linux/kernel/bpf/core.c
<<
>>
Prefs
   1/*
   2 * Linux Socket Filter - Kernel level socket filtering
   3 *
   4 * Based on the design of the Berkeley Packet Filter. The new
   5 * internal format has been designed by PLUMgrid:
   6 *
   7 *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   8 *
   9 * Authors:
  10 *
  11 *      Jay Schulist <jschlst@samba.org>
  12 *      Alexei Starovoitov <ast@plumgrid.com>
  13 *      Daniel Borkmann <dborkman@redhat.com>
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 *
  20 * Andi Kleen - Fix a few bad bugs and races.
  21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  22 */
  23
  24#include <linux/filter.h>
  25#include <linux/skbuff.h>
  26#include <linux/vmalloc.h>
  27#include <linux/random.h>
  28#include <linux/moduleloader.h>
  29#include <linux/bpf.h>
  30#include <linux/frame.h>
  31
  32#include <asm/unaligned.h>
  33
  34/* Registers */
  35#define BPF_R0  regs[BPF_REG_0]
  36#define BPF_R1  regs[BPF_REG_1]
  37#define BPF_R2  regs[BPF_REG_2]
  38#define BPF_R3  regs[BPF_REG_3]
  39#define BPF_R4  regs[BPF_REG_4]
  40#define BPF_R5  regs[BPF_REG_5]
  41#define BPF_R6  regs[BPF_REG_6]
  42#define BPF_R7  regs[BPF_REG_7]
  43#define BPF_R8  regs[BPF_REG_8]
  44#define BPF_R9  regs[BPF_REG_9]
  45#define BPF_R10 regs[BPF_REG_10]
  46
  47/* Named registers */
  48#define DST     regs[insn->dst_reg]
  49#define SRC     regs[insn->src_reg]
  50#define FP      regs[BPF_REG_FP]
  51#define ARG1    regs[BPF_REG_ARG1]
  52#define CTX     regs[BPF_REG_CTX]
  53#define IMM     insn->imm
  54
  55/* No hurry in this branch
  56 *
  57 * Exported for the bpf jit load helper.
  58 */
  59void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  60{
  61        u8 *ptr = NULL;
  62
  63        if (k >= SKF_NET_OFF)
  64                ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  65        else if (k >= SKF_LL_OFF)
  66                ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  67
  68        if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  69                return ptr;
  70
  71        return NULL;
  72}
  73
  74struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
  75{
  76        gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
  77                          gfp_extra_flags;
  78        struct bpf_prog_aux *aux;
  79        struct bpf_prog *fp;
  80
  81        size = round_up(size, PAGE_SIZE);
  82        fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  83        if (fp == NULL)
  84                return NULL;
  85
  86        kmemcheck_annotate_bitfield(fp, meta);
  87
  88        aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
  89        if (aux == NULL) {
  90                vfree(fp);
  91                return NULL;
  92        }
  93
  94        fp->pages = size / PAGE_SIZE;
  95        fp->aux = aux;
  96        fp->aux->prog = fp;
  97
  98        return fp;
  99}
 100EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 101
 102struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 103                                  gfp_t gfp_extra_flags)
 104{
 105        gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
 106                          gfp_extra_flags;
 107        struct bpf_prog *fp;
 108
 109        BUG_ON(fp_old == NULL);
 110
 111        size = round_up(size, PAGE_SIZE);
 112        if (size <= fp_old->pages * PAGE_SIZE)
 113                return fp_old;
 114
 115        fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
 116        if (fp != NULL) {
 117                kmemcheck_annotate_bitfield(fp, meta);
 118
 119                memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 120                fp->pages = size / PAGE_SIZE;
 121                fp->aux->prog = fp;
 122
 123                /* We keep fp->aux from fp_old around in the new
 124                 * reallocated structure.
 125                 */
 126                fp_old->aux = NULL;
 127                __bpf_prog_free(fp_old);
 128        }
 129
 130        return fp;
 131}
 132
 133void __bpf_prog_free(struct bpf_prog *fp)
 134{
 135        kfree(fp->aux);
 136        vfree(fp);
 137}
 138
 139static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
 140{
 141        return BPF_CLASS(insn->code) == BPF_JMP  &&
 142               /* Call and Exit are both special jumps with no
 143                * target inside the BPF instruction image.
