linux/include/linux/perf_event.h
<<
>>
Prefs
   1/*
   2 * Performance events:
   3 *
   4 *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
   5 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
   6 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
   7 *
   8 * Data type definitions, declarations, prototypes.
   9 *
  10 *    Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 * For licencing details see kernel-base/COPYING
  13 */
  14#ifndef _LINUX_PERF_EVENT_H
  15#define _LINUX_PERF_EVENT_H
  16
  17#include <uapi/linux/perf_event.h>
  18
  19/*
  20 * Kernel-internal data types and definitions:
  21 */
  22
  23#ifdef CONFIG_PERF_EVENTS
  24# include <asm/perf_event.h>
  25# include <asm/local64.h>
  26#endif
  27
  28struct perf_guest_info_callbacks {
  29        int                             (*is_in_guest)(void);
  30        int                             (*is_user_mode)(void);
  31        unsigned long                   (*get_guest_ip)(void);
  32};
  33
  34#ifdef CONFIG_HAVE_HW_BREAKPOINT
  35#include <asm/hw_breakpoint.h>
  36#endif
  37
  38#include <linux/list.h>
  39#include <linux/mutex.h>
  40#include <linux/rculist.h>
  41#include <linux/rcupdate.h>
  42#include <linux/spinlock.h>
  43#include <linux/hrtimer.h>
  44#include <linux/fs.h>
  45#include <linux/pid_namespace.h>
  46#include <linux/workqueue.h>
  47#include <linux/ftrace.h>
  48#include <linux/cpu.h>
  49#include <linux/irq_work.h>
  50#include <linux/static_key.h>
  51#include <linux/jump_label_ratelimit.h>
  52#include <linux/atomic.h>
  53#include <linux/sysfs.h>
  54#include <linux/perf_regs.h>
  55#include <linux/workqueue.h>
  56#include <linux/cgroup.h>
  57#include <asm/local.h>
  58
  59struct perf_callchain_entry {
  60        __u64                           nr;
  61        __u64                           ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
  62};
  63
  64struct perf_callchain_entry_ctx {
  65        struct perf_callchain_entry *entry;
  66        u32                         max_stack;
  67        u32                         nr;
  68        short                       contexts;
  69        bool                        contexts_maxed;
  70};
  71
  72typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
  73                                     unsigned long off, unsigned long len);
  74
  75struct perf_raw_frag {
  76        union {
  77                struct perf_raw_frag    *next;
  78                unsigned long           pad;
  79        };
  80        perf_copy_f                     copy;
  81        void                            *data;
  82        u32                             size;
  83} __packed;
  84
  85struct perf_raw_record {
  86        struct perf_raw_frag            frag;
  87        u32                             size;
  88};
  89
  90/*
  91 * branch stack layout:
  92 *  nr: number of taken branches stored in entries[]
  93 *
  94 * Note that nr can vary from sample to sample
  95 * branches (to, from) are stored from most recent
  96 * to least recent, i.e., entries[0] contains the most
  97 * recent branch.
  98 */
  99struct perf_branch_stack {
 100        __u64                           nr;
 101        struct perf_branch_entry        entries[0];
 102};
 103
 104struct task_struct;
 105
 106/*
 107 * extra PMU register associated with an event
 108 */
 109struct hw_perf_event_extra {
 110        u64             config; /* register value */
 111        unsigned int    reg;    /* register address or index */
 112        int             alloc;  /* extra register already allocated */
 113        int             idx;    /* index in shared_regs->regs[] */
 114};
 115
 116/**
 117 * struct hw_perf_event - performance event hardware details:
 118 */
 119struct hw_perf_event {
 120#ifdef CONFIG_PERF_EVENTS
 121        union {
 122                struct { /* hardware */
 123                        u64             config;
 124                        u64             last_tag;
 125                        unsigned long   config_base;
 126                        unsigned long   event_base;
 127                        int             event_base_rdpmc;
 128                        int             idx;
 129                        int             last_cpu;
 130                        int             flags;
 131
 132                        struct hw_perf_event_extra extra_reg;
 133                        struct hw_perf_event_extra branch_reg;
 134                };
 135                struct { /* software */
 136                        struct hrtimer  hrtimer;
 137                };
 138                struct { /* tracepoint */
 139                        /* for tp_event->class */
 140                        struct list_head        tp_list;
 141                };
 142                struct { /* intel_cqm */
 143                        int                     cqm_state;
 144                        u32                     cqm_rmid;
 145                        int                     is_group_event;
 146                        struct list_head        cqm_events_entry;
 147                        struct list_head        cqm_groups_entry;
 148                        struct list_head        cqm_group_entry;
 149                };
 150                struct { /* itrace */
 151                        int                     itrace_started;
 152                };
 153                struct { /* amd_power */
 154                        u64     pwr_acc;
 155                        u64     ptsc;
 156                };
 157#ifdef CONFIG_HAVE_HW_BREAKPOINT
 158                struct { /* breakpoint */
 159                        /*
 160                         * Crufty hack to avoid the chicken and egg
 161                         * problem hw_breakpoint has with context
 162                         * creation and event initalization.
 163                         */
 164                        struct arch_hw_breakpoint       info;
 165                        struct list_head                bp_list;
 166                };
 167#endif
 168        };
 169        /*
 170         * If the event is a per task event, this will point to the task in
 171         * question. See the comment in perf_event_alloc().
 172         */
 173        struct task_struct              *target;
 174
 175        /*
 176         * PMU would store hardware filter configuration
 177         * here.
 178         */
 179        void                            *addr_filters;
 180
 181        /* Last sync'ed generation of filters */
 182        unsigned long                   addr_filters_gen;
 183
 184/*
 185 * hw_perf_event::state flags; used to track the PERF_EF_* state.
