linux/include/net/sock.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the AF_INET socket handler.
   7 *
   8 * Version:     @(#)sock.h      1.0.4   05/13/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Volatiles in skbuff pointers. See
  17 *                                      skbuff comments. May be overdone,
  18 *                                      better to prove they can be removed
  19 *                                      than the reverse.
  20 *              Alan Cox        :       Added a zapped field for tcp to note
  21 *                                      a socket is reset and must stay shut up
  22 *              Alan Cox        :       New fields for options
  23 *      Pauline Middelink       :       identd support
  24 *              Alan Cox        :       Eliminate low level recv/recvfrom
  25 *              David S. Miller :       New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  28 *                                      protinfo be just a void pointer, as the
  29 *                                      protocol specific parts were moved to
  30 *                                      respective headers and ipv4/v6, etc now
  31 *                                      use private slabcaches for its socks
  32 *              Pedro Hortas    :       New flags field for socket options
  33 *
  34 *
  35 *              This program is free software; you can redistribute it and/or
  36 *              modify it under the terms of the GNU General Public License
  37 *              as published by the Free Software Foundation; either version
  38 *              2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/bitops.h>
  50#include <linux/lockdep.h>
  51#include <linux/netdevice.h>
  52#include <linux/skbuff.h>       /* struct sk_buff */
  53#include <linux/mm.h>
  54#include <linux/security.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
  57#include <linux/page_counter.h>
  58#include <linux/memcontrol.h>
  59#include <linux/static_key.h>
  60#include <linux/sched.h>
  61#include <linux/wait.h>
  62#include <linux/cgroup-defs.h>
  63
  64#include <linux/filter.h>
  65#include <linux/rculist_nulls.h>
  66#include <linux/poll.h>
  67
  68#include <linux/atomic.h>
  69#include <net/dst.h>
  70#include <net/checksum.h>
  71#include <net/tcp_states.h>
  72#include <linux/net_tstamp.h>
  73
  74/*
  75 * This structure really needs to be cleaned up.
  76 * Most of it is for TCP, and not used by any of
  77 * the other protocols.
  78 */
  79
  80/* Define this to get the SOCK_DBG debugging facility. */
  81#define SOCK_DEBUGGING
  82#ifdef SOCK_DEBUGGING
  83#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  84                                        printk(KERN_DEBUG msg); } while (0)
  85#else
  86/* Validate arguments and do nothing */
  87static inline __printf(2, 3)
  88void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  89{
  90}
  91#endif
  92
  93/* This is the per-socket lock.  The spinlock provides a synchronization
  94 * between user contexts and software interrupt processing, whereas the
  95 * mini-semaphore synchronizes multiple users amongst themselves.
  96 */
  97typedef struct {
  98        spinlock_t              slock;
  99        int                     owned;
 100        wait_queue_head_t       wq;
 101        /*
 102         * We express the mutex-alike socket_lock semantics
 103         * to the lock validator by explicitly managing
 104         * the slock as a lock variant (in addition to
 105         * the slock itself):
 106         */
 107#ifdef CONFIG_DEBUG_LOCK_ALLOC
 108        struct lockdep_map dep_map;
 109#endif
 110} socket_lock_t;
 111
 112struct sock;
 113struct proto;
 114struct net;
 115
 116typedef __u32 __bitwise __portpair;
 117typedef __u64 __bitwise __addrpair;
 118
 119/**
 120 *      struct sock_common - minimal network layer representation of sockets
 121 *      @skc_daddr: Foreign IPv4 addr
 122 *      @skc_rcv_saddr: Bound local IPv4 addr
 123 *      @skc_hash: hash value used with various protocol lookup tables
 124 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 125 *      @skc_dport: placeholder for inet_dport/tw_dport
 126 *      @skc_num: placeholder for inet_num/tw_num
 127 *      @skc_family: network address family
 128 *      @skc_state: Connection state
 129 *      @skc_reuse: %SO_REUSEADDR setting
 130 *      @skc_reuseport: %SO_REUSEPORT setting
 131 *      @skc_bound_dev_if: bound device index if != 0
 132 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 133 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 134 *      @skc_prot: protocol handlers inside a network family
 135 *      @skc_net: reference to the network namespace of this socket
 136 *      @skc_node: main hash linkage for various protocol lookup tables
 137 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 138 *      @skc_tx_queue_mapping: tx queue number for this connection
 139 *      @skc_flags: place holder for sk_flags
 140 *              %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 141 *              %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 142 *      @skc_incoming_cpu: record/match cpu processing incoming packets
 143 *      @skc_refcnt: reference count
 144 *
 145 *      This is the minimal network layer representation of sockets, the header
 146 *      for struct sock and struct inet_timewait_sock.
 147 */
 148struct sock_common {
 149        /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 150         * address on 64bit arches : cf INET_MATCH()
 151         */
 152        union {
 153                __addrpair      skc_addrpair;
 154                struct {
 155                        __be32  skc_daddr;
 156                        __be32  skc_rcv_saddr;
 157                };
 158        };
 159        union  {
 160                unsigned int    skc_hash;
 161                __u16           skc_u16hashes[2];
 162        };
 163        /* skc_dport && skc_num must be grouped as well */
 164        union {
 165                __portpair      skc_portpair;
 166                struct {
 167                        __be16  skc_dport;
 168                        __u16   skc_num;
 169                };
 170        };
 171
 172        unsigned short          skc_family;
 173        volatile unsigned char  skc_state;
 174        unsigned char           skc_reuse:4;
 175        unsigned char           skc_reuseport:1;
 176        unsigned char           skc_ipv6only:1;
 177        unsigned char           skc_net_refcnt:1;
 178        int                     skc_bound_dev_if;
 179        union {
 180                struct hlist_node       skc_bind_node;
 181                struct hlist_node       skc_portaddr_node;
 182        };
 183        struct proto            *skc_prot;
 184        possible_net_t          skc_net;
 185
 186#if IS_ENABLED(CONFIG_IPV6)
 187        struct in6_addr         skc_v6_daddr;
 188        struct in6_addr         skc_v6_rcv_saddr;
 189#endif
 190
 191        atomic64_t              skc_cookie;
 192
 193        /* following fields are padding to force
 194         * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 195         * assuming IPV6 is enabled. We use this padding differently
 196         * for different kind of 'sockets'
 197         */
 198        union {
 199                unsigned long   skc_flags;
 200                struct sock     *skc_listener; /* request_sock */
 201                struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 202        };
 203        /*
 204         * fields between dontcopy_begin/dontcopy_end
 205         * are not copied in sock_copy()
 206         */
 207        /* private: */
 208        int                     skc_dontcopy_begin[0];
 209        /* public: */
 210        union {
 211                struct hlist_node       skc_node;
 212                struct hlist_nulls_node skc_nulls_node;
 213        };
 214        int                     skc_tx_queue_mapping;
 215        union {
 216                int             skc_incoming_cpu;
 217                u32             skc_rcv_wnd;
 218                u32             skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 219        };
 220
 221        atomic_t                skc_refcnt;
 222        /* private: */
 223        int                     skc_dontcopy_end[0];
 224        union {
 225                u32             skc_rxhash;
 226                u32             skc_window_clamp;
 227                u32             skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 228        };
 229        /* public: */
 230};
 231
 232/**
 233  *     struct sock - network layer representation of sockets
 234  *     @__sk_common: shared layout with inet_timewait_sock
 235  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 236  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 237  *     @sk_lock:       synchronizer
 238  *     @sk_rcvbuf: size of receive buffer in bytes
 239  *     @sk_wq: sock wait queue and async head
 240  *     @sk_rx_dst: receive input route used by early demux
 241  *     @sk_dst_cache: destination cache
 242  *     @sk_policy: flow policy
 243  *     @sk_receive_queue: incoming packets
 244  *     @sk_wmem_alloc: transmit queue bytes committed
 245  *     @sk_write_queue: Packet sending queue
 246  *     @sk_omem_alloc: "o" is "option" or "other"
 247  *     @sk_wmem_queued: persistent queue size
 248  *     @sk_forward_alloc: space allocated forward
 249  *     @sk_napi_id: id of the last napi context to receive data for sk
 250  *     @sk_ll_usec: usecs to busypoll when there is no data
 251  *     @sk_allocation: allocation mode
 252  *     @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 253  *     @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 254  *     @sk_sndbuf: size of send buffer in bytes
 255  *     @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 256  *     @sk_no_check_rx: allow zero checksum in RX packets
