linux/kernel/cgroup.c
<<
>>
Prefs
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/cgroup.h>
  32#include <linux/cred.h>
  33#include <linux/ctype.h>
  34#include <linux/errno.h>
  35#include <linux/init_task.h>
  36#include <linux/kernel.h>
  37#include <linux/list.h>
  38#include <linux/magic.h>
  39#include <linux/mm.h>
  40#include <linux/mutex.h>
  41#include <linux/mount.h>
  42#include <linux/pagemap.h>
  43#include <linux/proc_fs.h>
  44#include <linux/rcupdate.h>
  45#include <linux/sched.h>
  46#include <linux/slab.h>
  47#include <linux/spinlock.h>
  48#include <linux/percpu-rwsem.h>
  49#include <linux/string.h>
  50#include <linux/sort.h>
  51#include <linux/kmod.h>
  52#include <linux/delayacct.h>
  53#include <linux/cgroupstats.h>
  54#include <linux/hashtable.h>
  55#include <linux/pid_namespace.h>
  56#include <linux/idr.h>
  57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
  58#include <linux/kthread.h>
  59#include <linux/delay.h>
  60#include <linux/atomic.h>
  61#include <linux/cpuset.h>
  62#include <linux/proc_ns.h>
  63#include <linux/nsproxy.h>
  64#include <linux/file.h>
  65#include <net/sock.h>
  66
  67/*
  68 * pidlists linger the following amount before being destroyed.  The goal
  69 * is avoiding frequent destruction in the middle of consecutive read calls
  70 * Expiring in the middle is a performance problem not a correctness one.
  71 * 1 sec should be enough.
  72 */
  73#define CGROUP_PIDLIST_DESTROY_DELAY    HZ
  74
  75#define CGROUP_FILE_NAME_MAX            (MAX_CGROUP_TYPE_NAMELEN +      \
  76                                         MAX_CFTYPE_NAME + 2)
  77
  78/*
  79 * cgroup_mutex is the master lock.  Any modification to cgroup or its
  80 * hierarchy must be performed while holding it.
  81 *
  82 * css_set_lock protects task->cgroups pointer, the list of css_set
  83 * objects, and the chain of tasks off each css_set.
  84 *
  85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
  86 * cgroup.h can use them for lockdep annotations.
  87 */
  88#ifdef CONFIG_PROVE_RCU
  89DEFINE_MUTEX(cgroup_mutex);
  90DEFINE_SPINLOCK(css_set_lock);
  91EXPORT_SYMBOL_GPL(cgroup_mutex);
  92EXPORT_SYMBOL_GPL(css_set_lock);
  93#else
  94static DEFINE_MUTEX(cgroup_mutex);
  95static DEFINE_SPINLOCK(css_set_lock);
  96#endif
  97
  98/*
  99 * Protects cgroup_idr and css_idr so that IDs can be released without
 100 * grabbing cgroup_mutex.
 101 */
 102static DEFINE_SPINLOCK(cgroup_idr_lock);
 103
 104/*
 105 * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
 106 * against file removal/re-creation across css hiding.
 107 */
 108static DEFINE_SPINLOCK(cgroup_file_kn_lock);
 109
 110/*
 111 * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
 112 * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
 113 */
 114static DEFINE_SPINLOCK(release_agent_path_lock);
 115
 116struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
 117
 118#define cgroup_assert_mutex_or_rcu_locked()                             \
 119        RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
 120                           !lockdep_is_held(&cgroup_mutex),             \
 121                           "cgroup_mutex or RCU read lock required");
 122
 123/*
 124 * cgroup destruction makes heavy use of work items and there can be a lot
 125 * of concurrent destructions.  Use a separate workqueue so that cgroup
 126 * destruction work items don't end up filling up max_active of system_wq
 127 * which may lead to deadlock.
 128 */
 129static struct workqueue_struct *cgroup_destroy_wq;
 130
 131/*
 132 * pidlist destructions need to be flushed on cgroup destruction.  Use a
 133 * separate workqueue as flush domain.