 144                */
 145               BPF_OP(insn->code) != BPF_CALL &&
 146               BPF_OP(insn->code) != BPF_EXIT;
 147}
 148
 149static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
 150{
 151        struct bpf_insn *insn = prog->insnsi;
 152        u32 i, insn_cnt = prog->len;
 153
 154        for (i = 0; i < insn_cnt; i++, insn++) {
 155                if (!bpf_is_jmp_and_has_target(insn))
 156                        continue;
 157
 158                /* Adjust offset of jmps if we cross boundaries. */
 159                if (i < pos && i + insn->off + 1 > pos)
 160                        insn->off += delta;
 161                else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
 162                        insn->off -= delta;
 163        }
 164}
 165
 166struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 167                                       const struct bpf_insn *patch, u32 len)
 168{
 169        u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 170        struct bpf_prog *prog_adj;
 171
 172        /* Since our patchlet doesn't expand the image, we're done. */
 173        if (insn_delta == 0) {
 174                memcpy(prog->insnsi + off, patch, sizeof(*patch));
 175                return prog;
 176        }
 177
 178        insn_adj_cnt = prog->len + insn_delta;
 179
 180        /* Several new instructions need to be inserted. Make room
 181         * for them. Likely, there's no need for a new allocation as
 182         * last page could have large enough tailroom.
 183         */
 184        prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 185                                    GFP_USER);
 186        if (!prog_adj)
 187                return NULL;
 188
 189        prog_adj->len = insn_adj_cnt;
 190
 191        /* Patching happens in 3 steps:
 192         *
 193         * 1) Move over tail of insnsi from next instruction onwards,
 194         *    so we can patch the single target insn with one or more
 195         *    new ones (patching is always from 1 to n insns, n > 0).
 196         * 2) Inject new instructions at the target location.
 197         * 3) Adjust branch offsets if necessary.
 198         */
 199        insn_rest = insn_adj_cnt - off - len;
 200
 201        memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 202                sizeof(*patch) * insn_rest);
 203        memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 204
 205        bpf_adj_branches(prog_adj, off, insn_delta);
 206
 207        return prog_adj;
 208}
 209
 210#ifdef CONFIG_BPF_JIT
 211struct bpf_binary_header *
 212bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
 213                     unsigned int alignment,
 214                     bpf_jit_fill_hole_t bpf_fill_ill_insns)
 215{
 216        struct bpf_binary_header *hdr;
 217        unsigned int size, hole, start;
 218
 219        /* Most of BPF filters are really small, but if some of them
 220         * fill a page, allow at least 128 extra bytes to insert a
 221         * random section of illegal instructions.
 222         */
 223        size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
 224        hdr = module_alloc(size);
 225        if (hdr == NULL)
 226                return NULL;
 227
 228        /* Fill space with illegal/arch-dep instructions. */
 229        bpf_fill_ill_insns(hdr, size);
 230
 231        hdr->pages = size / PAGE_SIZE;
 232        hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
 233                     PAGE_SIZE - sizeof(*hdr));
 234        start = (get_random_int() % hole) & ~(alignment - 1);
 235
 236        /* Leave a random number of instructions before BPF code. */
 237        *image_ptr = &hdr->image[start];
 238
 239        return hdr;
 240}
 241
 242void bpf_jit_binary_free(struct bpf_binary_header *hdr)
 243{
 244        module_memfree(hdr);
 245}
 246
 247int bpf_jit_harden __read_mostly;
 248
 249static int bpf_jit_blind_insn(const struct bpf_insn *from,
 250                              const struct bpf_insn *aux,
 251                              struct bpf_insn *to_buff)
 252{
 253        struct bpf_insn *to = to_buff;
 254        u32 imm_rnd = get_random_int();
 255        s16 off;
 256
 257        BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
 258        BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
 259
 260        if (from->imm == 0 &&
 261            (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
 262             from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
 263                *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
 264                goto out;
 265        }
 266
 267        switch (from->code) {
 268        case BPF_ALU | BPF_ADD | BPF_K:
 269        case BPF_ALU | BPF_SUB | BPF_K:
 270        case BPF_ALU | BPF_AND | BPF_K:
 271        case BPF_ALU | BPF_OR  | BPF_K:
 272        case BPF_ALU | BPF_XOR | BPF_K:
 273        case BPF_ALU | BPF_MUL | BPF_K:
