linux/include/linux/sched.h
<<
>>
Prefs
   1#ifndef _LINUX_SCHED_H
   2#define _LINUX_SCHED_H
   3
   4#include <uapi/linux/sched.h>
   5
   6#include <linux/sched/prio.h>
   7
   8
   9struct sched_param {
  10        int sched_priority;
  11};
  12
  13#include <asm/param.h>  /* for HZ */
  14
  15#include <linux/capability.h>
  16#include <linux/threads.h>
  17#include <linux/kernel.h>
  18#include <linux/types.h>
  19#include <linux/timex.h>
  20#include <linux/jiffies.h>
  21#include <linux/plist.h>
  22#include <linux/rbtree.h>
  23#include <linux/thread_info.h>
  24#include <linux/cpumask.h>
  25#include <linux/errno.h>
  26#include <linux/nodemask.h>
  27#include <linux/mm_types.h>
  28#include <linux/preempt.h>
  29
  30#include <asm/page.h>
  31#include <asm/ptrace.h>
  32#include <linux/cputime.h>
  33
  34#include <linux/smp.h>
  35#include <linux/sem.h>
  36#include <linux/shm.h>
  37#include <linux/signal.h>
  38#include <linux/compiler.h>
  39#include <linux/completion.h>
  40#include <linux/pid.h>
  41#include <linux/percpu.h>
  42#include <linux/topology.h>
  43#include <linux/seccomp.h>
  44#include <linux/rcupdate.h>
  45#include <linux/rculist.h>
  46#include <linux/rtmutex.h>
  47
  48#include <linux/time.h>
  49#include <linux/param.h>
  50#include <linux/resource.h>
  51#include <linux/timer.h>
  52#include <linux/hrtimer.h>
  53#include <linux/kcov.h>
  54#include <linux/task_io_accounting.h>
  55#include <linux/latencytop.h>
  56#include <linux/cred.h>
  57#include <linux/llist.h>
  58#include <linux/uidgid.h>
  59#include <linux/gfp.h>
  60#include <linux/magic.h>
  61#include <linux/cgroup-defs.h>
  62
  63#include <asm/processor.h>
  64
  65#define SCHED_ATTR_SIZE_VER0    48      /* sizeof first published struct */
  66
  67/*
  68 * Extended scheduling parameters data structure.
  69 *
  70 * This is needed because the original struct sched_param can not be
  71 * altered without introducing ABI issues with legacy applications
  72 * (e.g., in sched_getparam()).
  73 *
  74 * However, the possibility of specifying more than just a priority for
  75 * the tasks may be useful for a wide variety of application fields, e.g.,
  76 * multimedia, streaming, automation and control, and many others.
  77 *
  78 * This variant (sched_attr) is meant at describing a so-called
  79 * sporadic time-constrained task. In such model a task is specified by:
  80 *  - the activation period or minimum instance inter-arrival time;
  81 *  - the maximum (or average, depending on the actual scheduling
  82 *    discipline) computation time of all instances, a.k.a. runtime;
  83 *  - the deadline (relative to the actual activation time) of each
  84 *    instance.
  85 * Very briefly, a periodic (sporadic) task asks for the execution of
  86 * some specific computation --which is typically called an instance--
  87 * (at most) every period. Moreover, each instance typically lasts no more
  88 * than the runtime and must be completed by time instant t equal to
  89 * the instance activation time + the deadline.
  90 *
  91 * This is reflected by the actual fields of the sched_attr structure:
  92 *
  93 *  @size               size of the structure, for fwd/bwd compat.
  94 *
  95 *  @sched_policy       task's scheduling policy
  96 *  @sched_flags        for customizing the scheduler behaviour
  97 *  @sched_nice         task's nice value      (SCHED_NORMAL/BATCH)
  98 *  @sched_priority     task's static priority (SCHED_FIFO/RR)
  99 *  @sched_deadline     representative of the task's deadline
 100 *  @sched_runtime      representative of the task's runtime
 101 *  @sched_period       representative of the task's period
 102 *
 103 * Given this task model, there are a multiplicity of scheduling algorithms
 104 * and policies, that can be used to ensure all the tasks will make their
 105 * timing constraints.
 106 *
 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
 108 * only user of this new interface. More information about the algorithm
 109 * available in the scheduling class file or in Documentation/.
 110 */
 111struct sched_attr {
 112        u32 size;
 113
 114        u32 sched_policy;
 115        u64 sched_flags;
 116
 117        /* SCHED_NORMAL, SCHED_BATCH */
 118        s32 sched_nice;
 119
 120        /* SCHED_FIFO, SCHED_RR */
 121        u32 sched_priority;
 122
 123        /* SCHED_DEADLINE */
 124        u64 sched_runtime;
 125        u64 sched_deadline;
 126        u64 sched_period;
 127};
 128
 129struct futex_pi_state;
 130struct robust_list_head;
 131struct bio_list;
 132struct fs_struct;
 133struct perf_event_context;
 134struct blk_plug;
 135struct filename;
 136struct nameidata;
 137
 138#define VMACACHE_BITS 2
 139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
 140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
 141
 142/*
 143 * These are the constant used to fake the fixed-point load-average
 144 * counting. Some notes:
 145 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 146 *    a load-average precision of 10 bits integer + 11 bits fractional
 147 *  - if you want to count load-averages more often, you need more
 148 *    precision, or rounding will get you. With 2-second counting freq,
 149 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 150 *    11 bit fractions.
 151 */
 152extern unsigned long avenrun[];         /* Load averages */
 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
 154
 155#define FSHIFT          11              /* nr of bits of precision */
 156#define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
 157#define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
 158#define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
 159#define EXP_5           2014            /* 1/exp(5sec/5min) */
 160#define EXP_15          2037            /* 1/exp(5sec/15min) */
 161
 162#define CALC_LOAD(load,exp,n) \
 163        load *= exp; \
 164        load += n*(FIXED_1-exp); \
 165        load >>= FSHIFT;
 166
 167extern unsigned long total_forks;
 168extern int nr_threads;
 169DECLARE_PER_CPU(unsigned long, process_counts);
 170extern int nr_processes(void);
 171extern unsigned long nr_running(void);
 172extern bool single_task_running(void);
 173extern unsigned long nr_iowait(void);
 174extern unsigned long nr_iowait_cpu(int cpu);
 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
 176
 177extern void calc_global_load(unsigned long ticks);
 178
 179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 180extern void cpu_load_update_nohz_start(void);
 181extern void cpu_load_update_nohz_stop(void);
 182#else
 183static inline void cpu_load_update_nohz_start(void) { }
 184static inline void cpu_load_update_nohz_stop(void) { }
 185#endif
 186
 187extern void dump_cpu_task(int cpu);
 188
 189struct seq_file;
 190struct cfs_rq;
 191struct task_group;
 192#ifdef CONFIG_SCHED_DEBUG
 193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 194extern void proc_sched_set_task(struct task_struct *p);
 195#endif
 196
 197/*
 198 * Task state bitmask. NOTE! These bits are also
 199 * encoded in fs/proc/array.c: get_task_state().
 200 *
 201 * We have two separate sets of flags: task->state
 202 * is about runnability, while task->exit_state are
 203 * about the task exiting. Confusing, but this way
 204 * modifying one set can't modify the other one by
 205 * mistake.
 206 */
 207#define TASK_RUNNING            0
 208#define TASK_INTERRUPTIBLE      1
 209#define TASK_UNINTERRUPTIBLE    2
 210#define __TASK_STOPPED          4
 211#define __TASK_TRACED           8
 212/* in tsk->exit_state */
 213#define EXIT_DEAD               16
 214#define EXIT_ZOMBIE             32
 215#define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
 216/* in tsk->state again */
 217#define TASK_DEAD               64
 218#define TASK_WAKEKILL           128
 219#define TASK_WAKING             256
 220#define TASK_PARKED             512
 221#define TASK_NOLOAD             1024
 222#define TASK_NEW                2048
 223#define TASK_STATE_MAX          4096
 224
 225#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
 226
 227extern char ___assert_task_state[1 - 2*!!(
 228                sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
 229
 230/* Convenience macros for the sake of set_task_state */
 231#define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 232#define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
 233#define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
 234
 235#define TASK_IDLE               (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
 236
 237/* Convenience macros for the sake of wake_up */
 238#define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 239#define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 240
 241/* get_task_state() */
 242#define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 243                                 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 244                                 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
 245
 246#define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
 247#define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
 248#define task_is_stopped_or_traced(task) \
 249                        ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 250#define task_contributes_to_load(task)  \
 251                                ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 252                                 (task->flags & PF_FROZEN) == 0 && \
 253                                 (task->state & TASK_NOLOAD) == 0)
 254
 255#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 256
 257#define __set_task_state(tsk, state_value)                      \
 258        do {                                                    \
 259                (tsk)->task_state_change = _THIS_IP_;           \
 260                (tsk)->state = (state_value);                   \
 261        } while (0)
 262#define set_task_state(tsk, state_value)                        \
 263        do {                                                    \
 264                (tsk)->task_state_change = _THIS_IP_;           \
 265                smp_store_mb((tsk)->state, (state_value));              \
 266        } while (0)
 267
 268/*
 269 * set_current_state() includes a barrier so that the write of current->state
 270 * is correctly serialised wrt the caller's subsequent test of whether to
 271 * actually sleep:
 272 *
 273 *      set_current_state(TASK_UNINTERRUPTIBLE);
 274 *      if (do_i_need_to_sleep())
 275 *              schedule();
 276 *
 277 * If the caller does not need such serialisation then use __set_current_state()
 278 */
 279#define __set_current_state(state_value)                        \
 280        do {                                                    \
 281                current->task_state_change = _THIS_IP_;         \
 282                current->state = (state_value);                 \
 283        } while (0)
 284#define set_current_state(state_value)                          \
 285        do {                                                    \
 286                current->task_state_change = _THIS_IP_;         \
 287                smp_store_mb(current->state, (state_value));            \
 288        } while (0)
 289
 290#else
 291
 292#define __set_task_state(tsk, state_value)              \
 293        do { (tsk)->state = (state_value); } while (0)
 294#define set_task_state(tsk, state_value)                \
 295        smp_store_mb((tsk)->state, (state_value))
 296
 297/*
 298 * set_current_state() includes a barrier so that the write of current->state
 299 * is correctly serialised wrt the caller's subsequent test of whether to
 300 * actually sleep:
 301 *
 302 *      set_current_state(TASK_UNINTERRUPTIBLE);
 303 *      if (do_i_need_to_sleep())
 304 *              schedule();
 305 *
 306 * If the caller does not need such serialisation then use __set_current_state()
 307 */
 308#define __set_current_state(state_value)                \
 309        do { current->state = (state_value); } while (0)
 310#define set_current_state(state_value)                  \
 311        smp_store_mb(current->state, (state_value))
 312
 313#endif
 314
 315/* Task command name length */
 316#define TASK_COMM_LEN 16
 317
 318#include <linux/spinlock.h>
 319
 320/*
 321 * This serializes "schedule()" and also protects
 322 * the run-queue from deletions/modifications (but
 323 * _adding_ to the beginning of the run-queue has
 324 * a separate lock).
 325 */
 326extern rwlock_t tasklist_lock;
 327extern spinlock_t mmlist_lock;
 328
 329struct task_struct;
 330
 331#ifdef CONFIG_PROVE_RCU
 332extern int lockdep_tasklist_lock_is_held(void);
 333#endif /* #ifdef CONFIG_PROVE_RCU */
 334
 335extern void sched_init(void);
 336extern void sched_init_smp(void);
 337extern asmlinkage void schedule_tail(struct task_struct *prev);
 338extern void init_idle(struct task_struct *idle, int cpu);
 339extern void init_idle_bootup_task(struct task_struct *idle);
 340
 341extern cpumask_var_t cpu_isolated_map;
 342
 343extern int runqueue_is_locked(int cpu);
 344
 345#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 346extern void nohz_balance_enter_idle(int cpu);
 347extern void set_cpu_sd_state_idle(void);
 348extern int get_nohz_timer_target(void);
 349#else
 350static inline void nohz_balance_enter_idle(int cpu) { }
 351static inline void set_cpu_sd_state_idle(void) { }
 352#endif
 353
 354/*
 355 * Only dump TASK_* tasks. (0 for all tasks)
 356 */
 357extern void show_state_filter(unsigned long state_filter);
 358
 359static inline void show_state(void)
 360{
 361        show_state_filter(0);
 362}
 363
 364extern void show_regs(struct pt_regs *);
 365
 366/*
 367 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 368 * task), SP is the stack pointer of the first frame that should be shown in the back
 369 * trace (or NULL if the entire call-chain of the task should be shown).
