2811        *qtail = ++sd->input_queue_tail;
2812#endif
2813}
2814
2815DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2816
2817void __netif_schedule(struct Qdisc *q);
2818void netif_schedule_queue(struct netdev_queue *txq);
2819
2820static inline void netif_tx_schedule_all(struct net_device *dev)
2821{
2822        unsigned int i;
2823
2824        for (i = 0; i < dev->num_tx_queues; i++)
2825                netif_schedule_queue(netdev_get_tx_queue(dev, i));
2826}
2827
2828static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2829{
2830        clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2831}
2832
2833/**
2834 *      netif_start_queue - allow transmit
2835 *      @dev: network device
2836 *
2837 *      Allow upper layers to call the device hard_start_xmit routine.
2838 */
2839static inline void netif_start_queue(struct net_device *dev)
2840{
2841        netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2842}
2843
2844static inline void netif_tx_start_all_queues(struct net_device *dev)
2845{
2846        unsigned int i;
2847
2848        for (i = 0; i < dev->num_tx_queues; i++) {
2849                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2850                netif_tx_start_queue(txq);
2851        }
2852}
2853
2854void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2855
2856/**
2857 *      netif_wake_queue - restart transmit
2858 *      @dev: network device
2859 *
2860 *      Allow upper layers to call the device hard_start_xmit routine.
2861 *      Used for flow control when transmit resources are available.
2862 */
2863static inline void netif_wake_queue(struct net_device *dev)
2864{
2865        netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2866}
2867
2868static inline void netif_tx_wake_all_queues(struct net_device *dev)
2869{
2870        unsigned int i;
2871
2872        for (i = 0; i < dev->num_tx_queues; i++) {
2873                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2874                netif_tx_wake_queue(txq);
2875        }
2876}
2877
2878static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2879{
2880        set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2881}
2882
2883/**
2884 *      netif_stop_queue - stop transmitted packets
2885 *      @dev: network device
2886 *
2887 *      Stop upper layers calling the device hard_start_xmit routine.
2888 *      Used for flow control when transmit resources are unavailable.
2889 */
2890static inline void netif_stop_queue(struct net_device *dev)
2891{
2892        netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2893}
2894
2895void netif_tx_stop_all_queues(struct net_device *dev);
2896
2897static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2898{
2899        return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2900}
2901
2902/**
2903 *      netif_queue_stopped - test if transmit queue is flowblocked
2904 *      @dev: network device
2905 *
2906 *      Test if transmit queue on device is currently unable to send.
2907 */
2908static inline bool netif_queue_stopped(const struct net_device *dev)
2909{
2910        return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2911}
2912
2913static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2914{
2915        return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2916}
2917
2918static inline bool
2919netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2920{
2921        return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2922}
2923
2924static inline bool
2925netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2926{
2927        return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2928}
2929
2930/**
2931 *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2932 *      @dev_queue: pointer to transmit queue
2933 *
2934 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2935 * to give appropriate hint to the CPU.
2936 */
2937static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2938{
2939#ifdef CONFIG_BQL
2940        prefetchw(&dev_queue->dql.num_queued);
2941#endif
2942}
2943
2944/**
2945 *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2946 *      @dev_queue: pointer to transmit queue
2947 *
2948 * BQL enabled drivers might use this helper in their TX completion path,
2949 * to give appropriate hint to the CPU.
2950 */
2951static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2952{
2953#ifdef CONFIG_BQL
2954        prefetchw(&dev_queue->dql.limit);
2955#endif
2956}
2957
2958static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2959                                        unsigned int bytes)
2960{
2961#ifdef CONFIG_BQL
2962        dql_queued(&dev_queue->dql, bytes);
2963
2964        if (likely(dql_avail(&dev_queue->dql) >= 0))
2965                return;
2966
2967        set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2968
2969        /*
2970         * The XOFF flag must be set before checking the dql_avail below,
2971         * because in netdev_tx_completed_queue we update the dql_completed
2972         * before checking the XOFF flag.
2973         */
2974        smp_mb();
2975
2976        /* check again in case another CPU has just made room avail */
2977        if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2978                clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2979#endif
2980}
2981
2982/**
2983 *      netdev_sent_queue - report the number of bytes queued to hardware
2984 *      @dev: network device
2985 *      @bytes: number of bytes queued to the hardware device queue
2986 *
2987 *      Report the number of bytes queued for sending/completion to the network
2988 *      device hardware queue. @bytes should be a good approximation and should
2989 *      exactly match netdev_completed_queue() @bytes
2990 */
2991static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2992{
2993        netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2994}
2995
2996static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2997                                             unsigned int pkts, unsigned int bytes)
2998{
2999#ifdef CONFIG_BQL
3000        if (unlikely(!bytes))
3001                return;
3002
3003        dql_completed(&dev_queue->dql, bytes);
3004
3005        /*
3006         * Without the memory barrier there is a small possiblity that
3007         * netdev_tx_sent_queue will miss the update and cause the queue to
3008         * be stopped forever
3009         */
3010        smp_mb();
3011
3012        if (dql_avail(&dev_queue->dql) < 0)
3013                return;
3014
3015        if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3016                netif_schedule_queue(dev_queue);
3017#endif
3018}
3019
3020/**
3021 *      netdev_completed_queue - report bytes and packets completed by device
3022 *      @dev: network device
3023 *      @pkts: actual number of packets sent over the medium
3024 *      @bytes: actual number of bytes sent over the medium
3025 *
3026 *      Report the number of bytes and packets transmitted by the network device
3027 *      hardware queue over the physical medium, @bytes must exactly match the
3028 *      @bytes amount passed to netdev_sent_queue()
3029 */
3030static inline void netdev_completed_queue(struct net_device *dev,
3031                                          unsigned int pkts, unsigned int bytes)
3032{
3033        netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3034}
3035
3036static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3037{
3038#ifdef CONFIG_BQL
3039        clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3040        dql_reset(&q->dql);
3041#endif
3042}
3043
3044/**
3045 *      netdev_reset_queue - reset the packets and bytes count of a network device
3046 *      @dev_queue: network device
3047 *
3048 *      Reset the bytes and packet count of a network device and clear the
3049 *      software flow control OFF bit for this network device
3050 */
3051static inline void netdev_reset_queue(struct net_device *dev_queue)
3052{
3053        netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3054}
3055
3056/**
3057 *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
3058 *      @dev: network device
3059 *      @queue_index: given tx queue index
3060 *
3061 *      Returns 0 if given tx queue index >= number of device tx queues,
3062 *      otherwise returns the originally passed tx queue index.
