linux/include/uapi/linux/btrfs_tree.h
<<
>>
Prefs
   1#ifndef _BTRFS_CTREE_H_
   2#define _BTRFS_CTREE_H_
   3
   4/*
   5 * This header contains the structure definitions and constants used
   6 * by file system objects that can be retrieved using
   7 * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
   8 * is needed to describe a leaf node's key or item contents.
   9 */
  10
  11/* holds pointers to all of the tree roots */
  12#define BTRFS_ROOT_TREE_OBJECTID 1ULL
  13
  14/* stores information about which extents are in use, and reference counts */
  15#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
  16
  17/*
  18 * chunk tree stores translations from logical -> physical block numbering
  19 * the super block points to the chunk tree
  20 */
  21#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
  22
  23/*
  24 * stores information about which areas of a given device are in use.
  25 * one per device.  The tree of tree roots points to the device tree
  26 */
  27#define BTRFS_DEV_TREE_OBJECTID 4ULL
  28
  29/* one per subvolume, storing files and directories */
  30#define BTRFS_FS_TREE_OBJECTID 5ULL
  31
  32/* directory objectid inside the root tree */
  33#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
  34
  35/* holds checksums of all the data extents */
  36#define BTRFS_CSUM_TREE_OBJECTID 7ULL
  37
  38/* holds quota configuration and tracking */
  39#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
  40
  41/* for storing items that use the BTRFS_UUID_KEY* types */
  42#define BTRFS_UUID_TREE_OBJECTID 9ULL
  43
  44/* tracks free space in block groups. */
  45#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
  46
  47/* device stats in the device tree */
  48#define BTRFS_DEV_STATS_OBJECTID 0ULL
  49
  50/* for storing balance parameters in the root tree */
  51#define BTRFS_BALANCE_OBJECTID -4ULL
  52
  53/* orhpan objectid for tracking unlinked/truncated files */
  54#define BTRFS_ORPHAN_OBJECTID -5ULL
  55
  56/* does write ahead logging to speed up fsyncs */
  57#define BTRFS_TREE_LOG_OBJECTID -6ULL
  58#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
  59
  60/* for space balancing */
  61#define BTRFS_TREE_RELOC_OBJECTID -8ULL
  62#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
  63
  64/*
  65 * extent checksums all have this objectid
  66 * this allows them to share the logging tree
  67 * for fsyncs
  68 */
  69#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
  70
  71/* For storing free space cache */
  72#define BTRFS_FREE_SPACE_OBJECTID -11ULL
  73
  74/*
  75 * The inode number assigned to the special inode for storing
  76 * free ino cache
  77 */
  78#define BTRFS_FREE_INO_OBJECTID -12ULL
  79
  80/* dummy objectid represents multiple objectids */
  81#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
  82
  83/*
  84 * All files have objectids in this range.
  85 */
  86#define BTRFS_FIRST_FREE_OBJECTID 256ULL
  87#define BTRFS_LAST_FREE_OBJECTID -256ULL
  88#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
  89
  90
  91/*
  92 * the device items go into the chunk tree.  The key is in the form
  93 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
  94 */
  95#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
  96
  97#define BTRFS_BTREE_INODE_OBJECTID 1
  98
  99#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
 100
 101#define BTRFS_DEV_REPLACE_DEVID 0ULL
 102
 103/*
 104 * inode items have the data typically returned from stat and store other
 105 * info about object characteristics.  There is one for every file and dir in
 106 * the FS
 107 */
 108#define BTRFS_INODE_ITEM_KEY            1
 109#define BTRFS_INODE_REF_KEY             12
 110#define BTRFS_INODE_EXTREF_KEY          13
 111#define BTRFS_XATTR_ITEM_KEY            24
 112#define BTRFS_ORPHAN_ITEM_KEY           48
 113/* reserve 2-15 close to the inode for later flexibility */
 114
 115/*
 116 * dir items are the name -> inode pointers in a directory.  There is one
 117 * for every name in a directory.