 186 */
 187#define PERF_HES_STOPPED        0x01 /* the counter is stopped */
 188#define PERF_HES_UPTODATE       0x02 /* event->count up-to-date */
 189#define PERF_HES_ARCH           0x04
 190
 191        int                             state;
 192
 193        /*
 194         * The last observed hardware counter value, updated with a
 195         * local64_cmpxchg() such that pmu::read() can be called nested.
 196         */
 197        local64_t                       prev_count;
 198
 199        /*
 200         * The period to start the next sample with.
 201         */
 202        u64                             sample_period;
 203
 204        /*
 205         * The period we started this sample with.
 206         */
 207        u64                             last_period;
 208
 209        /*
 210         * However much is left of the current period; note that this is
 211         * a full 64bit value and allows for generation of periods longer
 212         * than hardware might allow.
 213         */
 214        local64_t                       period_left;
 215
 216        /*
 217         * State for throttling the event, see __perf_event_overflow() and
 218         * perf_adjust_freq_unthr_context().
 219         */
 220        u64                             interrupts_seq;
 221        u64                             interrupts;
 222
 223        /*
 224         * State for freq target events, see __perf_event_overflow() and
 225         * perf_adjust_freq_unthr_context().
 226         */
 227        u64                             freq_time_stamp;
 228        u64                             freq_count_stamp;
 229#endif
 230};
 231
 232struct perf_event;
 233
 234/*
 235 * Common implementation detail of pmu::{start,commit,cancel}_txn
 236 */
 237#define PERF_PMU_TXN_ADD  0x1           /* txn to add/schedule event on PMU */
 238#define PERF_PMU_TXN_READ 0x2           /* txn to read event group from PMU */
 239
 240/**
 241 * pmu::capabilities flags
 242 */
 243#define PERF_PMU_CAP_NO_INTERRUPT               0x01
 244#define PERF_PMU_CAP_NO_NMI                     0x02
 245#define PERF_PMU_CAP_AUX_NO_SG                  0x04
 246#define PERF_PMU_CAP_AUX_SW_DOUBLEBUF           0x08
 247#define PERF_PMU_CAP_EXCLUSIVE                  0x10
 248#define PERF_PMU_CAP_ITRACE                     0x20
 249#define PERF_PMU_CAP_HETEROGENEOUS_CPUS         0x40
 250
 251/**
 252 * struct pmu - generic performance monitoring unit
 253 */
 254struct pmu {
 255        struct list_head                entry;
 256
 257        struct module                   *module;
 258        struct device                   *dev;
 259        const struct attribute_group    **attr_groups;
 260        const char                      *name;
 261        int                             type;
 262
 263        /*
 264         * various common per-pmu feature flags
 265         */
 266        int                             capabilities;
 267
 268        int * __percpu                  pmu_disable_count;
 269        struct perf_cpu_context * __percpu pmu_cpu_context;
 270        atomic_t                        exclusive_cnt; /* < 0: cpu; > 0: tsk */
 271        int                             task_ctx_nr;
 272        int                             hrtimer_interval_ms;
 273
 274        /* number of address filters this PMU can do */
 275        unsigned int                    nr_addr_filters;
 276
 277        /*
 278         * Fully disable/enable this PMU, can be used to protect from the PMI
 279         * as well as for lazy/batch writing of the MSRs.
 280         */
 281        void (*pmu_enable)              (struct pmu *pmu); /* optional */
 282        void (*pmu_disable)             (struct pmu *pmu); /* optional */
 283
 284        /*
 285         * Try and initialize the event for this PMU.
 286         *
 287         * Returns:
 288         *  -ENOENT     -- @event is not for this PMU
 289         *
 290         *  -ENODEV     -- @event is for this PMU but PMU not present
 291         *  -EBUSY      -- @event is for this PMU but PMU temporarily unavailable
 292         *  -EINVAL     -- @event is for this PMU but @event is not valid
 293         *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
 294         *  -EACCESS    -- @event is for this PMU, @event is valid, but no privilidges
 295         *
 296         *  0           -- @event is for this PMU and valid
 297         *
 298         * Other error return values are allowed.
 299         */
 300        int (*event_init)               (struct perf_event *event);
 301
 302        /*
 303         * Notification that the event was mapped or unmapped.  Called
 304         * in the context of the mapping task.
 305         */
 306        void (*event_mapped)            (struct perf_event *event); /*optional*/
 307        void (*event_unmapped)          (struct perf_event *event); /*optional*/
 308
 309        /*
 310         * Flags for ->add()/->del()/ ->start()/->stop(). There are
 311         * matching hw_perf_event::state flags.
 312         */
 313#define PERF_EF_START   0x01            /* start the counter when adding    */
 314#define PERF_EF_RELOAD  0x02            /* reload the counter when starting */
 315#define PERF_EF_UPDATE  0x04            /* update the counter when stopping */
 316
 317        /*
 318         * Adds/Removes a counter to/from the PMU, can be done inside a
 319         * transaction, see the ->*_txn() methods.
 320         *
 321         * The add/del callbacks will reserve all hardware resources required
 322         * to service the event, this includes any counter constraint
 323         * scheduling etc.
 324         *
 325         * Called with IRQs disabled and the PMU disabled on the CPU the event
 326         * is on.
 327         *
 328         * ->add() called without PERF_EF_START should result in the same state
 329         *  as ->add() followed by ->stop().
 330         *
 331         * ->del() must always PERF_EF_UPDATE stop an event. If it calls
 332         *  ->stop() that must deal with already being stopped without
 333         *  PERF_EF_UPDATE.
 334         */
 335        int  (*add)                     (struct perf_event *event, int flags);
 336        void (*del)                     (struct perf_event *event, int flags);
 337
 338        /*
 339         * Starts/Stops a counter present on the PMU.
 340         *
 341         * The PMI handler should stop the counter when perf_event_overflow()
 342         * returns !0. ->start() will be used to continue.
 343         *
 344         * Also used to change the sample period.
 345         *
 346         * Called with IRQs disabled and the PMU disabled on the CPU the event
 347         * is on -- will be called from NMI context with the PMU generates
 348         * NMIs.