3063 */
3064static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3065{
3066        if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3067                net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3068                                     dev->name, queue_index,
3069                                     dev->real_num_tx_queues);
3070                return 0;
3071        }
3072
3073        return queue_index;
3074}
3075
3076/**
3077 *      netif_running - test if up
3078 *      @dev: network device
3079 *
3080 *      Test if the device has been brought up.
3081 */
3082static inline bool netif_running(const struct net_device *dev)
3083{
3084        return test_bit(__LINK_STATE_START, &dev->state);
3085}
3086
3087/*
3088 * Routines to manage the subqueues on a device.  We only need start,
3089 * stop, and a check if it's stopped.  All other device management is
3090 * done at the overall netdevice level.
3091 * Also test the device if we're multiqueue.
3092 */
3093
3094/**
3095 *      netif_start_subqueue - allow sending packets on subqueue
3096 *      @dev: network device
3097 *      @queue_index: sub queue index
3098 *
3099 * Start individual transmit queue of a device with multiple transmit queues.
3100 */
3101static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3102{
3103        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3104
3105        netif_tx_start_queue(txq);
3106}
3107
3108/**
3109 *      netif_stop_subqueue - stop sending packets on subqueue
3110 *      @dev: network device
3111 *      @queue_index: sub queue index
3112 *
3113 * Stop individual transmit queue of a device with multiple transmit queues.
3114 */
3115static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3116{
3117        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3118        netif_tx_stop_queue(txq);
3119}
3120
3121/**
3122 *      netif_subqueue_stopped - test status of subqueue
3123 *      @dev: network device
3124 *      @queue_index: sub queue index
3125 *
3126 * Check individual transmit queue of a device with multiple transmit queues.
3127 */
3128static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3129                                            u16 queue_index)
3130{
3131        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3132
3133        return netif_tx_queue_stopped(txq);
3134}
3135
3136static inline bool netif_subqueue_stopped(const struct net_device *dev,
3137                                          struct sk_buff *skb)
3138{
3139        return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3140}
3141
3142void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3143
3144#ifdef CONFIG_XPS
3145int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3146                        u16 index);
3147#else
3148static inline int netif_set_xps_queue(struct net_device *dev,
3149                                      const struct cpumask *mask,
3150                                      u16 index)
3151{
3152        return 0;
3153}
3154#endif
3155
3156u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3157                  unsigned int num_tx_queues);
3158
3159/*
3160 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3161 * as a distribution range limit for the returned value.
3162 */
3163static inline u16 skb_tx_hash(const struct net_device *dev,
3164                              struct sk_buff *skb)
3165{
3166        return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3167}
3168
3169/**
3170 *      netif_is_multiqueue - test if device has multiple transmit queues
3171 *      @dev: network device
3172 *
3173 * Check if device has multiple transmit queues
3174 */
3175static inline bool netif_is_multiqueue(const struct net_device *dev)
3176{
3177        return dev->num_tx_queues > 1;
3178}
3179
3180int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3181
3182#ifdef CONFIG_SYSFS
3183int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3184#else
3185static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3186                                                unsigned int rxq)
3187{
3188        return 0;
3189}
3190#endif
3191
3192#ifdef CONFIG_SYSFS
3193static inline unsigned int get_netdev_rx_queue_index(
3194                struct netdev_rx_queue *queue)
3195{
3196        struct net_device *dev = queue->dev;
3197        int index = queue - dev->_rx;
3198
3199        BUG_ON(index >= dev->num_rx_queues);
3200        return index;
3201}
3202#endif
3203
3204#define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
3205int netif_get_num_default_rss_queues(void);
3206
3207enum skb_free_reason {
3208        SKB_REASON_CONSUMED,
3209        SKB_REASON_DROPPED,
3210};
3211
3212void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3213void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3214
3215/*
3216 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3217 * interrupt context or with hardware interrupts being disabled.
3218 * (in_irq() || irqs_disabled())
3219 *
3220 * We provide four helpers that can be used in following contexts :
3221 *
3222 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3223 *  replacing kfree_skb(skb)
3224 *
3225 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3226 *  Typically used in place of consume_skb(skb) in TX completion path
3227 *
3228 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3229 *  replacing kfree_skb(skb)
3230 *
3231 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3232 *  and consumed a packet. Used in place of consume_skb(skb)
3233 */
3234static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3235{
3236        __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3237}
3238
3239static inline void dev_consume_skb_irq(struct sk_buff *skb)
3240{
3241        __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3242}
3243
3244static inline void dev_kfree_skb_any(struct sk_buff *skb)
3245{
3246        __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3247}
3248
3249static inline void dev_consume_skb_any(struct sk_buff *skb)
3250{
3251        __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3252}
3253
3254int netif_rx(struct sk_buff *skb);
3255int netif_rx_ni(struct sk_buff *skb);
3256int netif_receive_skb(struct sk_buff *skb);
3257gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3258void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3259struct sk_buff *napi_get_frags(struct napi_struct *napi);
3260gro_result_t napi_gro_frags(struct napi_struct *napi);
3261struct packet_offload *gro_find_receive_by_type(__be16 type);
3262struct packet_offload *gro_find_complete_by_type(__be16 type);
3263
3264static inline void napi_free_frags(struct napi_struct *napi)
3265{
3266        kfree_skb(napi->skb);
3267        napi->skb = NULL;
3268}
3269
3270bool netdev_is_rx_handler_busy(struct net_device *dev);
3271int netdev_rx_handler_register(struct net_device *dev,
3272                               rx_handler_func_t *rx_handler,
3273                               void *rx_handler_data);
3274void netdev_rx_handler_unregister(struct net_device *dev);
3275
3276bool dev_valid_name(const char *name);
3277int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3278int dev_ethtool(struct net *net, struct ifreq *);
3279unsigned int dev_get_flags(const struct net_device *);
3280int __dev_change_flags(struct net_device *, unsigned int flags);
3281int dev_change_flags(struct net_device *, unsigned int);
3282void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3283                        unsigned int gchanges);
3284int dev_change_name(struct net_device *, const char *);
3285int dev_set_alias(struct net_device *, const char *, size_t);
3286int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3287int dev_set_mtu(struct net_device *, int);
3288void dev_set_group(struct net_device *, int);
3289int dev_set_mac_address(struct net_device *, struct sockaddr *);
3290int dev_change_carrier(struct net_device *, bool new_carrier);
3291int dev_get_phys_port_id(struct net_device *dev,
3292                         struct netdev_phys_item_id *ppid);
3293int dev_get_phys_port_name(struct net_device *dev,
3294                           char *name, size_t len);
3295int dev_change_proto_down(struct net_device *dev, bool proto_down);
3296int dev_change_xdp_fd(struct net_device *dev, int fd);
3297struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3298struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3299                                    struct netdev_queue *txq, int *ret);
3300int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3301int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3302bool is_skb_forwardable(const struct net_device *dev,
3303                        const struct sk_buff *skb);
3304
3305void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3306
3307extern int              netdev_budget;
3308
3309/* Called by rtnetlink.c:rtnl_unlock() */
3310void netdev_run_todo(void);
3311
3312/**
3313 *      dev_put - release reference to device
3314 *      @dev: network device
3315 *
3316 * Release reference to device to allow it to be freed.