 118 */
 119#define BTRFS_DIR_LOG_ITEM_KEY  60
 120#define BTRFS_DIR_LOG_INDEX_KEY 72
 121#define BTRFS_DIR_ITEM_KEY      84
 122#define BTRFS_DIR_INDEX_KEY     96
 123/*
 124 * extent data is for file data
 125 */
 126#define BTRFS_EXTENT_DATA_KEY   108
 127
 128/*
 129 * extent csums are stored in a separate tree and hold csums for
 130 * an entire extent on disk.
 131 */
 132#define BTRFS_EXTENT_CSUM_KEY   128
 133
 134/*
 135 * root items point to tree roots.  They are typically in the root
 136 * tree used by the super block to find all the other trees
 137 */
 138#define BTRFS_ROOT_ITEM_KEY     132
 139
 140/*
 141 * root backrefs tie subvols and snapshots to the directory entries that
 142 * reference them
 143 */
 144#define BTRFS_ROOT_BACKREF_KEY  144
 145
 146/*
 147 * root refs make a fast index for listing all of the snapshots and
 148 * subvolumes referenced by a given root.  They point directly to the
 149 * directory item in the root that references the subvol
 150 */
 151#define BTRFS_ROOT_REF_KEY      156
 152
 153/*
 154 * extent items are in the extent map tree.  These record which blocks
 155 * are used, and how many references there are to each block
 156 */
 157#define BTRFS_EXTENT_ITEM_KEY   168
 158
 159/*
 160 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
 161 * the length, so we save the level in key->offset instead of the length.
 162 */
 163#define BTRFS_METADATA_ITEM_KEY 169
 164
 165#define BTRFS_TREE_BLOCK_REF_KEY        176
 166
 167#define BTRFS_EXTENT_DATA_REF_KEY       178
 168
 169#define BTRFS_EXTENT_REF_V0_KEY         180
 170
 171#define BTRFS_SHARED_BLOCK_REF_KEY      182
 172
 173#define BTRFS_SHARED_DATA_REF_KEY       184
 174
 175/*
 176 * block groups give us hints into the extent allocation trees.  Which
 177 * blocks are free etc etc
 178 */
 179#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
 180
 181/*
 182 * Every block group is represented in the free space tree by a free space info
 183 * item, which stores some accounting information. It is keyed on
 184 * (block_group_start, FREE_SPACE_INFO, block_group_length).
 185 */
 186#define BTRFS_FREE_SPACE_INFO_KEY 198
 187
 188/*
 189 * A free space extent tracks an extent of space that is free in a block group.
 190 * It is keyed on (start, FREE_SPACE_EXTENT, length).
 191 */
 192#define BTRFS_FREE_SPACE_EXTENT_KEY 199
 193
 194/*
 195 * When a block group becomes very fragmented, we convert it to use bitmaps
 196 * instead of extents. A free space bitmap is keyed on
 197 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
 198 * (length / sectorsize) bits.
 199 */
 200#define BTRFS_FREE_SPACE_BITMAP_KEY 200
 201
 202#define BTRFS_DEV_EXTENT_KEY    204
 203#define BTRFS_DEV_ITEM_KEY      216
 204#define BTRFS_CHUNK_ITEM_KEY    228
 205
 206/*
 207 * Records the overall state of the qgroups.
 208 * There's only one instance of this key present,
 209 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
 210 */
 211#define BTRFS_QGROUP_STATUS_KEY         240
 212/*
 213 * Records the currently used space of the qgroup.
 214 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
 215 */
 216#define BTRFS_QGROUP_INFO_KEY           242
 217/*
 218 * Contains the user configured limits for the qgroup.
 219 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
 220 */
 221#define BTRFS_QGROUP_LIMIT_KEY          244
 222/*
 223 * Records the child-parent relationship of qgroups. For
 224 * each relation, 2 keys are present:
 225 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
 226 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
 227 */
 228#define BTRFS_QGROUP_RELATION_KEY       246
 229
 230/*
 231 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
 232 */
 233#define BTRFS_BALANCE_ITEM_KEY  248
 234
 235/*
 236 * The key type for tree items that are stored persistently, but do not need to
 237 * exist for extended period of time. The items can exist in any tree.