 274        case BPF_ALU | BPF_MOV | BPF_K:
 275        case BPF_ALU | BPF_DIV | BPF_K:
 276        case BPF_ALU | BPF_MOD | BPF_K:
 277                *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 278                *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 279                *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
 280                break;
 281
 282        case BPF_ALU64 | BPF_ADD | BPF_K:
 283        case BPF_ALU64 | BPF_SUB | BPF_K:
 284        case BPF_ALU64 | BPF_AND | BPF_K:
 285        case BPF_ALU64 | BPF_OR  | BPF_K:
 286        case BPF_ALU64 | BPF_XOR | BPF_K:
 287        case BPF_ALU64 | BPF_MUL | BPF_K:
 288        case BPF_ALU64 | BPF_MOV | BPF_K:
 289        case BPF_ALU64 | BPF_DIV | BPF_K:
 290        case BPF_ALU64 | BPF_MOD | BPF_K:
 291                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 292                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 293                *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
 294                break;
 295
 296        case BPF_JMP | BPF_JEQ  | BPF_K:
 297        case BPF_JMP | BPF_JNE  | BPF_K:
 298        case BPF_JMP | BPF_JGT  | BPF_K:
 299        case BPF_JMP | BPF_JGE  | BPF_K:
 300        case BPF_JMP | BPF_JSGT | BPF_K:
 301        case BPF_JMP | BPF_JSGE | BPF_K:
 302        case BPF_JMP | BPF_JSET | BPF_K:
 303                /* Accommodate for extra offset in case of a backjump. */
 304                off = from->off;
 305                if (off < 0)
 306                        off -= 2;
 307                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 308                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 309                *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
 310                break;
 311
 312        case BPF_LD | BPF_ABS | BPF_W:
 313        case BPF_LD | BPF_ABS | BPF_H:
 314        case BPF_LD | BPF_ABS | BPF_B:
 315                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 316                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 317                *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
 318                break;
 319
 320        case BPF_LD | BPF_IND | BPF_W:
 321        case BPF_LD | BPF_IND | BPF_H:
 322        case BPF_LD | BPF_IND | BPF_B:
 323                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 324                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 325                *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
 326                *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
 327                break;
 328
 329        case BPF_LD | BPF_IMM | BPF_DW:
 330                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
 331                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 332                *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
 333                *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
 334                break;
 335        case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
 336                *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
 337                *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 338                *to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
 339                break;
 340
 341        case BPF_ST | BPF_MEM | BPF_DW:
 342        case BPF_ST | BPF_MEM | BPF_W:
 343        case BPF_ST | BPF_MEM | BPF_H:
 344        case BPF_ST | BPF_MEM | BPF_B:
 345                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 346                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 347                *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
 348                break;
 349        }
 350out:
 351        return to - to_buff;
 352}
 353
 354static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
 355                                              gfp_t gfp_extra_flags)
 356{
 357        gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
 358                          gfp_extra_flags;
 359        struct bpf_prog *fp;
 360
 361        fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
 362        if (fp != NULL) {
 363                kmemcheck_annotate_bitfield(fp, meta);
 364
 365                /* aux->prog still points to the fp_other one, so
 366                 * when promoting the clone to the real program,
 367                 * this still needs to be adapted.
 368                 */
 369                memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
 370        }
 371
 372        return fp;
 373}
 374
 375static void bpf_prog_clone_free(struct bpf_prog *fp)
 376{
 377        /* aux was stolen by the other clone, so we cannot free
 378         * it from this path! It will be freed eventually by the
 379         * other program on release.
 380         *
 381         * At this point, we don't need a deferred release since
 382         * clone is guaranteed to not be locked.