 370 */
 371extern void show_stack(struct task_struct *task, unsigned long *sp);
 372
 373extern void cpu_init (void);
 374extern void trap_init(void);
 375extern void update_process_times(int user);
 376extern void scheduler_tick(void);
 377extern int sched_cpu_starting(unsigned int cpu);
 378extern int sched_cpu_activate(unsigned int cpu);
 379extern int sched_cpu_deactivate(unsigned int cpu);
 380
 381#ifdef CONFIG_HOTPLUG_CPU
 382extern int sched_cpu_dying(unsigned int cpu);
 383#else
 384# define sched_cpu_dying        NULL
 385#endif
 386
 387extern void sched_show_task(struct task_struct *p);
 388
 389#ifdef CONFIG_LOCKUP_DETECTOR
 390extern void touch_softlockup_watchdog_sched(void);
 391extern void touch_softlockup_watchdog(void);
 392extern void touch_softlockup_watchdog_sync(void);
 393extern void touch_all_softlockup_watchdogs(void);
 394extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
 395                                  void __user *buffer,
 396                                  size_t *lenp, loff_t *ppos);
 397extern unsigned int  softlockup_panic;
 398extern unsigned int  hardlockup_panic;
 399void lockup_detector_init(void);
 400#else
 401static inline void touch_softlockup_watchdog_sched(void)
 402{
 403}
 404static inline void touch_softlockup_watchdog(void)
 405{
 406}
 407static inline void touch_softlockup_watchdog_sync(void)
 408{
 409}
 410static inline void touch_all_softlockup_watchdogs(void)
 411{
 412}
 413static inline void lockup_detector_init(void)
 414{
 415}
 416#endif
 417
 418#ifdef CONFIG_DETECT_HUNG_TASK
 419void reset_hung_task_detector(void);
 420#else
 421static inline void reset_hung_task_detector(void)
 422{
 423}
 424#endif
 425
 426/* Attach to any functions which should be ignored in wchan output. */
 427#define __sched         __attribute__((__section__(".sched.text")))
 428
 429/* Linker adds these: start and end of __sched functions */
 430extern char __sched_text_start[], __sched_text_end[];
 431
 432/* Is this address in the __sched functions? */
 433extern int in_sched_functions(unsigned long addr);
 434
 435#define MAX_SCHEDULE_TIMEOUT    LONG_MAX
 436extern signed long schedule_timeout(signed long timeout);
 437extern signed long schedule_timeout_interruptible(signed long timeout);
 438extern signed long schedule_timeout_killable(signed long timeout);
 439extern signed long schedule_timeout_uninterruptible(signed long timeout);
 440extern signed long schedule_timeout_idle(signed long timeout);
 441asmlinkage void schedule(void);
 442extern void schedule_preempt_disabled(void);
 443
 444extern long io_schedule_timeout(long timeout);
 445
 446static inline void io_schedule(void)
 447{
 448        io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
 449}
 450
 451struct nsproxy;
 452struct user_namespace;
 453
 454#ifdef CONFIG_MMU
 455extern void arch_pick_mmap_layout(struct mm_struct *mm);
 456extern unsigned long
 457arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 458                       unsigned long, unsigned long);
 459extern unsigned long
 460arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 461                          unsigned long len, unsigned long pgoff,
 462                          unsigned long flags);
 463#else
 464static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
 465#endif
 466
 467#define SUID_DUMP_DISABLE       0       /* No setuid dumping */
 468#define SUID_DUMP_USER          1       /* Dump as user of process */
 469#define SUID_DUMP_ROOT          2       /* Dump as root */
 470
 471/* mm flags */
 472
 473/* for SUID_DUMP_* above */
 474#define MMF_DUMPABLE_BITS 2
 475#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
 476
 477extern void set_dumpable(struct mm_struct *mm, int value);
 478/*
 479 * This returns the actual value of the suid_dumpable flag. For things
 480 * that are using this for checking for privilege transitions, it must
 481 * test against SUID_DUMP_USER rather than treating it as a boolean
 482 * value.
 483 */
 484static inline int __get_dumpable(unsigned long mm_flags)
 485{
 486        return mm_flags & MMF_DUMPABLE_MASK;
 487}
 488
 489static inline int get_dumpable(struct mm_struct *mm)
 490{
 491        return __get_dumpable(mm->flags);
 492}
 493
 494/* coredump filter bits */
 495#define MMF_DUMP_ANON_PRIVATE   2
 496#define MMF_DUMP_ANON_SHARED    3
 497#define MMF_DUMP_MAPPED_PRIVATE 4
 498#define MMF_DUMP_MAPPED_SHARED  5
 499#define MMF_DUMP_ELF_HEADERS    6
 500#define MMF_DUMP_HUGETLB_PRIVATE 7
 501#define MMF_DUMP_HUGETLB_SHARED  8
 502#define MMF_DUMP_DAX_PRIVATE    9
 503#define MMF_DUMP_DAX_SHARED     10
 504
 505#define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
 506#define MMF_DUMP_FILTER_BITS    9
 507#define MMF_DUMP_FILTER_MASK \
 508        (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 509#define MMF_DUMP_FILTER_DEFAULT \
 510        ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
 511         (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
 512
 513#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
 514# define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
 515#else
 516# define MMF_DUMP_MASK_DEFAULT_ELF      0
 517#endif
 518                                        /* leave room for more dump flags */
 519#define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
 520#define MMF_VM_HUGEPAGE         17      /* set when VM_HUGEPAGE is set on vma */
 521#define MMF_EXE_FILE_CHANGED    18      /* see prctl_set_mm_exe_file() */
 522
 523#define MMF_HAS_UPROBES         19      /* has uprobes */
 524#define MMF_RECALC_UPROBES      20      /* MMF_HAS_UPROBES can be wrong */
 525#define MMF_OOM_REAPED          21      /* mm has been already reaped */
 526#define MMF_OOM_NOT_REAPABLE    22      /* mm couldn't be reaped */
 527
 528#define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
 529
 530struct sighand_struct {
 531        atomic_t                count;
 532        struct k_sigaction      action[_NSIG];
 533        spinlock_t              siglock;
 534        wait_queue_head_t       signalfd_wqh;
 535};
 536
 537struct pacct_struct {
 538        int                     ac_flag;
 539        long                    ac_exitcode;
 540        unsigned long           ac_mem;
 541        cputime_t               ac_utime, ac_stime;
 542        unsigned long           ac_minflt, ac_majflt;
 543};
 544
 545struct cpu_itimer {
 546        cputime_t expires;
 547        cputime_t incr;
 548        u32 error;
 549        u32 incr_error;
 550};
 551
 552/**
 553 * struct prev_cputime - snaphsot of system and user cputime
 554 * @utime: time spent in user mode
 555 * @stime: time spent in system mode
 556 * @lock: protects the above two fields
 557 *
 558 * Stores previous user/system time values such that we can guarantee
 559 * monotonicity.
 560 */
 561struct prev_cputime {
 562#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 563        cputime_t utime;
 564        cputime_t stime;
 565        raw_spinlock_t lock;
 566#endif
 567};
 568
 569static inline void prev_cputime_init(struct prev_cputime *prev)
 570{
 571#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 572        prev->utime = prev->stime = 0;
 573        raw_spin_lock_init(&prev->lock);
 574#endif
 575}
 576
 577/**
 578 * struct task_cputime - collected CPU time counts
 579 * @utime:              time spent in user mode, in &cputime_t units
 580 * @stime:              time spent in kernel mode, in &cputime_t units
 581 * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
 582 *
 583 * This structure groups together three kinds of CPU time that are tracked for
 584 * threads and thread groups.  Most things considering CPU time want to group
 585 * these counts together and treat all three of them in parallel.
 586 */
 587struct task_cputime {
 588        cputime_t utime;
 589        cputime_t stime;
 590        unsigned long long sum_exec_runtime;
 591};
 592
 593/* Alternate field names when used to cache expirations. */
 594#define virt_exp        utime
 595#define prof_exp        stime
 596#define sched_exp       sum_exec_runtime
 597
 598#define INIT_CPUTIME    \
 599        (struct task_cputime) {                                 \
 600                .utime = 0,                                     \
 601                .stime = 0,                                     \
 602                .sum_exec_runtime = 0,                          \
 603        }
 604
 605/*
 606 * This is the atomic variant of task_cputime, which can be used for
 607 * storing and updating task_cputime statistics without locking.
 608 */
 609struct task_cputime_atomic {
 610        atomic64_t utime;
 611        atomic64_t stime;
 612        atomic64_t sum_exec_runtime;
 613};
 614
 615#define INIT_CPUTIME_ATOMIC \
 616        (struct task_cputime_atomic) {                          \
 617                .utime = ATOMIC64_INIT(0),                      \
 618                .stime = ATOMIC64_INIT(0),                      \
 619                .sum_exec_runtime = ATOMIC64_INIT(0),           \
 620        }
 621
 622#define PREEMPT_DISABLED        (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
 623
 624/*
 625 * Disable preemption until the scheduler is running -- use an unconditional
 626 * value so that it also works on !PREEMPT_COUNT kernels.
 627 *
 628 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
 629 */
 630#define INIT_PREEMPT_COUNT      PREEMPT_OFFSET
 631
 632/*
 633 * Initial preempt_count value; reflects the preempt_count schedule invariant
 634 * which states that during context switches:
 635 *
 636 *    preempt_count() == 2*PREEMPT_DISABLE_OFFSET
 637 *
 638 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
 639 * Note: See finish_task_switch().
 640 */
 641#define FORK_PREEMPT_COUNT      (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
 642
 643/**
 644 * struct thread_group_cputimer - thread group interval timer counts
 645 * @cputime_atomic:     atomic thread group interval timers.
 646 * @running:            true when there are timers running and
 647 *                      @cputime_atomic receives updates.
 648 * @checking_timer:     true when a thread in the group is in the
 649 *                      process of checking for thread group timers.
 650 *
 651 * This structure contains the version of task_cputime, above, that is
 652 * used for thread group CPU timer calculations.
 653 */
 654struct thread_group_cputimer {
 655        struct task_cputime_atomic cputime_atomic;
 656        bool running;
 657        bool checking_timer;
 658};
 659
 660#include <linux/rwsem.h>
 661struct autogroup;
 662
 663/*
 664 * NOTE! "signal_struct" does not have its own
 665 * locking, because a shared signal_struct always
 666 * implies a shared sighand_struct, so locking
 667 * sighand_struct is always a proper superset of
 668 * the locking of signal_struct.
 669 */
 670struct signal_struct {
 671        atomic_t                sigcnt;
 672        atomic_t                live;
 673        int                     nr_threads;
 674        atomic_t oom_victims; /* # of TIF_MEDIE threads in this thread group */
 675        struct list_head        thread_head;
 676
 677        wait_queue_head_t       wait_chldexit;  /* for wait4() */
 678
 679        /* current thread group signal load-balancing target: */
 680        struct task_struct      *curr_target;
 681
 682        /* shared signal handling: */
 683        struct sigpending       shared_pending;
 684
 685        /* thread group exit support */
 686        int                     group_exit_code;
 687        /* overloaded:
 688         * - notify group_exit_task when ->count is equal to notify_count
 689         * - everyone except group_exit_task is stopped during signal delivery
 690         *   of fatal signals, group_exit_task processes the signal.
 691         */
 692        int                     notify_count;
 693        struct task_struct      *group_exit_task;
 694
 695        /* thread group stop support, overloads group_exit_code too */
 696        int                     group_stop_count;
 697        unsigned int            flags; /* see SIGNAL_* flags below */
 698
 699        /*
 700         * PR_SET_CHILD_SUBREAPER marks a process, like a service
 701         * manager, to re-parent orphan (double-forking) child processes
 702         * to this process instead of 'init'. The service manager is
 703         * able to receive SIGCHLD signals and is able to investigate
 704         * the process until it calls wait(). All children of this
 705         * process will inherit a flag if they should look for a
 706         * child_subreaper process at exit.
 707         */
 708        unsigned int            is_child_subreaper:1;
 709        unsigned int            has_child_subreaper:1;
 710
 711        /* POSIX.1b Interval Timers */
 712        int                     posix_timer_id;
 713        struct list_head        posix_timers;
 714
 715        /* ITIMER_REAL timer for the process */
 716        struct hrtimer real_timer;
 717        struct pid *leader_pid;
 718        ktime_t it_real_incr;
 719
 720        /*
 721         * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 722         * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 723         * values are defined to 0 and 1 respectively
 724         */
 725        struct cpu_itimer it[2];
 726
 727        /*
 728         * Thread group totals for process CPU timers.
 729         * See thread_group_cputimer(), et al, for details.
 730         */
 731        struct thread_group_cputimer cputimer;
 732
 733        /* Earliest-expiration cache. */
 734        struct task_cputime cputime_expires;
 735
 736#ifdef CONFIG_NO_HZ_FULL
 737        atomic_t tick_dep_mask;
 738#endif
 739
 740        struct list_head cpu_timers[3];
 741
 742        struct pid *tty_old_pgrp;
 743
 744        /* boolean value for session group leader */
 745        int leader;
 746
 747        struct tty_struct *tty; /* NULL if no tty */
 748
 749#ifdef CONFIG_SCHED_AUTOGROUP
 750        struct autogroup *autogroup;
 751#endif
 752        /*
 753         * Cumulative resource counters for dead threads in the group,
 754         * and for reaped dead child processes forked by this group.
 755         * Live threads maintain their own counters and add to these
 756         * in __exit_signal, except for the group leader.
 757         */
 758        seqlock_t stats_lock;
 759        cputime_t utime, stime, cutime, cstime;
 760        cputime_t gtime;
 761        cputime_t cgtime;
 762        struct prev_cputime prev_cputime;
 763        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 764        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 765        unsigned long inblock, oublock, cinblock, coublock;
 766        unsigned long maxrss, cmaxrss;
 767        struct task_io_accounting ioac;
 768
 769        /*
 770         * Cumulative ns of schedule CPU time fo dead threads in the
 771         * group, not including a zombie group leader, (This only differs
 772         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 773         * other than jiffies.)
 774         */
 775        unsigned long long sum_sched_runtime;
 776
 777        /*
 778         * We don't bother to synchronize most readers of this at all,
 779         * because there is no reader checking a limit that actually needs
 780         * to get both rlim_cur and rlim_max atomically, and either one
 781         * alone is a single word that can safely be read normally.
 782         * getrlimit/setrlimit use task_lock(current->group_leader) to
 783         * protect this instead of the siglock, because they really
 784         * have no need to disable irqs.
 785         */
 786        struct rlimit rlim[RLIM_NLIMITS];
 787
 788#ifdef CONFIG_BSD_PROCESS_ACCT
 789        struct pacct_struct pacct;      /* per-process accounting information */
 790#endif
 791#ifdef CONFIG_TASKSTATS
 792        struct taskstats *stats;
 793#endif
 794#ifdef CONFIG_AUDIT
 795        unsigned audit_tty;
 796        struct tty_audit_buf *tty_audit_buf;
 797#endif
 798
 799        /*
 800         * Thread is the potential origin of an oom condition; kill first on
 801         * oom
 802         */
 803        bool oom_flag_origin;
 804        short oom_score_adj;            /* OOM kill score adjustment */
 805        short oom_score_adj_min;        /* OOM kill score adjustment min value.
 806                                         * Only settable by CAP_SYS_RESOURCE. */
 807
 808        struct mutex cred_guard_mutex;  /* guard against foreign influences on
 809                                         * credential calculations
 810                                         * (notably. ptrace) */
 811};
 812
 813/*
 814 * Bits in flags field of signal_struct.
 815 */
 816#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 817#define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
 818#define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
 819#define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
 820/*
 821 * Pending notifications to parent.