 238 *
 239 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
 240 *
 241 * Existing items:
 242 *
 243 * - balance status item
 244 *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
 245 */
 246#define BTRFS_TEMPORARY_ITEM_KEY        248
 247
 248/*
 249 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
 250 */
 251#define BTRFS_DEV_STATS_KEY             249
 252
 253/*
 254 * The key type for tree items that are stored persistently and usually exist
 255 * for a long period, eg. filesystem lifetime. The item kinds can be status
 256 * information, stats or preference values. The item can exist in any tree.
 257 *
 258 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
 259 *
 260 * Existing items:
 261 *
 262 * - device statistics, store IO stats in the device tree, one key for all
 263 *   stats
 264 *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
 265 */
 266#define BTRFS_PERSISTENT_ITEM_KEY       249
 267
 268/*
 269 * Persistantly stores the device replace state in the device tree.
 270 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
 271 */
 272#define BTRFS_DEV_REPLACE_KEY   250
 273
 274/*
 275 * Stores items that allow to quickly map UUIDs to something else.
 276 * These items are part of the filesystem UUID tree.
 277 * The key is built like this:
 278 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
 279 */
 280#if BTRFS_UUID_SIZE != 16
 281#error "UUID items require BTRFS_UUID_SIZE == 16!"
 282#endif
 283#define BTRFS_UUID_KEY_SUBVOL   251     /* for UUIDs assigned to subvols */
 284#define BTRFS_UUID_KEY_RECEIVED_SUBVOL  252     /* for UUIDs assigned to
 285                                                 * received subvols */
 286
 287/*
 288 * string items are for debugging.  They just store a short string of
 289 * data in the FS
 290 */
 291#define BTRFS_STRING_ITEM_KEY   253
 292
 293
 294
 295/* 32 bytes in various csum fields */
 296#define BTRFS_CSUM_SIZE 32
 297
 298/* csum types */
 299#define BTRFS_CSUM_TYPE_CRC32   0
 300
 301/*
 302 * flags definitions for directory entry item type
 303 *
 304 * Used by:
 305 * struct btrfs_dir_item.type
 306 */
 307#define BTRFS_FT_UNKNOWN        0
 308#define BTRFS_FT_REG_FILE       1
 309#define BTRFS_FT_DIR            2
 310#define BTRFS_FT_CHRDEV         3
 311#define BTRFS_FT_BLKDEV         4
 312#define BTRFS_FT_FIFO           5
 313#define BTRFS_FT_SOCK           6
 314#define BTRFS_FT_SYMLINK        7
 315#define BTRFS_FT_XATTR          8
 316#define BTRFS_FT_MAX            9
 317
 318/*
 319 * The key defines the order in the tree, and so it also defines (optimal)
 320 * block layout.
 321 *
 322 * objectid corresponds to the inode number.
 323 *
 324 * type tells us things about the object, and is a kind of stream selector.
 325 * so for a given inode, keys with type of 1 might refer to the inode data,
 326 * type of 2 may point to file data in the btree and type == 3 may point to
 327 * extents.
 328 *
 329 * offset is the starting byte offset for this key in the stream.
