linux/include/linux/page-flags.h
<<
>>
Prefs
   1/*
   2 * Macros for manipulating and testing page->flags
   3 */
   4
   5#ifndef PAGE_FLAGS_H
   6#define PAGE_FLAGS_H
   7
   8#include <linux/types.h>
   9#include <linux/bug.h>
  10#include <linux/mmdebug.h>
  11#ifndef __GENERATING_BOUNDS_H
  12#include <linux/mm_types.h>
  13#include <generated/bounds.h>
  14#endif /* !__GENERATING_BOUNDS_H */
  15
  16/*
  17 * Various page->flags bits:
  18 *
  19 * PG_reserved is set for special pages, which can never be swapped out. Some
  20 * of them might not even exist (eg empty_bad_page)...
  21 *
  22 * The PG_private bitflag is set on pagecache pages if they contain filesystem
  23 * specific data (which is normally at page->private). It can be used by
  24 * private allocations for its own usage.
  25 *
  26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
  27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
  28 * is set before writeback starts and cleared when it finishes.
  29 *
  30 * PG_locked also pins a page in pagecache, and blocks truncation of the file
  31 * while it is held.
  32 *
  33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
  34 * to become unlocked.
  35 *
  36 * PG_uptodate tells whether the page's contents is valid.  When a read
  37 * completes, the page becomes uptodate, unless a disk I/O error happened.
  38 *
  39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
  40 * file-backed pagecache (see mm/vmscan.c).
  41 *
  42 * PG_error is set to indicate that an I/O error occurred on this page.
  43 *
  44 * PG_arch_1 is an architecture specific page state bit.  The generic code
  45 * guarantees that this bit is cleared for a page when it first is entered into
  46 * the page cache.
  47 *
  48 * PG_highmem pages are not permanently mapped into the kernel virtual address
  49 * space, they need to be kmapped separately for doing IO on the pages.  The
  50 * struct page (these bits with information) are always mapped into kernel
  51 * address space...
  52 *
  53 * PG_hwpoison indicates that a page got corrupted in hardware and contains
  54 * data with incorrect ECC bits that triggered a machine check. Accessing is
  55 * not safe since it may cause another machine check. Don't touch!
  56 */
  57
  58/*
  59 * Don't use the *_dontuse flags.  Use the macros.  Otherwise you'll break
  60 * locked- and dirty-page accounting.
  61 *
  62 * The page flags field is split into two parts, the main flags area
  63 * which extends from the low bits upwards, and the fields area which
  64 * extends from the high bits downwards.
  65 *
  66 *  | FIELD | ... | FLAGS |
  67 *  N-1           ^       0
  68 *               (NR_PAGEFLAGS)
  69 *
  70 * The fields area is reserved for fields mapping zone, node (for NUMA) and
  71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
  72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
  73 */
  74enum pageflags {
  75        PG_locked,              /* Page is locked. Don't touch. */
  76        PG_error,
  77        PG_referenced,
  78        PG_uptodate,
  79        PG_dirty,
  80        PG_lru,
  81        PG_active,
  82        PG_slab,
  83        PG_owner_priv_1,        /* Owner use. If pagecache, fs may use*/
  84        PG_arch_1,
  85        PG_reserved,
  86        PG_private,             /* If pagecache, has fs-private data */
  87        PG_private_2,           /* If pagecache, has fs aux data */
  88        PG_writeback,           /* Page is under writeback */
  89        PG_head,                /* A head page */
  90        PG_swapcache,           /* Swap page: swp_entry_t in private */
  91        PG_mappedtodisk,        /* Has blocks allocated on-disk */
  92        PG_reclaim,             /* To be reclaimed asap */
  93        PG_swapbacked,          /* Page is backed by RAM/swap */
  94        PG_unevictable,         /* Page is "unevictable"  */
  95#ifdef CONFIG_MMU
  96        PG_mlocked,             /* Page is vma mlocked */
  97#endif
  98#ifdef CONFIG_ARCH_USES_PG_UNCACHED
  99        PG_uncached,            /* Page has been mapped as uncached */
 100#endif
 101#ifdef CONFIG_MEMORY_FAILURE
 102        PG_hwpoison,            /* hardware poisoned page. Don't touch */
 103#endif
 104#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
 105        PG_young,
 106        PG_idle,
 107#endif
 108        __NR_PAGEFLAGS,
 109
 110        /* Filesystems */
 111        PG_checked = PG_owner_priv_1,
 112
 113        /* Two page bits are conscripted by FS-Cache to maintain local caching
 114         * state.  These bits are set on pages belonging to the netfs's inodes
 115         * when those inodes are being locally cached.