 257  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 258  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 259  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 260  *     @sk_gso_max_size: Maximum GSO segment size to build
 261  *     @sk_gso_max_segs: Maximum number of GSO segments
 262  *     @sk_lingertime: %SO_LINGER l_linger setting
 263  *     @sk_backlog: always used with the per-socket spinlock held
 264  *     @sk_callback_lock: used with the callbacks in the end of this struct
 265  *     @sk_error_queue: rarely used
 266  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 267  *                       IPV6_ADDRFORM for instance)
 268  *     @sk_err: last error
 269  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 270  *                   persistent failure not just 'timed out'
 271  *     @sk_drops: raw/udp drops counter
 272  *     @sk_ack_backlog: current listen backlog
 273  *     @sk_max_ack_backlog: listen backlog set in listen()
 274  *     @sk_priority: %SO_PRIORITY setting
 275  *     @sk_type: socket type (%SOCK_STREAM, etc)
 276  *     @sk_protocol: which protocol this socket belongs in this network family
 277  *     @sk_peer_pid: &struct pid for this socket's peer
 278  *     @sk_peer_cred: %SO_PEERCRED setting
 279  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 280  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 281  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 282  *     @sk_txhash: computed flow hash for use on transmit
 283  *     @sk_filter: socket filtering instructions
 284  *     @sk_timer: sock cleanup timer
 285  *     @sk_stamp: time stamp of last packet received
 286  *     @sk_tsflags: SO_TIMESTAMPING socket options
 287  *     @sk_tskey: counter to disambiguate concurrent tstamp requests
 288  *     @sk_socket: Identd and reporting IO signals
 289  *     @sk_user_data: RPC layer private data
 290  *     @sk_frag: cached page frag
 291  *     @sk_peek_off: current peek_offset value
 292  *     @sk_send_head: front of stuff to transmit
 293  *     @sk_security: used by security modules
 294  *     @sk_mark: generic packet mark
 295  *     @sk_cgrp_data: cgroup data for this cgroup
 296  *     @sk_memcg: this socket's memory cgroup association
 297  *     @sk_write_pending: a write to stream socket waits to start
 298  *     @sk_state_change: callback to indicate change in the state of the sock
 299  *     @sk_data_ready: callback to indicate there is data to be processed
 300  *     @sk_write_space: callback to indicate there is bf sending space available
 301  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 302  *     @sk_backlog_rcv: callback to process the backlog
 303  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 304  *     @sk_reuseport_cb: reuseport group container
 305 */
 306struct sock {
 307        /*
 308         * Now struct inet_timewait_sock also uses sock_common, so please just
 309         * don't add nothing before this first member (__sk_common) --acme
 310         */
 311        struct sock_common      __sk_common;
 312#define sk_node                 __sk_common.skc_node
 313#define sk_nulls_node           __sk_common.skc_nulls_node
 314#define sk_refcnt               __sk_common.skc_refcnt
 315#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 316
 317#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 318#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 319#define sk_hash                 __sk_common.skc_hash
 320#define sk_portpair             __sk_common.skc_portpair
 321#define sk_num                  __sk_common.skc_num
 322#define sk_dport                __sk_common.skc_dport
 323#define sk_addrpair             __sk_common.skc_addrpair
 324#define sk_daddr                __sk_common.skc_daddr
 325#define sk_rcv_saddr            __sk_common.skc_rcv_saddr
 326#define sk_family               __sk_common.skc_family
 327#define sk_state                __sk_common.skc_state
 328#define sk_reuse                __sk_common.skc_reuse
 329#define sk_reuseport            __sk_common.skc_reuseport
 330#define sk_ipv6only             __sk_common.skc_ipv6only
 331#define sk_net_refcnt           __sk_common.skc_net_refcnt
 332#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 333#define sk_bind_node            __sk_common.skc_bind_node
 334#define sk_prot                 __sk_common.skc_prot
 335#define sk_net                  __sk_common.skc_net
 336#define sk_v6_daddr             __sk_common.skc_v6_daddr
 337#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
 338#define sk_cookie               __sk_common.skc_cookie
 339#define sk_incoming_cpu         __sk_common.skc_incoming_cpu
 340#define sk_flags                __sk_common.skc_flags
 341#define sk_rxhash               __sk_common.skc_rxhash
 342
 343        socket_lock_t           sk_lock;
 344        struct sk_buff_head     sk_receive_queue;
 345        /*
 346         * The backlog queue is special, it is always used with
 347         * the per-socket spinlock held and requires low latency
 348         * access. Therefore we special case it's implementation.
 349         * Note : rmem_alloc is in this structure to fill a hole
 350         * on 64bit arches, not because its logically part of
 351         * backlog.
 352         */
 353        struct {
 354                atomic_t        rmem_alloc;
 355                int             len;
 356                struct sk_buff  *head;
 357                struct sk_buff  *tail;
 358        } sk_backlog;
 359#define sk_rmem_alloc sk_backlog.rmem_alloc
 360        int                     sk_forward_alloc;
 361
 362        __u32                   sk_txhash;
 363#ifdef CONFIG_NET_RX_BUSY_POLL
 364        unsigned int            sk_napi_id;
 365        unsigned int            sk_ll_usec;
 366#endif
 367        atomic_t                sk_drops;
 368        int                     sk_rcvbuf;
 369
 370        struct sk_filter __rcu  *sk_filter;
 371        union {
 372                struct socket_wq __rcu  *sk_wq;
 373                struct socket_wq        *sk_wq_raw;
 374        };
 375#ifdef CONFIG_XFRM
 376        struct xfrm_policy __rcu *sk_policy[2];
 377#endif
 378        struct dst_entry        *sk_rx_dst;
 379        struct dst_entry __rcu  *sk_dst_cache;
 380        /* Note: 32bit hole on 64bit arches */
 381        atomic_t                sk_wmem_alloc;
 382        atomic_t                sk_omem_alloc;
 383        int                     sk_sndbuf;
 384        struct sk_buff_head     sk_write_queue;
 385
 386        /*
 387         * Because of non atomicity rules, all
 388         * changes are protected by socket lock.
 389         */
 390        kmemcheck_bitfield_begin(flags);
 391        unsigned int            sk_padding : 2,
 392                                sk_no_check_tx : 1,
 393                                sk_no_check_rx : 1,
 394                                sk_userlocks : 4,
 395                                sk_protocol  : 8,
 396                                sk_type      : 16;
 397#define SK_PROTOCOL_MAX U8_MAX
 398        kmemcheck_bitfield_end(flags);
 399
 400        int                     sk_wmem_queued;
 401        gfp_t                   sk_allocation;
 402        u32                     sk_pacing_rate; /* bytes per second */
 403        u32                     sk_max_pacing_rate;
 404        netdev_features_t       sk_route_caps;
 405        netdev_features_t       sk_route_nocaps;
 406        int                     sk_gso_type;
 407        unsigned int            sk_gso_max_size;
 408        u16                     sk_gso_max_segs;
 409        int                     sk_rcvlowat;
 410        unsigned long           sk_lingertime;
 411        struct sk_buff_head     sk_error_queue;
 412        struct proto            *sk_prot_creator;
 413        rwlock_t                sk_callback_lock;
 414        int                     sk_err,
 415                                sk_err_soft;
 416        u32                     sk_ack_backlog;
 417        u32                     sk_max_ack_backlog;
 418        __u32                   sk_priority;
 419        __u32                   sk_mark;
 420        struct pid              *sk_peer_pid;
 421        const struct cred       *sk_peer_cred;
 422        long                    sk_rcvtimeo;
 423        long                    sk_sndtimeo;
 424        struct timer_list       sk_timer;
 425        ktime_t                 sk_stamp;
 426        u16                     sk_tsflags;
 427        u8                      sk_shutdown;
 428        u32                     sk_tskey;
 429        struct socket           *sk_socket;
 430        void                    *sk_user_data;
 431        struct page_frag        sk_frag;
 432        struct sk_buff          *sk_send_head;
 433        __s32                   sk_peek_off;
 434        int                     sk_write_pending;
 435#ifdef CONFIG_SECURITY
 436        void                    *sk_security;
 437#endif
 438        struct sock_cgroup_data sk_cgrp_data;
 439        struct mem_cgroup       *sk_memcg;
 440        void                    (*sk_state_change)(struct sock *sk);
 441        void                    (*sk_data_ready)(struct sock *sk);
 442        void                    (*sk_write_space)(struct sock *sk);
 443        void                    (*sk_error_report)(struct sock *sk);
 444        int                     (*sk_backlog_rcv)(struct sock *sk,
 445                                                  struct sk_buff *skb);
 446        void                    (*sk_destruct)(struct sock *sk);
 447        struct sock_reuseport __rcu     *sk_reuseport_cb;
 448        struct rcu_head         sk_rcu;
 449};
 450
 451#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 452
 453#define rcu_dereference_sk_user_data(sk)        rcu_dereference(__sk_user_data((sk)))
 454#define rcu_assign_sk_user_data(sk, ptr)        rcu_assign_pointer(__sk_user_data((sk)), ptr)
 455
 456/*
 457 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 458 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 459 * on a socket means that the socket will reuse everybody else's port
 460 * without looking at the other's sk_reuse value.