 330 *
 331 * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
 332 * in cpu native order.  Otherwise they are identical and their sizes
 333 * should be the same (ie both packed)
 334 */
 335struct btrfs_disk_key {
 336        __le64 objectid;
 337        __u8 type;
 338        __le64 offset;
 339} __attribute__ ((__packed__));
 340
 341struct btrfs_key {
 342        __u64 objectid;
 343        __u8 type;
 344        __u64 offset;
 345} __attribute__ ((__packed__));
 346
 347struct btrfs_dev_item {
 348        /* the internal btrfs device id */
 349        __le64 devid;
 350
 351        /* size of the device */
 352        __le64 total_bytes;
 353
 354        /* bytes used */
 355        __le64 bytes_used;
 356
 357        /* optimal io alignment for this device */
 358        __le32 io_align;
 359
 360        /* optimal io width for this device */
 361        __le32 io_width;
 362
 363        /* minimal io size for this device */
 364        __le32 sector_size;
 365
 366        /* type and info about this device */
 367        __le64 type;
 368
 369        /* expected generation for this device */
 370        __le64 generation;
 371
 372        /*
 373         * starting byte of this partition on the device,
 374         * to allow for stripe alignment in the future
 375         */
 376        __le64 start_offset;
 377
 378        /* grouping information for allocation decisions */
 379        __le32 dev_group;
 380
 381        /* seek speed 0-100 where 100 is fastest */
 382        __u8 seek_speed;
 383
 384        /* bandwidth 0-100 where 100 is fastest */
 385        __u8 bandwidth;
 386
 387        /* btrfs generated uuid for this device */
 388        __u8 uuid[BTRFS_UUID_SIZE];
 389
 390        /* uuid of FS who owns this device */
 391        __u8 fsid[BTRFS_UUID_SIZE];
 392} __attribute__ ((__packed__));
 393
 394struct btrfs_stripe {
 395        __le64 devid;
 396        __le64 offset;
 397        __u8 dev_uuid[BTRFS_UUID_SIZE];
 398} __attribute__ ((__packed__));
 399
 400struct btrfs_chunk {
 401        /* size of this chunk in bytes */
 402        __le64 length;
 403
 404        /* objectid of the root referencing this chunk */
 405        __le64 owner;
 406
 407        __le64 stripe_len;
 408        __le64 type;
 409
 410        /* optimal io alignment for this chunk */
 411        __le32 io_align;
 412
 413        /* optimal io width for this chunk */
 414        __le32 io_width;
 415
 416        /* minimal io size for this chunk */
 417        __le32 sector_size;
 418
 419        /* 2^16 stripes is quite a lot, a second limit is the size of a single
 420         * item in the btree
 421         */
 422        __le16 num_stripes;
 423
 424        /* sub stripes only matter for raid10 */
 425        __le16 sub_stripes;
 426        struct btrfs_stripe stripe;
 427        /* additional stripes go here */
 428} __attribute__ ((__packed__));
 429
 430#define BTRFS_FREE_SPACE_EXTENT 1
 431#define BTRFS_FREE_SPACE_BITMAP 2
 432
 433struct btrfs_free_space_entry {
 434        __le64 offset;
 435        __le64 bytes;
 436        __u8 type;
 437} __attribute__ ((__packed__));
 438
 439struct btrfs_free_space_header {
 440        struct btrfs_disk_key location;
 441        __le64 generation;
 442        __le64 num_entries;
 443        __le64 num_bitmaps;
 444} __attribute__ ((__packed__));
 445
 446#define BTRFS_HEADER_FLAG_WRITTEN       (1ULL << 0)
 447#define BTRFS_HEADER_FLAG_RELOC         (1ULL << 1)
 448
 449/* Super block flags */
 450/* Errors detected */
 451#define BTRFS_SUPER_FLAG_ERROR          (1ULL << 2)
 452
 453#define BTRFS_SUPER_FLAG_SEEDING        (1ULL << 32)
 454#define BTRFS_SUPER_FLAG_METADUMP       (1ULL << 33)
 455
 456
 457/*
 458 * items in the extent btree are used to record the objectid of the
 459 * owner of the block and the number of references
 460 */
 461
 462struct btrfs_extent_item {
 463        __le64 refs;
 464        __le64 generation;
 465        __le64 flags;
 466} __attribute__ ((__packed__));
 467
 468struct btrfs_extent_item_v0 {
 469        __le32 refs;
 470} __attribute__ ((__packed__));
 471
 472
 473#define BTRFS_EXTENT_FLAG_DATA          (1ULL << 0)
 474#define BTRFS_EXTENT_FLAG_TREE_BLOCK    (1ULL << 1)