 116         */
 117        PG_fscache = PG_private_2,      /* page backed by cache */
 118
 119        /* XEN */
 120        /* Pinned in Xen as a read-only pagetable page. */
 121        PG_pinned = PG_owner_priv_1,
 122        /* Pinned as part of domain save (see xen_mm_pin_all()). */
 123        PG_savepinned = PG_dirty,
 124        /* Has a grant mapping of another (foreign) domain's page. */
 125        PG_foreign = PG_owner_priv_1,
 126
 127        /* SLOB */
 128        PG_slob_free = PG_private,
 129
 130        /* Compound pages. Stored in first tail page's flags */
 131        PG_double_map = PG_private_2,
 132
 133        /* non-lru isolated movable page */
 134        PG_isolated = PG_reclaim,
 135};
 136
 137#ifndef __GENERATING_BOUNDS_H
 138
 139struct page;    /* forward declaration */
 140
 141static inline struct page *compound_head(struct page *page)
 142{
 143        unsigned long head = READ_ONCE(page->compound_head);
 144
 145        if (unlikely(head & 1))
 146                return (struct page *) (head - 1);
 147        return page;
 148}
 149
 150static __always_inline int PageTail(struct page *page)
 151{
 152        return READ_ONCE(page->compound_head) & 1;
 153}
 154
 155static __always_inline int PageCompound(struct page *page)
 156{
 157        return test_bit(PG_head, &page->flags) || PageTail(page);
 158}
 159
 160/*
 161 * Page flags policies wrt compound pages
 162 *
 163 * PF_ANY:
 164 *     the page flag is relevant for small, head and tail pages.
 165 *
 166 * PF_HEAD:
 167 *     for compound page all operations related to the page flag applied to
 168 *     head page.
 169 *
 170 * PF_NO_TAIL:
 171 *     modifications of the page flag must be done on small or head pages,
 172 *     checks can be done on tail pages too.
 173 *
 174 * PF_NO_COMPOUND:
 175 *     the page flag is not relevant for compound pages.