 461 */
 462
 463#define SK_NO_REUSE     0
 464#define SK_CAN_REUSE    1
 465#define SK_FORCE_REUSE  2
 466
 467int sk_set_peek_off(struct sock *sk, int val);
 468
 469static inline int sk_peek_offset(struct sock *sk, int flags)
 470{
 471        if (unlikely(flags & MSG_PEEK)) {
 472                s32 off = READ_ONCE(sk->sk_peek_off);
 473                if (off >= 0)
 474                        return off;
 475        }
 476
 477        return 0;
 478}
 479
 480static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 481{
 482        s32 off = READ_ONCE(sk->sk_peek_off);
 483
 484        if (unlikely(off >= 0)) {
 485                off = max_t(s32, off - val, 0);
 486                WRITE_ONCE(sk->sk_peek_off, off);
 487        }
 488}
 489
 490static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 491{
 492        sk_peek_offset_bwd(sk, -val);
 493}
 494
 495/*
 496 * Hashed lists helper routines
 497 */
 498static inline struct sock *sk_entry(const struct hlist_node *node)
 499{
 500        return hlist_entry(node, struct sock, sk_node);
 501}
 502
 503static inline struct sock *__sk_head(const struct hlist_head *head)
 504{
 505        return hlist_entry(head->first, struct sock, sk_node);
 506}
 507
 508static inline struct sock *sk_head(const struct hlist_head *head)
 509{
 510        return hlist_empty(head) ? NULL : __sk_head(head);
 511}
 512
 513static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 514{
 515        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 516}
 517
 518static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 519{
 520        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 521}
 522
 523static inline struct sock *sk_next(const struct sock *sk)
 524{
 525        return sk->sk_node.next ?
 526                hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
 527}
 528
 529static inline struct sock *sk_nulls_next(const struct sock *sk)
 530{
 531        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 532                hlist_nulls_entry(sk->sk_nulls_node.next,
 533                                  struct sock, sk_nulls_node) :
 534                NULL;
 535}
 536
 537static inline bool sk_unhashed(const struct sock *sk)
 538{
 539        return hlist_unhashed(&sk->sk_node);
 540}
 541
 542static inline bool sk_hashed(const struct sock *sk)
 543{
 544        return !sk_unhashed(sk);
 545}
 546
 547static inline void sk_node_init(struct hlist_node *node)
 548{
 549        node->pprev = NULL;
 550}
 551
 552static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 553{
 554        node->pprev = NULL;
 555}
 556
 557static inline void __sk_del_node(struct sock *sk)
 558{
 559        __hlist_del(&sk->sk_node);
 560}
 561
 562/* NB: equivalent to hlist_del_init_rcu */
 563static inline bool __sk_del_node_init(struct sock *sk)
 564{
 565        if (sk_hashed(sk)) {
 566                __sk_del_node(sk);
 567                sk_node_init(&sk->sk_node);
 568                return true;
 569        }
 570        return false;
 571}
 572
 573/* Grab socket reference count. This operation is valid only
 574   when sk is ALREADY grabbed f.e. it is found in hash table
 575   or a list and the lookup is made under lock preventing hash table
 576   modifications.
 577 */
 578
 579static __always_inline void sock_hold(struct sock *sk)
 580{
 581        atomic_inc(&sk->sk_refcnt);
 582}
 583
 584/* Ungrab socket in the context, which assumes that socket refcnt
 585   cannot hit zero, f.e. it is true in context of any socketcall.
 586 */
 587static __always_inline void __sock_put(struct sock *sk)
 588{
 589        atomic_dec(&sk->sk_refcnt);
 590}
 591
 592static inline bool sk_del_node_init(struct sock *sk)
 593{
 594        bool rc = __sk_del_node_init(sk);
 595
 596        if (rc) {
 597                /* paranoid for a while -acme */
 598                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 599                __sock_put(sk);
 600        }
 601        return rc;
 602}
 603#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 604
 605static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 606{
 607        if (sk_hashed(sk)) {
 608                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 609                return true;
 610        }
 611        return false;
 612}
 613
 614static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 615{
 616        bool rc = __sk_nulls_del_node_init_rcu(sk);
 617
 618        if (rc) {
 619                /* paranoid for a while -acme */
 620                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 621                __sock_put(sk);
 622        }
 623        return rc;
 624}
 625
 626static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 627{
 628        hlist_add_head(&sk->sk_node, list);
 629}
 630
 631static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 632{
 633        sock_hold(sk);
 634        __sk_add_node(sk, list);
 635}
 636
 637static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 638{
 639        sock_hold(sk);
 640        if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 641            sk->sk_family == AF_INET6)
 642                hlist_add_tail_rcu(&sk->sk_node, list);
 643        else
 644                hlist_add_head_rcu(&sk->sk_node, list);
 645}
 646
 647static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 648{
 649        if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 650            sk->sk_family == AF_INET6)
 651                hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
 652        else
 653                hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 654}
 655
 656static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 657{
 658        sock_hold(sk);
 659        __sk_nulls_add_node_rcu(sk, list);
 660}
 661
 662static inline void __sk_del_bind_node(struct sock *sk)
 663{
 664        __hlist_del(&sk->sk_bind_node);
 665}
 666
 667static inline void sk_add_bind_node(struct sock *sk,
 668                                        struct hlist_head *list)
 669{
 670        hlist_add_head(&sk->sk_bind_node, list);
 671}
 672
 673#define sk_for_each(__sk, list) \
 674        hlist_for_each_entry(__sk, list, sk_node)
 675#define sk_for_each_rcu(__sk, list) \
 676        hlist_for_each_entry_rcu(__sk, list, sk_node)
 677#define sk_nulls_for_each(__sk, node, list) \
 678        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 679#define sk_nulls_for_each_rcu(__sk, node, list) \
 680        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 681#define sk_for_each_from(__sk) \
 682        hlist_for_each_entry_from(__sk, sk_node)
 683#define sk_nulls_for_each_from(__sk, node) \
 684        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 685                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 686#define sk_for_each_safe(__sk, tmp, list) \
 687        hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 688#define sk_for_each_bound(__sk, list) \
 689        hlist_for_each_entry(__sk, list, sk_bind_node)
 690
 691/**
 692 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 693 * @tpos:       the type * to use as a loop cursor.
 694 * @pos:        the &struct hlist_node to use as a loop cursor.
 695 * @head:       the head for your list.
 696 * @offset:     offset of hlist_node within the struct.
 697 *
 698 */
 699#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)                  \
 700        for (pos = rcu_dereference((head)->first);                             \
 701             pos != NULL &&                                                    \
 702                ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 703             pos = rcu_dereference(pos->next))
 704
 705static inline struct user_namespace *sk_user_ns(struct sock *sk)
 706{
 707        /* Careful only use this in a context where these parameters
 708         * can not change and must all be valid, such as recvmsg from
 709         * userspace.
 710         */
 711        return sk->sk_socket->file->f_cred->user_ns;
 712}
 713
 714/* Sock flags */
 715enum sock_flags {
 716        SOCK_DEAD,
 717        SOCK_DONE,
 718        SOCK_URGINLINE,
 719        SOCK_KEEPOPEN,
 720        SOCK_LINGER,
 721        SOCK_DESTROY,
 722        SOCK_BROADCAST,
 723        SOCK_TIMESTAMP,
 724        SOCK_ZAPPED,
 725        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 726        SOCK_DBG, /* %SO_DEBUG setting */
 727        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 728        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 729        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 730        SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 731        SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 732        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 733        SOCK_FASYNC, /* fasync() active */
 734        SOCK_RXQ_OVFL,
 735        SOCK_ZEROCOPY, /* buffers from userspace */
 736        SOCK_WIFI_STATUS, /* push wifi status to userspace */
 737        SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 738                     * Will use last 4 bytes of packet sent from
 739                     * user-space instead.
 740                     */
 741        SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 742        SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 743        SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 744};
 745
 746#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 747
 748static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 749{
 750        nsk->sk_flags = osk->sk_flags;
 751}
 752
 753static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 754{
 755        __set_bit(flag, &sk->sk_flags);
 756}
 757
 758static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 759{
 760        __clear_bit(flag, &sk->sk_flags);
 761}
 762
 763static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 764{
 765        return test_bit(flag, &sk->sk_flags);
 766}
 767
 768#ifdef CONFIG_NET
 769extern struct static_key memalloc_socks;
 770static inline int sk_memalloc_socks(void)
 771{
 772        return static_key_false(&memalloc_socks);
 773}
 774#else
 775
 776static inline int sk_memalloc_socks(void)
 777{
 778        return 0;
 779}
 780
 781#endif
 782
 783static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 784{
 785        return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 786}
 787
 788static inline void sk_acceptq_removed(struct sock *sk)
 789{
 790        sk->sk_ack_backlog--;
 791}
 792
 793static inline void sk_acceptq_added(struct sock *sk)
 794{
 795        sk->sk_ack_backlog++;
 796}
 797
 798static inline bool sk_acceptq_is_full(const struct sock *sk)
 799{
 800        return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 801}
 802
 803/*
 804 * Compute minimal free write space needed to queue new packets.