 475
 476/* following flags only apply to tree blocks */
 477
 478/* use full backrefs for extent pointers in the block */
 479#define BTRFS_BLOCK_FLAG_FULL_BACKREF   (1ULL << 8)
 480
 481/*
 482 * this flag is only used internally by scrub and may be changed at any time
 483 * it is only declared here to avoid collisions
 484 */
 485#define BTRFS_EXTENT_FLAG_SUPER         (1ULL << 48)
 486
 487struct btrfs_tree_block_info {
 488        struct btrfs_disk_key key;
 489        __u8 level;
 490} __attribute__ ((__packed__));
 491
 492struct btrfs_extent_data_ref {
 493        __le64 root;
 494        __le64 objectid;
 495        __le64 offset;
 496        __le32 count;
 497} __attribute__ ((__packed__));
 498
 499struct btrfs_shared_data_ref {
 500        __le32 count;
 501} __attribute__ ((__packed__));
 502
 503struct btrfs_extent_inline_ref {
 504        __u8 type;
 505        __le64 offset;
 506} __attribute__ ((__packed__));
 507
 508/* old style backrefs item */
 509struct btrfs_extent_ref_v0 {
 510        __le64 root;
 511        __le64 generation;
 512        __le64 objectid;
 513        __le32 count;
 514} __attribute__ ((__packed__));
 515
 516
 517/* dev extents record free space on individual devices.  The owner
 518 * field points back to the chunk allocation mapping tree that allocated
 519 * the extent.  The chunk tree uuid field is a way to double check the owner
 520 */
 521struct btrfs_dev_extent {
 522        __le64 chunk_tree;
 523        __le64 chunk_objectid;
 524        __le64 chunk_offset;
 525        __le64 length;
 526        __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 527} __attribute__ ((__packed__));
 528
 529struct btrfs_inode_ref {
 530        __le64 index;
 531        __le16 name_len;
 532        /* name goes here */
 533} __attribute__ ((__packed__));
 534
 535struct btrfs_inode_extref {
 536        __le64 parent_objectid;
 537        __le64 index;
 538        __le16 name_len;
 539        __u8   name[0];
 540        /* name goes here */
 541} __attribute__ ((__packed__));
 542
 543struct btrfs_timespec {
 544        __le64 sec;
 545        __le32 nsec;
 546} __attribute__ ((__packed__));
 547
 548struct btrfs_inode_item {
 549        /* nfs style generation number */
 550        __le64 generation;
 551        /* transid that last touched this inode */
 552        __le64 transid;
 553        __le64 size;
 554        __le64 nbytes;
 555        __le64 block_group;
 556        __le32 nlink;
 557        __le32 uid;
 558        __le32 gid;
 559        __le32 mode;
 560        __le64 rdev;
 561        __le64 flags;
 562
 563        /* modification sequence number for NFS */
 564        __le64 sequence;
 565
 566        /*
 567         * a little future expansion, for more than this we can
 568         * just grow the inode item and version it
 569         */
 570        __le64 reserved[4];
 571        struct btrfs_timespec atime;
 572        struct btrfs_timespec ctime;
 573        struct btrfs_timespec mtime;
 574        struct btrfs_timespec otime;
 575} __attribute__ ((__packed__));
 576
 577struct btrfs_dir_log_item {
 578        __le64 end;
 579} __attribute__ ((__packed__));
 580
 581struct btrfs_dir_item {
 582        struct btrfs_disk_key location;
 583        __le64 transid;
 584        __le16 data_len;
 585        __le16 name_len;
 586        __u8 type;
 587} __attribute__ ((__packed__));
 588
 589#define BTRFS_ROOT_SUBVOL_RDONLY        (1ULL << 0)
 590
 591/*
 592 * Internal in-memory flag that a subvolume has been marked for deletion but
 593 * still visible as a directory
 594 */
 595#define BTRFS_ROOT_SUBVOL_DEAD          (1ULL << 48)
 596
 597struct btrfs_root_item {
 598        struct btrfs_inode_item inode;
 599        __le64 generation;
 600        __le64 root_dirid;
 601        __le64 bytenr;
 602        __le64 byte_limit;
 603        __le64 bytes_used;
 604        __le64 last_snapshot;
 605        __le64 flags;
 606        __le32 refs;
 607        struct btrfs_disk_key drop_progress;
 608        __u8 drop_level;
 609        __u8 level;
 610
 611        /*
 612         * The following fields appear after subvol_uuids+subvol_times
 613         * were introduced.