 383         */
 384        fp->aux = NULL;
 385        __bpf_prog_free(fp);
 386}
 387
 388void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
 389{
 390        /* We have to repoint aux->prog to self, as we don't
 391         * know whether fp here is the clone or the original.
 392         */
 393        fp->aux->prog = fp;
 394        bpf_prog_clone_free(fp_other);
 395}
 396
 397struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
 398{
 399        struct bpf_insn insn_buff[16], aux[2];
 400        struct bpf_prog *clone, *tmp;
 401        int insn_delta, insn_cnt;
 402        struct bpf_insn *insn;
 403        int i, rewritten;
 404
 405        if (!bpf_jit_blinding_enabled())
 406                return prog;
 407
 408        clone = bpf_prog_clone_create(prog, GFP_USER);
 409        if (!clone)
 410                return ERR_PTR(-ENOMEM);
 411
 412        insn_cnt = clone->len;
 413        insn = clone->insnsi;
 414
 415        for (i = 0; i < insn_cnt; i++, insn++) {
 416                /* We temporarily need to hold the original ld64 insn
 417                 * so that we can still access the first part in the
 418                 * second blinding run.
 419                 */
 420                if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 421                    insn[1].code == 0)
 422                        memcpy(aux, insn, sizeof(aux));
 423
 424                rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
 425                if (!rewritten)
 426                        continue;
 427
 428                tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
 429                if (!tmp) {
 430                        /* Patching may have repointed aux->prog during
 431                         * realloc from the original one, so we need to
 432                         * fix it up here on error.
 433                         */
 434                        bpf_jit_prog_release_other(prog, clone);
 435                        return ERR_PTR(-ENOMEM);
 436                }
 437
 438                clone = tmp;
 439                insn_delta = rewritten - 1;
 440
 441                /* Walk new program and skip insns we just inserted. */
 442                insn = clone->insnsi + i + insn_delta;
 443                insn_cnt += insn_delta;
 444                i        += insn_delta;
 445        }
 446
 447        return clone;
 448}
 449#endif /* CONFIG_BPF_JIT */
 450
 451/* Base function for offset calculation. Needs to go into .text section,
 452 * therefore keeping it non-static as well; will also be used by JITs
 453 * anyway later on, so do not let the compiler omit it.
 454 */
 455noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 456{
 457        return 0;
 458}
 459EXPORT_SYMBOL_GPL(__bpf_call_base);
 460
 461/**
 462 *      __bpf_prog_run - run eBPF program on a given context
 463 *      @ctx: is the data we are operating on
 464 *      @insn: is the array of eBPF instructions
 465 *
 466 * Decode and execute eBPF instructions.
 467 */
 468static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
 469{
 470        u64 stack[MAX_BPF_STACK / sizeof(u64)];
 471        u64 regs[MAX_BPF_REG], tmp;
 472        static const void *jumptable[256] = {
 473                [0 ... 255] = &&default_label,
 474                /* Now overwrite non-defaults ... */
 475                /* 32 bit ALU operations */
 476                [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
 477                [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
 478                [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
 479                [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
 480                [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
 481                [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
 482                [BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
 483                [BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
 484                [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
 485                [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
 486                [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
 487                [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
 488                [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
 489                [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
 490                [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
 491                [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
 492                [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
 493                [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
 494                [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
 495                [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
 496                [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
 497                [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
 498                [BPF_ALU | BPF_NEG] = &&ALU_NEG,
 499                [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
 500                [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
 501                /* 64 bit ALU operations */
 502                [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
 503                [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
 504                [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
 505                [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
 506                [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
 507                [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
 508                [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
 509                [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
 510                [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
 511                [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
 512                [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
 513                [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
 514                [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
 515                [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
 516                [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
 517                [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
 518                [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
 519                [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
 520                [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
 521                [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
 522                [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
 523                [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
 524                [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
 525                [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
 526                [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
 527                /* Call instruction */
 528                [BPF_JMP | BPF_CALL] = &&JMP_CALL,
 529                [BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
 530                /* Jumps */
 531                [BPF_JMP | BPF_JA] = &&JMP_JA,
 532                [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