 805 */
 806static inline int sk_stream_min_wspace(const struct sock *sk)
 807{
 808        return sk->sk_wmem_queued >> 1;
 809}
 810
 811static inline int sk_stream_wspace(const struct sock *sk)
 812{
 813        return sk->sk_sndbuf - sk->sk_wmem_queued;
 814}
 815
 816void sk_stream_write_space(struct sock *sk);
 817
 818/* OOB backlog add */
 819static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 820{
 821        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 822        skb_dst_force_safe(skb);
 823
 824        if (!sk->sk_backlog.tail)
 825                sk->sk_backlog.head = skb;
 826        else
 827                sk->sk_backlog.tail->next = skb;
 828
 829        sk->sk_backlog.tail = skb;
 830        skb->next = NULL;
 831}
 832
 833/*
 834 * Take into account size of receive queue and backlog queue
 835 * Do not take into account this skb truesize,
 836 * to allow even a single big packet to come.
 837 */
 838static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 839{
 840        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 841
 842        return qsize > limit;
 843}
 844
 845/* The per-socket spinlock must be held here. */
 846static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 847                                              unsigned int limit)
 848{
 849        if (sk_rcvqueues_full(sk, limit))
 850                return -ENOBUFS;
 851
 852        /*
 853         * If the skb was allocated from pfmemalloc reserves, only
 854         * allow SOCK_MEMALLOC sockets to use it as this socket is
 855         * helping free memory
 856         */
 857        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
 858                return -ENOMEM;
 859
 860        __sk_add_backlog(sk, skb);
 861        sk->sk_backlog.len += skb->truesize;
 862        return 0;
 863}
 864
 865int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
 866
 867static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 868{
 869        if (sk_memalloc_socks() && skb_pfmemalloc(skb))
 870                return __sk_backlog_rcv(sk, skb);
 871
 872        return sk->sk_backlog_rcv(sk, skb);
 873}
 874
 875static inline void sk_incoming_cpu_update(struct sock *sk)
 876{
 877        sk->sk_incoming_cpu = raw_smp_processor_id();
 878}
 879
 880static inline void sock_rps_record_flow_hash(__u32 hash)
 881{
 882#ifdef CONFIG_RPS
 883        struct rps_sock_flow_table *sock_flow_table;
 884
 885        rcu_read_lock();
 886        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 887        rps_record_sock_flow(sock_flow_table, hash);
 888        rcu_read_unlock();
 889#endif
 890}
 891
 892static inline void sock_rps_record_flow(const struct sock *sk)
 893{
 894#ifdef CONFIG_RPS
 895        sock_rps_record_flow_hash(sk->sk_rxhash);
 896#endif
 897}
 898
 899static inline void sock_rps_save_rxhash(struct sock *sk,
 900                                        const struct sk_buff *skb)
 901{
 902#ifdef CONFIG_RPS
 903        if (unlikely(sk->sk_rxhash != skb->hash))
 904                sk->sk_rxhash = skb->hash;
 905#endif
 906}
 907
 908static inline void sock_rps_reset_rxhash(struct sock *sk)
 909{
 910#ifdef CONFIG_RPS
 911        sk->sk_rxhash = 0;
 912#endif
 913}
 914
 915#define sk_wait_event(__sk, __timeo, __condition)                       \
 916        ({      int __rc;                                               \
 917                release_sock(__sk);                                     \
 918                __rc = __condition;                                     \
 919                if (!__rc) {                                            \
 920                        *(__timeo) = schedule_timeout(*(__timeo));      \
 921                }                                                       \
 922                sched_annotate_sleep();                                         \
 923                lock_sock(__sk);                                        \
 924                __rc = __condition;                                     \
 925                __rc;                                                   \
 926        })
 927
 928int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 929int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 930void sk_stream_wait_close(struct sock *sk, long timeo_p);
 931int sk_stream_error(struct sock *sk, int flags, int err);
 932void sk_stream_kill_queues(struct sock *sk);
 933void sk_set_memalloc(struct sock *sk);
 934void sk_clear_memalloc(struct sock *sk);
 935
 936void __sk_flush_backlog(struct sock *sk);
 937
 938static inline bool sk_flush_backlog(struct sock *sk)
 939{
 940        if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
 941                __sk_flush_backlog(sk);
 942                return true;
 943        }
 944        return false;
 945}
 946
 947int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
 948
 949struct request_sock_ops;
 950struct timewait_sock_ops;
 951struct inet_hashinfo;
 952struct raw_hashinfo;
 953struct module;
 954
 955/*
 956 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
 957 * un-modified. Special care is taken when initializing object to zero.
 958 */
 959static inline void sk_prot_clear_nulls(struct sock *sk, int size)
 960{
 961        if (offsetof(struct sock, sk_node.next) != 0)
 962                memset(sk, 0, offsetof(struct sock, sk_node.next));
 963        memset(&sk->sk_node.pprev, 0,
 964               size - offsetof(struct sock, sk_node.pprev));
 965}
 966
 967/* Networking protocol blocks we attach to sockets.
 968 * socket layer -> transport layer interface
 969 */
 970struct proto {
 971        void                    (*close)(struct sock *sk,
 972                                        long timeout);
 973        int                     (*connect)(struct sock *sk,
 974                                        struct sockaddr *uaddr,
 975                                        int addr_len);
 976        int                     (*disconnect)(struct sock *sk, int flags);
 977
 978        struct sock *           (*accept)(struct sock *sk, int flags, int *err);
 979
 980        int                     (*ioctl)(struct sock *sk, int cmd,
 981                                         unsigned long arg);
 982        int                     (*init)(struct sock *sk);
 983        void                    (*destroy)(struct sock *sk);
 984        void                    (*shutdown)(struct sock *sk, int how);
 985        int                     (*setsockopt)(struct sock *sk, int level,
 986                                        int optname, char __user *optval,
 987                                        unsigned int optlen);
 988        int                     (*getsockopt)(struct sock *sk, int level,
 989                                        int optname, char __user *optval,
 990                                        int __user *option);
 991#ifdef CONFIG_COMPAT
 992        int                     (*compat_setsockopt)(struct sock *sk,
 993                                        int level,
 994                                        int optname, char __user *optval,
 995                                        unsigned int optlen);
 996        int                     (*compat_getsockopt)(struct sock *sk,
 997                                        int level,
 998                                        int optname, char __user *optval,
 999                                        int __user *option);
1000        int                     (*compat_ioctl)(struct sock *sk,
1001                                        unsigned int cmd, unsigned long arg);
1002#endif
1003        int                     (*sendmsg)(struct sock *sk, struct msghdr *msg,
1004                                           size_t len);
1005        int                     (*recvmsg)(struct sock *sk, struct msghdr *msg,
1006                                           size_t len, int noblock, int flags,
1007                                           int *addr_len);
1008        int                     (*sendpage)(struct sock *sk, struct page *page,
1009                                        int offset, size_t size, int flags);
1010        int                     (*bind)(struct sock *sk,
1011                                        struct sockaddr *uaddr, int addr_len);
1012
1013        int                     (*backlog_rcv) (struct sock *sk,
1014                                                struct sk_buff *skb);
1015
1016        void            (*release_cb)(struct sock *sk);
1017
1018        /* Keeping track of sk's, looking them up, and port selection methods. */
1019        int                     (*hash)(struct sock *sk);
1020        void                    (*unhash)(struct sock *sk);
1021        void                    (*rehash)(struct sock *sk);
1022        int                     (*get_port)(struct sock *sk, unsigned short snum);
1023        void                    (*clear_sk)(struct sock *sk, int size);
1024
1025        /* Keeping track of sockets in use */
1026#ifdef CONFIG_PROC_FS
1027        unsigned int            inuse_idx;
1028#endif
1029
1030        bool                    (*stream_memory_free)(const struct sock *sk);
1031        /* Memory pressure */
1032        void                    (*enter_memory_pressure)(struct sock *sk);
1033        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
1034        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
1035        /*
1036         * Pressure flag: try to collapse.
1037         * Technical note: it is used by multiple contexts non atomically.
1038         * All the __sk_mem_schedule() is of this nature: accounting
1039         * is strict, actions are advisory and have some latency.