 614         */
 615
 616        /*
 617         * This generation number is used to test if the new fields are valid
 618         * and up to date while reading the root item. Every time the root item
 619         * is written out, the "generation" field is copied into this field. If
 620         * anyone ever mounted the fs with an older kernel, we will have
 621         * mismatching generation values here and thus must invalidate the
 622         * new fields. See btrfs_update_root and btrfs_find_last_root for
 623         * details.
 624         * the offset of generation_v2 is also used as the start for the memset
 625         * when invalidating the fields.
 626         */
 627        __le64 generation_v2;
 628        __u8 uuid[BTRFS_UUID_SIZE];
 629        __u8 parent_uuid[BTRFS_UUID_SIZE];
 630        __u8 received_uuid[BTRFS_UUID_SIZE];
 631        __le64 ctransid; /* updated when an inode changes */
 632        __le64 otransid; /* trans when created */
 633        __le64 stransid; /* trans when sent. non-zero for received subvol */
 634        __le64 rtransid; /* trans when received. non-zero for received subvol */
 635        struct btrfs_timespec ctime;
 636        struct btrfs_timespec otime;
 637        struct btrfs_timespec stime;
 638        struct btrfs_timespec rtime;
 639        __le64 reserved[8]; /* for future */
 640} __attribute__ ((__packed__));
 641
 642/*
 643 * this is used for both forward and backward root refs
 644 */
 645struct btrfs_root_ref {
 646        __le64 dirid;
 647        __le64 sequence;
 648        __le16 name_len;
 649} __attribute__ ((__packed__));
 650
 651struct btrfs_disk_balance_args {
 652        /*
 653         * profiles to operate on, single is denoted by
 654         * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 655         */
 656        __le64 profiles;
 657
 658        /*
 659         * usage filter
 660         * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
 661         * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
 662         */
 663        union {
 664                __le64 usage;
 665                struct {
 666                        __le32 usage_min;
 667                        __le32 usage_max;
 668                };
 669        };
 670
 671        /* devid filter */
 672        __le64 devid;
 673
 674        /* devid subset filter [pstart..pend) */
 675        __le64 pstart;
 676        __le64 pend;
 677
 678        /* btrfs virtual address space subset filter [vstart..vend) */
 679        __le64 vstart;
 680        __le64 vend;
 681
 682        /*
 683         * profile to convert to, single is denoted by
 684         * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 685         */
 686        __le64 target;
 687
 688        /* BTRFS_BALANCE_ARGS_* */
 689        __le64 flags;
 690
 691        /*
 692         * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
 693         * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
 694         * and maximum
 695         */
 696        union {
 697                __le64 limit;
 698                struct {
 699                        __le32 limit_min;
 700                        __le32 limit_max;
 701                };
 702        };
 703
 704        /*
 705         * Process chunks that cross stripes_min..stripes_max devices,
 706         * BTRFS_BALANCE_ARGS_STRIPES_RANGE
 707         */
 708        __le32 stripes_min;
 709        __le32 stripes_max;
 710
 711        __le64 unused[6];
 712} __attribute__ ((__packed__));
 713
 714/*
 715 * store balance parameters to disk so that balance can be properly
 716 * resumed after crash or unmount
 717 */
 718struct btrfs_balance_item {
 719        /* BTRFS_BALANCE_* */
 720        __le64 flags;
 721
 722        struct btrfs_disk_balance_args data;
 723        struct btrfs_disk_balance_args meta;
 724        struct btrfs_disk_balance_args sys;
 725
 726        __le64 unused[4];
 727} __attribute__ ((__packed__));
 728
 729#define BTRFS_FILE_EXTENT_INLINE 0
 730#define BTRFS_FILE_EXTENT_REG 1
 731#define BTRFS_FILE_EXTENT_PREALLOC 2
 732
 733struct btrfs_file_extent_item {
 734        /*
 735         * transaction id that created this extent
 736         */
 737        __le64 generation;
 738        /*
 739         * max number of bytes to hold this extent in ram
 740         * when we split a compressed extent we can't know how big
 741         * each of the resulting pieces will be.  So, this is
 742         * an upper limit on the size of the extent in ram instead of
 743         * an exact limit.