 349         *
 350         * ->stop() with PERF_EF_UPDATE will read the counter and update
 351         *  period/count values like ->read() would.
 352         *
 353         * ->start() with PERF_EF_RELOAD will reprogram the the counter
 354         *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
 355         */
 356        void (*start)                   (struct perf_event *event, int flags);
 357        void (*stop)                    (struct perf_event *event, int flags);
 358
 359        /*
 360         * Updates the counter value of the event.
 361         *
 362         * For sampling capable PMUs this will also update the software period
 363         * hw_perf_event::period_left field.
 364         */
 365        void (*read)                    (struct perf_event *event);
 366
 367        /*
 368         * Group events scheduling is treated as a transaction, add
 369         * group events as a whole and perform one schedulability test.
 370         * If the test fails, roll back the whole group
 371         *
 372         * Start the transaction, after this ->add() doesn't need to
 373         * do schedulability tests.
 374         *
 375         * Optional.
 376         */
 377        void (*start_txn)               (struct pmu *pmu, unsigned int txn_flags);
 378        /*
 379         * If ->start_txn() disabled the ->add() schedulability test
 380         * then ->commit_txn() is required to perform one. On success
 381         * the transaction is closed. On error the transaction is kept
 382         * open until ->cancel_txn() is called.
 383         *
 384         * Optional.
 385         */
 386        int  (*commit_txn)              (struct pmu *pmu);
 387        /*
 388         * Will cancel the transaction, assumes ->del() is called
 389         * for each successful ->add() during the transaction.
 390         *
 391         * Optional.
 392         */
 393        void (*cancel_txn)              (struct pmu *pmu);
 394
 395        /*
 396         * Will return the value for perf_event_mmap_page::index for this event,
 397         * if no implementation is provided it will default to: event->hw.idx + 1.
 398         */
 399        int (*event_idx)                (struct perf_event *event); /*optional */
 400
 401        /*
 402         * context-switches callback
 403         */
 404        void (*sched_task)              (struct perf_event_context *ctx,
 405                                        bool sched_in);
 406        /*
 407         * PMU specific data size
 408         */
 409        size_t                          task_ctx_size;
 410
 411
 412        /*
 413         * Return the count value for a counter.
 414         */
 415        u64 (*count)                    (struct perf_event *event); /*optional*/
 416
 417        /*
 418         * Set up pmu-private data structures for an AUX area
 419         */
 420        void *(*setup_aux)              (int cpu, void **pages,
 421                                         int nr_pages, bool overwrite);
 422                                        /* optional */
 423
 424        /*
 425         * Free pmu-private AUX data structures
 426         */
 427        void (*free_aux)                (void *aux); /* optional */
 428
 429        /*
 430         * Validate address range filters: make sure the HW supports the
 431         * requested configuration and number of filters; return 0 if the
 432         * supplied filters are valid, -errno otherwise.
 433         *
 434         * Runs in the context of the ioctl()ing process and is not serialized
 435         * with the rest of the PMU callbacks.
 436         */
 437        int (*addr_filters_validate)    (struct list_head *filters);
 438                                        /* optional */
 439
 440        /*
 441         * Synchronize address range filter configuration:
 442         * translate hw-agnostic filters into hardware configuration in
 443         * event::hw::addr_filters.
 444         *
 445         * Runs as a part of filter sync sequence that is done in ->start()
 446         * callback by calling perf_event_addr_filters_sync().
 447         *
 448         * May (and should) traverse event::addr_filters::list, for which its
 449         * caller provides necessary serialization.
 450         */
 451        void (*addr_filters_sync)       (struct perf_event *event);
 452                                        /* optional */
 453
 454        /*
 455         * Filter events for PMU-specific reasons.
 456         */
 457        int (*filter_match)             (struct perf_event *event); /* optional */
 458};
 459
 460/**
 461 * struct perf_addr_filter - address range filter definition
 462 * @entry:      event's filter list linkage
 463 * @inode:      object file's inode for file-based filters
 464 * @offset:     filter range offset
 465 * @size:       filter range size
 466 * @range:      1: range, 0: address
 467 * @filter:     1: filter/start, 0: stop
 468 *
 469 * This is a hardware-agnostic filter configuration as specified by the user.
 470 */
 471struct perf_addr_filter {
 472        struct list_head        entry;
 473        struct inode            *inode;
 474        unsigned long           offset;
 475        unsigned long           size;
 476        unsigned int            range   : 1,
 477                                filter  : 1;
 478};
 479
 480/**
 481 * struct perf_addr_filters_head - container for address range filters
 482 * @list:       list of filters for this event
 483 * @lock:       spinlock that serializes accesses to the @list and event's
 484 *              (and its children's) filter generations.
 485 *
 486 * A child event will use parent's @list (and therefore @lock), so they are
 487 * bundled together; see perf_event_addr_filters().