1040         */
1041        int                     *memory_pressure;
1042        long                    *sysctl_mem;
1043        int                     *sysctl_wmem;
1044        int                     *sysctl_rmem;
1045        int                     max_header;
1046        bool                    no_autobind;
1047
1048        struct kmem_cache       *slab;
1049        unsigned int            obj_size;
1050        int                     slab_flags;
1051
1052        struct percpu_counter   *orphan_count;
1053
1054        struct request_sock_ops *rsk_prot;
1055        struct timewait_sock_ops *twsk_prot;
1056
1057        union {
1058                struct inet_hashinfo    *hashinfo;
1059                struct udp_table        *udp_table;
1060                struct raw_hashinfo     *raw_hash;
1061        } h;
1062
1063        struct module           *owner;
1064
1065        char                    name[32];
1066
1067        struct list_head        node;
1068#ifdef SOCK_REFCNT_DEBUG
1069        atomic_t                socks;
1070#endif
1071        int                     (*diag_destroy)(struct sock *sk, int err);
1072};
1073
1074int proto_register(struct proto *prot, int alloc_slab);
1075void proto_unregister(struct proto *prot);
1076
1077#ifdef SOCK_REFCNT_DEBUG
1078static inline void sk_refcnt_debug_inc(struct sock *sk)
1079{
1080        atomic_inc(&sk->sk_prot->socks);
1081}
1082
1083static inline void sk_refcnt_debug_dec(struct sock *sk)
1084{
1085        atomic_dec(&sk->sk_prot->socks);
1086        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1087               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1088}
1089
1090static inline void sk_refcnt_debug_release(const struct sock *sk)
1091{
1092        if (atomic_read(&sk->sk_refcnt) != 1)
1093                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1094                       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1095}
1096#else /* SOCK_REFCNT_DEBUG */
1097#define sk_refcnt_debug_inc(sk) do { } while (0)
1098#define sk_refcnt_debug_dec(sk) do { } while (0)
1099#define sk_refcnt_debug_release(sk) do { } while (0)
1100#endif /* SOCK_REFCNT_DEBUG */
1101
1102static inline bool sk_stream_memory_free(const struct sock *sk)
1103{
1104        if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1105                return false;
1106
1107        return sk->sk_prot->stream_memory_free ?
1108                sk->sk_prot->stream_memory_free(sk) : true;
1109}
1110
1111static inline bool sk_stream_is_writeable(const struct sock *sk)
1112{
1113        return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1114               sk_stream_memory_free(sk);
1115}
1116
1117
1118static inline bool sk_has_memory_pressure(const struct sock *sk)
1119{
1120        return sk->sk_prot->memory_pressure != NULL;
1121}
1122
1123static inline bool sk_under_memory_pressure(const struct sock *sk)
1124{
1125        if (!sk->sk_prot->memory_pressure)
1126                return false;
1127
1128        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1129            mem_cgroup_under_socket_pressure(sk->sk_memcg))
1130                return true;
1131
1132        return !!*sk->sk_prot->memory_pressure;
1133}
1134
1135static inline void sk_leave_memory_pressure(struct sock *sk)
1136{
1137        int *memory_pressure = sk->sk_prot->memory_pressure;
1138
1139        if (!memory_pressure)
1140                return;
1141
1142        if (*memory_pressure)
1143                *memory_pressure = 0;
1144}
1145
1146static inline void sk_enter_memory_pressure(struct sock *sk)
1147{
1148        if (!sk->sk_prot->enter_memory_pressure)
1149                return;
1150
1151        sk->sk_prot->enter_memory_pressure(sk);
1152}
1153
1154static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1155{
1156        return sk->sk_prot->sysctl_mem[index];
1157}
1158
1159static inline long
1160sk_memory_allocated(const struct sock *sk)
1161{
1162        return atomic_long_read(sk->sk_prot->memory_allocated);
1163}
1164
1165static inline long
1166sk_memory_allocated_add(struct sock *sk, int amt)
1167{
1168        return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1169}
1170
1171static inline void
1172sk_memory_allocated_sub(struct sock *sk, int amt)
1173{
1174        atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1175}
1176
1177static inline void sk_sockets_allocated_dec(struct sock *sk)
1178{
1179        percpu_counter_dec(sk->sk_prot->sockets_allocated);
1180}
1181
1182static inline void sk_sockets_allocated_inc(struct sock *sk)
1183{
1184        percpu_counter_inc(sk->sk_prot->sockets_allocated);
1185}
1186
1187static inline int
1188sk_sockets_allocated_read_positive(struct sock *sk)
1189{
1190        return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1191}
1192
1193static inline int
1194proto_sockets_allocated_sum_positive(struct proto *prot)
1195{
1196        return percpu_counter_sum_positive(prot->sockets_allocated);
1197}
1198
1199static inline long
1200proto_memory_allocated(struct proto *prot)
1201{
1202        return atomic_long_read(prot->memory_allocated);
1203}
1204
1205static inline bool
1206proto_memory_pressure(struct proto *prot)
1207{
1208        if (!prot->memory_pressure)
1209                return false;
1210        return !!*prot->memory_pressure;
1211}
1212
1213
1214#ifdef CONFIG_PROC_FS
1215/* Called with local bh disabled */
1216void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1217int sock_prot_inuse_get(struct net *net, struct proto *proto);
1218#else
1219static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1220                int inc)
1221{
1222}
1223#endif
1224
1225
1226/* With per-bucket locks this operation is not-atomic, so that
1227 * this version is not worse.
1228 */
1229static inline int __sk_prot_rehash(struct sock *sk)
1230{
1231        sk->sk_prot->unhash(sk);
1232        return sk->sk_prot->hash(sk);
1233}
1234
1235void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1236
1237/* About 10 seconds */
1238#define SOCK_DESTROY_TIME (10*HZ)
1239
1240/* Sockets 0-1023 can't be bound to unless you are superuser */
1241#define PROT_SOCK       1024
1242
1243#define SHUTDOWN_MASK   3
1244#define RCV_SHUTDOWN    1
1245#define SEND_SHUTDOWN   2
1246
1247#define SOCK_SNDBUF_LOCK        1
1248#define SOCK_RCVBUF_LOCK        2
1249#define SOCK_BINDADDR_LOCK      4
1250#define SOCK_BINDPORT_LOCK      8
1251
1252struct socket_alloc {
1253        struct socket socket;
1254        struct inode vfs_inode;
1255};
1256
1257static inline struct socket *SOCKET_I(struct inode *inode)
1258{
1259        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1260}
1261
1262static inline struct inode *SOCK_INODE(struct socket *socket)
1263{
1264        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1265}
1266
1267/*
1268 * Functions for memory accounting
1269 */
1270int __sk_mem_schedule(struct sock *sk, int size, int kind);
1271void __sk_mem_reclaim(struct sock *sk, int amount);
1272
1273#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1274#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1275#define SK_MEM_SEND     0
1276#define SK_MEM_RECV     1
1277
1278static inline int sk_mem_pages(int amt)
1279{
1280        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1281}
1282
1283static inline bool sk_has_account(struct sock *sk)
1284{
1285        /* return true if protocol supports memory accounting */
1286        return !!sk->sk_prot->memory_allocated;
1287}
1288
1289static inline bool sk_wmem_schedule(struct sock *sk, int size)
1290{
1291        if (!sk_has_account(sk))
1292                return true;
1293        return size <= sk->sk_forward_alloc ||
1294                __sk_mem_schedule(sk, size, SK_MEM_SEND);
1295}
1296
1297static inline bool
1298sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1299{
1300        if (!sk_has_account(sk))
1301                return true;
1302        return size<= sk->sk_forward_alloc ||
1303                __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1304                skb_pfmemalloc(skb);
1305}
1306
1307static inline void sk_mem_reclaim(struct sock *sk)
1308{
1309        if (!sk_has_account(sk))
1310                return;
1311        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1312                __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1313}
1314
1315static inline void sk_mem_reclaim_partial(struct sock *sk)
1316{
1317        if (!sk_has_account(sk))
1318                return;
1319        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1320                __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1321}
1322
1323static inline void sk_mem_charge(struct sock *sk, int size)
1324{
1325        if (!sk_has_account(sk))
1326                return;
1327        sk->sk_forward_alloc -= size;
1328}
1329
1330static inline void sk_mem_uncharge(struct sock *sk, int size)
1331{
1332        if (!sk_has_account(sk))
1333                return;
1334        sk->sk_forward_alloc += size;
1335
1336        /* Avoid a possible overflow.
1337         * TCP send queues can make this happen, if sk_mem_reclaim()
1338         * is not called and more than 2 GBytes are released at once.
1339         *
1340         * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1341         * no need to hold that much forward allocation anyway.
1342         */
1343        if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1344                __sk_mem_reclaim(sk, 1 << 20);
1345}
1346
1347static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1348{
1349        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1350        sk->sk_wmem_queued -= skb->truesize;
1351        sk_mem_uncharge(sk, skb->truesize);
1352        __kfree_skb(skb);
1353}
1354
1355static inline void sock_release_ownership(struct sock *sk)
1356{
1357        if (sk->sk_lock.owned) {
1358                sk->sk_lock.owned = 0;
1359
1360                /* The sk_lock has mutex_unlock() semantics: */
1361                mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1362        }
1363}
1364
1365/*
1366 * Macro so as to not evaluate some arguments when
1367 * lockdep is not enabled.