 744         */
 745        __le64 ram_bytes;
 746
 747        /*
 748         * 32 bits for the various ways we might encode the data,
 749         * including compression and encryption.  If any of these
 750         * are set to something a given disk format doesn't understand
 751         * it is treated like an incompat flag for reading and writing,
 752         * but not for stat.
 753         */
 754        __u8 compression;
 755        __u8 encryption;
 756        __le16 other_encoding; /* spare for later use */
 757
 758        /* are we inline data or a real extent? */
 759        __u8 type;
 760
 761        /*
 762         * disk space consumed by the extent, checksum blocks are included
 763         * in these numbers
 764         *
 765         * At this offset in the structure, the inline extent data start.
 766         */
 767        __le64 disk_bytenr;
 768        __le64 disk_num_bytes;
 769        /*
 770         * the logical offset in file blocks (no csums)
 771         * this extent record is for.  This allows a file extent to point
 772         * into the middle of an existing extent on disk, sharing it
 773         * between two snapshots (useful if some bytes in the middle of the
 774         * extent have changed
 775         */
 776        __le64 offset;
 777        /*
 778         * the logical number of file blocks (no csums included).  This
 779         * always reflects the size uncompressed and without encoding.
 780         */
 781        __le64 num_bytes;
 782
 783} __attribute__ ((__packed__));
 784
 785struct btrfs_csum_item {
 786        __u8 csum;
 787} __attribute__ ((__packed__));
 788
 789struct btrfs_dev_stats_item {
 790        /*
 791         * grow this item struct at the end for future enhancements and keep
 792         * the existing values unchanged
 793         */
 794        __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
 795} __attribute__ ((__packed__));
 796
 797#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS     0
 798#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID      1
 799#define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED      0
 800#define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED            1
 801#define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED          2
 802#define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED           3
 803#define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED           4
 804
 805struct btrfs_dev_replace_item {
 806        /*
 807         * grow this item struct at the end for future enhancements and keep
 808         * the existing values unchanged
 809         */
 810        __le64 src_devid;
 811        __le64 cursor_left;
 812        __le64 cursor_right;
 813        __le64 cont_reading_from_srcdev_mode;
 814
 815        __le64 replace_state;
 816        __le64 time_started;
 817        __le64 time_stopped;
 818        __le64 num_write_errors;
 819        __le64 num_uncorrectable_read_errors;
 820} __attribute__ ((__packed__));
 821
 822/* different types of block groups (and chunks) */
 823#define BTRFS_BLOCK_GROUP_DATA          (1ULL << 0)
 824#define BTRFS_BLOCK_GROUP_SYSTEM        (1ULL << 1)
 825#define BTRFS_BLOCK_GROUP_METADATA      (1ULL << 2)
 826#define BTRFS_BLOCK_GROUP_RAID0         (1ULL << 3)
 827#define BTRFS_BLOCK_GROUP_RAID1         (1ULL << 4)
 828#define BTRFS_BLOCK_GROUP_DUP           (1ULL << 5)
 829#define BTRFS_BLOCK_GROUP_RAID10        (1ULL << 6)
 830#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
 831#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
 832#define BTRFS_BLOCK_GROUP_RESERVED      (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
 833                                         BTRFS_SPACE_INFO_GLOBAL_RSV)
 834
 835enum btrfs_raid_types {
 836        BTRFS_RAID_RAID10,
 837        BTRFS_RAID_RAID1,
 838        BTRFS_RAID_DUP,
 839        BTRFS_RAID_RAID0,
 840        BTRFS_RAID_SINGLE,
 841        BTRFS_RAID_RAID5,
 842        BTRFS_RAID_RAID6,
 843        BTRFS_NR_RAID_TYPES
 844};
 845
 846#define BTRFS_BLOCK_GROUP_TYPE_MASK     (BTRFS_BLOCK_GROUP_DATA |    \
 847                                         BTRFS_BLOCK_GROUP_SYSTEM |  \
 848                                         BTRFS_BLOCK_GROUP_METADATA)
 849
 850#define BTRFS_BLOCK_GROUP_PROFILE_MASK  (BTRFS_BLOCK_GROUP_RAID0 |   \
 851                                         BTRFS_BLOCK_GROUP_RAID1 |   \
 852                                         BTRFS_BLOCK_GROUP_RAID5 |   \
 853                                         BTRFS_BLOCK_GROUP_RAID6 |   \
 854                                         BTRFS_BLOCK_GROUP_DUP |     \
 855                                         BTRFS_BLOCK_GROUP_RAID10)
 856#define BTRFS_BLOCK_GROUP_RAID56_MASK   (BTRFS_BLOCK_GROUP_RAID5 |   \
 857                                         BTRFS_BLOCK_GROUP_RAID6)
 858
 859/*
 860 * We need a bit for restriper to be able to tell when chunks of type
 861 * SINGLE are available.  This "extended" profile format is used in
 862 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
 863 * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
 864 * to avoid remappings between two formats in future.