 488 */
 489struct perf_addr_filters_head {
 490        struct list_head        list;
 491        raw_spinlock_t          lock;
 492};
 493
 494/**
 495 * enum perf_event_active_state - the states of a event
 496 */
 497enum perf_event_active_state {
 498        PERF_EVENT_STATE_DEAD           = -4,
 499        PERF_EVENT_STATE_EXIT           = -3,
 500        PERF_EVENT_STATE_ERROR          = -2,
 501        PERF_EVENT_STATE_OFF            = -1,
 502        PERF_EVENT_STATE_INACTIVE       =  0,
 503        PERF_EVENT_STATE_ACTIVE         =  1,
 504};
 505
 506struct file;
 507struct perf_sample_data;
 508
 509typedef void (*perf_overflow_handler_t)(struct perf_event *,
 510                                        struct perf_sample_data *,
 511                                        struct pt_regs *regs);
 512
 513enum perf_group_flag {
 514        PERF_GROUP_SOFTWARE             = 0x1,
 515};
 516
 517#define SWEVENT_HLIST_BITS              8
 518#define SWEVENT_HLIST_SIZE              (1 << SWEVENT_HLIST_BITS)
 519
 520struct swevent_hlist {
 521        struct hlist_head               heads[SWEVENT_HLIST_SIZE];
 522        struct rcu_head                 rcu_head;
 523};
 524
 525#define PERF_ATTACH_CONTEXT     0x01
 526#define PERF_ATTACH_GROUP       0x02
 527#define PERF_ATTACH_TASK        0x04
 528#define PERF_ATTACH_TASK_DATA   0x08
 529
 530struct perf_cgroup;
 531struct ring_buffer;
 532
 533struct pmu_event_list {
 534        raw_spinlock_t          lock;
 535        struct list_head        list;
 536};
 537
 538/**
 539 * struct perf_event - performance event kernel representation:
 540 */
 541struct perf_event {
 542#ifdef CONFIG_PERF_EVENTS
 543        /*
 544         * entry onto perf_event_context::event_list;
 545         *   modifications require ctx->lock
 546         *   RCU safe iterations.
 547         */
 548        struct list_head                event_entry;
 549
 550        /*
 551         * XXX: group_entry and sibling_list should be mutually exclusive;
 552         * either you're a sibling on a group, or you're the group leader.
 553         * Rework the code to always use the same list element.
 554         *
 555         * Locked for modification by both ctx->mutex and ctx->lock; holding
 556         * either sufficies for read.
 557         */
 558        struct list_head                group_entry;
 559        struct list_head                sibling_list;
 560
 561        /*
 562         * We need storage to track the entries in perf_pmu_migrate_context; we
 563         * cannot use the event_entry because of RCU and we want to keep the
 564         * group in tact which avoids us using the other two entries.
 565         */
 566        struct list_head                migrate_entry;
 567
 568        struct hlist_node               hlist_entry;
 569        struct list_head                active_entry;
 570        int                             nr_siblings;
 571        int                             group_flags;
 572        struct perf_event               *group_leader;
 573        struct pmu                      *pmu;
 574        void                            *pmu_private;
 575
 576        enum perf_event_active_state    state;
 577        unsigned int                    attach_state;
 578        local64_t                       count;
 579        atomic64_t                      child_count;
 580
 581        /*
 582         * These are the total time in nanoseconds that the event
 583         * has been enabled (i.e. eligible to run, and the task has
 584         * been scheduled in, if this is a per-task event)
 585         * and running (scheduled onto the CPU), respectively.
 586         *
 587         * They are computed from tstamp_enabled, tstamp_running and
 588         * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
 589         */
 590        u64                             total_time_enabled;
 591        u64                             total_time_running;
 592
 593        /*
 594         * These are timestamps used for computing total_time_enabled
 595         * and total_time_running when the event is in INACTIVE or
 596         * ACTIVE state, measured in nanoseconds from an arbitrary point
 597         * in time.
 598         * tstamp_enabled: the notional time when the event was enabled
 599         * tstamp_running: the notional time when the event was scheduled on
 600         * tstamp_stopped: in INACTIVE state, the notional time when the
 601         *      event was scheduled off.
 602         */
 603        u64                             tstamp_enabled;
 604        u64                             tstamp_running;
 605        u64                             tstamp_stopped;
 606
 607        /*
 608         * timestamp shadows the actual context timing but it can
 609         * be safely used in NMI interrupt context. It reflects the
 610         * context time as it was when the event was last scheduled in.
 611         *
 612         * ctx_time already accounts for ctx->timestamp. Therefore to
 613         * compute ctx_time for a sample, simply add perf_clock().
 614         */
 615        u64                             shadow_ctx_time;
 616
 617        struct perf_event_attr          attr;
 618        u16                             header_size;
 619        u16                             id_header_size;
 620        u16                             read_size;
 621        struct hw_perf_event            hw;
 622
 623        struct perf_event_context       *ctx;
 624        atomic_long_t                   refcount;
 625
 626        /*
 627         * These accumulate total time (in nanoseconds) that children
 628         * events have been enabled and running, respectively.
 629         */
 630        atomic64_t                      child_total_time_enabled;
 631        atomic64_t                      child_total_time_running;
 632
 633        /*
 634         * Protect attach/detach and child_list:
 635         */
 636        struct mutex                    child_mutex;
 637        struct list_head                child_list;
 638        struct perf_event               *parent;
 639
 640        int                             oncpu;
 641        int                             cpu;
 642
 643        struct list_head                owner_entry;
 644        struct task_struct              *owner;
 645
 646        /* mmap bits */
 647        struct mutex                    mmap_mutex;
 648        atomic_t                        mmap_count;
 649
 650        struct ring_buffer              *rb;
 651        struct list_head                rb_entry;
 652        unsigned long                   rcu_batches;
 653        int                             rcu_pending;
 654
 655        /* poll related */
 656        wait_queue_head_t               waitq;
 657        struct fasync_struct            *fasync;
 658
 659        /* delayed work for NMIs and such */
 660        int                             pending_wakeup;
 661        int                             pending_kill;
 662        int                             pending_disable;
 663        struct irq_work                 pending;
 664
 665        atomic_t                        event_limit;
 666
 667        /* address range filters */
 668        struct perf_addr_filters_head   addr_filters;
 669        /* vma address array for file-based filders */
 670        unsigned long                   *addr_filters_offs;
 671        unsigned long                   addr_filters_gen;
 672
 673        void (*destroy)(struct perf_event *);
 674        struct rcu_head                 rcu_head;
 675
 676        struct pid_namespace            *ns;
 677        u64                             id;
 678
 679        u64                             (*clock)(void);
 680        perf_overflow_handler_t         overflow_handler;
 681        void                            *overflow_handler_context;
 682
 683#ifdef CONFIG_EVENT_TRACING
 684        struct trace_event_call         *tp_event;
 685        struct event_filter             *filter;
 686#ifdef CONFIG_FUNCTION_TRACER
 687        struct ftrace_ops               ftrace_ops;
 688#endif
 689#endif
 690
 691#ifdef CONFIG_CGROUP_PERF
 692        struct perf_cgroup              *cgrp; /* cgroup event is attach to */
 693        int                             cgrp_defer_enabled;
 694#endif
 695
 696        struct list_head                sb_list;
 697#endif /* CONFIG_PERF_EVENTS */
 698};
 699
 700/**
 701 * struct perf_event_context - event context structure
 702 *
 703 * Used as a container for task events and CPU events as well:
 704 */
 705struct perf_event_context {
 706        struct pmu                      *pmu;
 707        /*
 708         * Protect the states of the events in the list,
 709         * nr_active, and the list:
 710         */
 711        raw_spinlock_t                  lock;
 712        /*
 713         * Protect the list of events.  Locking either mutex or lock
 714         * is sufficient to ensure the list doesn't change; to change
 715         * the list you need to lock both the mutex and the spinlock.