 822 */
 823#define SIGNAL_CLD_STOPPED      0x00000010
 824#define SIGNAL_CLD_CONTINUED    0x00000020
 825#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 826
 827#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 828
 829/* If true, all threads except ->group_exit_task have pending SIGKILL */
 830static inline int signal_group_exit(const struct signal_struct *sig)
 831{
 832        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 833                (sig->group_exit_task != NULL);
 834}
 835
 836/*
 837 * Some day this will be a full-fledged user tracking system..
 838 */
 839struct user_struct {
 840        atomic_t __count;       /* reference count */
 841        atomic_t processes;     /* How many processes does this user have? */
 842        atomic_t sigpending;    /* How many pending signals does this user have? */
 843#ifdef CONFIG_INOTIFY_USER
 844        atomic_t inotify_watches; /* How many inotify watches does this user have? */
 845        atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
 846#endif
 847#ifdef CONFIG_FANOTIFY
 848        atomic_t fanotify_listeners;
 849#endif
 850#ifdef CONFIG_EPOLL
 851        atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
 852#endif
 853#ifdef CONFIG_POSIX_MQUEUE
 854        /* protected by mq_lock */
 855        unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
 856#endif
 857        unsigned long locked_shm; /* How many pages of mlocked shm ? */
 858        unsigned long unix_inflight;    /* How many files in flight in unix sockets */
 859        atomic_long_t pipe_bufs;  /* how many pages are allocated in pipe buffers */
 860
 861#ifdef CONFIG_KEYS
 862        struct key *uid_keyring;        /* UID specific keyring */
 863        struct key *session_keyring;    /* UID's default session keyring */
 864#endif
 865
 866        /* Hash table maintenance information */
 867        struct hlist_node uidhash_node;
 868        kuid_t uid;
 869
 870#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
 871        atomic_long_t locked_vm;
 872#endif
 873};
 874
 875extern int uids_sysfs_init(void);
 876
 877extern struct user_struct *find_user(kuid_t);
 878
 879extern struct user_struct root_user;
 880#define INIT_USER (&root_user)
 881
 882
 883struct backing_dev_info;
 884struct reclaim_state;
 885
 886#ifdef CONFIG_SCHED_INFO
 887struct sched_info {
 888        /* cumulative counters */
 889        unsigned long pcount;         /* # of times run on this cpu */
 890        unsigned long long run_delay; /* time spent waiting on a runqueue */
 891
 892        /* timestamps */
 893        unsigned long long last_arrival,/* when we last ran on a cpu */
 894                           last_queued; /* when we were last queued to run */
 895};
 896#endif /* CONFIG_SCHED_INFO */
 897
 898#ifdef CONFIG_TASK_DELAY_ACCT
 899struct task_delay_info {
 900        spinlock_t      lock;
 901        unsigned int    flags;  /* Private per-task flags */
 902
 903        /* For each stat XXX, add following, aligned appropriately
 904         *
 905         * struct timespec XXX_start, XXX_end;
 906         * u64 XXX_delay;
 907         * u32 XXX_count;
 908         *
 909         * Atomicity of updates to XXX_delay, XXX_count protected by
 910         * single lock above (split into XXX_lock if contention is an issue).
 911         */
 912
 913        /*
 914         * XXX_count is incremented on every XXX operation, the delay
 915         * associated with the operation is added to XXX_delay.
 916         * XXX_delay contains the accumulated delay time in nanoseconds.
 917         */
 918        u64 blkio_start;        /* Shared by blkio, swapin */
 919        u64 blkio_delay;        /* wait for sync block io completion */
 920        u64 swapin_delay;       /* wait for swapin block io completion */
 921        u32 blkio_count;        /* total count of the number of sync block */
 922                                /* io operations performed */
 923        u32 swapin_count;       /* total count of the number of swapin block */
 924                                /* io operations performed */
 925
 926        u64 freepages_start;
 927        u64 freepages_delay;    /* wait for memory reclaim */
 928        u32 freepages_count;    /* total count of memory reclaim */
 929};
 930#endif  /* CONFIG_TASK_DELAY_ACCT */
 931
 932static inline int sched_info_on(void)
 933{
 934#ifdef CONFIG_SCHEDSTATS
 935        return 1;
 936#elif defined(CONFIG_TASK_DELAY_ACCT)
 937        extern int delayacct_on;
 938        return delayacct_on;
 939#else
 940        return 0;
 941#endif
 942}
 943
 944#ifdef CONFIG_SCHEDSTATS
 945void force_schedstat_enabled(void);
 946#endif
 947
 948enum cpu_idle_type {
 949        CPU_IDLE,
 950        CPU_NOT_IDLE,
 951        CPU_NEWLY_IDLE,
 952        CPU_MAX_IDLE_TYPES
 953};
 954
 955/*
 956 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 957 * has a few: load, load_avg, util_avg, freq, and capacity.
 958 *
 959 * We define a basic fixed point arithmetic range, and then formalize
 960 * all these metrics based on that basic range.
 961 */
 962# define SCHED_FIXEDPOINT_SHIFT 10
 963# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
 964
 965/*
 966 * Increase resolution of cpu_capacity calculations
 967 */
 968#define SCHED_CAPACITY_SHIFT    SCHED_FIXEDPOINT_SHIFT
 969#define SCHED_CAPACITY_SCALE    (1L << SCHED_CAPACITY_SHIFT)
 970
 971/*
 972 * Wake-queues are lists of tasks with a pending wakeup, whose
 973 * callers have already marked the task as woken internally,
 974 * and can thus carry on. A common use case is being able to
 975 * do the wakeups once the corresponding user lock as been
 976 * released.
 977 *
 978 * We hold reference to each task in the list across the wakeup,
 979 * thus guaranteeing that the memory is still valid by the time
 980 * the actual wakeups are performed in wake_up_q().
 981 *
 982 * One per task suffices, because there's never a need for a task to be
 983 * in two wake queues simultaneously; it is forbidden to abandon a task
 984 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
 985 * already in a wake queue, the wakeup will happen soon and the second
 986 * waker can just skip it.
 987 *
 988 * The WAKE_Q macro declares and initializes the list head.
 989 * wake_up_q() does NOT reinitialize the list; it's expected to be
 990 * called near the end of a function, where the fact that the queue is
 991 * not used again will be easy to see by inspection.
 992 *
 993 * Note that this can cause spurious wakeups. schedule() callers
 994 * must ensure the call is done inside a loop, confirming that the
 995 * wakeup condition has in fact occurred.
 996 */
 997struct wake_q_node {
 998        struct wake_q_node *next;
 999};
1000
1001struct wake_q_head {
1002        struct wake_q_node *first;
1003        struct wake_q_node **lastp;
1004};
1005
1006#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1007
1008#define WAKE_Q(name)                                    \
1009        struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1010
1011extern void wake_q_add(struct wake_q_head *head,
1012                       struct task_struct *task);
1013extern void wake_up_q(struct wake_q_head *head);
1014
1015/*
1016 * sched-domains (multiprocessor balancing) declarations:
1017 */
1018#ifdef CONFIG_SMP
1019#define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
1020#define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
1021#define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
1022#define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
1023#define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
1024#define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
1025#define SD_SHARE_CPUCAPACITY    0x0080  /* Domain members share cpu power */
1026#define SD_SHARE_POWERDOMAIN    0x0100  /* Domain members share power domain */
1027#define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
1028#define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
1029#define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
1030#define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
1031#define SD_OVERLAP              0x2000  /* sched_domains of this level overlap */
1032#define SD_NUMA                 0x4000  /* cross-node balancing */
1033
1034#ifdef CONFIG_SCHED_SMT
1035static inline int cpu_smt_flags(void)
1036{
1037        return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1038}
1039#endif
1040
1041#ifdef CONFIG_SCHED_MC
1042static inline int cpu_core_flags(void)
1043{
1044        return SD_SHARE_PKG_RESOURCES;
1045}
1046#endif
1047
1048#ifdef CONFIG_NUMA
1049static inline int cpu_numa_flags(void)
1050{
1051        return SD_NUMA;
1052}
1053#endif
1054
1055struct sched_domain_attr {
1056        int relax_domain_level;
1057};
1058
1059#define SD_ATTR_INIT    (struct sched_domain_attr) {    \
1060        .relax_domain_level = -1,                       \
1061}
1062
1063extern int sched_domain_level_max;
1064
1065struct sched_group;
1066
1067struct sched_domain {
1068        /* These fields must be setup */
1069        struct sched_domain *parent;    /* top domain must be null terminated */
1070        struct sched_domain *child;     /* bottom domain must be null terminated */
1071        struct sched_group *groups;     /* the balancing groups of the domain */
1072        unsigned long min_interval;     /* Minimum balance interval ms */
1073        unsigned long max_interval;     /* Maximum balance interval ms */
1074        unsigned int busy_factor;       /* less balancing by factor if busy */
1075        unsigned int imbalance_pct;     /* No balance until over watermark */
1076        unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
1077        unsigned int busy_idx;
1078        unsigned int idle_idx;
1079        unsigned int newidle_idx;
1080        unsigned int wake_idx;
1081        unsigned int forkexec_idx;
1082        unsigned int smt_gain;
1083
1084        int nohz_idle;                  /* NOHZ IDLE status */
1085        int flags;                      /* See SD_* */
1086        int level;
1087
1088        /* Runtime fields. */
1089        unsigned long last_balance;     /* init to jiffies. units in jiffies */
1090        unsigned int balance_interval;  /* initialise to 1. units in ms. */
1091        unsigned int nr_balance_failed; /* initialise to 0 */
1092
1093        /* idle_balance() stats */
1094        u64 max_newidle_lb_cost;
1095        unsigned long next_decay_max_lb_cost;
1096
1097#ifdef CONFIG_SCHEDSTATS
1098        /* load_balance() stats */
1099        unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1100        unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1101        unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1102        unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1103        unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1104        unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1105        unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1106        unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1107
1108        /* Active load balancing */
1109        unsigned int alb_count;
1110        unsigned int alb_failed;
1111        unsigned int alb_pushed;
1112
1113        /* SD_BALANCE_EXEC stats */
1114        unsigned int sbe_count;
1115        unsigned int sbe_balanced;
1116        unsigned int sbe_pushed;
1117
1118        /* SD_BALANCE_FORK stats */
1119        unsigned int sbf_count;
1120        unsigned int sbf_balanced;
1121        unsigned int sbf_pushed;
1122
1123        /* try_to_wake_up() stats */
1124        unsigned int ttwu_wake_remote;
1125        unsigned int ttwu_move_affine;
1126        unsigned int ttwu_move_balance;
1127#endif
1128#ifdef CONFIG_SCHED_DEBUG
1129        char *name;
1130#endif
1131        union {
1132                void *private;          /* used during construction */
1133                struct rcu_head rcu;    /* used during destruction */
1134        };
1135
1136        unsigned int span_weight;
1137        /*
1138         * Span of all CPUs in this domain.
1139         *
1140         * NOTE: this field is variable length. (Allocated dynamically
1141         * by attaching extra space to the end of the structure,
1142         * depending on how many CPUs the kernel has booted up with)
1143         */
1144        unsigned long span[0];
1145};
1146
1147static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1148{
1149        return to_cpumask(sd->span);
1150}
1151
1152extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1153                                    struct sched_domain_attr *dattr_new);
1154
1155/* Allocate an array of sched domains, for partition_sched_domains(). */
1156cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1157void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1158
1159bool cpus_share_cache(int this_cpu, int that_cpu);
1160
1161typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1162typedef int (*sched_domain_flags_f)(void);
1163
1164#define SDTL_OVERLAP    0x01
1165
1166struct sd_data {
1167        struct sched_domain **__percpu sd;
1168        struct sched_group **__percpu sg;
1169        struct sched_group_capacity **__percpu sgc;
1170};
1171
1172struct sched_domain_topology_level {
1173        sched_domain_mask_f mask;
1174        sched_domain_flags_f sd_flags;
1175        int                 flags;
1176        int                 numa_level;
1177        struct sd_data      data;
1178#ifdef CONFIG_SCHED_DEBUG
1179        char                *name;
1180#endif
1181};
1182
1183extern void set_sched_topology(struct sched_domain_topology_level *tl);
1184extern void wake_up_if_idle(int cpu);
1185
1186#ifdef CONFIG_SCHED_DEBUG
1187# define SD_INIT_NAME(type)             .name = #type
1188#else
1189# define SD_INIT_NAME(type)
1190#endif
1191
1192#else /* CONFIG_SMP */
1193
1194struct sched_domain_attr;
1195
1196static inline void
1197partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1198                        struct sched_domain_attr *dattr_new)
1199{
1200}
1201
1202static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1203{
1204        return true;
1205}
1206
1207#endif  /* !CONFIG_SMP */
1208
1209
1210struct io_context;                      /* See blkdev.h */
1211
1212
1213#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1214extern void prefetch_stack(struct task_struct *t);
1215#else
1216static inline void prefetch_stack(struct task_struct *t) { }
1217#endif
1218
1219struct audit_context;           /* See audit.c */
1220struct mempolicy;
1221struct pipe_inode_info;
1222struct uts_namespace;
1223
1224struct load_weight {
1225        unsigned long weight;
1226        u32 inv_weight;
1227};
1228
1229/*
1230 * The load_avg/util_avg accumulates an infinite geometric series
1231 * (see __update_load_avg() in kernel/sched/fair.c).
1232 *
1233 * [load_avg definition]
1234 *
1235 *   load_avg = runnable% * scale_load_down(load)
1236 *
1237 * where runnable% is the time ratio that a sched_entity is runnable.
1238 * For cfs_rq, it is the aggregated load_avg of all runnable and
1239 * blocked sched_entities.
1240 *
1241 * load_avg may also take frequency scaling into account:
1242 *
1243 *   load_avg = runnable% * scale_load_down(load) * freq%
1244 *
1245 * where freq% is the CPU frequency normalized to the highest frequency.
1246 *
1247 * [util_avg definition]
1248 *
1249 *   util_avg = running% * SCHED_CAPACITY_SCALE
1250 *
1251 * where running% is the time ratio that a sched_entity is running on
1252 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1253 * and blocked sched_entities.
1254 *
1255 * util_avg may also factor frequency scaling and CPU capacity scaling:
1256 *
1257 *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1258 *
1259 * where freq% is the same as above, and capacity% is the CPU capacity
1260 * normalized to the greatest capacity (due to uarch differences, etc).