 533                [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
 534                [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
 535                [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
 536                [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
 537                [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
 538                [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
 539                [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
 540                [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
 541                [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
 542                [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
 543                [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
 544                [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
 545                [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
 546                /* Program return */
 547                [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
 548                /* Store instructions */
 549                [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
 550                [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
 551                [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
 552                [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
 553                [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
 554                [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
 555                [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
 556                [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
 557                [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
 558                [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
 559                /* Load instructions */
 560                [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
 561                [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
 562                [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
 563                [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
 564                [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
 565                [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
 566                [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
 567                [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
 568                [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
 569                [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
 570                [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
 571        };
 572        u32 tail_call_cnt = 0;
 573        void *ptr;
 574        int off;
 575
 576#define CONT     ({ insn++; goto select_insn; })
 577#define CONT_JMP ({ insn++; goto select_insn; })
 578
 579        FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
 580        ARG1 = (u64) (unsigned long) ctx;
 581
 582select_insn:
 583        goto *jumptable[insn->code];
 584
 585        /* ALU */
 586#define ALU(OPCODE, OP)                 \
 587        ALU64_##OPCODE##_X:             \
 588                DST = DST OP SRC;       \
 589                CONT;                   \
 590        ALU_##OPCODE##_X:               \
 591                DST = (u32) DST OP (u32) SRC;   \
 592                CONT;                   \
 593        ALU64_##OPCODE##_K:             \
 594                DST = DST OP IMM;               \
 595                CONT;                   \
 596        ALU_##OPCODE##_K:               \
 597                DST = (u32) DST OP (u32) IMM;   \
 598                CONT;
 599
 600        ALU(ADD,  +)
 601        ALU(SUB,  -)
 602        ALU(AND,  &)
 603        ALU(OR,   |)
 604        ALU(LSH, <<)
 605        ALU(RSH, >>)
 606        ALU(XOR,  ^)
 607        ALU(MUL,  *)
 608#undef ALU
 609        ALU_NEG:
 610                DST = (u32) -DST;
 611                CONT;
 612        ALU64_NEG:
 613                DST = -DST;
 614                CONT;
 615        ALU_MOV_X:
 616                DST = (u32) SRC;
 617                CONT;
 618        ALU_MOV_K:
 619                DST = (u32) IMM;
 620                CONT;
 621        ALU64_MOV_X:
 622                DST = SRC;
 623                CONT;
 624        ALU64_MOV_K:
 625                DST = IMM;
 626                CONT;
 627        LD_IMM_DW:
 628                DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
 629                insn++;
 630                CONT;
 631        ALU64_ARSH_X:
 632                (*(s64 *) &DST) >>= SRC;
 633                CONT;
 634        ALU64_ARSH_K:
 635                (*(s64 *) &DST) >>= IMM;
 636                CONT;
 637        ALU64_MOD_X:
 638                if (unlikely(SRC == 0))
 639                        return 0;
 640                div64_u64_rem(DST, SRC, &tmp);
 641                DST = tmp;
 642                CONT;
 643        ALU_MOD_X:
 644                if (unlikely(SRC == 0))
 645                        return 0;
 646                tmp = (u32) DST;
 647                DST = do_div(tmp, (u32) SRC);
 648                CONT;
 649        ALU64_MOD_K:
 650                div64_u64_rem(DST, IMM, &tmp);
 651                DST = tmp;
 652                CONT;
 653        ALU_MOD_K:
 654                tmp = (u32) DST;
 655                DST = do_div(tmp, (u32) IMM);
 656                CONT;
 657        ALU64_DIV_X:
 658                if (unlikely(SRC == 0))
 659                        return 0;
 660                DST = div64_u64(DST, SRC);
 661                CONT;
 662        ALU_DIV_X:
 663                if (unlikely(SRC == 0))
 664                        return 0;
 665                tmp = (u32) DST;
 666                do_div(tmp, (u32) SRC);
 667                DST = (u32) tmp;
 668                CONT;
 669        ALU64_DIV_K:
 670                DST = div64_u64(DST, IMM);
 671                CONT;
 672        ALU_DIV_K:
 673                tmp = (u32) DST;
 674                do_div(tmp, (u32) IMM);
 675                DST = (u32) tmp;
 676                CONT;
 677        ALU_END_TO_BE:
 678                switch (IMM) {
 679                case 16:
 680                        DST = (__force u16) cpu_to_be16(DST);
 681                        break;
 682                case 32:
 683                        DST = (__force u32) cpu_to_be32(DST);
 684                        break;
 685                case 64:
 686                        DST = (__force u64) cpu_to_be64(DST);
 687                        break;
 688                }
 689                CONT;
 690        ALU_END_TO_LE:
 691                switch (IMM) {
 692                case 16:
 693                        DST = (__force u16) cpu_to_le16(DST);
 694                        break;
 695                case 32:
 696                        DST = (__force u32) cpu_to_le32(DST);
 697                        break;
 698                case 64:
 699                        DST = (__force u64) cpu_to_le64(DST);
 700                        break;
 701                }
 702                CONT;
 703
 704        /* CALL */
 705        JMP_CALL:
 706                /* Function call scratches BPF_R1-BPF_R5 registers,
 707                 * preserves BPF_R6-BPF_R9, and stores return value
 708                 * into BPF_R0.