 716         */
 717        struct mutex                    mutex;
 718
 719        struct list_head                active_ctx_list;
 720        struct list_head                pinned_groups;
 721        struct list_head                flexible_groups;
 722        struct list_head                event_list;
 723        int                             nr_events;
 724        int                             nr_active;
 725        int                             is_active;
 726        int                             nr_stat;
 727        int                             nr_freq;
 728        int                             rotate_disable;
 729        atomic_t                        refcount;
 730        struct task_struct              *task;
 731
 732        /*
 733         * Context clock, runs when context enabled.
 734         */
 735        u64                             time;
 736        u64                             timestamp;
 737
 738        /*
 739         * These fields let us detect when two contexts have both
 740         * been cloned (inherited) from a common ancestor.
 741         */
 742        struct perf_event_context       *parent_ctx;
 743        u64                             parent_gen;
 744        u64                             generation;
 745        int                             pin_count;
 746#ifdef CONFIG_CGROUP_PERF
 747        int                             nr_cgroups;      /* cgroup evts */
 748#endif
 749        void                            *task_ctx_data; /* pmu specific data */
 750        struct rcu_head                 rcu_head;
 751};
 752
 753/*
 754 * Number of contexts where an event can trigger:
 755 *      task, softirq, hardirq, nmi.
 756 */
 757#define PERF_NR_CONTEXTS        4
 758
 759/**
 760 * struct perf_event_cpu_context - per cpu event context structure
 761 */
 762struct perf_cpu_context {
 763        struct perf_event_context       ctx;
 764        struct perf_event_context       *task_ctx;
 765        int                             active_oncpu;
 766        int                             exclusive;
 767
 768        raw_spinlock_t                  hrtimer_lock;
 769        struct hrtimer                  hrtimer;
 770        ktime_t                         hrtimer_interval;
 771        unsigned int                    hrtimer_active;
 772
 773        struct pmu                      *unique_pmu;
 774#ifdef CONFIG_CGROUP_PERF
 775        struct perf_cgroup              *cgrp;
 776#endif
 777};
 778
 779struct perf_output_handle {
 780        struct perf_event               *event;
 781        struct ring_buffer              *rb;
 782        unsigned long                   wakeup;
 783        unsigned long                   size;
 784        union {
 785                void                    *addr;
 786                unsigned long           head;
 787        };
 788        int                             page;
 789};
 790
 791#ifdef CONFIG_CGROUP_PERF
 792
 793/*
 794 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 795 * This is a per-cpu dynamically allocated data structure.
 796 */
 797struct perf_cgroup_info {
 798        u64                             time;
 799        u64                             timestamp;
 800};
 801
 802struct perf_cgroup {
 803        struct cgroup_subsys_state      css;
 804        struct perf_cgroup_info __percpu *info;
 805};
 806
 807/*
 808 * Must ensure cgroup is pinned (css_get) before calling
 809 * this function. In other words, we cannot call this function
 810 * if there is no cgroup event for the current CPU context.
 811 */
 812static inline struct perf_cgroup *
 813perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
 814{
 815        return container_of(task_css_check(task, perf_event_cgrp_id,
 816                                           ctx ? lockdep_is_held(&ctx->lock)
 817                                               : true),
 818                            struct perf_cgroup, css);
 819}
 820#endif /* CONFIG_CGROUP_PERF */
 821
 822#ifdef CONFIG_PERF_EVENTS
 823
 824extern void *perf_aux_output_begin(struct perf_output_handle *handle,
 825                                   struct perf_event *event);
 826extern void perf_aux_output_end(struct perf_output_handle *handle,
 827                                unsigned long size, bool truncated);
 828extern int perf_aux_output_skip(struct perf_output_handle *handle,
 829                                unsigned long size);
 830extern void *perf_get_aux(struct perf_output_handle *handle);
 831
 832extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
 833extern void perf_pmu_unregister(struct pmu *pmu);
 834
 835extern int perf_num_counters(void);
 836extern const char *perf_pmu_name(void);
 837extern void __perf_event_task_sched_in(struct task_struct *prev,
 838                                       struct task_struct *task);
 839extern void __perf_event_task_sched_out(struct task_struct *prev,
 840                                        struct task_struct *next);
 841extern int perf_event_init_task(struct task_struct *child);
 842extern void perf_event_exit_task(struct task_struct *child);
 843extern void perf_event_free_task(struct task_struct *task);
 844extern void perf_event_delayed_put(struct task_struct *task);
 845extern struct file *perf_event_get(unsigned int fd);
 846extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
 847extern void perf_event_print_debug(void);
 848extern void perf_pmu_disable(struct pmu *pmu);
 849extern void perf_pmu_enable(struct pmu *pmu);
 850extern void perf_sched_cb_dec(struct pmu *pmu);
 851extern void perf_sched_cb_inc(struct pmu *pmu);
 852extern int perf_event_task_disable(void);
 853extern int perf_event_task_enable(void);
 854extern int perf_event_refresh(struct perf_event *event, int refresh);
 855extern void perf_event_update_userpage(struct perf_event *event);
 856extern int perf_event_release_kernel(struct perf_event *event);
 857extern struct perf_event *
 858perf_event_create_kernel_counter(struct perf_event_attr *attr,
 859                                int cpu,
 860                                struct task_struct *task,
 861                                perf_overflow_handler_t callback,
 862                                void *context);
 863extern void perf_pmu_migrate_context(struct pmu *pmu,
 864                                int src_cpu, int dst_cpu);
 865extern u64 perf_event_read_local(struct perf_event *event);
 866extern u64 perf_event_read_value(struct perf_event *event,
 867                                 u64 *enabled, u64 *running);
 868
 869
 870struct perf_sample_data {
 871        /*
 872         * Fields set by perf_sample_data_init(), group so as to
 873         * minimize the cachelines touched.