1261 *
1262 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1263 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1264 * we therefore scale them to as large a range as necessary. This is for
1265 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1266 *
1267 * [Overflow issue]
1268 *
1269 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1270 * with the highest load (=88761), always runnable on a single cfs_rq,
1271 * and should not overflow as the number already hits PID_MAX_LIMIT.
1272 *
1273 * For all other cases (including 32-bit kernels), struct load_weight's
1274 * weight will overflow first before we do, because:
1275 *
1276 *    Max(load_avg) <= Max(load.weight)
1277 *
1278 * Then it is the load_weight's responsibility to consider overflow
1279 * issues.
1280 */
1281struct sched_avg {
1282        u64 last_update_time, load_sum;
1283        u32 util_sum, period_contrib;
1284        unsigned long load_avg, util_avg;
1285};
1286
1287#ifdef CONFIG_SCHEDSTATS
1288struct sched_statistics {
1289        u64                     wait_start;
1290        u64                     wait_max;
1291        u64                     wait_count;
1292        u64                     wait_sum;
1293        u64                     iowait_count;
1294        u64                     iowait_sum;
1295
1296        u64                     sleep_start;
1297        u64                     sleep_max;
1298        s64                     sum_sleep_runtime;
1299
1300        u64                     block_start;
1301        u64                     block_max;
1302        u64                     exec_max;
1303        u64                     slice_max;
1304
1305        u64                     nr_migrations_cold;
1306        u64                     nr_failed_migrations_affine;
1307        u64                     nr_failed_migrations_running;
1308        u64                     nr_failed_migrations_hot;
1309        u64                     nr_forced_migrations;
1310
1311        u64                     nr_wakeups;
1312        u64                     nr_wakeups_sync;
1313        u64                     nr_wakeups_migrate;
1314        u64                     nr_wakeups_local;
1315        u64                     nr_wakeups_remote;
1316        u64                     nr_wakeups_affine;
1317        u64                     nr_wakeups_affine_attempts;
1318        u64                     nr_wakeups_passive;
1319        u64                     nr_wakeups_idle;
1320};
1321#endif
1322
1323struct sched_entity {
1324        struct load_weight      load;           /* for load-balancing */
1325        struct rb_node          run_node;
1326        struct list_head        group_node;
1327        unsigned int            on_rq;
1328
1329        u64                     exec_start;
1330        u64                     sum_exec_runtime;
1331        u64                     vruntime;
1332        u64                     prev_sum_exec_runtime;
1333
1334        u64                     nr_migrations;
1335
1336#ifdef CONFIG_SCHEDSTATS
1337        struct sched_statistics statistics;
1338#endif
1339
1340#ifdef CONFIG_FAIR_GROUP_SCHED
1341        int                     depth;
1342        struct sched_entity     *parent;
1343        /* rq on which this entity is (to be) queued: */
1344        struct cfs_rq           *cfs_rq;
1345        /* rq "owned" by this entity/group: */
1346        struct cfs_rq           *my_q;
1347#endif
1348
1349#ifdef CONFIG_SMP
1350        /*
1351         * Per entity load average tracking.
1352         *
1353         * Put into separate cache line so it does not
1354         * collide with read-mostly values above.
1355         */
1356        struct sched_avg        avg ____cacheline_aligned_in_smp;
1357#endif
1358};
1359
1360struct sched_rt_entity {
1361        struct list_head run_list;
1362        unsigned long timeout;
1363        unsigned long watchdog_stamp;
1364        unsigned int time_slice;
1365        unsigned short on_rq;
1366        unsigned short on_list;
1367
1368        struct sched_rt_entity *back;
1369#ifdef CONFIG_RT_GROUP_SCHED
1370        struct sched_rt_entity  *parent;
1371        /* rq on which this entity is (to be) queued: */
1372        struct rt_rq            *rt_rq;
1373        /* rq "owned" by this entity/group: */
1374        struct rt_rq            *my_q;
1375#endif
1376};
1377
1378struct sched_dl_entity {
1379        struct rb_node  rb_node;
1380
1381        /*
1382         * Original scheduling parameters. Copied here from sched_attr
1383         * during sched_setattr(), they will remain the same until
1384         * the next sched_setattr().
1385         */
1386        u64 dl_runtime;         /* maximum runtime for each instance    */
1387        u64 dl_deadline;        /* relative deadline of each instance   */
1388        u64 dl_period;          /* separation of two instances (period) */
1389        u64 dl_bw;              /* dl_runtime / dl_deadline             */
1390
1391        /*
1392         * Actual scheduling parameters. Initialized with the values above,
1393         * they are continously updated during task execution. Note that
1394         * the remaining runtime could be < 0 in case we are in overrun.
1395         */
1396        s64 runtime;            /* remaining runtime for this instance  */
1397        u64 deadline;           /* absolute deadline for this instance  */
1398        unsigned int flags;     /* specifying the scheduler behaviour   */
1399
1400        /*
1401         * Some bool flags:
1402         *
1403         * @dl_throttled tells if we exhausted the runtime. If so, the
1404         * task has to wait for a replenishment to be performed at the
1405         * next firing of dl_timer.
1406         *
1407         * @dl_boosted tells if we are boosted due to DI. If so we are
1408         * outside bandwidth enforcement mechanism (but only until we
1409         * exit the critical section);
1410         *
1411         * @dl_yielded tells if task gave up the cpu before consuming
1412         * all its available runtime during the last job.
1413         */
1414        int dl_throttled, dl_boosted, dl_yielded;
1415
1416        /*
1417         * Bandwidth enforcement timer. Each -deadline task has its
1418         * own bandwidth to be enforced, thus we need one timer per task.
1419         */
1420        struct hrtimer dl_timer;
1421};
1422
1423union rcu_special {
1424        struct {
1425                u8 blocked;
1426                u8 need_qs;
1427                u8 exp_need_qs;
1428                u8 pad; /* Otherwise the compiler can store garbage here. */
1429        } b; /* Bits. */
1430        u32 s; /* Set of bits. */
1431};
1432struct rcu_node;
1433
1434enum perf_event_task_context {
1435        perf_invalid_context = -1,
1436        perf_hw_context = 0,
1437        perf_sw_context,
1438        perf_nr_task_contexts,
1439};
1440
1441/* Track pages that require TLB flushes */
1442struct tlbflush_unmap_batch {
1443        /*
1444         * Each bit set is a CPU that potentially has a TLB entry for one of
1445         * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1446         */
1447        struct cpumask cpumask;
1448
1449        /* True if any bit in cpumask is set */
1450        bool flush_required;
1451
1452        /*
1453         * If true then the PTE was dirty when unmapped. The entry must be
1454         * flushed before IO is initiated or a stale TLB entry potentially
1455         * allows an update without redirtying the page.
1456         */
1457        bool writable;
1458};
1459
1460struct task_struct {
1461        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1462        void *stack;
1463        atomic_t usage;
1464        unsigned int flags;     /* per process flags, defined below */
1465        unsigned int ptrace;
1466
1467#ifdef CONFIG_SMP
1468        struct llist_node wake_entry;
1469        int on_cpu;
1470        unsigned int wakee_flips;
1471        unsigned long wakee_flip_decay_ts;
1472        struct task_struct *last_wakee;
1473
1474        int wake_cpu;
1475#endif
1476        int on_rq;
1477
1478        int prio, static_prio, normal_prio;
1479        unsigned int rt_priority;
1480        const struct sched_class *sched_class;
1481        struct sched_entity se;
1482        struct sched_rt_entity rt;
1483#ifdef CONFIG_CGROUP_SCHED
1484        struct task_group *sched_task_group;
1485#endif
1486        struct sched_dl_entity dl;
1487
1488#ifdef CONFIG_PREEMPT_NOTIFIERS
1489        /* list of struct preempt_notifier: */
1490        struct hlist_head preempt_notifiers;
1491#endif
1492
1493#ifdef CONFIG_BLK_DEV_IO_TRACE
1494        unsigned int btrace_seq;
1495#endif
1496
1497        unsigned int policy;
1498        int nr_cpus_allowed;
1499        cpumask_t cpus_allowed;
1500
1501#ifdef CONFIG_PREEMPT_RCU
1502        int rcu_read_lock_nesting;
1503        union rcu_special rcu_read_unlock_special;
1504        struct list_head rcu_node_entry;
1505        struct rcu_node *rcu_blocked_node;
1506#endif /* #ifdef CONFIG_PREEMPT_RCU */
1507#ifdef CONFIG_TASKS_RCU
1508        unsigned long rcu_tasks_nvcsw;
1509        bool rcu_tasks_holdout;
1510        struct list_head rcu_tasks_holdout_list;
1511        int rcu_tasks_idle_cpu;
1512#endif /* #ifdef CONFIG_TASKS_RCU */
1513
1514#ifdef CONFIG_SCHED_INFO
1515        struct sched_info sched_info;
1516#endif
1517
1518        struct list_head tasks;
1519#ifdef CONFIG_SMP
1520        struct plist_node pushable_tasks;
1521        struct rb_node pushable_dl_tasks;
1522#endif
1523
1524        struct mm_struct *mm, *active_mm;
1525        /* per-thread vma caching */
1526        u32 vmacache_seqnum;
1527        struct vm_area_struct *vmacache[VMACACHE_SIZE];
1528#if defined(SPLIT_RSS_COUNTING)
1529        struct task_rss_stat    rss_stat;
1530#endif
1531/* task state */
1532        int exit_state;
1533        int exit_code, exit_signal;
1534        int pdeath_signal;  /*  The signal sent when the parent dies  */
1535        unsigned long jobctl;   /* JOBCTL_*, siglock protected */
1536
1537        /* Used for emulating ABI behavior of previous Linux versions */
1538        unsigned int personality;
1539
1540        /* scheduler bits, serialized by scheduler locks */
1541        unsigned sched_reset_on_fork:1;
1542        unsigned sched_contributes_to_load:1;
1543        unsigned sched_migrated:1;
1544        unsigned sched_remote_wakeup:1;
1545        unsigned :0; /* force alignment to the next boundary */
1546
1547        /* unserialized, strictly 'current' */
1548        unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1549        unsigned in_iowait:1;
1550#if !defined(TIF_RESTORE_SIGMASK)
1551        unsigned restore_sigmask:1;
1552#endif
1553#ifdef CONFIG_MEMCG
1554        unsigned memcg_may_oom:1;
1555#ifndef CONFIG_SLOB
1556        unsigned memcg_kmem_skip_account:1;
1557#endif
1558#endif
1559#ifdef CONFIG_COMPAT_BRK
1560        unsigned brk_randomized:1;
1561#endif
1562
1563        unsigned long atomic_flags; /* Flags needing atomic access. */
1564
1565        struct restart_block restart_block;
1566
1567        pid_t pid;
1568        pid_t tgid;
1569
1570#ifdef CONFIG_CC_STACKPROTECTOR
1571        /* Canary value for the -fstack-protector gcc feature */
1572        unsigned long stack_canary;
1573#endif
1574        /*
1575         * pointers to (original) parent process, youngest child, younger sibling,
1576         * older sibling, respectively.  (p->father can be replaced with
1577         * p->real_parent->pid)
1578         */
1579        struct task_struct __rcu *real_parent; /* real parent process */
1580        struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1581        /*
1582         * children/sibling forms the list of my natural children
1583         */
1584        struct list_head children;      /* list of my children */
1585        struct list_head sibling;       /* linkage in my parent's children list */
1586        struct task_struct *group_leader;       /* threadgroup leader */
1587
1588        /*
1589         * ptraced is the list of tasks this task is using ptrace on.
1590         * This includes both natural children and PTRACE_ATTACH targets.
1591         * p->ptrace_entry is p's link on the p->parent->ptraced list.