3317 */
3318static inline void dev_put(struct net_device *dev)
3319{
3320        this_cpu_dec(*dev->pcpu_refcnt);
3321}
3322
3323/**
3324 *      dev_hold - get reference to device
3325 *      @dev: network device
3326 *
3327 * Hold reference to device to keep it from being freed.
3328 */
3329static inline void dev_hold(struct net_device *dev)
3330{
3331        this_cpu_inc(*dev->pcpu_refcnt);
3332}
3333
3334/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3335 * and _off may be called from IRQ context, but it is caller
3336 * who is responsible for serialization of these calls.
3337 *
3338 * The name carrier is inappropriate, these functions should really be
3339 * called netif_lowerlayer_*() because they represent the state of any
3340 * kind of lower layer not just hardware media.
3341 */
3342
3343void linkwatch_init_dev(struct net_device *dev);
3344void linkwatch_fire_event(struct net_device *dev);
3345void linkwatch_forget_dev(struct net_device *dev);
3346
3347/**
3348 *      netif_carrier_ok - test if carrier present
3349 *      @dev: network device
3350 *
3351 * Check if carrier is present on device
3352 */
3353static inline bool netif_carrier_ok(const struct net_device *dev)
3354{
3355        return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3356}
3357
3358unsigned long dev_trans_start(struct net_device *dev);
3359
3360void __netdev_watchdog_up(struct net_device *dev);
3361
3362void netif_carrier_on(struct net_device *dev);
3363
3364void netif_carrier_off(struct net_device *dev);
3365
3366/**
3367 *      netif_dormant_on - mark device as dormant.
3368 *      @dev: network device
3369 *
3370 * Mark device as dormant (as per RFC2863).
3371 *
3372 * The dormant state indicates that the relevant interface is not
3373 * actually in a condition to pass packets (i.e., it is not 'up') but is
3374 * in a "pending" state, waiting for some external event.  For "on-
3375 * demand" interfaces, this new state identifies the situation where the
3376 * interface is waiting for events to place it in the up state.
3377 */
3378static inline void netif_dormant_on(struct net_device *dev)
3379{
3380        if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3381                linkwatch_fire_event(dev);
3382}
3383
3384/**
3385 *      netif_dormant_off - set device as not dormant.
3386 *      @dev: network device
3387 *
3388 * Device is not in dormant state.
3389 */
3390static inline void netif_dormant_off(struct net_device *dev)
3391{
3392        if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3393                linkwatch_fire_event(dev);
3394}
3395
3396/**
3397 *      netif_dormant - test if carrier present
3398 *      @dev: network device
3399 *
3400 * Check if carrier is present on device
3401 */
3402static inline bool netif_dormant(const struct net_device *dev)
3403{
3404        return test_bit(__LINK_STATE_DORMANT, &dev->state);
3405}
3406
3407
3408/**
3409 *      netif_oper_up - test if device is operational
3410 *      @dev: network device
3411 *
3412 * Check if carrier is operational
3413 */
3414static inline bool netif_oper_up(const struct net_device *dev)
3415{
3416        return (dev->operstate == IF_OPER_UP ||
3417                dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3418}
3419
3420/**
3421 *      netif_device_present - is device available or removed
3422 *      @dev: network device
3423 *
3424 * Check if device has not been removed from system.