 874         */
 875        u64                             addr;
 876        struct perf_raw_record          *raw;
 877        struct perf_branch_stack        *br_stack;
 878        u64                             period;
 879        u64                             weight;
 880        u64                             txn;
 881        union  perf_mem_data_src        data_src;
 882
 883        /*
 884         * The other fields, optionally {set,used} by
 885         * perf_{prepare,output}_sample().
 886         */
 887        u64                             type;
 888        u64                             ip;
 889        struct {
 890                u32     pid;
 891                u32     tid;
 892        }                               tid_entry;
 893        u64                             time;
 894        u64                             id;
 895        u64                             stream_id;
 896        struct {
 897                u32     cpu;
 898                u32     reserved;
 899        }                               cpu_entry;
 900        struct perf_callchain_entry     *callchain;
 901
 902        /*
 903         * regs_user may point to task_pt_regs or to regs_user_copy, depending
 904         * on arch details.
 905         */
 906        struct perf_regs                regs_user;
 907        struct pt_regs                  regs_user_copy;
 908
 909        struct perf_regs                regs_intr;
 910        u64                             stack_user_size;
 911} ____cacheline_aligned;
 912
 913/* default value for data source */
 914#define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
 915                    PERF_MEM_S(LVL, NA)   |\
 916                    PERF_MEM_S(SNOOP, NA) |\
 917                    PERF_MEM_S(LOCK, NA)  |\
 918                    PERF_MEM_S(TLB, NA))
 919
 920static inline void perf_sample_data_init(struct perf_sample_data *data,
 921                                         u64 addr, u64 period)
 922{
 923        /* remaining struct members initialized in perf_prepare_sample() */
 924        data->addr = addr;
 925        data->raw  = NULL;
 926        data->br_stack = NULL;
 927        data->period = period;
 928        data->weight = 0;
 929        data->data_src.val = PERF_MEM_NA;
 930        data->txn = 0;
 931}
 932
 933extern void perf_output_sample(struct perf_output_handle *handle,
 934                               struct perf_event_header *header,
 935                               struct perf_sample_data *data,
 936                               struct perf_event *event);
 937extern void perf_prepare_sample(struct perf_event_header *header,
 938                                struct perf_sample_data *data,
 939                                struct perf_event *event,
 940                                struct pt_regs *regs);
 941
 942extern int perf_event_overflow(struct perf_event *event,
 943                                 struct perf_sample_data *data,
 944                                 struct pt_regs *regs);
 945
 946extern void perf_event_output_forward(struct perf_event *event,
 947                                     struct perf_sample_data *data,
 948                                     struct pt_regs *regs);
 949extern void perf_event_output_backward(struct perf_event *event,
 950                                       struct perf_sample_data *data,
 951                                       struct pt_regs *regs);
 952extern void perf_event_output(struct perf_event *event,
 953                              struct perf_sample_data *data,
 954                              struct pt_regs *regs);
 955
 956static inline bool
 957is_default_overflow_handler(struct perf_event *event)
 958{
 959        if (likely(event->overflow_handler == perf_event_output_forward))
 960                return true;
 961        if (unlikely(event->overflow_handler == perf_event_output_backward))
 962                return true;
 963        return false;
 964}
 965
 966extern void
 967perf_event_header__init_id(struct perf_event_header *header,
 968                           struct perf_sample_data *data,
 969                           struct perf_event *event);
 970extern void
 971perf_event__output_id_sample(struct perf_event *event,
 972                             struct perf_output_handle *handle,
 973                             struct perf_sample_data *sample);
 974
 975extern void
 976perf_log_lost_samples(struct perf_event *event, u64 lost);
 977
 978static inline bool is_sampling_event(struct perf_event *event)
 979{
 980        return event->attr.sample_period != 0;
 981}
 982
 983/*
 984 * Return 1 for a software event, 0 for a hardware event
 985 */
 986static inline int is_software_event(struct perf_event *event)
 987{
 988        return event->pmu->task_ctx_nr == perf_sw_context;
 989}
 990
 991extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
 992
 993extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
 994extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
 995
 996#ifndef perf_arch_fetch_caller_regs
 997static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
 998#endif
 999
1000/*
1001 * Take a snapshot of the regs. Skip ip and frame pointer to
1002 * the nth caller. We only need a few of the regs:
1003 * - ip for PERF_SAMPLE_IP
1004 * - cs for user_mode() tests
1005 * - bp for callchains
1006 * - eflags, for future purposes, just in case
1007 */
1008static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1009{
1010        perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1011}
1012
1013static __always_inline void
1014perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1015{
1016        if (static_key_false(&perf_swevent_enabled[event_id]))
1017                __perf_sw_event(event_id, nr, regs, addr);
1018}
1019
1020DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1021
1022/*
1023 * 'Special' version for the scheduler, it hard assumes no recursion,
1024 * which is guaranteed by us not actually scheduling inside other swevents
1025 * because those disable preemption.