1592         */
1593        struct list_head ptraced;
1594        struct list_head ptrace_entry;
1595
1596        /* PID/PID hash table linkage. */
1597        struct pid_link pids[PIDTYPE_MAX];
1598        struct list_head thread_group;
1599        struct list_head thread_node;
1600
1601        struct completion *vfork_done;          /* for vfork() */
1602        int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1603        int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1604
1605        cputime_t utime, stime, utimescaled, stimescaled;
1606        cputime_t gtime;
1607        struct prev_cputime prev_cputime;
1608#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1609        seqcount_t vtime_seqcount;
1610        unsigned long long vtime_snap;
1611        enum {
1612                /* Task is sleeping or running in a CPU with VTIME inactive */
1613                VTIME_INACTIVE = 0,
1614                /* Task runs in userspace in a CPU with VTIME active */
1615                VTIME_USER,
1616                /* Task runs in kernelspace in a CPU with VTIME active */
1617                VTIME_SYS,
1618        } vtime_snap_whence;
1619#endif
1620
1621#ifdef CONFIG_NO_HZ_FULL
1622        atomic_t tick_dep_mask;
1623#endif
1624        unsigned long nvcsw, nivcsw; /* context switch counts */
1625        u64 start_time;         /* monotonic time in nsec */
1626        u64 real_start_time;    /* boot based time in nsec */
1627/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1628        unsigned long min_flt, maj_flt;
1629
1630        struct task_cputime cputime_expires;
1631        struct list_head cpu_timers[3];
1632
1633/* process credentials */
1634        const struct cred __rcu *real_cred; /* objective and real subjective task
1635                                         * credentials (COW) */
1636        const struct cred __rcu *cred;  /* effective (overridable) subjective task
1637                                         * credentials (COW) */
1638        char comm[TASK_COMM_LEN]; /* executable name excluding path
1639                                     - access with [gs]et_task_comm (which lock
1640                                       it with task_lock())
1641                                     - initialized normally by setup_new_exec */
1642/* file system info */
1643        struct nameidata *nameidata;
1644#ifdef CONFIG_SYSVIPC
1645/* ipc stuff */
1646        struct sysv_sem sysvsem;
1647        struct sysv_shm sysvshm;
1648#endif
1649#ifdef CONFIG_DETECT_HUNG_TASK
1650/* hung task detection */
1651        unsigned long last_switch_count;
1652#endif
1653/* filesystem information */
1654        struct fs_struct *fs;
1655/* open file information */
1656        struct files_struct *files;
1657/* namespaces */
1658        struct nsproxy *nsproxy;
1659/* signal handlers */
1660        struct signal_struct *signal;
1661        struct sighand_struct *sighand;
1662
1663        sigset_t blocked, real_blocked;
1664        sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1665        struct sigpending pending;
1666
1667        unsigned long sas_ss_sp;
1668        size_t sas_ss_size;
1669        unsigned sas_ss_flags;
1670
1671        struct callback_head *task_works;
1672
1673        struct audit_context *audit_context;
1674#ifdef CONFIG_AUDITSYSCALL
1675        kuid_t loginuid;
1676        unsigned int sessionid;
1677#endif
1678        struct seccomp seccomp;
1679
1680/* Thread group tracking */
1681        u32 parent_exec_id;
1682        u32 self_exec_id;
1683/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1684 * mempolicy */
1685        spinlock_t alloc_lock;
1686
1687        /* Protection of the PI data structures: */
1688        raw_spinlock_t pi_lock;
1689
1690        struct wake_q_node wake_q;
1691
1692#ifdef CONFIG_RT_MUTEXES
1693        /* PI waiters blocked on a rt_mutex held by this task */
1694        struct rb_root pi_waiters;
1695        struct rb_node *pi_waiters_leftmost;
1696        /* Deadlock detection and priority inheritance handling */
1697        struct rt_mutex_waiter *pi_blocked_on;
1698#endif
1699
1700#ifdef CONFIG_DEBUG_MUTEXES
1701        /* mutex deadlock detection */
1702        struct mutex_waiter *blocked_on;
1703#endif
1704#ifdef CONFIG_TRACE_IRQFLAGS
1705        unsigned int irq_events;
1706        unsigned long hardirq_enable_ip;
1707        unsigned long hardirq_disable_ip;
1708        unsigned int hardirq_enable_event;
1709        unsigned int hardirq_disable_event;
1710        int hardirqs_enabled;
1711        int hardirq_context;
1712        unsigned long softirq_disable_ip;
1713        unsigned long softirq_enable_ip;
1714        unsigned int softirq_disable_event;
1715        unsigned int softirq_enable_event;
1716        int softirqs_enabled;
1717        int softirq_context;
1718#endif
1719#ifdef CONFIG_LOCKDEP
1720# define MAX_LOCK_DEPTH 48UL
1721        u64 curr_chain_key;
1722        int lockdep_depth;
1723        unsigned int lockdep_recursion;
1724        struct held_lock held_locks[MAX_LOCK_DEPTH];
1725        gfp_t lockdep_reclaim_gfp;
1726#endif
1727#ifdef CONFIG_UBSAN
1728        unsigned int in_ubsan;
1729#endif
1730
1731/* journalling filesystem info */
1732        void *journal_info;
1733
1734/* stacked block device info */
1735        struct bio_list *bio_list;
1736
1737#ifdef CONFIG_BLOCK
1738/* stack plugging */
1739        struct blk_plug *plug;
1740#endif
1741
1742/* VM state */
1743        struct reclaim_state *reclaim_state;
1744
1745        struct backing_dev_info *backing_dev_info;
1746
1747        struct io_context *io_context;
1748
1749        unsigned long ptrace_message;
1750        siginfo_t *last_siginfo; /* For ptrace use.  */
1751        struct task_io_accounting ioac;
1752#if defined(CONFIG_TASK_XACCT)
1753        u64 acct_rss_mem1;      /* accumulated rss usage */
1754        u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1755        cputime_t acct_timexpd; /* stime + utime since last update */
1756#endif
1757#ifdef CONFIG_CPUSETS
1758        nodemask_t mems_allowed;        /* Protected by alloc_lock */
1759        seqcount_t mems_allowed_seq;    /* Seqence no to catch updates */
1760        int cpuset_mem_spread_rotor;
1761        int cpuset_slab_spread_rotor;
1762#endif
1763#ifdef CONFIG_CGROUPS
1764        /* Control Group info protected by css_set_lock */
1765        struct css_set __rcu *cgroups;
1766        /* cg_list protected by css_set_lock and tsk->alloc_lock */
1767        struct list_head cg_list;
1768#endif
1769#ifdef CONFIG_FUTEX
1770        struct robust_list_head __user *robust_list;
1771#ifdef CONFIG_COMPAT
1772        struct compat_robust_list_head __user *compat_robust_list;
1773#endif
1774        struct list_head pi_state_list;
1775        struct futex_pi_state *pi_state_cache;
1776#endif
1777#ifdef CONFIG_PERF_EVENTS
1778        struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1779        struct mutex perf_event_mutex;
1780        struct list_head perf_event_list;
1781#endif
1782#ifdef CONFIG_DEBUG_PREEMPT
1783        unsigned long preempt_disable_ip;
1784#endif
1785#ifdef CONFIG_NUMA
1786        struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1787        short il_next;
1788        short pref_node_fork;
1789#endif
1790#ifdef CONFIG_NUMA_BALANCING
1791        int numa_scan_seq;
1792        unsigned int numa_scan_period;
1793        unsigned int numa_scan_period_max;
1794        int numa_preferred_nid;
1795        unsigned long numa_migrate_retry;
1796        u64 node_stamp;                 /* migration stamp  */
1797        u64 last_task_numa_placement;
1798        u64 last_sum_exec_runtime;
1799        struct callback_head numa_work;
1800
1801        struct list_head numa_entry;
1802        struct numa_group *numa_group;
1803
1804        /*
1805         * numa_faults is an array split into four regions:
1806         * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1807         * in this precise order.
1808         *
1809         * faults_memory: Exponential decaying average of faults on a per-node
1810         * basis. Scheduling placement decisions are made based on these
1811         * counts. The values remain static for the duration of a PTE scan.
1812         * faults_cpu: Track the nodes the process was running on when a NUMA
1813         * hinting fault was incurred.
1814         * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1815         * during the current scan window. When the scan completes, the counts
1816         * in faults_memory and faults_cpu decay and these values are copied.
1817         */
1818        unsigned long *numa_faults;
1819        unsigned long total_numa_faults;
1820
1821        /*
1822         * numa_faults_locality tracks if faults recorded during the last
1823         * scan window were remote/local or failed to migrate. The task scan
1824         * period is adapted based on the locality of the faults with different
1825         * weights depending on whether they were shared or private faults
1826         */
1827        unsigned long numa_faults_locality[3];
1828
1829        unsigned long numa_pages_migrated;
1830#endif /* CONFIG_NUMA_BALANCING */
1831
1832#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1833        struct tlbflush_unmap_batch tlb_ubc;
1834#endif
1835
1836        struct rcu_head rcu;
1837
1838        /*
1839         * cache last used pipe for splice
1840         */
1841        struct pipe_inode_info *splice_pipe;
1842
1843        struct page_frag task_frag;
1844
1845#ifdef  CONFIG_TASK_DELAY_ACCT
1846        struct task_delay_info *delays;
1847#endif
1848#ifdef CONFIG_FAULT_INJECTION
1849        int make_it_fail;
1850#endif
1851        /*
1852         * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1853         * balance_dirty_pages() for some dirty throttling pause
1854         */
1855        int nr_dirtied;
1856        int nr_dirtied_pause;
1857        unsigned long dirty_paused_when; /* start of a write-and-pause period */
1858
1859#ifdef CONFIG_LATENCYTOP
1860        int latency_record_count;
1861        struct latency_record latency_record[LT_SAVECOUNT];
1862#endif
1863        /*
1864         * time slack values; these are used to round up poll() and
1865         * select() etc timeout values. These are in nanoseconds.
1866         */
1867        u64 timer_slack_ns;
1868        u64 default_timer_slack_ns;
1869
1870#ifdef CONFIG_KASAN
1871        unsigned int kasan_depth;
1872#endif
1873#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1874        /* Index of current stored address in ret_stack */
1875        int curr_ret_stack;
1876        /* Stack of return addresses for return function tracing */
1877        struct ftrace_ret_stack *ret_stack;
1878        /* time stamp for last schedule */
1879        unsigned long long ftrace_timestamp;
1880        /*
1881         * Number of functions that haven't been traced
1882         * because of depth overrun.
1883         */
1884        atomic_t trace_overrun;
1885        /* Pause for the tracing */
1886        atomic_t tracing_graph_pause;
1887#endif
1888#ifdef CONFIG_TRACING
1889        /* state flags for use by tracers */
1890        unsigned long trace;
1891        /* bitmask and counter of trace recursion */
1892        unsigned long trace_recursion;
1893#endif /* CONFIG_TRACING */
1894#ifdef CONFIG_KCOV
1895        /* Coverage collection mode enabled for this task (0 if disabled). */
1896        enum kcov_mode kcov_mode;
1897        /* Size of the kcov_area. */
1898        unsigned        kcov_size;
1899        /* Buffer for coverage collection. */
1900        void            *kcov_area;
1901        /* kcov desciptor wired with this task or NULL. */
1902        struct kcov     *kcov;
1903#endif
1904#ifdef CONFIG_MEMCG
1905        struct mem_cgroup *memcg_in_oom;
1906        gfp_t memcg_oom_gfp_mask;
1907        int memcg_oom_order;
1908
1909        /* number of pages to reclaim on returning to userland */
1910        unsigned int memcg_nr_pages_over_high;
1911#endif
1912#ifdef CONFIG_UPROBES
1913        struct uprobe_task *utask;
1914#endif
1915#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1916        unsigned int    sequential_io;
1917        unsigned int    sequential_io_avg;
1918#endif
1919#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1920        unsigned long   task_state_change;
1921#endif
1922        int pagefault_disabled;
1923#ifdef CONFIG_MMU
1924        struct task_struct *oom_reaper_list;
1925#endif
1926/* CPU-specific state of this task */
1927        struct thread_struct thread;
1928/*
1929 * WARNING: on x86, 'thread_struct' contains a variable-sized
1930 * structure.  It *MUST* be at the end of 'task_struct'.
1931 *
1932 * Do not put anything below here!
1933 */
1934};
1935
1936#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1937extern int arch_task_struct_size __read_mostly;
1938#else
1939# define arch_task_struct_size (sizeof(struct task_struct))
1940#endif
1941
1942/* Future-safe accessor for struct task_struct's cpus_allowed. */
1943#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1944
1945static inline int tsk_nr_cpus_allowed(struct task_struct *p)
1946{
1947        return p->nr_cpus_allowed;
1948}
1949
1950#define TNF_MIGRATED    0x01
1951#define TNF_NO_GROUP    0x02
1952#define TNF_SHARED      0x04
1953#define TNF_FAULT_LOCAL 0x08
1954#define TNF_MIGRATE_FAIL 0x10
1955
1956static inline bool in_vfork(struct task_struct *tsk)
1957{
1958        bool ret;
1959
1960        /*
1961         * need RCU to access ->real_parent if CLONE_VM was used along with
1962         * CLONE_PARENT.
1963         *
1964         * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
1965         * imply CLONE_VM
1966         *
1967         * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
1968         * ->real_parent is not necessarily the task doing vfork(), so in
1969         * theory we can't rely on task_lock() if we want to dereference it.
1970         *
1971         * And in this case we can't trust the real_parent->mm == tsk->mm
1972         * check, it can be false negative. But we do not care, if init or
1973         * another oom-unkillable task does this it should blame itself.
1974         */
1975        rcu_read_lock();
1976        ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
1977        rcu_read_unlock();
1978
1979        return ret;
1980}
1981
1982#ifdef CONFIG_NUMA_BALANCING
1983extern void task_numa_fault(int last_node, int node, int pages, int flags);
1984extern pid_t task_numa_group_id(struct task_struct *p);
1985extern void set_numabalancing_state(bool enabled);
1986extern void task_numa_free(struct task_struct *p);
1987extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1988                                        int src_nid, int dst_cpu);
1989#else
1990static inline void task_numa_fault(int last_node, int node, int pages,
1991                                   int flags)
1992{
1993}
1994static inline pid_t task_numa_group_id(struct task_struct *p)
1995{
1996        return 0;
1997}
1998static inline void set_numabalancing_state(bool enabled)
1999{
2000}
2001static inline void task_numa_free(struct task_struct *p)
2002{
2003}
2004static inline bool should_numa_migrate_memory(struct task_struct *p,
2005                                struct page *page, int src_nid, int dst_cpu)
2006{
2007        return true;
2008}
2009#endif
2010
2011static inline struct pid *task_pid(struct task_struct *task)
2012{
2013        return task->pids[PIDTYPE_PID].pid;
2014}
2015
2016static inline struct pid *task_tgid(struct task_struct *task)
2017{
2018        return task->group_leader->pids[PIDTYPE_PID].pid;
2019}
2020
2021/*
2022 * Without tasklist or rcu lock it is not safe to dereference
2023 * the result of task_pgrp/task_session even if task == current,
2024 * we can race with another thread doing sys_setsid/sys_setpgid.
2025 */
2026static inline struct pid *task_pgrp(struct task_struct *task)
2027{
2028        return task->group_leader->pids[PIDTYPE_PGID].pid;
2029}
2030
2031static inline struct pid *task_session(struct task_struct *task)
2032{
2033        return task->group_leader->pids[PIDTYPE_SID].pid;
2034}
2035
2036struct pid_namespace;
2037
2038/*
2039 * the helpers to get the task's different pids as they are seen
2040 * from various namespaces
2041 *
2042 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
2043 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
2044 *                     current.
2045 * task_xid_nr_ns()  : id seen from the ns specified;
2046 *
2047 * set_task_vxid()   : assigns a virtual id to a task;
2048 *
2049 * see also pid_nr() etc in include/linux/pid.h
2050 */
2051pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2052                        struct pid_namespace *ns);
2053
2054static inline pid_t task_pid_nr(struct task_struct *tsk)
2055{
2056        return tsk->pid;
2057}
2058
2059static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2060                                        struct pid_namespace *ns)
2061{
2062        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2063}
2064
2065static inline pid_t task_pid_vnr(struct task_struct *tsk)
2066{
2067        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
2068}
2069
2070
2071static inline pid_t task_tgid_nr(struct task_struct *tsk)
2072{
2073        return tsk->tgid;
2074}
2075
2076pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
2077
2078static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2079{
2080        return pid_vnr(task_tgid(tsk));
2081}
2082
2083
2084static inline int pid_alive(const struct task_struct *p);
2085static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2086{
2087        pid_t pid = 0;
2088
2089        rcu_read_lock();
2090        if (pid_alive(tsk))
2091                pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2092        rcu_read_unlock();
2093
2094        return pid;
2095}
2096
2097static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2098{
2099        return task_ppid_nr_ns(tsk, &init_pid_ns);
2100}
2101
2102static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2103                                        struct pid_namespace *ns)
2104{
2105        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2106}
2107
2108static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2109{
2110        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2111}
2112
2113
2114static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2115                                        struct pid_namespace *ns)
2116{
2117        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2118}
2119
2120static inline pid_t task_session_vnr(struct task_struct *tsk)
2121{
2122        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2123}
2124
2125/* obsolete, do not use */
2126static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2127{
2128        return task_pgrp_nr_ns(tsk, &init_pid_ns);
2129}
2130
2131/**
2132 * pid_alive - check that a task structure is not stale
2133 * @p: Task structure to be checked.