3425 */
3426static inline bool netif_device_present(struct net_device *dev)
3427{
3428        return test_bit(__LINK_STATE_PRESENT, &dev->state);
3429}
3430
3431void netif_device_detach(struct net_device *dev);
3432
3433void netif_device_attach(struct net_device *dev);
3434
3435/*
3436 * Network interface message level settings
3437 */
3438
3439enum {
3440        NETIF_MSG_DRV           = 0x0001,
3441        NETIF_MSG_PROBE         = 0x0002,
3442        NETIF_MSG_LINK          = 0x0004,
3443        NETIF_MSG_TIMER         = 0x0008,
3444        NETIF_MSG_IFDOWN        = 0x0010,
3445        NETIF_MSG_IFUP          = 0x0020,
3446        NETIF_MSG_RX_ERR        = 0x0040,
3447        NETIF_MSG_TX_ERR        = 0x0080,
3448        NETIF_MSG_TX_QUEUED     = 0x0100,
3449        NETIF_MSG_INTR          = 0x0200,
3450        NETIF_MSG_TX_DONE       = 0x0400,
3451        NETIF_MSG_RX_STATUS     = 0x0800,
3452        NETIF_MSG_PKTDATA       = 0x1000,
3453        NETIF_MSG_HW            = 0x2000,
3454        NETIF_MSG_WOL           = 0x4000,
3455};
3456
3457#define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3458#define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3459#define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3460#define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3461#define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3462#define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3463#define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3464#define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3465#define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3466#define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3467#define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3468#define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3469#define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3470#define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3471#define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3472
3473static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3474{
3475        /* use default */
3476        if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3477                return default_msg_enable_bits;
3478        if (debug_value == 0)   /* no output */
3479                return 0;
3480        /* set low N bits */
3481        return (1 << debug_value) - 1;
3482}
3483
3484static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3485{
3486        spin_lock(&txq->_xmit_lock);
3487        txq->xmit_lock_owner = cpu;
3488}
3489
3490static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3491{
3492        spin_lock_bh(&txq->_xmit_lock);
3493        txq->xmit_lock_owner = smp_processor_id();
3494}
3495
3496static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3497{
3498        bool ok = spin_trylock(&txq->_xmit_lock);
3499        if (likely(ok))
3500                txq->xmit_lock_owner = smp_processor_id();
3501        return ok;
3502}
3503
3504static inline void __netif_tx_unlock(struct netdev_queue *txq)
3505{
3506        txq->xmit_lock_owner = -1;
3507        spin_unlock(&txq->_xmit_lock);
3508}
3509
3510static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3511{
3512        txq->xmit_lock_owner = -1;
3513        spin_unlock_bh(&txq->_xmit_lock);
3514}
3515
3516static inline void txq_trans_update(struct netdev_queue *txq)
3517{
3518        if (txq->xmit_lock_owner != -1)
3519                txq->trans_start = jiffies;
3520}
3521
3522/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3523static inline void netif_trans_update(struct net_device *dev)
3524{
3525        struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3526
3527        if (txq->trans_start != jiffies)
3528                txq->trans_start = jiffies;
3529}
3530
3531/**
3532 *      netif_tx_lock - grab network device transmit lock
3533 *      @dev: network device
3534 *
3535 * Get network device transmit lock
3536 */
3537static inline void netif_tx_lock(struct net_device *dev)
3538{
3539        unsigned int i;
3540        int cpu;
3541
3542        spin_lock(&dev->tx_global_lock);
3543        cpu = smp_processor_id();
3544        for (i = 0; i < dev->num_tx_queues; i++) {
3545                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3546
3547                /* We are the only thread of execution doing a
3548                 * freeze, but we have to grab the _xmit_lock in
3549                 * order to synchronize with threads which are in
3550                 * the ->hard_start_xmit() handler and already
3551                 * checked the frozen bit.
3552                 */
3553                __netif_tx_lock(txq, cpu);
3554                set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3555                __netif_tx_unlock(txq);
3556        }
3557}
3558
3559static inline void netif_tx_lock_bh(struct net_device *dev)
3560{
3561        local_bh_disable();
3562        netif_tx_lock(dev);
3563}
3564
3565static inline void netif_tx_unlock(struct net_device *dev)
3566{
3567        unsigned int i;
3568
3569        for (i = 0; i < dev->num_tx_queues; i++) {
3570                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3571
3572                /* No need to grab the _xmit_lock here.  If the
3573                 * queue is not stopped for another reason, we
3574                 * force a schedule.
3575                 */
3576                clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3577                netif_schedule_queue(txq);
3578        }
3579        spin_unlock(&dev->tx_global_lock);
3580}
3581
3582static inline void netif_tx_unlock_bh(struct net_device *dev)
3583{
3584        netif_tx_unlock(dev);
3585        local_bh_enable();
3586}
3587
3588#define HARD_TX_LOCK(dev, txq, cpu) {                   \
3589        if ((dev->features & NETIF_F_LLTX) == 0) {      \
3590                __netif_tx_lock(txq, cpu);              \
3591        }                                               \
3592}
3593
3594#define HARD_TX_TRYLOCK(dev, txq)                       \
3595        (((dev->features & NETIF_F_LLTX) == 0) ?        \
3596                __netif_tx_trylock(txq) :               \
3597                true )
3598
3599#define HARD_TX_UNLOCK(dev, txq) {                      \
3600        if ((dev->features & NETIF_F_LLTX) == 0) {      \
3601                __netif_tx_unlock(txq);                 \
3602        }                                               \
3603}
3604
3605static inline void netif_tx_disable(struct net_device *dev)
3606{
3607        unsigned int i;
3608        int cpu;
3609
3610        local_bh_disable();
3611        cpu = smp_processor_id();
3612        for (i = 0; i < dev->num_tx_queues; i++) {
3613                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3614
3615                __netif_tx_lock(txq, cpu);
3616                netif_tx_stop_queue(txq);
3617                __netif_tx_unlock(txq);
3618        }
3619        local_bh_enable();
3620}
3621
3622static inline void netif_addr_lock(struct net_device *dev)
3623{
3624        spin_lock(&dev->addr_list_lock);
3625}
3626
3627static inline void netif_addr_lock_nested(struct net_device *dev)
3628{
3629        int subclass = SINGLE_DEPTH_NESTING;
3630
3631        if (dev->netdev_ops->ndo_get_lock_subclass)
3632                subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3633
3634        spin_lock_nested(&dev->addr_list_lock, subclass);
3635}
3636
3637static inline void netif_addr_lock_bh(struct net_device *dev)
3638{
3639        spin_lock_bh(&dev->addr_list_lock);
3640}
3641
3642static inline void netif_addr_unlock(struct net_device *dev)
3643{
3644        spin_unlock(&dev->addr_list_lock);
3645}
3646
3647static inline void netif_addr_unlock_bh(struct net_device *dev)
3648{
3649        spin_unlock_bh(&dev->addr_list_lock);
3650}
3651
3652/*
3653 * dev_addrs walker. Should be used only for read access. Call with
3654 * rcu_read_lock held.