 709                 */
 710                BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
 711                                                       BPF_R4, BPF_R5);
 712                CONT;
 713
 714        JMP_TAIL_CALL: {
 715                struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
 716                struct bpf_array *array = container_of(map, struct bpf_array, map);
 717                struct bpf_prog *prog;
 718                u64 index = BPF_R3;
 719
 720                if (unlikely(index >= array->map.max_entries))
 721                        goto out;
 722                if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
 723                        goto out;
 724
 725                tail_call_cnt++;
 726
 727                prog = READ_ONCE(array->ptrs[index]);
 728                if (!prog)
 729                        goto out;
 730
 731                /* ARG1 at this point is guaranteed to point to CTX from
 732                 * the verifier side due to the fact that the tail call is
 733                 * handeled like a helper, that is, bpf_tail_call_proto,
 734                 * where arg1_type is ARG_PTR_TO_CTX.
 735                 */
 736                insn = prog->insnsi;
 737                goto select_insn;
 738out:
 739                CONT;
 740        }
 741        /* JMP */
 742        JMP_JA:
 743                insn += insn->off;
 744                CONT;
 745        JMP_JEQ_X:
 746                if (DST == SRC) {
 747                        insn += insn->off;
 748                        CONT_JMP;
 749                }
 750                CONT;
 751        JMP_JEQ_K:
 752                if (DST == IMM) {
 753                        insn += insn->off;
 754                        CONT_JMP;
 755                }
 756                CONT;
 757        JMP_JNE_X:
 758                if (DST != SRC) {
 759                        insn += insn->off;
 760                        CONT_JMP;
 761                }
 762                CONT;
 763        JMP_JNE_K:
 764                if (DST != IMM) {
 765                        insn += insn->off;
 766                        CONT_JMP;
 767                }
 768                CONT;
 769        JMP_JGT_X:
 770                if (DST > SRC) {
 771                        insn += insn->off;
 772                        CONT_JMP;
 773                }
 774                CONT;
 775        JMP_JGT_K:
 776                if (DST > IMM) {
 777                        insn += insn->off;
 778                        CONT_JMP;
 779                }
 780                CONT;
 781        JMP_JGE_X:
 782                if (DST >= SRC) {
 783                        insn += insn->off;
 784                        CONT_JMP;
 785                }
 786                CONT;
 787        JMP_JGE_K:
 788                if (DST >= IMM) {
 789                        insn += insn->off;
 790                        CONT_JMP;
 791                }
 792                CONT;
 793        JMP_JSGT_X:
 794                if (((s64) DST) > ((s64) SRC)) {
 795                        insn += insn->off;
 796                        CONT_JMP;
 797                }
 798                CONT;
 799        JMP_JSGT_K:
 800                if (((s64) DST) > ((s64) IMM)) {
 801                        insn += insn->off;
 802                        CONT_JMP;
 803                }
 804                CONT;
 805        JMP_JSGE_X:
 806                if (((s64) DST) >= ((s64) SRC)) {
 807                        insn += insn->off;
 808                        CONT_JMP;
 809                }
 810                CONT;
 811        JMP_JSGE_K:
 812                if (((s64) DST) >= ((s64) IMM)) {
 813                        insn += insn->off;
 814                        CONT_JMP;
 815                }
 816                CONT;
 817        JMP_JSET_X:
 818                if (DST & SRC) {
 819                        insn += insn->off;
 820                        CONT_JMP;
 821                }
 822                CONT;
 823        JMP_JSET_K:
 824                if (DST & IMM) {
 825                        insn += insn->off;
 826                        CONT_JMP;
 827                }
 828                CONT;
 829        JMP_EXIT:
 830                return BPF_R0;
 831
 832        /* STX and ST and LDX*/
 833#define LDST(SIZEOP, SIZE)                                              \