2134 *
2135 * Test if a process is not yet dead (at most zombie state)
2136 * If pid_alive fails, then pointers within the task structure
2137 * can be stale and must not be dereferenced.
2138 *
2139 * Return: 1 if the process is alive. 0 otherwise.
2140 */
2141static inline int pid_alive(const struct task_struct *p)
2142{
2143        return p->pids[PIDTYPE_PID].pid != NULL;
2144}
2145
2146/**
2147 * is_global_init - check if a task structure is init. Since init
2148 * is free to have sub-threads we need to check tgid.
2149 * @tsk: Task structure to be checked.
2150 *
2151 * Check if a task structure is the first user space task the kernel created.
2152 *
2153 * Return: 1 if the task structure is init. 0 otherwise.
2154 */
2155static inline int is_global_init(struct task_struct *tsk)
2156{
2157        return task_tgid_nr(tsk) == 1;
2158}
2159
2160extern struct pid *cad_pid;
2161
2162extern void free_task(struct task_struct *tsk);
2163#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2164
2165extern void __put_task_struct(struct task_struct *t);
2166
2167static inline void put_task_struct(struct task_struct *t)
2168{
2169        if (atomic_dec_and_test(&t->usage))
2170                __put_task_struct(t);
2171}
2172
2173struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2174struct task_struct *try_get_task_struct(struct task_struct **ptask);
2175
2176#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2177extern void task_cputime(struct task_struct *t,
2178                         cputime_t *utime, cputime_t *stime);
2179extern void task_cputime_scaled(struct task_struct *t,
2180                                cputime_t *utimescaled, cputime_t *stimescaled);
2181extern cputime_t task_gtime(struct task_struct *t);
2182#else
2183static inline void task_cputime(struct task_struct *t,
2184                                cputime_t *utime, cputime_t *stime)
2185{
2186        if (utime)
2187                *utime = t->utime;
2188        if (stime)
2189                *stime = t->stime;
2190}
2191
2192static inline void task_cputime_scaled(struct task_struct *t,
2193                                       cputime_t *utimescaled,
2194                                       cputime_t *stimescaled)
2195{
2196        if (utimescaled)
2197                *utimescaled = t->utimescaled;
2198        if (stimescaled)
2199                *stimescaled = t->stimescaled;
2200}
2201
2202static inline cputime_t task_gtime(struct task_struct *t)
2203{
2204        return t->gtime;
2205}
2206#endif
2207extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2208extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2209
2210/*
2211 * Per process flags
2212 */
2213#define PF_EXITING      0x00000004      /* getting shut down */
2214#define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
2215#define PF_VCPU         0x00000010      /* I'm a virtual CPU */
2216#define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
2217#define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
2218#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
2219#define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
2220#define PF_DUMPCORE     0x00000200      /* dumped core */
2221#define PF_SIGNALED     0x00000400      /* killed by a signal */
2222#define PF_MEMALLOC     0x00000800      /* Allocating memory */
2223#define PF_NPROC_EXCEEDED 0x00001000    /* set_user noticed that RLIMIT_NPROC was exceeded */
2224#define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
2225#define PF_USED_ASYNC   0x00004000      /* used async_schedule*(), used by module init */
2226#define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
2227#define PF_FROZEN       0x00010000      /* frozen for system suspend */
2228#define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
2229#define PF_KSWAPD       0x00040000      /* I am kswapd */
2230#define PF_MEMALLOC_NOIO 0x00080000     /* Allocating memory without IO involved */
2231#define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
2232#define PF_KTHREAD      0x00200000      /* I am a kernel thread */
2233#define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
2234#define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
2235#define PF_NO_SETAFFINITY 0x04000000    /* Userland is not allowed to meddle with cpus_allowed */
2236#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
2237#define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
2238#define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezable */
2239#define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
2240
2241/*
2242 * Only the _current_ task can read/write to tsk->flags, but other
2243 * tasks can access tsk->flags in readonly mode for example
2244 * with tsk_used_math (like during threaded core dumping).
2245 * There is however an exception to this rule during ptrace
2246 * or during fork: the ptracer task is allowed to write to the
2247 * child->flags of its traced child (same goes for fork, the parent
2248 * can write to the child->flags), because we're guaranteed the
2249 * child is not running and in turn not changing child->flags
2250 * at the same time the parent does it.
2251 */
2252#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2253#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2254#define clear_used_math() clear_stopped_child_used_math(current)
2255#define set_used_math() set_stopped_child_used_math(current)
2256#define conditional_stopped_child_used_math(condition, child) \
2257        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2258#define conditional_used_math(condition) \
2259        conditional_stopped_child_used_math(condition, current)
2260#define copy_to_stopped_child_used_math(child) \
2261        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2262/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2263#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2264#define used_math() tsk_used_math(current)
2265
2266/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2267 * __GFP_FS is also cleared as it implies __GFP_IO.
2268 */
2269static inline gfp_t memalloc_noio_flags(gfp_t flags)
2270{
2271        if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2272                flags &= ~(__GFP_IO | __GFP_FS);
2273        return flags;
2274}
2275
2276static inline unsigned int memalloc_noio_save(void)
2277{
2278        unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2279        current->flags |= PF_MEMALLOC_NOIO;
2280        return flags;
2281}
2282
2283static inline void memalloc_noio_restore(unsigned int flags)
2284{
2285        current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2286}
2287
2288/* Per-process atomic flags. */
2289#define PFA_NO_NEW_PRIVS 0      /* May not gain new privileges. */
2290#define PFA_SPREAD_PAGE  1      /* Spread page cache over cpuset */
2291#define PFA_SPREAD_SLAB  2      /* Spread some slab caches over cpuset */
2292#define PFA_LMK_WAITING  3      /* Lowmemorykiller is waiting */
2293
2294
2295#define TASK_PFA_TEST(name, func)                                       \
2296        static inline bool task_##func(struct task_struct *p)           \
2297        { return test_bit(PFA_##name, &p->atomic_flags); }
2298#define TASK_PFA_SET(name, func)                                        \
2299        static inline void task_set_##func(struct task_struct *p)       \
2300        { set_bit(PFA_##name, &p->atomic_flags); }
2301#define TASK_PFA_CLEAR(name, func)                                      \
2302        static inline void task_clear_##func(struct task_struct *p)     \
2303        { clear_bit(PFA_##name, &p->atomic_flags); }
2304
2305TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2306TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2307
2308TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2309TASK_PFA_SET(SPREAD_PAGE, spread_page)
2310TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2311
2312TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2313TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2314TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2315
2316TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2317TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2318
2319/*
2320 * task->jobctl flags
2321 */
2322#define JOBCTL_STOP_SIGMASK     0xffff  /* signr of the last group stop */
2323
2324#define JOBCTL_STOP_DEQUEUED_BIT 16     /* stop signal dequeued */
2325#define JOBCTL_STOP_PENDING_BIT 17      /* task should stop for group stop */
2326#define JOBCTL_STOP_CONSUME_BIT 18      /* consume group stop count */
2327#define JOBCTL_TRAP_STOP_BIT    19      /* trap for STOP */
2328#define JOBCTL_TRAP_NOTIFY_BIT  20      /* trap for NOTIFY */
2329#define JOBCTL_TRAPPING_BIT     21      /* switching to TRACED */
2330#define JOBCTL_LISTENING_BIT    22      /* ptracer is listening for events */
2331
2332#define JOBCTL_STOP_DEQUEUED    (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2333#define JOBCTL_STOP_PENDING     (1UL << JOBCTL_STOP_PENDING_BIT)
2334#define JOBCTL_STOP_CONSUME     (1UL << JOBCTL_STOP_CONSUME_BIT)
2335#define JOBCTL_TRAP_STOP        (1UL << JOBCTL_TRAP_STOP_BIT)
2336#define JOBCTL_TRAP_NOTIFY      (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2337#define JOBCTL_TRAPPING         (1UL << JOBCTL_TRAPPING_BIT)
2338#define JOBCTL_LISTENING        (1UL << JOBCTL_LISTENING_BIT)
2339
2340#define JOBCTL_TRAP_MASK        (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2341#define JOBCTL_PENDING_MASK     (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2342
2343extern bool task_set_jobctl_pending(struct task_struct *task,
2344                                    unsigned long mask);
2345extern void task_clear_jobctl_trapping(struct task_struct *task);
2346extern void task_clear_jobctl_pending(struct task_struct *task,
2347                                      unsigned long mask);
2348
2349static inline void rcu_copy_process(struct task_struct *p)
2350{
2351#ifdef CONFIG_PREEMPT_RCU
2352        p->rcu_read_lock_nesting = 0;
2353        p->rcu_read_unlock_special.s = 0;
2354        p->rcu_blocked_node = NULL;
2355        INIT_LIST_HEAD(&p->rcu_node_entry);
2356#endif /* #ifdef CONFIG_PREEMPT_RCU */
2357#ifdef CONFIG_TASKS_RCU
2358        p->rcu_tasks_holdout = false;
2359        INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2360        p->rcu_tasks_idle_cpu = -1;
2361#endif /* #ifdef CONFIG_TASKS_RCU */
2362}
2363
2364static inline void tsk_restore_flags(struct task_struct *task,
2365                                unsigned long orig_flags, unsigned long flags)
2366{
2367        task->flags &= ~flags;
2368        task->flags |= orig_flags & flags;
2369}
2370
2371extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2372                                     const struct cpumask *trial);
2373extern int task_can_attach(struct task_struct *p,
2374                           const struct cpumask *cs_cpus_allowed);
2375#ifdef CONFIG_SMP
2376extern void do_set_cpus_allowed(struct task_struct *p,
2377                               const struct cpumask *new_mask);
2378
2379extern int set_cpus_allowed_ptr(struct task_struct *p,
2380                                const struct cpumask *new_mask);
2381#else
2382static inline void do_set_cpus_allowed(struct task_struct *p,
2383                                      const struct cpumask *new_mask)
2384{
2385}
2386static inline int set_cpus_allowed_ptr(struct task_struct *p,
2387                                       const struct cpumask *new_mask)
2388{
2389        if (!cpumask_test_cpu(0, new_mask))
2390                return -EINVAL;
2391        return 0;
2392}
2393#endif
2394
2395#ifdef CONFIG_NO_HZ_COMMON
2396void calc_load_enter_idle(void);
2397void calc_load_exit_idle(void);
2398#else
2399static inline void calc_load_enter_idle(void) { }
2400static inline void calc_load_exit_idle(void) { }
2401#endif /* CONFIG_NO_HZ_COMMON */
2402
2403/*
2404 * Do not use outside of architecture code which knows its limitations.
2405 *
2406 * sched_clock() has no promise of monotonicity or bounded drift between
2407 * CPUs, use (which you should not) requires disabling IRQs.
2408 *
2409 * Please use one of the three interfaces below.
2410 */
2411extern unsigned long long notrace sched_clock(void);
2412/*
2413 * See the comment in kernel/sched/clock.c
2414 */
2415extern u64 running_clock(void);
2416extern u64 sched_clock_cpu(int cpu);
2417
2418
2419extern void sched_clock_init(void);
2420
2421#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2422static inline void sched_clock_tick(void)
2423{
2424}
2425
2426static inline void sched_clock_idle_sleep_event(void)
2427{
2428}
2429
2430static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2431{
2432}
2433
2434static inline u64 cpu_clock(int cpu)
2435{
2436        return sched_clock();
2437}
2438
2439static inline u64 local_clock(void)
2440{
2441        return sched_clock();
2442}
2443#else
2444/*
2445 * Architectures can set this to 1 if they have specified
2446 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2447 * but then during bootup it turns out that sched_clock()
2448 * is reliable after all:
2449 */
2450extern int sched_clock_stable(void);
2451extern void set_sched_clock_stable(void);
2452extern void clear_sched_clock_stable(void);
2453
2454extern void sched_clock_tick(void);
2455extern void sched_clock_idle_sleep_event(void);
2456extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2457
2458/*
2459 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2460 * time source that is monotonic per cpu argument and has bounded drift
2461 * between cpus.
2462 *
2463 * ######################### BIG FAT WARNING ##########################
2464 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2465 * # go backwards !!                                                  #
2466 * ####################################################################
2467 */
2468static inline u64 cpu_clock(int cpu)
2469{
2470        return sched_clock_cpu(cpu);
2471}
2472
2473static inline u64 local_clock(void)
2474{
2475        return sched_clock_cpu(raw_smp_processor_id());
2476}
2477#endif
2478
2479#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2480/*
2481 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2482 * The reason for this explicit opt-in is not to have perf penalty with
2483 * slow sched_clocks.