1026 */
1027static __always_inline void
1028perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1029{
1030        if (static_key_false(&perf_swevent_enabled[event_id])) {
1031                struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1032
1033                perf_fetch_caller_regs(regs);
1034                ___perf_sw_event(event_id, nr, regs, addr);
1035        }
1036}
1037
1038extern struct static_key_false perf_sched_events;
1039
1040static __always_inline bool
1041perf_sw_migrate_enabled(void)
1042{
1043        if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1044                return true;
1045        return false;
1046}
1047
1048static inline void perf_event_task_migrate(struct task_struct *task)
1049{
1050        if (perf_sw_migrate_enabled())
1051                task->sched_migrated = 1;
1052}
1053
1054static inline void perf_event_task_sched_in(struct task_struct *prev,
1055                                            struct task_struct *task)
1056{
1057        if (static_branch_unlikely(&perf_sched_events))
1058                __perf_event_task_sched_in(prev, task);
1059
1060        if (perf_sw_migrate_enabled() && task->sched_migrated) {
1061                struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1062
1063                perf_fetch_caller_regs(regs);
1064                ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1065                task->sched_migrated = 0;
1066        }
1067}
1068
1069static inline void perf_event_task_sched_out(struct task_struct *prev,
1070                                             struct task_struct *next)
1071{
1072        perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1073
1074        if (static_branch_unlikely(&perf_sched_events))
1075                __perf_event_task_sched_out(prev, next);
1076}
1077
1078static inline u64 __perf_event_count(struct perf_event *event)
1079{
1080        return local64_read(&event->count) + atomic64_read(&event->child_count);
1081}
1082
1083extern void perf_event_mmap(struct vm_area_struct *vma);
1084extern struct perf_guest_info_callbacks *perf_guest_cbs;
1085extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1086extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1087
1088extern void perf_event_exec(void);
1089extern void perf_event_comm(struct task_struct *tsk, bool exec);
1090extern void perf_event_fork(struct task_struct *tsk);
1091
1092/* Callchains */
1093DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1094
1095extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1096extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1097extern struct perf_callchain_entry *
1098get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1099                   u32 max_stack, bool crosstask, bool add_mark);
1100extern int get_callchain_buffers(int max_stack);
1101extern void put_callchain_buffers(void);
1102
1103extern int sysctl_perf_event_max_stack;
1104extern int sysctl_perf_event_max_contexts_per_stack;
1105
1106static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1107{
1108        if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1109                struct perf_callchain_entry *entry = ctx->entry;
1110                entry->ip[entry->nr++] = ip;
1111                ++ctx->contexts;
1112                return 0;
1113        } else {
1114                ctx->contexts_maxed = true;
1115                return -1; /* no more room, stop walking the stack */
1116        }
1117}
1118
1119static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1120{
1121        if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1122                struct perf_callchain_entry *entry = ctx->entry;
1123                entry->ip[entry->nr++] = ip;
1124                ++ctx->nr;
1125                return 0;
1126        } else {
1127                return -1; /* no more room, stop walking the stack */
1128        }
1129}
1130
1131extern int sysctl_perf_event_paranoid;
1132extern int sysctl_perf_event_mlock;
1133extern int sysctl_perf_event_sample_rate;
1134extern int sysctl_perf_cpu_time_max_percent;
1135
1136extern void perf_sample_event_took(u64 sample_len_ns);
1137
1138extern int perf_proc_update_handler(struct ctl_table *table, int write,
1139                void __user *buffer, size_t *lenp,
1140                loff_t *ppos);
1141extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1142                void __user *buffer, size_t *lenp,
1143                loff_t *ppos);
1144
1145int perf_event_max_stack_handler(struct ctl_table *table, int write,
1146                                 void __user *buffer, size_t *lenp, loff_t *ppos);
1147
1148static inline bool perf_paranoid_tracepoint_raw(void)
1149{
1150        return sysctl_perf_event_paranoid > -1;
1151}
1152
1153static inline bool perf_paranoid_cpu(void)
1154{
1155        return sysctl_perf_event_paranoid > 0;
1156}
1157
1158static inline bool perf_paranoid_kernel(void)
1159{
1160        return sysctl_perf_event_paranoid > 1;
1161}
1162
1163extern void perf_event_init(void);
1164extern void perf_tp_event(u16 event_type, u64 count, void *record,
1165                          int entry_size, struct pt_regs *regs,
1166                          struct hlist_head *head, int rctx,
1167                          struct task_struct *task);
1168extern void perf_bp_event(struct perf_event *event, void *data);
1169
1170#ifndef perf_misc_flags
1171# define perf_misc_flags(regs) \
1172                (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1173# define perf_instruction_pointer(regs) instruction_pointer(regs)
1174#endif
1175
1176static inline bool has_branch_stack(struct perf_event *event)
1177{
1178        return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1179}
1180
1181static inline bool needs_branch_stack(struct perf_event *event)
1182{
1183        return event->attr.branch_sample_type != 0;
1184}
1185
1186static inline bool has_aux(struct perf_event *event)
1187{
1188        return event->pmu->setup_aux;
1189}
1190
1191static inline bool is_write_backward(struct perf_event *event)
1192{
1193        return !!event->attr.write_backward;
1194}
1195
1196static inline bool has_addr_filter(struct perf_event *event)
1197{
1198        return event->pmu->nr_addr_filters;
1199}
1200
1201/*
1202 * An inherited event uses parent's filters
1203 */
1204static inline struct perf_addr_filters_head *
1205perf_event_addr_filters(struct perf_event *event)
1206{
1207        struct perf_addr_filters_head *ifh = &event->addr_filters;
1208
1209        if (event->parent)
1210                ifh = &event->parent->addr_filters;
1211
1212        return ifh;
1213}
1214
1215extern void perf_event_addr_filters_sync(struct perf_event *event);
1216
1217extern int perf_output_begin(struct perf_output_handle *handle,
1218                             struct perf_event *event, unsigned int size);
1219extern int perf_output_begin_forward(struct perf_output_handle *handle,
1220                                    struct perf_event *event,
1221                                    unsigned int size);
1222extern int perf_output_begin_backward(struct perf_output_handle *handle,
1223                                      struct perf_event *event,
1224                                      unsigned int size);
1225