1368 *
1369 * Mark both the sk_lock and the sk_lock.slock as a
1370 * per-address-family lock class.
1371 */
1372#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1373do {                                                                    \
1374        sk->sk_lock.owned = 0;                                          \
1375        init_waitqueue_head(&sk->sk_lock.wq);                           \
1376        spin_lock_init(&(sk)->sk_lock.slock);                           \
1377        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1378                        sizeof((sk)->sk_lock));                         \
1379        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1380                                (skey), (sname));                               \
1381        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1382} while (0)
1383
1384#ifdef CONFIG_LOCKDEP
1385static inline bool lockdep_sock_is_held(const struct sock *csk)
1386{
1387        struct sock *sk = (struct sock *)csk;
1388
1389        return lockdep_is_held(&sk->sk_lock) ||
1390               lockdep_is_held(&sk->sk_lock.slock);
1391}
1392#endif
1393
1394void lock_sock_nested(struct sock *sk, int subclass);
1395
1396static inline void lock_sock(struct sock *sk)
1397{
1398        lock_sock_nested(sk, 0);
1399}
1400
1401void release_sock(struct sock *sk);
1402
1403/* BH context may only use the following locking interface. */
1404#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1405#define bh_lock_sock_nested(__sk) \
1406                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1407                                SINGLE_DEPTH_NESTING)
1408#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1409
1410bool lock_sock_fast(struct sock *sk);
1411/**
1412 * unlock_sock_fast - complement of lock_sock_fast
1413 * @sk: socket
1414 * @slow: slow mode
1415 *
1416 * fast unlock socket for user context.
1417 * If slow mode is on, we call regular release_sock()
1418 */
1419static inline void unlock_sock_fast(struct sock *sk, bool slow)
1420{
1421        if (slow)
1422                release_sock(sk);
1423        else
1424                spin_unlock_bh(&sk->sk_lock.slock);
1425}
1426
1427/* Used by processes to "lock" a socket state, so that
1428 * interrupts and bottom half handlers won't change it
1429 * from under us. It essentially blocks any incoming
1430 * packets, so that we won't get any new data or any
1431 * packets that change the state of the socket.
1432 *
1433 * While locked, BH processing will add new packets to
1434 * the backlog queue.  This queue is processed by the
1435 * owner of the socket lock right before it is released.
1436 *
1437 * Since ~2.3.5 it is also exclusive sleep lock serializing
1438 * accesses from user process context.
1439 */
1440
1441static inline void sock_owned_by_me(const struct sock *sk)
1442{
1443#ifdef CONFIG_LOCKDEP
1444        WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1445#endif
1446}
1447
1448static inline bool sock_owned_by_user(const struct sock *sk)
1449{
1450        sock_owned_by_me(sk);
1451        return sk->sk_lock.owned;
1452}
1453
1454/* no reclassification while locks are held */
1455static inline bool sock_allow_reclassification(const struct sock *csk)
1456{
1457        struct sock *sk = (struct sock *)csk;
1458
1459        return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1460}
1461
1462struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1463                      struct proto *prot, int kern);
1464void sk_free(struct sock *sk);
1465void sk_destruct(struct sock *sk);
1466struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1467
1468struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1469                             gfp_t priority);
1470void __sock_wfree(struct sk_buff *skb);
1471void sock_wfree(struct sk_buff *skb);
1472void skb_orphan_partial(struct sk_buff *skb);
1473void sock_rfree(struct sk_buff *skb);
1474void sock_efree(struct sk_buff *skb);
1475#ifdef CONFIG_INET
1476void sock_edemux(struct sk_buff *skb);
1477#else
1478#define sock_edemux(skb) sock_efree(skb)
1479#endif
1480
1481int sock_setsockopt(struct socket *sock, int level, int op,
1482                    char __user *optval, unsigned int optlen);
1483
1484int sock_getsockopt(struct socket *sock, int level, int op,
1485                    char __user *optval, int __user *optlen);
1486struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1487                                    int noblock, int *errcode);
1488struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1489                                     unsigned long data_len, int noblock,
1490                                     int *errcode, int max_page_order);
1491void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1492void sock_kfree_s(struct sock *sk, void *mem, int size);
1493void sock_kzfree_s(struct sock *sk, void *mem, int size);
1494void sk_send_sigurg(struct sock *sk);
1495
1496struct sockcm_cookie {
1497        u32 mark;
1498        u16 tsflags;
1499};
1500
1501int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1502                     struct sockcm_cookie *sockc);
1503int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1504                   struct sockcm_cookie *sockc);
1505
1506/*
1507 * Functions to fill in entries in struct proto_ops when a protocol
1508 * does not implement a particular function.
1509 */
1510int sock_no_bind(struct socket *, struct sockaddr *, int);
1511int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1512int sock_no_socketpair(struct socket *, struct socket *);
1513int sock_no_accept(struct socket *, struct socket *, int);
1514int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1515unsigned int sock_no_poll(struct file *, struct socket *,
1516                          struct poll_table_struct *);
1517int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1518int sock_no_listen(struct socket *, int);
1519int sock_no_shutdown(struct socket *, int);
1520int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1521int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1522int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1523int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1524int sock_no_mmap(struct file *file, struct socket *sock,
1525                 struct vm_area_struct *vma);
1526ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1527                         size_t size, int flags);
1528
1529/*
1530 * Functions to fill in entries in struct proto_ops when a protocol
1531 * uses the inet style.
1532 */
1533int sock_common_getsockopt(struct socket *sock, int level, int optname,
1534                                  char __user *optval, int __user *optlen);
1535int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1536                        int flags);
1537int sock_common_setsockopt(struct socket *sock, int level, int optname,
1538                                  char __user *optval, unsigned int optlen);
1539int compat_sock_common_getsockopt(struct socket *sock, int level,
1540                int optname, char __user *optval, int __user *optlen);
1541int compat_sock_common_setsockopt(struct socket *sock, int level,
1542                int optname, char __user *optval, unsigned int optlen);
1543
1544void sk_common_release(struct sock *sk);
1545
1546/*
1547 *      Default socket callbacks and setup code
1548 */
1549
1550/* Initialise core socket variables */
1551void sock_init_data(struct socket *sock, struct sock *sk);
1552
1553/*
1554 * Socket reference counting postulates.
1555 *
1556 * * Each user of socket SHOULD hold a reference count.
1557 * * Each access point to socket (an hash table bucket, reference from a list,
1558 *   running timer, skb in flight MUST hold a reference count.
1559 * * When reference count hits 0, it means it will never increase back.
1560 * * When reference count hits 0, it means that no references from
1561 *   outside exist to this socket and current process on current CPU
1562 *   is last user and may/should destroy this socket.
1563 * * sk_free is called from any context: process, BH, IRQ. When
1564 *   it is called, socket has no references from outside -> sk_free
1565 *   may release descendant resources allocated by the socket, but
1566 *   to the time when it is called, socket is NOT referenced by any
1567 *   hash tables, lists etc.
1568 * * Packets, delivered from outside (from network or from another process)
1569 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1570 *   when they sit in queue. Otherwise, packets will leak to hole, when
1571 *   socket is looked up by one cpu and unhasing is made by another CPU.
1572 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1573 *   (leak to backlog). Packet socket does all the processing inside
1574 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1575 *   use separate SMP lock, so that they are prone too.
1576 */
1577
1578/* Ungrab socket and destroy it, if it was the last reference. */
1579static inline void sock_put(struct sock *sk)
1580{
1581        if (atomic_dec_and_test(&sk->sk_refcnt))
1582                sk_free(sk);
1583}
1584/* Generic version of sock_put(), dealing with all sockets
1585 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1586 */
1587void sock_gen_put(struct sock *sk);
1588
1589int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1590                     unsigned int trim_cap);
1591static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1592                                 const int nested)
1593{
1594        return __sk_receive_skb(sk, skb, nested, 1);
1595}
1596
1597static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1598{
1599        sk->sk_tx_queue_mapping = tx_queue;
1600}
1601
1602static inline void sk_tx_queue_clear(struct sock *sk)
1603{
1604        sk->sk_tx_queue_mapping = -1;
1605}
1606
1607static inline int sk_tx_queue_get(const struct sock *sk)
1608{
1609        return sk ? sk->sk_tx_queue_mapping : -1;
1610}
1611
1612static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1613{
1614        sk_tx_queue_clear(sk);
1615        sk->sk_socket = sock;
1616}
1617
1618static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1619{
1620        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1621        return &rcu_dereference_raw(sk->sk_wq)->wait;
1622}
1623/* Detach socket from process context.
1624 * Announce socket dead, detach it from wait queue and inode.