 865 */
 866#define BTRFS_AVAIL_ALLOC_BIT_SINGLE    (1ULL << 48)
 867
 868/*
 869 * A fake block group type that is used to communicate global block reserve
 870 * size to userspace via the SPACE_INFO ioctl.
 871 */
 872#define BTRFS_SPACE_INFO_GLOBAL_RSV     (1ULL << 49)
 873
 874#define BTRFS_EXTENDED_PROFILE_MASK     (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
 875                                         BTRFS_AVAIL_ALLOC_BIT_SINGLE)
 876
 877static inline __u64 chunk_to_extended(__u64 flags)
 878{
 879        if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
 880                flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
 881
 882        return flags;
 883}
 884static inline __u64 extended_to_chunk(__u64 flags)
 885{
 886        return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
 887}
 888
 889struct btrfs_block_group_item {
 890        __le64 used;
 891        __le64 chunk_objectid;
 892        __le64 flags;
 893} __attribute__ ((__packed__));
 894
 895struct btrfs_free_space_info {
 896        __le32 extent_count;
 897        __le32 flags;
 898} __attribute__ ((__packed__));
 899
 900#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
 901
 902#define BTRFS_QGROUP_LEVEL_SHIFT                48
 903static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
 904{
 905        return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
 906}
 907
 908/*
 909 * is subvolume quota turned on?
 910 */
 911#define BTRFS_QGROUP_STATUS_FLAG_ON             (1ULL << 0)
 912/*
 913 * RESCAN is set during the initialization phase
 914 */
 915#define BTRFS_QGROUP_STATUS_FLAG_RESCAN         (1ULL << 1)
 916/*
 917 * Some qgroup entries are known to be out of date,
 918 * either because the configuration has changed in a way that
 919 * makes a rescan necessary, or because the fs has been mounted
 920 * with a non-qgroup-aware version.
 921 * Turning qouta off and on again makes it inconsistent, too.
 922 */
 923#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT   (1ULL << 2)
 924
 925#define BTRFS_QGROUP_STATUS_VERSION        1
 926
 927struct btrfs_qgroup_status_item {
 928        __le64 version;
 929        /*
 930         * the generation is updated during every commit. As older
 931         * versions of btrfs are not aware of qgroups, it will be
 932         * possible to detect inconsistencies by checking the
 933         * generation on mount time
 934         */
 935        __le64 generation;
 936
 937        /* flag definitions see above */
 938        __le64 flags;
 939
 940        /*
 941         * only used during scanning to record the progress
 942         * of the scan. It contains a logical address
 943         */
 944        __le64 rescan;
 945} __attribute__ ((__packed__));
 946
 947struct btrfs_qgroup_info_item {
 948        __le64 generation;
 949        __le64 rfer;
 950        __le64 rfer_cmpr;
 951        __le64 excl;
 952        __le64 excl_cmpr;
 953} __attribute__ ((__packed__));
 954
 955struct btrfs_qgroup_limit_item {
 956        /*
 957         * only updated when any of the other values change
 958         */
 959        __le64 flags;
 960        __le64 max_rfer;
 961        __le64 max_excl;
 962        __le64 rsv_rfer;
 963        __le64 rsv_excl;
 964} __attribute__ ((__packed__));
 965
 966#endif /* _BTRFS_CTREE_H_ */
 967