 834        STX_MEM_##SIZEOP:                                               \
 835                *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
 836                CONT;                                                   \
 837        ST_MEM_##SIZEOP:                                                \
 838                *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
 839                CONT;                                                   \
 840        LDX_MEM_##SIZEOP:                                               \
 841                DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
 842                CONT;
 843
 844        LDST(B,   u8)
 845        LDST(H,  u16)
 846        LDST(W,  u32)
 847        LDST(DW, u64)
 848#undef LDST
 849        STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
 850                atomic_add((u32) SRC, (atomic_t *)(unsigned long)
 851                           (DST + insn->off));
 852                CONT;
 853        STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
 854                atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
 855                             (DST + insn->off));
 856                CONT;
 857        LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
 858                off = IMM;
 859load_word:
 860                /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
 861                 * only appearing in the programs where ctx ==
 862                 * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
 863                 * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
 864                 * internal BPF verifier will check that BPF_R6 ==
 865                 * ctx.
 866                 *
 867                 * BPF_ABS and BPF_IND are wrappers of function calls,
 868                 * so they scratch BPF_R1-BPF_R5 registers, preserve
 869                 * BPF_R6-BPF_R9, and store return value into BPF_R0.
 870                 *
 871                 * Implicit input:
 872                 *   ctx == skb == BPF_R6 == CTX
 873                 *
 874                 * Explicit input:
 875                 *   SRC == any register
 876                 *   IMM == 32-bit immediate
 877                 *
 878                 * Output:
 879                 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
 880                 */
 881
 882                ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
 883                if (likely(ptr != NULL)) {
 884                        BPF_R0 = get_unaligned_be32(ptr);
 885                        CONT;
 886                }
 887
 888                return 0;
 889        LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
 890                off = IMM;
 891load_half:
 892                ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
 893                if (likely(ptr != NULL)) {
 894                        BPF_R0 = get_unaligned_be16(ptr);
 895                        CONT;
 896                }
 897
 898                return 0;
 899        LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
 900                off = IMM;
 901load_byte:
 902                ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
 903                if (likely(ptr != NULL)) {
 904                        BPF_R0 = *(u8 *)ptr;
 905                        CONT;
 906                }
 907
 908                return 0;
 909        LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
 910                off = IMM + SRC;
 911                goto load_word;
 912        LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
 913                off = IMM + SRC;
 914                goto load_half;
 915        LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
 916                off = IMM + SRC;
 917                goto load_byte;
 918
 919        default_label:
 920                /* If we ever reach this, we have a bug somewhere. */
 921                WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
 922                return 0;
 923}
 924STACK_FRAME_NON_STANDARD(__bpf_prog_run); /* jump table */
 925
 926bool bpf_prog_array_compatible(struct bpf_array *array,
 927                               const struct bpf_prog *fp)
 928{
 929        if (!array->owner_prog_type) {
 930                /* There's no owner yet where we could check for
 931                 * compatibility.