1625 * Note that parent inode held reference count on this struct sock,
1626 * we do not release it in this function, because protocol
1627 * probably wants some additional cleanups or even continuing
1628 * to work with this socket (TCP).
1629 */
1630static inline void sock_orphan(struct sock *sk)
1631{
1632        write_lock_bh(&sk->sk_callback_lock);
1633        sock_set_flag(sk, SOCK_DEAD);
1634        sk_set_socket(sk, NULL);
1635        sk->sk_wq  = NULL;
1636        write_unlock_bh(&sk->sk_callback_lock);
1637}
1638
1639static inline void sock_graft(struct sock *sk, struct socket *parent)
1640{
1641        write_lock_bh(&sk->sk_callback_lock);
1642        sk->sk_wq = parent->wq;
1643        parent->sk = sk;
1644        sk_set_socket(sk, parent);
1645        security_sock_graft(sk, parent);
1646        write_unlock_bh(&sk->sk_callback_lock);
1647}
1648
1649kuid_t sock_i_uid(struct sock *sk);
1650unsigned long sock_i_ino(struct sock *sk);
1651
1652static inline u32 net_tx_rndhash(void)
1653{
1654        u32 v = prandom_u32();
1655
1656        return v ?: 1;
1657}
1658
1659static inline void sk_set_txhash(struct sock *sk)
1660{
1661        sk->sk_txhash = net_tx_rndhash();
1662}
1663
1664static inline void sk_rethink_txhash(struct sock *sk)
1665{
1666        if (sk->sk_txhash)
1667                sk_set_txhash(sk);
1668}
1669
1670static inline struct dst_entry *
1671__sk_dst_get(struct sock *sk)
1672{
1673        return rcu_dereference_check(sk->sk_dst_cache,
1674                                     lockdep_sock_is_held(sk));
1675}
1676
1677static inline struct dst_entry *
1678sk_dst_get(struct sock *sk)
1679{
1680        struct dst_entry *dst;
1681
1682        rcu_read_lock();
1683        dst = rcu_dereference(sk->sk_dst_cache);
1684        if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1685                dst = NULL;
1686        rcu_read_unlock();
1687        return dst;
1688}
1689
1690static inline void dst_negative_advice(struct sock *sk)
1691{
1692        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1693
1694        sk_rethink_txhash(sk);
1695
1696        if (dst && dst->ops->negative_advice) {
1697                ndst = dst->ops->negative_advice(dst);
1698
1699                if (ndst != dst) {
1700                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
1701                        sk_tx_queue_clear(sk);
1702                }
1703        }
1704}
1705
1706static inline void
1707__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1708{
1709        struct dst_entry *old_dst;
1710
1711        sk_tx_queue_clear(sk);
1712        /*
1713         * This can be called while sk is owned by the caller only,
1714         * with no state that can be checked in a rcu_dereference_check() cond
1715         */
1716        old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1717        rcu_assign_pointer(sk->sk_dst_cache, dst);
1718        dst_release(old_dst);
1719}
1720
1721static inline void
1722sk_dst_set(struct sock *sk, struct dst_entry *dst)
1723{
1724        struct dst_entry *old_dst;
1725
1726        sk_tx_queue_clear(sk);
1727        old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1728        dst_release(old_dst);
1729}
1730
1731static inline void
1732__sk_dst_reset(struct sock *sk)
1733{
1734        __sk_dst_set(sk, NULL);
1735}
1736
1737static inline void
1738sk_dst_reset(struct sock *sk)
1739{
1740        sk_dst_set(sk, NULL);
1741}
1742
1743struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1744
1745struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1746
1747bool sk_mc_loop(struct sock *sk);
1748
1749static inline bool sk_can_gso(const struct sock *sk)
1750{
1751        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1752}
1753
1754void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1755
1756static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1757{
1758        sk->sk_route_nocaps |= flags;
1759        sk->sk_route_caps &= ~flags;
1760}
1761
1762static inline bool sk_check_csum_caps(struct sock *sk)
1763{
1764        return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1765               (sk->sk_family == PF_INET &&
1766                (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1767               (sk->sk_family == PF_INET6 &&
1768                (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1769}
1770
1771static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1772                                           struct iov_iter *from, char *to,
1773                                           int copy, int offset)
1774{
1775        if (skb->ip_summed == CHECKSUM_NONE) {
1776                __wsum csum = 0;
1777                if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1778                        return -EFAULT;
1779                skb->csum = csum_block_add(skb->csum, csum, offset);
1780        } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1781                if (copy_from_iter_nocache(to, copy, from) != copy)
1782                        return -EFAULT;
1783        } else if (copy_from_iter(to, copy, from) != copy)
1784                return -EFAULT;
1785
1786        return 0;
1787}
1788
1789static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1790                                       struct iov_iter *from, int copy)
1791{
1792        int err, offset = skb->len;
1793
1794        err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1795                                       copy, offset);
1796        if (err)
1797                __skb_trim(skb, offset);
1798
1799        return err;
1800}
1801
1802static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1803                                           struct sk_buff *skb,
1804                                           struct page *page,
1805                                           int off, int copy)
1806{
1807        int err;
1808
1809        err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1810                                       copy, skb->len);
1811        if (err)
1812                return err;
1813
1814        skb->len             += copy;
1815        skb->data_len        += copy;
1816        skb->truesize        += copy;
1817        sk->sk_wmem_queued   += copy;
1818        sk_mem_charge(sk, copy);
1819        return 0;
1820}
1821
1822/**
1823 * sk_wmem_alloc_get - returns write allocations
1824 * @sk: socket
1825 *
1826 * Returns sk_wmem_alloc minus initial offset of one
1827 */
1828static inline int sk_wmem_alloc_get(const struct sock *sk)
1829{
1830        return atomic_read(&sk->sk_wmem_alloc) - 1;
1831}
1832
1833/**
1834 * sk_rmem_alloc_get - returns read allocations
1835 * @sk: socket
1836 *
1837 * Returns sk_rmem_alloc
1838 */
1839static inline int sk_rmem_alloc_get(const struct sock *sk)
1840{
1841        return atomic_read(&sk->sk_rmem_alloc);
1842}
1843
1844/**
1845 * sk_has_allocations - check if allocations are outstanding
1846 * @sk: socket
1847 *
1848 * Returns true if socket has write or read allocations
1849 */
1850static inline bool sk_has_allocations(const struct sock *sk)
1851{
1852        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1853}
1854
1855/**
1856 * skwq_has_sleeper - check if there are any waiting processes
1857 * @wq: struct socket_wq
1858 *
1859 * Returns true if socket_wq has waiting processes
1860 *
1861 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1862 * barrier call. They were added due to the race found within the tcp code.
1863 *
1864 * Consider following tcp code paths:
1865 *
1866 * CPU1                  CPU2
1867 *
1868 * sys_select            receive packet
1869 *   ...                 ...
1870 *   __add_wait_queue    update tp->rcv_nxt
1871 *   ...                 ...
1872 *   tp->rcv_nxt check   sock_def_readable
1873 *   ...                 {
1874 *   schedule               rcu_read_lock();
1875 *                          wq = rcu_dereference(sk->sk_wq);
1876 *                          if (wq && waitqueue_active(&wq->wait))
1877 *                              wake_up_interruptible(&wq->wait)
1878 *                          ...
1879 *                       }
1880 *
1881 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1882 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1883 * could then endup calling schedule and sleep forever if there are no more
1884 * data on the socket.
1885 *
1886 */
1887static inline bool skwq_has_sleeper(struct socket_wq *wq)
1888{
1889        return wq && wq_has_sleeper(&wq->wait);
1890}
1891
1892/**
1893 * sock_poll_wait - place memory barrier behind the poll_wait call.
1894 * @filp:           file
1895 * @wait_address:   socket wait queue
1896 * @p:              poll_table
1897 *
1898 * See the comments in the wq_has_sleeper function.
1899 */
1900static inline void sock_poll_wait(struct file *filp,
1901                wait_queue_head_t *wait_address, poll_table *p)
1902{
1903        if (!poll_does_not_wait(p) && wait_address) {
1904                poll_wait(filp, wait_address, p);
1905                /* We need to be sure we are in sync with the
1906                 * socket flags modification.
1907                 *
1908                 * This memory barrier is paired in the wq_has_sleeper.
1909                 */
1910                smp_mb();
1911        }
1912}
1913
1914static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1915{
1916        if (sk->sk_txhash) {
1917                skb->l4_hash = 1;
1918                skb->hash = sk->sk_txhash;
1919        }
1920}
1921
1922void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1923
1924/*
1925 *      Queue a received datagram if it will fit. Stream and sequenced
1926 *      protocols can't normally use this as they need to fit buffers in
1927 *      and play with them.
1928 *
1929 *      Inlined as it's very short and called for pretty much every
1930 *      packet ever received.