3655 */
3656#define for_each_dev_addr(dev, ha) \
3657                list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3658
3659/* These functions live elsewhere (drivers/net/net_init.c, but related) */
3660
3661void ether_setup(struct net_device *dev);
3662
3663/* Support for loadable net-drivers */
3664struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3665                                    unsigned char name_assign_type,
3666                                    void (*setup)(struct net_device *),
3667                                    unsigned int txqs, unsigned int rxqs);
3668#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3669        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3670
3671#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3672        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3673                         count)
3674
3675int register_netdev(struct net_device *dev);
3676void unregister_netdev(struct net_device *dev);
3677
3678/* General hardware address lists handling functions */
3679int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3680                   struct netdev_hw_addr_list *from_list, int addr_len);
3681void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3682                      struct netdev_hw_addr_list *from_list, int addr_len);
3683int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3684                       struct net_device *dev,
3685                       int (*sync)(struct net_device *, const unsigned char *),
3686                       int (*unsync)(struct net_device *,
3687                                     const unsigned char *));
3688void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3689                          struct net_device *dev,
3690                          int (*unsync)(struct net_device *,
3691                                        const unsigned char *));
3692void __hw_addr_init(struct netdev_hw_addr_list *list);
3693
3694/* Functions used for device addresses handling */
3695int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3696                 unsigned char addr_type);
3697int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3698                 unsigned char addr_type);
3699void dev_addr_flush(struct net_device *dev);
3700int dev_addr_init(struct net_device *dev);
3701
3702/* Functions used for unicast addresses handling */
3703int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3704int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3705int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3706int dev_uc_sync(struct net_device *to, struct net_device *from);
3707int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3708void dev_uc_unsync(struct net_device *to, struct net_device *from);
3709void dev_uc_flush(struct net_device *dev);
3710void dev_uc_init(struct net_device *dev);
3711
3712/**
3713 *  __dev_uc_sync - Synchonize device's unicast list
3714 *  @dev:  device to sync
3715 *  @sync: function to call if address should be added
3716 *  @unsync: function to call if address should be removed
3717 *
3718 *  Add newly added addresses to the interface, and release
3719 *  addresses that have been deleted.
3720 */
3721static inline int __dev_uc_sync(struct net_device *dev,
3722                                int (*sync)(struct net_device *,
3723                                            const unsigned char *),
3724                                int (*unsync)(struct net_device *,
3725                                              const unsigned char *))
3726{
3727        return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3728}
3729
3730/**
3731 *  __dev_uc_unsync - Remove synchronized addresses from device
3732 *  @dev:  device to sync
3733 *  @unsync: function to call if address should be removed
3734 *
3735 *  Remove all addresses that were added to the device by dev_uc_sync().
3736 */
3737static inline void __dev_uc_unsync(struct net_device *dev,
3738                                   int (*unsync)(struct net_device *,
3739                                                 const unsigned char *))
3740{
3741        __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3742}
3743
3744/* Functions used for multicast addresses handling */
3745int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3746int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3747int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3748int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3749int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3750int dev_mc_sync(struct net_device *to, struct net_device *from);
3751int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3752void dev_mc_unsync(struct net_device *to, struct net_device *from);
3753void dev_mc_flush(struct net_device *dev);
3754void dev_mc_init(struct net_device *dev);
3755
3756/**
3757 *  __dev_mc_sync - Synchonize device's multicast list
3758 *  @dev:  device to sync
3759 *  @sync: function to call if address should be added
3760 *  @unsync: function to call if address should be removed
3761 *
3762 *  Add newly added addresses to the interface, and release
3763 *  addresses that have been deleted.
3764 */
3765static inline int __dev_mc_sync(struct net_device *dev,
3766                                int (*sync)(struct net_device *,
3767                                            const unsigned char *),
3768                                int (*unsync)(struct net_device *,
3769                                              const unsigned char *))
3770{
3771        return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3772}
3773
3774/**
3775 *  __dev_mc_unsync - Remove synchronized addresses from device
3776 *  @dev:  device to sync
3777 *  @unsync: function to call if address should be removed
3778 *
3779 *  Remove all addresses that were added to the device by dev_mc_sync().
3780 */
3781static inline void __dev_mc_unsync(struct net_device *dev,
3782                                   int (*unsync)(struct net_device *,
3783                                                 const unsigned char *))
3784{
3785        __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3786}
3787
3788/* Functions used for secondary unicast and multicast support */
3789void dev_set_rx_mode(struct net_device *dev);
3790void __dev_set_rx_mode(struct net_device *dev);
3791int dev_set_promiscuity(struct net_device *dev, int inc);
3792int dev_set_allmulti(struct net_device *dev, int inc);
3793void netdev_state_change(struct net_device *dev);
3794void netdev_notify_peers(struct net_device *dev);
3795void netdev_features_change(struct net_device *dev);
3796/* Load a device via the kmod */
3797void dev_load(struct net *net, const char *name);
3798struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3799                                        struct rtnl_link_stats64 *storage);
3800void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3801                             const struct net_device_stats *netdev_stats);
3802
3803extern int              netdev_max_backlog;
3804extern int              netdev_tstamp_prequeue;
3805extern int              weight_p;
3806
3807bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3808struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3809                                                     struct list_head **iter);
3810struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3811                                                     struct list_head **iter);
3812
3813/* iterate through upper list, must be called under RCU read lock */
3814#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3815        for (iter = &(dev)->adj_list.upper, \
3816             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3817             updev; \
3818             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3819
3820/* iterate through upper list, must be called under RCU read lock */
3821#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3822        for (iter = &(dev)->all_adj_list.upper, \
3823             updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3824             updev; \
3825             updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3826
3827void *netdev_lower_get_next_private(struct net_device *dev,
3828                                    struct list_head **iter);