 176 */
 177#define PF_ANY(page, enforce)   page
 178#define PF_HEAD(page, enforce)  compound_head(page)
 179#define PF_NO_TAIL(page, enforce) ({                                    \
 180                VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);     \
 181                compound_head(page);})
 182#define PF_NO_COMPOUND(page, enforce) ({                                \
 183                VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
 184                page;})
 185
 186/*
 187 * Macros to create function definitions for page flags
 188 */
 189#define TESTPAGEFLAG(uname, lname, policy)                              \
 190static __always_inline int Page##uname(struct page *page)               \
 191        { return test_bit(PG_##lname, &policy(page, 0)->flags); }
 192
 193#define SETPAGEFLAG(uname, lname, policy)                               \
 194static __always_inline void SetPage##uname(struct page *page)           \
 195        { set_bit(PG_##lname, &policy(page, 1)->flags); }
 196
 197#define CLEARPAGEFLAG(uname, lname, policy)                             \
 198static __always_inline void ClearPage##uname(struct page *page)         \
 199        { clear_bit(PG_##lname, &policy(page, 1)->flags); }
 200
 201#define __SETPAGEFLAG(uname, lname, policy)                             \
 202static __always_inline void __SetPage##uname(struct page *page)         \
 203        { __set_bit(PG_##lname, &policy(page, 1)->flags); }
 204
 205#define __CLEARPAGEFLAG(uname, lname, policy)                           \
 206static __always_inline void __ClearPage##uname(struct page *page)       \
 207        { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
 208
 209#define TESTSETFLAG(uname, lname, policy)                               \
 210static __always_inline int TestSetPage##uname(struct page *page)        \
 211        { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
 212
 213#define TESTCLEARFLAG(uname, lname, policy)                             \
 214static __always_inline int TestClearPage##uname(struct page *page)      \
 215        { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
 216
 217#define PAGEFLAG(uname, lname, policy)                                  \
 218        TESTPAGEFLAG(uname, lname, policy)                              \
 219        SETPAGEFLAG(uname, lname, policy)                               \
 220        CLEARPAGEFLAG(uname, lname, policy)
 221
 222#define __PAGEFLAG(uname, lname, policy)                                \
 223        TESTPAGEFLAG(uname, lname, policy)                              \
 224        __SETPAGEFLAG(uname, lname, policy)                             \
 225        __CLEARPAGEFLAG(uname, lname, policy)
 226
 227#define TESTSCFLAG(uname, lname, policy)                                \
 228        TESTSETFLAG(uname, lname, policy)                               \
 229        TESTCLEARFLAG(uname, lname, policy)
 230
 231#define TESTPAGEFLAG_FALSE(uname)                                       \
 232static inline int Page##uname(const struct page *page) { return 0; }
 233
 234#define SETPAGEFLAG_NOOP(uname)                                         \
 235static inline void SetPage##uname(struct page *page) {  }
 236
 237#define CLEARPAGEFLAG_NOOP(uname)                                       \
 238static inline void ClearPage##uname(struct page *page) {  }
 239
 240#define __CLEARPAGEFLAG_NOOP(uname)                                     \
 241static inline void __ClearPage##uname(struct page *page) {  }
 242
 243#define TESTSETFLAG_FALSE(uname)                                        \
 244static inline int TestSetPage##uname(struct page *page) { return 0; }
 245
 246#define TESTCLEARFLAG_FALSE(uname)                                      \
 247static inline int TestClearPage##uname(struct page *page) { return 0; }
 248
 249#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)                 \
 250        SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
 251
 252#define TESTSCFLAG_FALSE(uname)                                         \
 253        TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
 254
 255__PAGEFLAG(Locked, locked, PF_NO_TAIL)
 256PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND)
 257PAGEFLAG(Referenced, referenced, PF_HEAD)
 258        TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
 259        __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
 260PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
 261        __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
 262PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
 263PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
 264        TESTCLEARFLAG(Active, active, PF_HEAD)
 265__PAGEFLAG(Slab, slab, PF_NO_TAIL)
 266__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
 267PAGEFLAG(Checked, checked, PF_NO_COMPOUND)         /* Used by some filesystems */
 268
 269/* Xen */
 270PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
 271        TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
 272PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
 273PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
 274
 275PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 276        __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 277PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 278        __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 279        __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 280
 281/*
 282 * Private page markings that may be used by the filesystem that owns the page
 283 * for its own purposes.
 284 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
 285 */
 286PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
 287        __CLEARPAGEFLAG(Private, private, PF_ANY)
 288PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
 289PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 290        TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 291
 292/*
 293 * Only test-and-set exist for PG_writeback.  The unconditional operators are
 294 * risky: they bypass page accounting.
 295 */
 296TESTPAGEFLAG(Writeback, writeback, PF_NO_COMPOUND)
 297        TESTSCFLAG(Writeback, writeback, PF_NO_COMPOUND)
 298PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
 299
 300/* PG_readahead is only used for reads; PG_reclaim is only for writes */
 301PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
 302        TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
 303PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 304        TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 305
 306#ifdef CONFIG_HIGHMEM
 307/*
 308 * Must use a macro here due to header dependency issues. page_zone() is not
 309 * available at this point.