1226extern void perf_output_end(struct perf_output_handle *handle);
1227extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1228                             const void *buf, unsigned int len);
1229extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1230                                     unsigned int len);
1231extern int perf_swevent_get_recursion_context(void);
1232extern void perf_swevent_put_recursion_context(int rctx);
1233extern u64 perf_swevent_set_period(struct perf_event *event);
1234extern void perf_event_enable(struct perf_event *event);
1235extern void perf_event_disable(struct perf_event *event);
1236extern void perf_event_disable_local(struct perf_event *event);
1237extern void perf_event_task_tick(void);
1238#else /* !CONFIG_PERF_EVENTS: */
1239static inline void *
1240perf_aux_output_begin(struct perf_output_handle *handle,
1241                      struct perf_event *event)                         { return NULL; }
1242static inline void
1243perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1244                    bool truncated)                                     { }
1245static inline int
1246perf_aux_output_skip(struct perf_output_handle *handle,
1247                     unsigned long size)                                { return -EINVAL; }
1248static inline void *
1249perf_get_aux(struct perf_output_handle *handle)                         { return NULL; }
1250static inline void
1251perf_event_task_migrate(struct task_struct *task)                       { }
1252static inline void
1253perf_event_task_sched_in(struct task_struct *prev,
1254                         struct task_struct *task)                      { }
1255static inline void
1256perf_event_task_sched_out(struct task_struct *prev,
1257                          struct task_struct *next)                     { }
1258static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
1259static inline void perf_event_exit_task(struct task_struct *child)      { }
1260static inline void perf_event_free_task(struct task_struct *task)       { }
1261static inline void perf_event_delayed_put(struct task_struct *task)     { }
1262static inline struct file *perf_event_get(unsigned int fd)      { return ERR_PTR(-EINVAL); }
1263static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1264{
1265        return ERR_PTR(-EINVAL);
1266}
1267static inline u64 perf_event_read_local(struct perf_event *event)       { return -EINVAL; }
1268static inline void perf_event_print_debug(void)                         { }
1269static inline int perf_event_task_disable(void)                         { return -EINVAL; }
1270static inline int perf_event_task_enable(void)                          { return -EINVAL; }
1271static inline int perf_event_refresh(struct perf_event *event, int refresh)
1272{
1273        return -EINVAL;
1274}
1275
1276static inline void
1277perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)     { }
1278static inline void
1279perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)                     { }
1280static inline void
1281perf_bp_event(struct perf_event *event, void *data)                     { }
1282
1283static inline int perf_register_guest_info_callbacks
1284(struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1285static inline int perf_unregister_guest_info_callbacks
1286(struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1287
1288static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
1289static inline void perf_event_exec(void)                                { }
1290static inline void perf_event_comm(struct task_struct *tsk, bool exec)  { }
1291static inline void perf_event_fork(struct task_struct *tsk)             { }
1292static inline void perf_event_init(void)                                { }
1293static inline int  perf_swevent_get_recursion_context(void)             { return -1; }
1294static inline void perf_swevent_put_recursion_context(int rctx)         { }
1295static inline u64 perf_swevent_set_period(struct perf_event *event)     { return 0; }
1296static inline void perf_event_enable(struct perf_event *event)          { }
1297static inline void perf_event_disable(struct perf_event *event)         { }
1298static inline int __perf_event_disable(void *info)                      { return -1; }
1299static inline void perf_event_task_tick(void)                           { }
1300static inline int perf_event_release_kernel(struct perf_event *event)   { return 0; }
1301#endif
1302
1303#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1304extern void perf_restore_debug_store(void);
1305#else
1306static inline void perf_restore_debug_store(void)                       { }
1307#endif
1308
1309static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1310{
1311        return frag->pad < sizeof(u64);
1312}
1313
1314#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1315
1316struct perf_pmu_events_attr {
1317        struct device_attribute attr;
1318        u64 id;
1319        const char *event_str;
1320};
1321
1322struct perf_pmu_events_ht_attr {
1323        struct device_attribute                 attr;
1324        u64                                     id;
1325        const char                              *event_str_ht;
1326        const char                              *event_str_noht;
1327};
1328
1329ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1330                              char *page);
1331
1332#define PMU_EVENT_ATTR(_name, _var, _id, _show)                         \
1333static struct perf_pmu_events_attr _var = {                             \
1334        .attr = __ATTR(_name, 0444, _show, NULL),                       \
1335        .id   =  _id,                                                   \
1336};
1337
1338#define PMU_EVENT_ATTR_STRING(_name, _var, _str)                            \
1339static struct perf_pmu_events_attr _var = {                                 \
1340        .attr           = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1341        .id             = 0,                                                \
1342        .event_str      = _str,                                             \
1343};
1344
1345#define PMU_FORMAT_ATTR(_name, _format)                                 \
1346static ssize_t                                                          \
1347_name##_show(struct device *dev,                                        \
1348                               struct device_attribute *attr,           \
1349                               char *page)                              \
1350{                                                                       \
1351        BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);                     \
1352        return sprintf(page, _format "\n");                             \
1353}                                                                       \
1354                                                                        \
1355static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1356
1357/* Performance counter hotplug functions */
1358#ifdef CONFIG_PERF_EVENTS
1359int perf_event_init_cpu(unsigned int cpu);
1360int perf_event_exit_cpu(unsigned int cpu);
1361#else
1362#define perf_event_init_cpu     NULL
1363#define perf_event_exit_cpu     NULL
1364#endif
1365
1366#endif /* _LINUX_PERF_EVENT_H */
1367