3829void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3830                                        struct list_head **iter);
3831
3832#define netdev_for_each_lower_private(dev, priv, iter) \
3833        for (iter = (dev)->adj_list.lower.next, \
3834             priv = netdev_lower_get_next_private(dev, &(iter)); \
3835             priv; \
3836             priv = netdev_lower_get_next_private(dev, &(iter)))
3837
3838#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3839        for (iter = &(dev)->adj_list.lower, \
3840             priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3841             priv; \
3842             priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3843
3844void *netdev_lower_get_next(struct net_device *dev,
3845                                struct list_head **iter);
3846
3847#define netdev_for_each_lower_dev(dev, ldev, iter) \
3848        for (iter = (dev)->adj_list.lower.next, \
3849             ldev = netdev_lower_get_next(dev, &(iter)); \
3850             ldev; \
3851             ldev = netdev_lower_get_next(dev, &(iter)))
3852
3853struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3854                                             struct list_head **iter);
3855struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3856                                                 struct list_head **iter);
3857
3858#define netdev_for_each_all_lower_dev(dev, ldev, iter) \
3859        for (iter = (dev)->all_adj_list.lower.next, \
3860             ldev = netdev_all_lower_get_next(dev, &(iter)); \
3861             ldev; \
3862             ldev = netdev_all_lower_get_next(dev, &(iter)))
3863
3864#define netdev_for_each_all_lower_dev_rcu(dev, ldev, iter) \
3865        for (iter = (dev)->all_adj_list.lower.next, \
3866             ldev = netdev_all_lower_get_next_rcu(dev, &(iter)); \
3867             ldev; \
3868             ldev = netdev_all_lower_get_next_rcu(dev, &(iter)))
3869
3870void *netdev_adjacent_get_private(struct list_head *adj_list);
3871void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3872struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3873struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3874int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3875int netdev_master_upper_dev_link(struct net_device *dev,
3876                                 struct net_device *upper_dev,
3877                                 void *upper_priv, void *upper_info);
3878void netdev_upper_dev_unlink(struct net_device *dev,
3879                             struct net_device *upper_dev);
3880void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3881void *netdev_lower_dev_get_private(struct net_device *dev,
3882                                   struct net_device *lower_dev);
3883void netdev_lower_state_changed(struct net_device *lower_dev,
3884                                void *lower_state_info);
3885int netdev_default_l2upper_neigh_construct(struct net_device *dev,
3886                                           struct neighbour *n);
3887void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
3888                                          struct neighbour *n);
3889
3890/* RSS keys are 40 or 52 bytes long */
3891#define NETDEV_RSS_KEY_LEN 52
3892extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3893void netdev_rss_key_fill(void *buffer, size_t len);
3894
3895int dev_get_nest_level(struct net_device *dev);
3896int skb_checksum_help(struct sk_buff *skb);
3897struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3898                                  netdev_features_t features, bool tx_path);
3899struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3900                                    netdev_features_t features);
3901
3902struct netdev_bonding_info {
3903        ifslave slave;
3904        ifbond  master;
3905};
3906
3907struct netdev_notifier_bonding_info {
3908        struct netdev_notifier_info info; /* must be first */
3909        struct netdev_bonding_info  bonding_info;
3910};
3911
3912void netdev_bonding_info_change(struct net_device *dev,
3913                                struct netdev_bonding_info *bonding_info);
3914
3915static inline
3916struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3917{
3918        return __skb_gso_segment(skb, features, true);
3919}
3920__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3921
3922static inline bool can_checksum_protocol(netdev_features_t features,
3923                                         __be16 protocol)
3924{
3925        if (protocol == htons(ETH_P_FCOE))
3926                return !!(features & NETIF_F_FCOE_CRC);
3927
3928        /* Assume this is an IP checksum (not SCTP CRC) */
3929
3930        if (features & NETIF_F_HW_CSUM) {
3931                /* Can checksum everything */
3932                return true;
3933        }
3934
3935        switch (protocol) {
3936        case htons(ETH_P_IP):
3937                return !!(features & NETIF_F_IP_CSUM);
3938        case htons(ETH_P_IPV6):
3939                return !!(features & NETIF_F_IPV6_CSUM);
3940        default:
3941                return false;
3942        }
3943}
3944
3945/* Map an ethertype into IP protocol if possible */
3946static inline int eproto_to_ipproto(int eproto)
3947{
3948        switch (eproto) {
3949        case htons(ETH_P_IP):
3950                return IPPROTO_IP;
3951        case htons(ETH_P_IPV6):
3952                return IPPROTO_IPV6;
3953        default:
3954                return -1;
3955        }
3956}
3957
3958#ifdef CONFIG_BUG
3959void netdev_rx_csum_fault(struct net_device *dev);
3960#else
3961static inline void netdev_rx_csum_fault(struct net_device *dev)
3962{
3963}
3964#endif
3965/* rx skb timestamps */
3966void net_enable_timestamp(void);
3967void net_disable_timestamp(void);
3968
3969#ifdef CONFIG_PROC_FS
3970int __init dev_proc_init(void);
3971#else
3972#define dev_proc_init() 0
3973#endif
3974
3975static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3976                                              struct sk_buff *skb, struct net_device *dev,
3977                                              bool more)
3978{
3979        skb->xmit_more = more ? 1 : 0;
3980        return ops->ndo_start_xmit(skb, dev);
3981}
3982
3983static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3984                                            struct netdev_queue *txq, bool more)
3985{
3986        const struct net_device_ops *ops = dev->netdev_ops;
3987        int rc;
3988
3989        rc = __netdev_start_xmit(ops, skb, dev, more);
3990        if (rc == NETDEV_TX_OK)
3991                txq_trans_update(txq);
3992
3993        return rc;
3994}
3995
3996int netdev_class_create_file_ns(struct class_attribute *class_attr,
3997                                const void *ns);
3998void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3999                                 const void *ns);
4000
4001static inline int netdev_class_create_file(struct class_attribute *class_attr)
4002{
4003        return netdev_class_create_file_ns(class_attr, NULL);
4004}
4005
4006static inline void netdev_class_remove_file(struct class_attribute *class_attr)
4007{
4008        netdev_class_remove_file_ns(class_attr, NULL);
4009}
4010
4011extern struct kobj_ns_type_operations net_ns_type_operations;
4012
4013const char *netdev_drivername(const struct net_device *dev);
4014
4015void linkwatch_run_queue(void);
4016
4017static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4018                                                          netdev_features_t f2)
4019{
4020        if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4021                if (f1 & NETIF_F_HW_CSUM)
4022                        f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4023                else
4024                        f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4025        }
4026
4027        return f1 & f2;
4028}
4029
4030static inline netdev_features_t netdev_get_wanted_features(
4031        struct net_device *dev)
4032{
4033        return (dev->features & ~dev->hw_features) | dev->wanted_features;
4034}
4035netdev_features_t netdev_increment_features(netdev_features_t all,
4036        netdev_features_t one, netdev_features_t mask);
4037
4038/* Allow TSO being used on stacked device :
4039 * Performing the GSO segmentation before last device
4040 * is a performance improvement.