 310 */
 311#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
 312#else
 313PAGEFLAG_FALSE(HighMem)
 314#endif
 315
 316#ifdef CONFIG_SWAP
 317PAGEFLAG(SwapCache, swapcache, PF_NO_COMPOUND)
 318#else
 319PAGEFLAG_FALSE(SwapCache)
 320#endif
 321
 322PAGEFLAG(Unevictable, unevictable, PF_HEAD)
 323        __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
 324        TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
 325
 326#ifdef CONFIG_MMU
 327PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 328        __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 329        TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
 330#else
 331PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
 332        TESTSCFLAG_FALSE(Mlocked)
 333#endif
 334
 335#ifdef CONFIG_ARCH_USES_PG_UNCACHED
 336PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
 337#else
 338PAGEFLAG_FALSE(Uncached)
 339#endif
 340
 341#ifdef CONFIG_MEMORY_FAILURE
 342PAGEFLAG(HWPoison, hwpoison, PF_ANY)
 343TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
 344#define __PG_HWPOISON (1UL << PG_hwpoison)
 345#else
 346PAGEFLAG_FALSE(HWPoison)
 347#define __PG_HWPOISON 0
 348#endif
 349
 350#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
 351TESTPAGEFLAG(Young, young, PF_ANY)
 352SETPAGEFLAG(Young, young, PF_ANY)
 353TESTCLEARFLAG(Young, young, PF_ANY)
 354PAGEFLAG(Idle, idle, PF_ANY)
 355#endif
 356
 357/*
 358 * On an anonymous page mapped into a user virtual memory area,
 359 * page->mapping points to its anon_vma, not to a struct address_space;
 360 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 361 *
 362 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 363 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
 364 * bit; and then page->mapping points, not to an anon_vma, but to a private
 365 * structure which KSM associates with that merged page.  See ksm.h.
 366 *
 367 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
 368 * page and then page->mapping points a struct address_space.
 369 *
 370 * Please note that, confusingly, "page_mapping" refers to the inode
 371 * address_space which maps the page from disk; whereas "page_mapped"
 372 * refers to user virtual address space into which the page is mapped.
 373 */
 374#define PAGE_MAPPING_ANON       0x1
 375#define PAGE_MAPPING_MOVABLE    0x2
 376#define PAGE_MAPPING_KSM        (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
 377#define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
 378
 379static __always_inline int PageMappingFlags(struct page *page)
 380{
 381        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
 382}
 383
 384static __always_inline int PageAnon(struct page *page)
 385{
 386        page = compound_head(page);
 387        return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
 388}
 389
 390static __always_inline int __PageMovable(struct page *page)
 391{
 392        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
 393                                PAGE_MAPPING_MOVABLE;
 394}
 395
 396#ifdef CONFIG_KSM
 397/*
 398 * A KSM page is one of those write-protected "shared pages" or "merged pages"
 399 * which KSM maps into multiple mms, wherever identical anonymous page content
 400 * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
 401 * anon_vma, but to that page's node of the stable tree.
 402 */
 403static __always_inline int PageKsm(struct page *page)
 404{
 405        page = compound_head(page);
 406        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
 407                                PAGE_MAPPING_KSM;
 408}
 409#else
 410TESTPAGEFLAG_FALSE(Ksm)
 411#endif
 412
 413u64 stable_page_flags(struct page *page);
 414
 415static inline int PageUptodate(struct page *page)
 416{
 417        int ret;
 418        page = compound_head(page);
 419        ret = test_bit(PG_uptodate, &(page)->flags);
 420        /*
 421         * Must ensure that the data we read out of the page is loaded
 422         * _after_ we've loaded page->flags to check for PageUptodate.