 932                 */
 933                array->owner_prog_type = fp->type;
 934                array->owner_jited = fp->jited;
 935
 936                return true;
 937        }
 938
 939        return array->owner_prog_type == fp->type &&
 940               array->owner_jited == fp->jited;
 941}
 942
 943static int bpf_check_tail_call(const struct bpf_prog *fp)
 944{
 945        struct bpf_prog_aux *aux = fp->aux;
 946        int i;
 947
 948        for (i = 0; i < aux->used_map_cnt; i++) {
 949                struct bpf_map *map = aux->used_maps[i];
 950                struct bpf_array *array;
 951
 952                if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
 953                        continue;
 954
 955                array = container_of(map, struct bpf_array, map);
 956                if (!bpf_prog_array_compatible(array, fp))
 957                        return -EINVAL;
 958        }
 959
 960        return 0;
 961}
 962
 963/**
 964 *      bpf_prog_select_runtime - select exec runtime for BPF program
 965 *      @fp: bpf_prog populated with internal BPF program
 966 *      @err: pointer to error variable
 967 *
 968 * Try to JIT eBPF program, if JIT is not available, use interpreter.
 969 * The BPF program will be executed via BPF_PROG_RUN() macro.
 970 */
 971struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
 972{
 973        fp->bpf_func = (void *) __bpf_prog_run;
 974
 975        /* eBPF JITs can rewrite the program in case constant
 976         * blinding is active. However, in case of error during
 977         * blinding, bpf_int_jit_compile() must always return a
 978         * valid program, which in this case would simply not
 979         * be JITed, but falls back to the interpreter.
 980         */
 981        fp = bpf_int_jit_compile(fp);
 982        bpf_prog_lock_ro(fp);
 983
 984        /* The tail call compatibility check can only be done at
 985         * this late stage as we need to determine, if we deal
 986         * with JITed or non JITed program concatenations and not
 987         * all eBPF JITs might immediately support all features.
 988         */
 989        *err = bpf_check_tail_call(fp);
 990
 991        return fp;
 992}
 993EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
 994
 995static void bpf_prog_free_deferred(struct work_struct *work)
 996{
 997        struct bpf_prog_aux *aux;
 998
 999        aux = container_of(work, struct bpf_prog_aux, work);
1000        bpf_jit_free(aux->prog);
1001}
1002
1003/* Free internal BPF program */
1004void bpf_prog_free(struct bpf_prog *fp)
1005{
1006        struct bpf_prog_aux *aux = fp->aux;
1007
1008        INIT_WORK(&aux->work, bpf_prog_free_deferred);
1009        schedule_work(&aux->work);
1010}
1011EXPORT_SYMBOL_GPL(bpf_prog_free);
1012
1013/* RNG for unpriviledged user space with separated state from prandom_u32(). */
1014static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1015
1016void bpf_user_rnd_init_once(void)
1017{
1018        prandom_init_once(&bpf_user_rnd_state);
1019}
1020
1021u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1022{
1023        /* Should someone ever have the rather unwise idea to use some
1024         * of the registers passed into this function, then note that
1025         * this function is called from native eBPF and classic-to-eBPF
1026         * transformations. Register assignments from both sides are
1027         * different, f.e. classic always sets fn(ctx, A, X) here.
1028         */
1029        struct rnd_state *state;
1030        u32 res;
1031
1032        state = &get_cpu_var(bpf_user_rnd_state);
1033        res = prandom_u32_state(state);
1034        put_cpu_var(state);
1035
1036        return res;
1037}
1038
1039/* Weak definitions of helper functions in case we don't have bpf syscall. */
1040const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1041const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1042const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1043
1044const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1045const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1046const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1047
1048const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1049const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1050const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1051
1052const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1053{
1054        return NULL;
1055}
1056
1057u64 __weak
1058bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1059                 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1060{
1061        return -ENOTSUPP;
1062}
1063
1064/* Always built-in helper functions. */
1065const struct bpf_func_proto bpf_tail_call_proto = {
1066        .func           = NULL,
1067        .gpl_only       = false,
1068        .ret_type       = RET_VOID,
1069        .arg1_type      = ARG_PTR_TO_CTX,
1070        .arg2_type      = ARG_CONST_MAP_PTR,
1071        .arg3_type      = ARG_ANYTHING,
1072};
1073
1074/* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
1075struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1076{
1077        return prog;
1078}
1079
1080bool __weak bpf_helper_changes_skb_data(void *func)
1081{
1082        return false;
1083}
1084
1085/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1086 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1087 */
1088int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1089                         int len)
1090{
1091        return -EFAULT;
1092}
1093