4041 */
4042static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4043                                                        netdev_features_t mask)
4044{
4045        return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4046}
4047
4048int __netdev_update_features(struct net_device *dev);
4049void netdev_update_features(struct net_device *dev);
4050void netdev_change_features(struct net_device *dev);
4051
4052void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4053                                        struct net_device *dev);
4054
4055netdev_features_t passthru_features_check(struct sk_buff *skb,
4056                                          struct net_device *dev,
4057                                          netdev_features_t features);
4058netdev_features_t netif_skb_features(struct sk_buff *skb);
4059
4060static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4061{
4062        netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4063
4064        /* check flags correspondence */
4065        BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4066        BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4067        BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4068        BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4069        BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4070        BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4071        BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4072        BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4073        BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4074        BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4075        BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4076        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4077        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4078        BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4079        BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4080        BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4081
4082        return (features & feature) == feature;
4083}
4084
4085static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4086{
4087        return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4088               (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4089}
4090
4091static inline bool netif_needs_gso(struct sk_buff *skb,
4092                                   netdev_features_t features)
4093{
4094        return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4095                unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4096                         (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4097}
4098
4099static inline void netif_set_gso_max_size(struct net_device *dev,
4100                                          unsigned int size)
4101{
4102        dev->gso_max_size = size;
4103}
4104
4105static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4106                                        int pulled_hlen, u16 mac_offset,
4107                                        int mac_len)
4108{
4109        skb->protocol = protocol;
4110        skb->encapsulation = 1;
4111        skb_push(skb, pulled_hlen);
4112        skb_reset_transport_header(skb);
4113        skb->mac_header = mac_offset;
4114        skb->network_header = skb->mac_header + mac_len;
4115        skb->mac_len = mac_len;
4116}
4117
4118static inline bool netif_is_macsec(const struct net_device *dev)
4119{
4120        return dev->priv_flags & IFF_MACSEC;
4121}
4122
4123static inline bool netif_is_macvlan(const struct net_device *dev)
4124{
4125        return dev->priv_flags & IFF_MACVLAN;
4126}
4127
4128static inline bool netif_is_macvlan_port(const struct net_device *dev)
4129{
4130        return dev->priv_flags & IFF_MACVLAN_PORT;
4131}
4132
4133static inline bool netif_is_ipvlan(const struct net_device *dev)
4134{
4135        return dev->priv_flags & IFF_IPVLAN_SLAVE;
4136}
4137
4138static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4139{
4140        return dev->priv_flags & IFF_IPVLAN_MASTER;
4141}
4142
4143static inline bool netif_is_bond_master(const struct net_device *dev)
4144{
4145        return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4146}
4147
4148static inline bool netif_is_bond_slave(const struct net_device *dev)
4149{
4150        return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4151}
4152
4153static inline bool netif_supports_nofcs(struct net_device *dev)
4154{
4155        return dev->priv_flags & IFF_SUPP_NOFCS;
4156}
4157
4158static inline bool netif_is_l3_master(const struct net_device *dev)
4159{
4160        return dev->priv_flags & IFF_L3MDEV_MASTER;
4161}
4162
4163static inline bool netif_is_l3_slave(const struct net_device *dev)
4164{
4165        return dev->priv_flags & IFF_L3MDEV_SLAVE;
4166}
4167
4168static inline bool netif_is_bridge_master(const struct net_device *dev)
4169{
4170        return dev->priv_flags & IFF_EBRIDGE;
4171}
4172
4173static inline bool netif_is_bridge_port(const struct net_device *dev)
4174{
4175        return dev->priv_flags & IFF_BRIDGE_PORT;
4176}
4177
4178static inline bool netif_is_ovs_master(const struct net_device *dev)
4179{
4180        return dev->priv_flags & IFF_OPENVSWITCH;
4181}
4182
4183static inline bool netif_is_team_master(const struct net_device *dev)
4184{
4185        return dev->priv_flags & IFF_TEAM;
4186}
4187
4188static inline bool netif_is_team_port(const struct net_device *dev)
4189{
4190        return dev->priv_flags & IFF_TEAM_PORT;
4191}
4192
4193static inline bool netif_is_lag_master(const struct net_device *dev)
4194{
4195        return netif_is_bond_master(dev) || netif_is_team_master(dev);
4196}
4197
4198static inline bool netif_is_lag_port(const struct net_device *dev)
4199{
4200        return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4201}
4202
4203static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4204{
4205        return dev->priv_flags & IFF_RXFH_CONFIGURED;
4206}
4207
4208/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4209static inline void netif_keep_dst(struct net_device *dev)
4210{
4211        dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4212}
4213
4214/* return true if dev can't cope with mtu frames that need vlan tag insertion */
4215static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4216{
4217        /* TODO: reserve and use an additional IFF bit, if we get more users */
4218        return dev->priv_flags & IFF_MACSEC;
4219}
4220
4221extern struct pernet_operations __net_initdata loopback_net_ops;
4222
4223/* Logging, debugging and troubleshooting/diagnostic helpers. */
4224
4225/* netdev_printk helpers, similar to dev_printk */
4226
4227static inline const char *netdev_name(const struct net_device *dev)
4228{
4229        if (!dev->name[0] || strchr(dev->name, '%'))
4230                return "(unnamed net_device)";
4231        return dev->name;
4232}
4233
4234static inline const char *netdev_reg_state(const struct net_device *dev)
4235{
4236        switch (dev->reg_state) {