 423         * We can skip the barrier if the page is not uptodate, because
 424         * we wouldn't be reading anything from it.
 425         *
 426         * See SetPageUptodate() for the other side of the story.
 427         */
 428        if (ret)
 429                smp_rmb();
 430
 431        return ret;
 432}
 433
 434static __always_inline void __SetPageUptodate(struct page *page)
 435{
 436        VM_BUG_ON_PAGE(PageTail(page), page);
 437        smp_wmb();
 438        __set_bit(PG_uptodate, &page->flags);
 439}
 440
 441static __always_inline void SetPageUptodate(struct page *page)
 442{
 443        VM_BUG_ON_PAGE(PageTail(page), page);
 444        /*
 445         * Memory barrier must be issued before setting the PG_uptodate bit,
 446         * so that all previous stores issued in order to bring the page
 447         * uptodate are actually visible before PageUptodate becomes true.
 448         */
 449        smp_wmb();
 450        set_bit(PG_uptodate, &page->flags);
 451}
 452
 453CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
 454
 455int test_clear_page_writeback(struct page *page);
 456int __test_set_page_writeback(struct page *page, bool keep_write);
 457
 458#define test_set_page_writeback(page)                   \
 459        __test_set_page_writeback(page, false)
 460#define test_set_page_writeback_keepwrite(page) \
 461        __test_set_page_writeback(page, true)
 462
 463static inline void set_page_writeback(struct page *page)
 464{
 465        test_set_page_writeback(page);
 466}
 467
 468static inline void set_page_writeback_keepwrite(struct page *page)
 469{
 470        test_set_page_writeback_keepwrite(page);
 471}
 472
 473__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
 474
 475static __always_inline void set_compound_head(struct page *page, struct page *head)
 476{
 477        WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
 478}
 479
 480static __always_inline void clear_compound_head(struct page *page)
 481{
 482        WRITE_ONCE(page->compound_head, 0);
 483}
 484
 485#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 486static inline void ClearPageCompound(struct page *page)
 487{
 488        BUG_ON(!PageHead(page));
 489        ClearPageHead(page);
 490}
 491#endif
 492
 493#define PG_head_mask ((1UL << PG_head))
 494
 495#ifdef CONFIG_HUGETLB_PAGE
 496int PageHuge(struct page *page);
 497int PageHeadHuge(struct page *page);
 498bool page_huge_active(struct page *page);
 499#else
 500TESTPAGEFLAG_FALSE(Huge)
 501TESTPAGEFLAG_FALSE(HeadHuge)
 502
 503static inline bool page_huge_active(struct page *page)
 504{
 505        return 0;
 506}
 507#endif
 508
 509
 510#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 511/*
 512 * PageHuge() only returns true for hugetlbfs pages, but not for
 513 * normal or transparent huge pages.
 514 *
 515 * PageTransHuge() returns true for both transparent huge and
 516 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
 517 * called only in the core VM paths where hugetlbfs pages can't exist.
 518 */
 519static inline int PageTransHuge(struct page *page)
 520{
 521        VM_BUG_ON_PAGE(PageTail(page), page);
 522        return PageHead(page);
 523}
 524
 525/*
 526 * PageTransCompound returns true for both transparent huge pages
 527 * and hugetlbfs pages, so it should only be called when it's known
 528 * that hugetlbfs pages aren't involved.
 529 */
 530static inline int PageTransCompound(struct page *page)
 531{
 532        return PageCompound(page);
 533}
 534
 535/*
 536 * PageTransCompoundMap is the same as PageTransCompound, but it also
 537 * guarantees the primary MMU has the entire compound page mapped
 538 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
 539 * can also map the entire compound page. This allows the secondary
 540 * MMUs to call get_user_pages() only once for each compound page and
 541 * to immediately map the entire compound page with a single secondary
 542 * MMU fault. If there will be a pmd split later, the secondary MMUs
 543 * will get an update through the MMU notifier invalidation through
 544 * split_huge_pmd().