2484 */
2485extern void enable_sched_clock_irqtime(void);
2486extern void disable_sched_clock_irqtime(void);
2487#else
2488static inline void enable_sched_clock_irqtime(void) {}
2489static inline void disable_sched_clock_irqtime(void) {}
2490#endif
2491
2492extern unsigned long long
2493task_sched_runtime(struct task_struct *task);
2494
2495/* sched_exec is called by processes performing an exec */
2496#ifdef CONFIG_SMP
2497extern void sched_exec(void);
2498#else
2499#define sched_exec()   {}
2500#endif
2501
2502extern void sched_clock_idle_sleep_event(void);
2503extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2504
2505#ifdef CONFIG_HOTPLUG_CPU
2506extern void idle_task_exit(void);
2507#else
2508static inline void idle_task_exit(void) {}
2509#endif
2510
2511#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2512extern void wake_up_nohz_cpu(int cpu);
2513#else
2514static inline void wake_up_nohz_cpu(int cpu) { }
2515#endif
2516
2517#ifdef CONFIG_NO_HZ_FULL
2518extern u64 scheduler_tick_max_deferment(void);
2519#endif
2520
2521#ifdef CONFIG_SCHED_AUTOGROUP
2522extern void sched_autogroup_create_attach(struct task_struct *p);
2523extern void sched_autogroup_detach(struct task_struct *p);
2524extern void sched_autogroup_fork(struct signal_struct *sig);
2525extern void sched_autogroup_exit(struct signal_struct *sig);
2526#ifdef CONFIG_PROC_FS
2527extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2528extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2529#endif
2530#else
2531static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2532static inline void sched_autogroup_detach(struct task_struct *p) { }
2533static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2534static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2535#endif
2536
2537extern int yield_to(struct task_struct *p, bool preempt);
2538extern void set_user_nice(struct task_struct *p, long nice);
2539extern int task_prio(const struct task_struct *p);
2540/**
2541 * task_nice - return the nice value of a given task.
2542 * @p: the task in question.
2543 *
2544 * Return: The nice value [ -20 ... 0 ... 19 ].
2545 */
2546static inline int task_nice(const struct task_struct *p)
2547{
2548        return PRIO_TO_NICE((p)->static_prio);
2549}
2550extern int can_nice(const struct task_struct *p, const int nice);
2551extern int task_curr(const struct task_struct *p);
2552extern int idle_cpu(int cpu);
2553extern int sched_setscheduler(struct task_struct *, int,
2554                              const struct sched_param *);
2555extern int sched_setscheduler_nocheck(struct task_struct *, int,
2556                                      const struct sched_param *);
2557extern int sched_setattr(struct task_struct *,
2558                         const struct sched_attr *);
2559extern struct task_struct *idle_task(int cpu);
2560/**
2561 * is_idle_task - is the specified task an idle task?
2562 * @p: the task in question.
2563 *
2564 * Return: 1 if @p is an idle task. 0 otherwise.
2565 */
2566static inline bool is_idle_task(const struct task_struct *p)
2567{
2568        return p->pid == 0;
2569}
2570extern struct task_struct *curr_task(int cpu);
2571extern void set_curr_task(int cpu, struct task_struct *p);
2572
2573void yield(void);
2574
2575union thread_union {
2576        struct thread_info thread_info;
2577        unsigned long stack[THREAD_SIZE/sizeof(long)];
2578};
2579
2580#ifndef __HAVE_ARCH_KSTACK_END
2581static inline int kstack_end(void *addr)
2582{
2583        /* Reliable end of stack detection:
2584         * Some APM bios versions misalign the stack
2585         */
2586        return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2587}
2588#endif
2589
2590extern union thread_union init_thread_union;
2591extern struct task_struct init_task;
2592
2593extern struct   mm_struct init_mm;
2594
2595extern struct pid_namespace init_pid_ns;
2596
2597/*
2598 * find a task by one of its numerical ids
2599 *
2600 * find_task_by_pid_ns():
2601 *      finds a task by its pid in the specified namespace
2602 * find_task_by_vpid():
2603 *      finds a task by its virtual pid
2604 *
2605 * see also find_vpid() etc in include/linux/pid.h
2606 */
2607
2608extern struct task_struct *find_task_by_vpid(pid_t nr);
2609extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2610                struct pid_namespace *ns);
2611
2612/* per-UID process charging. */
2613extern struct user_struct * alloc_uid(kuid_t);
2614static inline struct user_struct *get_uid(struct user_struct *u)
2615{
2616        atomic_inc(&u->__count);
2617        return u;
2618}
2619extern void free_uid(struct user_struct *);
2620
2621#include <asm/current.h>
2622
2623extern void xtime_update(unsigned long ticks);
2624
2625extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2626extern int wake_up_process(struct task_struct *tsk);
2627extern void wake_up_new_task(struct task_struct *tsk);
2628#ifdef CONFIG_SMP
2629 extern void kick_process(struct task_struct *tsk);
2630#else
2631 static inline void kick_process(struct task_struct *tsk) { }
2632#endif
2633extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2634extern void sched_dead(struct task_struct *p);
2635
2636extern void proc_caches_init(void);
2637extern void flush_signals(struct task_struct *);
2638extern void ignore_signals(struct task_struct *);
2639extern void flush_signal_handlers(struct task_struct *, int force_default);
2640extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2641
2642static inline int kernel_dequeue_signal(siginfo_t *info)
2643{
2644        struct task_struct *tsk = current;
2645        siginfo_t __info;
2646        int ret;
2647
2648        spin_lock_irq(&tsk->sighand->siglock);
2649        ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2650        spin_unlock_irq(&tsk->sighand->siglock);
2651
2652        return ret;
2653}
2654
2655static inline void kernel_signal_stop(void)
2656{
2657        spin_lock_irq(&current->sighand->siglock);
2658        if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2659                __set_current_state(TASK_STOPPED);
2660        spin_unlock_irq(&current->sighand->siglock);
2661
2662        schedule();
2663}
2664
2665extern void release_task(struct task_struct * p);
2666extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2667extern int force_sigsegv(int, struct task_struct *);
2668extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2669extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2670extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2671extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2672                                const struct cred *, u32);
2673extern int kill_pgrp(struct pid *pid, int sig, int priv);
2674extern int kill_pid(struct pid *pid, int sig, int priv);
2675extern int kill_proc_info(int, struct siginfo *, pid_t);
2676extern __must_check bool do_notify_parent(struct task_struct *, int);
2677extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2678extern void force_sig(int, struct task_struct *);
2679extern int send_sig(int, struct task_struct *, int);
2680extern int zap_other_threads(struct task_struct *p);
2681extern struct sigqueue *sigqueue_alloc(void);
2682extern void sigqueue_free(struct sigqueue *);
2683extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2684extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2685
2686#ifdef TIF_RESTORE_SIGMASK
2687/*
2688 * Legacy restore_sigmask accessors.  These are inefficient on
2689 * SMP architectures because they require atomic operations.
2690 */
2691
2692/**
2693 * set_restore_sigmask() - make sure saved_sigmask processing gets done
2694 *
2695 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2696 * will run before returning to user mode, to process the flag.  For
2697 * all callers, TIF_SIGPENDING is already set or it's no harm to set
2698 * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
2699 * arch code will notice on return to user mode, in case those bits
2700 * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
2701 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2702 */
2703static inline void set_restore_sigmask(void)
2704{
2705        set_thread_flag(TIF_RESTORE_SIGMASK);
2706        WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2707}
2708static inline void clear_restore_sigmask(void)
2709{
2710        clear_thread_flag(TIF_RESTORE_SIGMASK);
2711}
2712static inline bool test_restore_sigmask(void)
2713{
2714        return test_thread_flag(TIF_RESTORE_SIGMASK);
2715}
2716static inline bool test_and_clear_restore_sigmask(void)
2717{
2718        return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2719}
2720
2721#else   /* TIF_RESTORE_SIGMASK */
2722
2723/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
2724static inline void set_restore_sigmask(void)
2725{
2726        current->restore_sigmask = true;
2727        WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2728}
2729static inline void clear_restore_sigmask(void)
2730{
2731        current->restore_sigmask = false;
2732}
2733static inline bool test_restore_sigmask(void)
2734{
2735        return current->restore_sigmask;
2736}
2737static inline bool test_and_clear_restore_sigmask(void)
2738{
2739        if (!current->restore_sigmask)
2740                return false;
2741        current->restore_sigmask = false;
2742        return true;
2743}
2744#endif
2745
2746static inline void restore_saved_sigmask(void)
2747{
2748        if (test_and_clear_restore_sigmask())
2749                __set_current_blocked(&current->saved_sigmask);
2750}
2751
2752static inline sigset_t *sigmask_to_save(void)
2753{
2754        sigset_t *res = &current->blocked;
2755        if (unlikely(test_restore_sigmask()))
2756                res = &current->saved_sigmask;
2757        return res;
2758}
2759
2760static inline int kill_cad_pid(int sig, int priv)
2761{
2762        return kill_pid(cad_pid, sig, priv);
2763}
2764
2765/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2766#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2767#define SEND_SIG_PRIV   ((struct siginfo *) 1)
2768#define SEND_SIG_FORCED ((struct siginfo *) 2)
2769
2770/*
2771 * True if we are on the alternate signal stack.
2772 */
2773static inline int on_sig_stack(unsigned long sp)
2774{
2775        /*
2776         * If the signal stack is SS_AUTODISARM then, by construction, we
2777         * can't be on the signal stack unless user code deliberately set
2778         * SS_AUTODISARM when we were already on it.
2779         *
2780         * This improves reliability: if user state gets corrupted such that
2781         * the stack pointer points very close to the end of the signal stack,
2782         * then this check will enable the signal to be handled anyway.
2783         */
2784        if (current->sas_ss_flags & SS_AUTODISARM)
2785                return 0;
2786
2787#ifdef CONFIG_STACK_GROWSUP
2788        return sp >= current->sas_ss_sp &&
2789                sp - current->sas_ss_sp < current->sas_ss_size;
2790#else
2791        return sp > current->sas_ss_sp &&
2792                sp - current->sas_ss_sp <= current->sas_ss_size;
2793#endif
2794}
2795
2796static inline int sas_ss_flags(unsigned long sp)
2797{
2798        if (!current->sas_ss_size)
2799                return SS_DISABLE;
2800
2801        return on_sig_stack(sp) ? SS_ONSTACK : 0;
2802}
2803
2804static inline void sas_ss_reset(struct task_struct *p)
2805{
2806        p->sas_ss_sp = 0;
2807        p->sas_ss_size = 0;
2808        p->sas_ss_flags = SS_DISABLE;
2809}
2810
2811static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2812{
2813        if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2814#ifdef CONFIG_STACK_GROWSUP
2815                return current->sas_ss_sp;
2816#else
2817                return current->sas_ss_sp + current->sas_ss_size;
2818#endif
2819        return sp;
2820}
2821
2822/*
2823 * Routines for handling mm_structs
2824 */
2825extern struct mm_struct * mm_alloc(void);
2826
2827/* mmdrop drops the mm and the page tables */
2828extern void __mmdrop(struct mm_struct *);
2829static inline void mmdrop(struct mm_struct *mm)
2830{
2831        if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2832                __mmdrop(mm);
2833}
2834
2835static inline bool mmget_not_zero(struct mm_struct *mm)
2836{
2837        return atomic_inc_not_zero(&mm->mm_users);
2838}
2839
2840/* mmput gets rid of the mappings and all user-space */
2841extern void mmput(struct mm_struct *);
2842#ifdef CONFIG_MMU
2843/* same as above but performs the slow path from the async context. Can
2844 * be called from the atomic context as well
2845 */
2846extern void mmput_async(struct mm_struct *);
2847#endif
2848
2849/* Grab a reference to a task's mm, if it is not already going away */
2850extern struct mm_struct *get_task_mm(struct task_struct *task);
2851/*
2852 * Grab a reference to a task's mm, if it is not already going away
2853 * and ptrace_may_access with the mode parameter passed to it
2854 * succeeds.
2855 */
2856extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2857/* Remove the current tasks stale references to the old mm_struct */
2858extern void mm_release(struct task_struct *, struct mm_struct *);
2859
2860#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2861extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2862                        struct task_struct *, unsigned long);
2863#else
2864extern int copy_thread(unsigned long, unsigned long, unsigned long,
2865                        struct task_struct *);
2866
2867/* Architectures that haven't opted into copy_thread_tls get the tls argument
2868 * via pt_regs, so ignore the tls argument passed via C. */
2869static inline int copy_thread_tls(
2870                unsigned long clone_flags, unsigned long sp, unsigned long arg,
2871                struct task_struct *p, unsigned long tls)
2872{
2873        return copy_thread(clone_flags, sp, arg, p);
2874}
2875#endif
2876extern void flush_thread(void);
2877
2878#ifdef CONFIG_HAVE_EXIT_THREAD
2879extern void exit_thread(struct task_struct *tsk);
2880#else
2881static inline void exit_thread(struct task_struct *tsk)
2882{
2883}
2884#endif
2885
2886extern void exit_files(struct task_struct *);
2887extern void __cleanup_sighand(struct sighand_struct *);
2888
2889extern void exit_itimers(struct signal_struct *);
2890extern void flush_itimer_signals(void);
2891
2892extern void do_group_exit(int);
2893
2894extern int do_execve(struct filename *,
2895                     const char __user * const __user *,
2896                     const char __user * const __user *);
2897extern int do_execveat(int, struct filename *,
2898                       const char __user * const __user *,
2899                       const char __user * const __user *,
2900                       int);
2901extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2902extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2903struct task_struct *fork_idle(int);
2904extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2905
2906extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2907static inline void set_task_comm(struct task_struct *tsk, const char *from)
2908{
2909        __set_task_comm(tsk, from, false);
2910}
2911extern char *get_task_comm(char *to, struct task_struct *tsk);
2912
2913#ifdef CONFIG_SMP
2914void scheduler_ipi(void);
2915extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2916#else
2917static inline void scheduler_ipi(void) { }
2918static inline unsigned long wait_task_inactive(struct task_struct *p,
2919                                               long match_state)
2920{
2921        return 1;
2922}
2923#endif
2924
2925#define tasklist_empty() \
2926        list_empty(&init_task.tasks)
2927
2928#define next_task(p) \
2929        list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2930
2931#define for_each_process(p) \
2932        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2933
2934extern bool current_is_single_threaded(void);
2935
2936/*
2937 * Careful: do_each_thread/while_each_thread is a double loop so
2938 *          'break' will not work as expected - use goto instead.