1931 */
1932static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1933{
1934        skb_orphan(skb);
1935        skb->sk = sk;
1936        skb->destructor = sock_rfree;
1937        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1938        sk_mem_charge(sk, skb->truesize);
1939}
1940
1941void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1942                    unsigned long expires);
1943
1944void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1945
1946int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1947int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1948
1949int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1950struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1951
1952/*
1953 *      Recover an error report and clear atomically
1954 */
1955
1956static inline int sock_error(struct sock *sk)
1957{
1958        int err;
1959        if (likely(!sk->sk_err))
1960                return 0;
1961        err = xchg(&sk->sk_err, 0);
1962        return -err;
1963}
1964
1965static inline unsigned long sock_wspace(struct sock *sk)
1966{
1967        int amt = 0;
1968
1969        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1970                amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1971                if (amt < 0)
1972                        amt = 0;
1973        }
1974        return amt;
1975}
1976
1977/* Note:
1978 *  We use sk->sk_wq_raw, from contexts knowing this
1979 *  pointer is not NULL and cannot disappear/change.
1980 */
1981static inline void sk_set_bit(int nr, struct sock *sk)
1982{
1983        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
1984            !sock_flag(sk, SOCK_FASYNC))
1985                return;
1986
1987        set_bit(nr, &sk->sk_wq_raw->flags);
1988}
1989
1990static inline void sk_clear_bit(int nr, struct sock *sk)
1991{
1992        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
1993            !sock_flag(sk, SOCK_FASYNC))
1994                return;
1995
1996        clear_bit(nr, &sk->sk_wq_raw->flags);
1997}
1998
1999static inline void sk_wake_async(const struct sock *sk, int how, int band)
2000{
2001        if (sock_flag(sk, SOCK_FASYNC)) {
2002                rcu_read_lock();
2003                sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2004                rcu_read_unlock();
2005        }
2006}
2007
2008/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2009 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2010 * Note: for send buffers, TCP works better if we can build two skbs at
2011 * minimum.
2012 */
2013#define TCP_SKB_MIN_TRUESIZE    (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2014
2015#define SOCK_MIN_SNDBUF         (TCP_SKB_MIN_TRUESIZE * 2)
2016#define SOCK_MIN_RCVBUF          TCP_SKB_MIN_TRUESIZE
2017
2018static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2019{
2020        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2021                sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2022                sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2023        }
2024}
2025
2026struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2027                                    bool force_schedule);
2028
2029/**
2030 * sk_page_frag - return an appropriate page_frag
2031 * @sk: socket
2032 *
2033 * If socket allocation mode allows current thread to sleep, it means its
2034 * safe to use the per task page_frag instead of the per socket one.
2035 */
2036static inline struct page_frag *sk_page_frag(struct sock *sk)
2037{
2038        if (gfpflags_allow_blocking(sk->sk_allocation))
2039                return &current->task_frag;
2040
2041        return &sk->sk_frag;
2042}
2043
2044bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2045
2046/*
2047 *      Default write policy as shown to user space via poll/select/SIGIO
2048 */
2049static inline bool sock_writeable(const struct sock *sk)
2050{
2051        return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2052}
2053
2054static inline gfp_t gfp_any(void)
2055{
2056        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2057}
2058
2059static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2060{
2061        return noblock ? 0 : sk->sk_rcvtimeo;
2062}
2063
2064static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2065{
2066        return noblock ? 0 : sk->sk_sndtimeo;
2067}
2068
2069static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2070{
2071        return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2072}
2073
2074/* Alas, with timeout socket operations are not restartable.
2075 * Compare this to poll().
2076 */
2077static inline int sock_intr_errno(long timeo)
2078{
2079        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2080}
2081
2082struct sock_skb_cb {
2083        u32 dropcount;
2084};
2085
2086/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2087 * using skb->cb[] would keep using it directly and utilize its
2088 * alignement guarantee.
2089 */
2090#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2091                            sizeof(struct sock_skb_cb)))
2092
2093#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2094                            SOCK_SKB_CB_OFFSET))
2095
2096#define sock_skb_cb_check_size(size) \
2097        BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2098
2099static inline void
2100sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2101{
2102        SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2103}
2104
2105static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2106{
2107        int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2108
2109        atomic_add(segs, &sk->sk_drops);
2110}
2111
2112void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2113                           struct sk_buff *skb);
2114void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2115                             struct sk_buff *skb);
2116
2117static inline void
2118sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2119{
2120        ktime_t kt = skb->tstamp;
2121        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2122
2123        /*
2124         * generate control messages if
2125         * - receive time stamping in software requested
2126         * - software time stamp available and wanted
2127         * - hardware time stamps available and wanted
2128         */
2129        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2130            (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2131            (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2132            (hwtstamps->hwtstamp.tv64 &&
2133             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2134                __sock_recv_timestamp(msg, sk, skb);
2135        else
2136                sk->sk_stamp = kt;
2137
2138        if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2139                __sock_recv_wifi_status(msg, sk, skb);
2140}
2141
2142void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2143                              struct sk_buff *skb);
2144
2145static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2146                                          struct sk_buff *skb)
2147{
2148#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
2149                           (1UL << SOCK_RCVTSTAMP))
2150#define TSFLAGS_ANY       (SOF_TIMESTAMPING_SOFTWARE                    | \
2151                           SOF_TIMESTAMPING_RAW_HARDWARE)
2152
2153        if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2154                __sock_recv_ts_and_drops(msg, sk, skb);
2155        else
2156                sk->sk_stamp = skb->tstamp;
2157}
2158
2159void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2160
2161/**
2162 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2163 * @sk:         socket sending this packet
2164 * @tsflags:    timestamping flags to use
2165 * @tx_flags:   completed with instructions for time stamping
2166 *
2167 * Note : callers should take care of initial *tx_flags value (usually 0)
2168 */
2169static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2170                                     __u8 *tx_flags)
2171{
2172        if (unlikely(tsflags))
2173                __sock_tx_timestamp(tsflags, tx_flags);
2174        if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2175                *tx_flags |= SKBTX_WIFI_STATUS;
2176}
2177
2178/**
2179 * sk_eat_skb - Release a skb if it is no longer needed
2180 * @sk: socket to eat this skb from
2181 * @skb: socket buffer to eat
2182 *
2183 * This routine must be called with interrupts disabled or with the socket
2184 * locked so that the sk_buff queue operation is ok.
2185*/
2186static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2187{
2188        __skb_unlink(skb, &sk->sk_receive_queue);
2189        __kfree_skb(skb);
2190}
2191
2192static inline
2193struct net *sock_net(const struct sock *sk)
2194{
2195        return read_pnet(&sk->sk_net);
2196}
2197
2198static inline
2199void sock_net_set(struct sock *sk, struct net *net)
2200{
2201        write_pnet(&sk->sk_net, net);
2202}
2203
2204static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2205{
2206        if (skb->sk) {
2207                struct sock *sk = skb->sk;
2208
2209                skb->destructor = NULL;
2210                skb->sk = NULL;
2211                return sk;
2212        }
2213        return NULL;
2214}
2215
2216/* This helper checks if a socket is a full socket,
2217 * ie _not_ a timewait or request socket.
2218 */
2219static inline bool sk_fullsock(const struct sock *sk)
2220{
2221        return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2222}
2223
2224/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2225 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2226 */
2227static inline bool sk_listener(const struct sock *sk)
2228{
2229        return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2230}
2231
2232/**
2233 * sk_state_load - read sk->sk_state for lockless contexts
2234 * @sk: socket pointer
2235 *
2236 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2237 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2238 */
2239static inline int sk_state_load(const struct sock *sk)
2240{
2241        return smp_load_acquire(&sk->sk_state);
2242}
2243
2244/**
2245 * sk_state_store - update sk->sk_state
2246 * @sk: socket pointer
2247 * @newstate: new state
2248 *
2249 * Paired with sk_state_load(). Should be used in contexts where
2250 * state change might impact lockless readers.
2251 */
2252static inline void sk_state_store(struct sock *sk, int newstate)
2253{
2254        smp_store_release(&sk->sk_state, newstate);
2255}
2256
2257void sock_enable_timestamp(struct sock *sk, int flag);
2258int sock_get_timestamp(struct sock *, struct timeval __user *);
2259int sock_get_timestampns(struct sock *, struct timespec __user *);
2260int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2261                       int type);
2262
2263bool sk_ns_capable(const struct sock *sk,
2264                   struct user_namespace *user_ns, int cap);
2265bool sk_capable(const struct sock *sk, int cap);
2266bool sk_net_capable(const struct sock *sk, int cap);
2267
2268extern __u32 sysctl_wmem_max;
2269extern __u32 sysctl_rmem_max;
2270
2271extern int sysctl_tstamp_allow_data;
2272extern int sysctl_optmem_max;
2273
2274extern __u32 sysctl_wmem_default;
2275extern __u32 sysctl_rmem_default;
2276
2277#endif  /* _SOCK_H */
2278