 545 *
 546 * Unlike PageTransCompound, this is safe to be called only while
 547 * split_huge_pmd() cannot run from under us, like if protected by the
 548 * MMU notifier, otherwise it may result in page->_mapcount < 0 false
 549 * positives.
 550 */
 551static inline int PageTransCompoundMap(struct page *page)
 552{
 553        return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0;
 554}
 555
 556/*
 557 * PageTransTail returns true for both transparent huge pages
 558 * and hugetlbfs pages, so it should only be called when it's known
 559 * that hugetlbfs pages aren't involved.
 560 */
 561static inline int PageTransTail(struct page *page)
 562{
 563        return PageTail(page);
 564}
 565
 566/*
 567 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
 568 * as PMDs.
 569 *
 570 * This is required for optimization of rmap operations for THP: we can postpone
 571 * per small page mapcount accounting (and its overhead from atomic operations)
 572 * until the first PMD split.
 573 *
 574 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
 575 * by one. This reference will go away with last compound_mapcount.
 576 *
 577 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
 578 */
 579static inline int PageDoubleMap(struct page *page)
 580{
 581        return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
 582}
 583
 584static inline void SetPageDoubleMap(struct page *page)
 585{
 586        VM_BUG_ON_PAGE(!PageHead(page), page);
 587        set_bit(PG_double_map, &page[1].flags);
 588}
 589
 590static inline void ClearPageDoubleMap(struct page *page)
 591{
 592        VM_BUG_ON_PAGE(!PageHead(page), page);
 593        clear_bit(PG_double_map, &page[1].flags);
 594}
 595static inline int TestSetPageDoubleMap(struct page *page)
 596{
 597        VM_BUG_ON_PAGE(!PageHead(page), page);
 598        return test_and_set_bit(PG_double_map, &page[1].flags);
 599}
 600
 601static inline int TestClearPageDoubleMap(struct page *page)
 602{
 603        VM_BUG_ON_PAGE(!PageHead(page), page);
 604        return test_and_clear_bit(PG_double_map, &page[1].flags);
 605}
 606
 607#else
 608TESTPAGEFLAG_FALSE(TransHuge)
 609TESTPAGEFLAG_FALSE(TransCompound)
 610TESTPAGEFLAG_FALSE(TransCompoundMap)
 611TESTPAGEFLAG_FALSE(TransTail)
 612PAGEFLAG_FALSE(DoubleMap)
 613        TESTSETFLAG_FALSE(DoubleMap)
 614        TESTCLEARFLAG_FALSE(DoubleMap)
 615#endif
 616
 617/*
 618 * For pages that are never mapped to userspace, page->mapcount may be
 619 * used for storing extra information about page type. Any value used
 620 * for this purpose must be <= -2, but it's better start not too close
 621 * to -2 so that an underflow of the page_mapcount() won't be mistaken
 622 * for a special page.
 623 */
 624#define PAGE_MAPCOUNT_OPS(uname, lname)                                 \
 625static __always_inline int Page##uname(struct page *page)               \
 626{                                                                       \
 627        return atomic_read(&page->_mapcount) ==                         \
 628                                PAGE_##lname##_MAPCOUNT_VALUE;          \
 629}                                                                       \
 630static __always_inline void __SetPage##uname(struct page *page)         \
 631{                                                                       \
 632        VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);      \
 633        atomic_set(&page->_mapcount, PAGE_##lname##_MAPCOUNT_VALUE);    \
 634}                                                                       \
 635static __always_inline void __ClearPage##uname(struct page *page)       \
 636{                                                                       \
 637        VM_BUG_ON_PAGE(!Page##uname(page), page);                       \
 638        atomic_set(&page->_mapcount, -1);                               \
 639}
 640
 641/*
 642 * PageBuddy() indicate that the page is free and in the buddy system
 643 * (see mm/page_alloc.c).