2939 */
2940#define do_each_thread(g, t) \
2941        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2942
2943#define while_each_thread(g, t) \
2944        while ((t = next_thread(t)) != g)
2945
2946#define __for_each_thread(signal, t)    \
2947        list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2948
2949#define for_each_thread(p, t)           \
2950        __for_each_thread((p)->signal, t)
2951
2952/* Careful: this is a double loop, 'break' won't work as expected. */
2953#define for_each_process_thread(p, t)   \
2954        for_each_process(p) for_each_thread(p, t)
2955
2956static inline int get_nr_threads(struct task_struct *tsk)
2957{
2958        return tsk->signal->nr_threads;
2959}
2960
2961static inline bool thread_group_leader(struct task_struct *p)
2962{
2963        return p->exit_signal >= 0;
2964}
2965
2966/* Do to the insanities of de_thread it is possible for a process
2967 * to have the pid of the thread group leader without actually being
2968 * the thread group leader.  For iteration through the pids in proc
2969 * all we care about is that we have a task with the appropriate
2970 * pid, we don't actually care if we have the right task.
2971 */
2972static inline bool has_group_leader_pid(struct task_struct *p)
2973{
2974        return task_pid(p) == p->signal->leader_pid;
2975}
2976
2977static inline
2978bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2979{
2980        return p1->signal == p2->signal;
2981}
2982
2983static inline struct task_struct *next_thread(const struct task_struct *p)
2984{
2985        return list_entry_rcu(p->thread_group.next,
2986                              struct task_struct, thread_group);
2987}
2988
2989static inline int thread_group_empty(struct task_struct *p)
2990{
2991        return list_empty(&p->thread_group);
2992}
2993
2994#define delay_group_leader(p) \
2995                (thread_group_leader(p) && !thread_group_empty(p))
2996
2997/*
2998 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2999 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
3000 * pins the final release of task.io_context.  Also protects ->cpuset and
3001 * ->cgroup.subsys[]. And ->vfork_done.
3002 *
3003 * Nests both inside and outside of read_lock(&tasklist_lock).
3004 * It must not be nested with write_lock_irq(&tasklist_lock),
3005 * neither inside nor outside.
3006 */
3007static inline void task_lock(struct task_struct *p)
3008{
3009        spin_lock(&p->alloc_lock);
3010}
3011
3012static inline void task_unlock(struct task_struct *p)
3013{
3014        spin_unlock(&p->alloc_lock);
3015}
3016
3017extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
3018                                                        unsigned long *flags);
3019
3020static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3021                                                       unsigned long *flags)
3022{
3023        struct sighand_struct *ret;
3024
3025        ret = __lock_task_sighand(tsk, flags);
3026        (void)__cond_lock(&tsk->sighand->siglock, ret);
3027        return ret;
3028}
3029
3030static inline void unlock_task_sighand(struct task_struct *tsk,
3031                                                unsigned long *flags)
3032{
3033        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3034}
3035
3036/**
3037 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
3038 * @tsk: task causing the changes
3039 *
3040 * All operations which modify a threadgroup - a new thread joining the
3041 * group, death of a member thread (the assertion of PF_EXITING) and
3042 * exec(2) dethreading the process and replacing the leader - are wrapped
3043 * by threadgroup_change_{begin|end}().  This is to provide a place which
3044 * subsystems needing threadgroup stability can hook into for
3045 * synchronization.
3046 */
3047static inline void threadgroup_change_begin(struct task_struct *tsk)
3048{
3049        might_sleep();
3050        cgroup_threadgroup_change_begin(tsk);
3051}
3052
3053/**
3054 * threadgroup_change_end - mark the end of changes to a threadgroup
3055 * @tsk: task causing the changes
3056 *
3057 * See threadgroup_change_begin().
3058 */
3059static inline void threadgroup_change_end(struct task_struct *tsk)
3060{
3061        cgroup_threadgroup_change_end(tsk);
3062}
3063
3064#ifndef __HAVE_THREAD_FUNCTIONS
3065
3066#define task_thread_info(task)  ((struct thread_info *)(task)->stack)
3067#define task_stack_page(task)   ((task)->stack)
3068
3069static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3070{
3071        *task_thread_info(p) = *task_thread_info(org);
3072        task_thread_info(p)->task = p;
3073}
3074
3075/*
3076 * Return the address of the last usable long on the stack.
3077 *
3078 * When the stack grows down, this is just above the thread
3079 * info struct. Going any lower will corrupt the threadinfo.
3080 *
3081 * When the stack grows up, this is the highest address.
3082 * Beyond that position, we corrupt data on the next page.
3083 */
3084static inline unsigned long *end_of_stack(struct task_struct *p)
3085{
3086#ifdef CONFIG_STACK_GROWSUP
3087        return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3088#else
3089        return (unsigned long *)(task_thread_info(p) + 1);
3090#endif
3091}
3092
3093#endif
3094#define task_stack_end_corrupted(task) \
3095                (*(end_of_stack(task)) != STACK_END_MAGIC)
3096
3097static inline int object_is_on_stack(void *obj)
3098{
3099        void *stack = task_stack_page(current);
3100
3101        return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3102}
3103
3104extern void thread_stack_cache_init(void);
3105
3106#ifdef CONFIG_DEBUG_STACK_USAGE
3107static inline unsigned long stack_not_used(struct task_struct *p)
3108{
3109        unsigned long *n = end_of_stack(p);
3110
3111        do {    /* Skip over canary */
3112# ifdef CONFIG_STACK_GROWSUP
3113                n--;
3114# else
3115                n++;
3116# endif
3117        } while (!*n);
3118
3119# ifdef CONFIG_STACK_GROWSUP
3120        return (unsigned long)end_of_stack(p) - (unsigned long)n;
3121# else
3122        return (unsigned long)n - (unsigned long)end_of_stack(p);
3123# endif
3124}
3125#endif
3126extern void set_task_stack_end_magic(struct task_struct *tsk);
3127
3128/* set thread flags in other task's structures
3129 * - see asm/thread_info.h for TIF_xxxx flags available
3130 */
3131static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3132{
3133        set_ti_thread_flag(task_thread_info(tsk), flag);
3134}
3135
3136static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3137{
3138        clear_ti_thread_flag(task_thread_info(tsk), flag);
3139}
3140
3141static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3142{
3143        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
3144}
3145
3146static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3147{
3148        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
3149}
3150
3151static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3152{
3153        return test_ti_thread_flag(task_thread_info(tsk), flag);
3154}
3155
3156static inline void set_tsk_need_resched(struct task_struct *tsk)
3157{
3158        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3159}
3160
3161static inline void clear_tsk_need_resched(struct task_struct *tsk)
3162{
3163        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3164}
3165
3166static inline int test_tsk_need_resched(struct task_struct *tsk)
3167{
3168        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3169}
3170
3171static inline int restart_syscall(void)
3172{
3173        set_tsk_thread_flag(current, TIF_SIGPENDING);
3174        return -ERESTARTNOINTR;
3175}
3176
3177static inline int signal_pending(struct task_struct *p)
3178{
3179        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3180}
3181
3182static inline int __fatal_signal_pending(struct task_struct *p)
3183{
3184        return unlikely(sigismember(&p->pending.signal, SIGKILL));
3185}
3186
3187static inline int fatal_signal_pending(struct task_struct *p)
3188{
3189        return signal_pending(p) && __fatal_signal_pending(p);
3190}
3191
3192static inline int signal_pending_state(long state, struct task_struct *p)
3193{
3194        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3195                return 0;
3196        if (!signal_pending(p))
3197                return 0;
3198
3199        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3200}
3201
3202/*
3203 * cond_resched() and cond_resched_lock(): latency reduction via
3204 * explicit rescheduling in places that are safe. The return
3205 * value indicates whether a reschedule was done in fact.
3206 * cond_resched_lock() will drop the spinlock before scheduling,
3207 * cond_resched_softirq() will enable bhs before scheduling.
3208 */
3209extern int _cond_resched(void);
3210
3211#define cond_resched() ({                       \
3212        ___might_sleep(__FILE__, __LINE__, 0);  \
3213        _cond_resched();                        \
3214})
3215
3216extern int __cond_resched_lock(spinlock_t *lock);
3217
3218#define cond_resched_lock(lock) ({                              \
3219        ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
3220        __cond_resched_lock(lock);                              \
3221})
3222
3223extern int __cond_resched_softirq(void);
3224
3225#define cond_resched_softirq() ({                                       \
3226        ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);     \
3227        __cond_resched_softirq();                                       \
3228})
3229
3230static inline void cond_resched_rcu(void)
3231{
3232#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3233        rcu_read_unlock();
3234        cond_resched();
3235        rcu_read_lock();
3236#endif
3237}
3238
3239/*
3240 * Does a critical section need to be broken due to another
3241 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3242 * but a general need for low latency)
3243 */
3244static inline int spin_needbreak(spinlock_t *lock)
3245{
3246#ifdef CONFIG_PREEMPT
3247        return spin_is_contended(lock);
3248#else
3249        return 0;
3250#endif
3251}
3252
3253/*
3254 * Idle thread specific functions to determine the need_resched
3255 * polling state.
3256 */
3257#ifdef TIF_POLLING_NRFLAG
3258static inline int tsk_is_polling(struct task_struct *p)
3259{
3260        return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3261}
3262
3263static inline void __current_set_polling(void)
3264{
3265        set_thread_flag(TIF_POLLING_NRFLAG);
3266}
3267
3268static inline bool __must_check current_set_polling_and_test(void)
3269{
3270        __current_set_polling();
3271
3272        /*
3273         * Polling state must be visible before we test NEED_RESCHED,
3274         * paired by resched_curr()
3275         */
3276        smp_mb__after_atomic();
3277
3278        return unlikely(tif_need_resched());
3279}
3280
3281static inline void __current_clr_polling(void)
3282{
3283        clear_thread_flag(TIF_POLLING_NRFLAG);
3284}
3285
3286static inline bool __must_check current_clr_polling_and_test(void)
3287{
3288        __current_clr_polling();
3289
3290        /*
3291         * Polling state must be visible before we test NEED_RESCHED,
3292         * paired by resched_curr()
3293         */
3294        smp_mb__after_atomic();
3295
3296        return unlikely(tif_need_resched());
3297}
3298
3299#else
3300static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3301static inline void __current_set_polling(void) { }
3302static inline void __current_clr_polling(void) { }
3303
3304static inline bool __must_check current_set_polling_and_test(void)
3305{
3306        return unlikely(tif_need_resched());
3307}
3308static inline bool __must_check current_clr_polling_and_test(void)
3309{
3310        return unlikely(tif_need_resched());
3311}
3312#endif
3313
3314static inline void current_clr_polling(void)
3315{
3316        __current_clr_polling();
3317
3318        /*
3319         * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3320         * Once the bit is cleared, we'll get IPIs with every new
3321         * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3322         * fold.
3323         */
3324        smp_mb(); /* paired with resched_curr() */
3325
3326        preempt_fold_need_resched();
3327}
3328
3329static __always_inline bool need_resched(void)
3330{
3331        return unlikely(tif_need_resched());
3332}
3333
3334/*
3335 * Thread group CPU time accounting.
3336 */
3337void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3338void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3339
3340/*
3341 * Reevaluate whether the task has signals pending delivery.
3342 * Wake the task if so.
3343 * This is required every time the blocked sigset_t changes.
3344 * callers must hold sighand->siglock.
3345 */
3346extern void recalc_sigpending_and_wake(struct task_struct *t);
3347extern void recalc_sigpending(void);
3348
3349extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3350
3351static inline void signal_wake_up(struct task_struct *t, bool resume)
3352{
3353        signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3354}
3355static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3356{
3357        signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3358}
3359
3360/*
3361 * Wrappers for p->thread_info->cpu access. No-op on UP.
3362 */
3363#ifdef CONFIG_SMP
3364
3365static inline unsigned int task_cpu(const struct task_struct *p)
3366{
3367        return task_thread_info(p)->cpu;
3368}
3369
3370static inline int task_node(const struct task_struct *p)
3371{
3372        return cpu_to_node(task_cpu(p));
3373}
3374
3375extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3376
3377#else
3378
3379static inline unsigned int task_cpu(const struct task_struct *p)
3380{
3381        return 0;
3382}
3383
3384static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3385{
3386}
3387
3388#endif /* CONFIG_SMP */
3389
3390extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3391extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3392
3393#ifdef CONFIG_CGROUP_SCHED
3394extern struct task_group root_task_group;
3395#endif /* CONFIG_CGROUP_SCHED */
3396
3397extern int task_can_switch_user(struct user_struct *up,
3398                                        struct task_struct *tsk);
3399
3400#ifdef CONFIG_TASK_XACCT
3401static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3402{
3403        tsk->ioac.rchar += amt;
3404}
3405
3406static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3407{
3408        tsk->ioac.wchar += amt;
3409}
3410
3411static inline void inc_syscr(struct task_struct *tsk)
3412{
3413        tsk->ioac.syscr++;
3414}
3415
3416static inline void inc_syscw(struct task_struct *tsk)
3417{
3418        tsk->ioac.syscw++;
3419}
3420#else
3421static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3422{
3423}
3424
3425static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3426{
3427}
3428
3429static inline void inc_syscr(struct task_struct *tsk)
3430{
3431}
3432
3433static inline void inc_syscw(struct task_struct *tsk)
3434{
3435}
3436#endif
3437
3438#ifndef TASK_SIZE_OF
3439#define TASK_SIZE_OF(tsk)       TASK_SIZE
3440#endif
3441
3442#ifdef CONFIG_MEMCG
3443extern void mm_update_next_owner(struct mm_struct *mm);
3444#else
3445static inline void mm_update_next_owner(struct mm_struct *mm)
3446{
3447}
3448#endif /* CONFIG_MEMCG */
3449
3450static inline unsigned long task_rlimit(const struct task_struct *tsk,
3451                unsigned int limit)
3452{
3453        return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3454}
3455
3456static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3457                unsigned int limit)
3458{
3459        return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3460}
3461
3462static inline unsigned long rlimit(unsigned int limit)
3463{
3464        return task_rlimit(current, limit);
3465}
3466
3467static inline unsigned long rlimit_max(unsigned int limit)
3468{
3469        return task_rlimit_max(current, limit);
3470}
3471
3472#ifdef CONFIG_CPU_FREQ
3473struct update_util_data {
3474        void (*func)(struct update_util_data *data,
3475                     u64 time, unsigned long util, unsigned long max);
3476};
3477
3478void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3479                        void (*func)(struct update_util_data *data, u64 time,
3480                                     unsigned long util, unsigned long max));
3481void cpufreq_remove_update_util_hook(int cpu);
3482#endif /* CONFIG_CPU_FREQ */
3483
3484#endif
3485