4237        case NETREG_UNINITIALIZED: return " (uninitialized)";
4238        case NETREG_REGISTERED: return "";
4239        case NETREG_UNREGISTERING: return " (unregistering)";
4240        case NETREG_UNREGISTERED: return " (unregistered)";
4241        case NETREG_RELEASED: return " (released)";
4242        case NETREG_DUMMY: return " (dummy)";
4243        }
4244
4245        WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4246        return " (unknown)";
4247}
4248
4249__printf(3, 4)
4250void netdev_printk(const char *level, const struct net_device *dev,
4251                   const char *format, ...);
4252__printf(2, 3)
4253void netdev_emerg(const struct net_device *dev, const char *format, ...);
4254__printf(2, 3)
4255void netdev_alert(const struct net_device *dev, const char *format, ...);
4256__printf(2, 3)
4257void netdev_crit(const struct net_device *dev, const char *format, ...);
4258__printf(2, 3)
4259void netdev_err(const struct net_device *dev, const char *format, ...);
4260__printf(2, 3)
4261void netdev_warn(const struct net_device *dev, const char *format, ...);
4262__printf(2, 3)
4263void netdev_notice(const struct net_device *dev, const char *format, ...);
4264__printf(2, 3)
4265void netdev_info(const struct net_device *dev, const char *format, ...);
4266
4267#define MODULE_ALIAS_NETDEV(device) \
4268        MODULE_ALIAS("netdev-" device)
4269
4270#if defined(CONFIG_DYNAMIC_DEBUG)
4271#define netdev_dbg(__dev, format, args...)                      \
4272do {                                                            \
4273        dynamic_netdev_dbg(__dev, format, ##args);              \
4274} while (0)
4275#elif defined(DEBUG)
4276#define netdev_dbg(__dev, format, args...)                      \
4277        netdev_printk(KERN_DEBUG, __dev, format, ##args)
4278#else
4279#define netdev_dbg(__dev, format, args...)                      \
4280({                                                              \
4281        if (0)                                                  \
4282                netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4283})
4284#endif
4285
4286#if defined(VERBOSE_DEBUG)
4287#define netdev_vdbg     netdev_dbg
4288#else
4289
4290#define netdev_vdbg(dev, format, args...)                       \
4291({                                                              \
4292        if (0)                                                  \
4293                netdev_printk(KERN_DEBUG, dev, format, ##args); \
4294        0;                                                      \
4295})
4296#endif
4297
4298/*
4299 * netdev_WARN() acts like dev_printk(), but with the key difference
4300 * of using a WARN/WARN_ON to get the message out, including the
4301 * file/line information and a backtrace.
4302 */
4303#define netdev_WARN(dev, format, args...)                       \
4304        WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),   \
4305             netdev_reg_state(dev), ##args)
4306
4307/* netif printk helpers, similar to netdev_printk */
4308
4309#define netif_printk(priv, type, level, dev, fmt, args...)      \
4310do {                                                            \
4311        if (netif_msg_##type(priv))                             \
4312                netdev_printk(level, (dev), fmt, ##args);       \
4313} while (0)
4314
4315#define netif_level(level, priv, type, dev, fmt, args...)       \
4316do {                                                            \
4317        if (netif_msg_##type(priv))                             \
4318                netdev_##level(dev, fmt, ##args);               \
4319} while (0)
4320
4321#define netif_emerg(priv, type, dev, fmt, args...)              \
4322        netif_level(emerg, priv, type, dev, fmt, ##args)
4323#define netif_alert(priv, type, dev, fmt, args...)              \
4324        netif_level(alert, priv, type, dev, fmt, ##args)
4325#define netif_crit(priv, type, dev, fmt, args...)               \
4326        netif_level(crit, priv, type, dev, fmt, ##args)
4327#define netif_err(priv, type, dev, fmt, args...)                \
4328        netif_level(err, priv, type, dev, fmt, ##args)
4329#define netif_warn(priv, type, dev, fmt, args...)               \
4330        netif_level(warn, priv, type, dev, fmt, ##args)
4331#define netif_notice(priv, type, dev, fmt, args...)             \
4332        netif_level(notice, priv, type, dev, fmt, ##args)
4333#define netif_info(priv, type, dev, fmt, args...)               \
4334        netif_level(info, priv, type, dev, fmt, ##args)
4335
4336#if defined(CONFIG_DYNAMIC_DEBUG)
4337#define netif_dbg(priv, type, netdev, format, args...)          \
4338do {                                                            \
4339        if (netif_msg_##type(priv))                             \
4340                dynamic_netdev_dbg(netdev, format, ##args);     \
4341} while (0)
4342#elif defined(DEBUG)
4343#define netif_dbg(priv, type, dev, format, args...)             \
4344        netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4345#else
4346#define netif_dbg(priv, type, dev, format, args...)                     \
4347({                                                                      \
4348        if (0)                                                          \
4349                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4350        0;                                                              \
4351})
4352#endif
4353
4354#if defined(VERBOSE_DEBUG)
4355#define netif_vdbg      netif_dbg
4356#else
4357#define netif_vdbg(priv, type, dev, format, args...)            \
4358({                                                              \
4359        if (0)                                                  \
4360                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4361        0;                                                      \
4362})
4363#endif
4364
4365/*
4366 *      The list of packet types we will receive (as opposed to discard)
4367 *      and the routines to invoke.
4368 *
4369 *      Why 16. Because with 16 the only overlap we get on a hash of the
4370 *      low nibble of the protocol value is RARP/SNAP/X.25.
4371 *
4372 *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4373 *             sure which should go first, but I bet it won't make much
4374 *             difference if we are running VLANs.  The good news is that
4375 *             this protocol won't be in the list unless compiled in, so
4376 *             the average user (w/out VLANs) will not be adversely affected.
4377 *             --BLG
4378 *
4379 *              0800    IP
4380 *              8100    802.1Q VLAN
4381 *              0001    802.3
4382 *              0002    AX.25
4383 *              0004    802.2
4384 *              8035    RARP
4385 *              0005    SNAP
4386 *              0805    X.25
4387 *              0806    ARP
4388 *              8137    IPX
4389 *              0009    Localtalk
4390 *              86DD    IPv6
4391 */
4392#define PTYPE_HASH_SIZE (16)
4393#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4394
4395#endif  /* _LINUX_NETDEVICE_H */
4396