 644 */
 645#define PAGE_BUDDY_MAPCOUNT_VALUE               (-128)
 646PAGE_MAPCOUNT_OPS(Buddy, BUDDY)
 647
 648/*
 649 * PageBalloon() is set on pages that are on the balloon page list
 650 * (see mm/balloon_compaction.c).
 651 */
 652#define PAGE_BALLOON_MAPCOUNT_VALUE             (-256)
 653PAGE_MAPCOUNT_OPS(Balloon, BALLOON)
 654
 655/*
 656 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
 657 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
 658 */
 659#define PAGE_KMEMCG_MAPCOUNT_VALUE              (-512)
 660PAGE_MAPCOUNT_OPS(Kmemcg, KMEMCG)
 661
 662extern bool is_free_buddy_page(struct page *page);
 663
 664__PAGEFLAG(Isolated, isolated, PF_ANY);
 665
 666/*
 667 * If network-based swap is enabled, sl*b must keep track of whether pages
 668 * were allocated from pfmemalloc reserves.
 669 */
 670static inline int PageSlabPfmemalloc(struct page *page)
 671{
 672        VM_BUG_ON_PAGE(!PageSlab(page), page);
 673        return PageActive(page);
 674}
 675
 676static inline void SetPageSlabPfmemalloc(struct page *page)
 677{
 678        VM_BUG_ON_PAGE(!PageSlab(page), page);
 679        SetPageActive(page);
 680}
 681
 682static inline void __ClearPageSlabPfmemalloc(struct page *page)
 683{
 684        VM_BUG_ON_PAGE(!PageSlab(page), page);
 685        __ClearPageActive(page);
 686}
 687
 688static inline void ClearPageSlabPfmemalloc(struct page *page)
 689{
 690        VM_BUG_ON_PAGE(!PageSlab(page), page);
 691        ClearPageActive(page);
 692}
 693
 694#ifdef CONFIG_MMU
 695#define __PG_MLOCKED            (1UL << PG_mlocked)
 696#else
 697#define __PG_MLOCKED            0
 698#endif
 699
 700/*
 701 * Flags checked when a page is freed.  Pages being freed should not have
 702 * these flags set.  It they are, there is a problem.
 703 */
 704#define PAGE_FLAGS_CHECK_AT_FREE \
 705        (1UL << PG_lru   | 1UL << PG_locked    | \
 706         1UL << PG_private | 1UL << PG_private_2 | \
 707         1UL << PG_writeback | 1UL << PG_reserved | \
 708         1UL << PG_slab  | 1UL << PG_swapcache | 1UL << PG_active | \
 709         1UL << PG_unevictable | __PG_MLOCKED)
 710
 711/*
 712 * Flags checked when a page is prepped for return by the page allocator.
 713 * Pages being prepped should not have these flags set.  It they are set,
 714 * there has been a kernel bug or struct page corruption.
 715 *
 716 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
 717 * alloc-free cycle to prevent from reusing the page.
 718 */
 719#define PAGE_FLAGS_CHECK_AT_PREP        \
 720        (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
 721
 722#define PAGE_FLAGS_PRIVATE                              \
 723        (1UL << PG_private | 1UL << PG_private_2)
 724/**
 725 * page_has_private - Determine if page has private stuff
 726 * @page: The page to be checked
 727 *
 728 * Determine if a page has private stuff, indicating that release routines
 729 * should be invoked upon it.
 730 */
 731static inline int page_has_private(struct page *page)
 732{
 733        return !!(page->flags & PAGE_FLAGS_PRIVATE);
 734}
 735
 736#undef PF_ANY
 737#undef PF_HEAD
 738#undef PF_NO_TAIL
 739#undef PF_NO_COMPOUND
 740#endif /* !__GENERATING_BOUNDS_H */
 741
 742#endif  /* PAGE_FLAGS_H */
 743