 134 */
 135static struct workqueue_struct *cgroup_pidlist_destroy_wq;
 136
 137/* generate an array of cgroup subsystem pointers */
 138#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
 139static struct cgroup_subsys *cgroup_subsys[] = {
 140#include <linux/cgroup_subsys.h>
 141};
 142#undef SUBSYS
 143
 144/* array of cgroup subsystem names */
 145#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
 146static const char *cgroup_subsys_name[] = {
 147#include <linux/cgroup_subsys.h>
 148};
 149#undef SUBSYS
 150
 151/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
 152#define SUBSYS(_x)                                                              \
 153        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);                 \
 154        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);                  \
 155        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);                      \
 156        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
 157#include <linux/cgroup_subsys.h>
 158#undef SUBSYS
 159
 160#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
 161static struct static_key_true *cgroup_subsys_enabled_key[] = {
 162#include <linux/cgroup_subsys.h>
 163};
 164#undef SUBSYS
 165
 166#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
 167static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
 168#include <linux/cgroup_subsys.h>
 169};
 170#undef SUBSYS
 171
 172/*
 173 * The default hierarchy, reserved for the subsystems that are otherwise
 174 * unattached - it never has more than a single cgroup, and all tasks are
 175 * part of that cgroup.
 176 */
 177struct cgroup_root cgrp_dfl_root;
 178EXPORT_SYMBOL_GPL(cgrp_dfl_root);
 179
 180/*
 181 * The default hierarchy always exists but is hidden until mounted for the
 182 * first time.  This is for backward compatibility.
 183 */
 184static bool cgrp_dfl_visible;
 185
 186/* Controllers blocked by the commandline in v1 */
 187static u16 cgroup_no_v1_mask;
 188
 189/* some controllers are not supported in the default hierarchy */
 190static u16 cgrp_dfl_inhibit_ss_mask;
 191
 192/* some controllers are implicitly enabled on the default hierarchy */
 193static unsigned long cgrp_dfl_implicit_ss_mask;
 194
 195/* The list of hierarchy roots */
 196
 197static LIST_HEAD(cgroup_roots);
 198static int cgroup_root_count;
 199
 200/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
 201static DEFINE_IDR(cgroup_hierarchy_idr);
 202
 203/*
 204 * Assign a monotonically increasing serial number to csses.  It guarantees
 205 * cgroups with bigger numbers are newer than those with smaller numbers.
 206 * Also, as csses are always appended to the parent's ->children list, it
 207 * guarantees that sibling csses are always sorted in the ascending serial
 208 * number order on the list.  Protected by cgroup_mutex.
 209 */
 210static u64 css_serial_nr_next = 1;
 211
 212/*
 213 * These bitmask flags indicate whether tasks in the fork and exit paths have
 214 * fork/exit handlers to call. This avoids us having to do extra work in the
 215 * fork/exit path to check which subsystems have fork/exit callbacks.
 216 */
 217static u16 have_fork_callback __read_mostly;
 218static u16 have_exit_callback __read_mostly;
 219static u16 have_free_callback __read_mostly;
 220
 221/* cgroup namespace for init task */
 222struct cgroup_namespace init_cgroup_ns = {
 223        .count          = { .counter = 2, },
 224        .user_ns        = &init_user_ns,
 225        .ns.ops         = &cgroupns_operations,
 226        .ns.inum        = PROC_CGROUP_INIT_INO,
 227        .root_cset      = &init_css_set,
 228};
 229
 230/* Ditto for the can_fork callback. */
 231static u16 have_canfork_callback __read_mostly;
 232
 233static struct file_system_type cgroup2_fs_type;
 234static struct cftype cgroup_dfl_base_files[];
 235static struct cftype cgroup_legacy_base_files[];
 236
 237static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
 238static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
 239static int cgroup_apply_control(struct cgroup *cgrp);
 240static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
 241static void css_task_iter_advance(struct css_task_iter *it);
 242static int cgroup_destroy_locked(struct cgroup *cgrp);
 243static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
 244                                              struct cgroup_subsys *ss);
 245static void css_release(struct percpu_ref *ref);
 246static void kill_css(struct cgroup_subsys_state *css);
 247static int cgroup_addrm_files(struct cgroup_subsys_state *css,
 248                              struct cgroup *cgrp, struct cftype cfts[],
 249                              bool is_add);
 250
 251/**
 252 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
 253 * @ssid: subsys ID of interest
 254 *
 255 * cgroup_subsys_enabled() can only be used with literal subsys names which
 256 * is fine for individual subsystems but unsuitable for cgroup core.  This
 257 * is slower static_key_enabled() based test indexed by @ssid.
 258 */
 259static bool cgroup_ssid_enabled(int ssid)
 260{
 261        if (CGROUP_SUBSYS_COUNT == 0)
 262                return false;
 263
 264        return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
 265}
 266
 267static bool cgroup_ssid_no_v1(int ssid)
 268{
 269        return cgroup_no_v1_mask & (1 << ssid);
 270}
 271
 272/**
 273 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
 274 * @cgrp: the cgroup of interest
 275 *
 276 * The default hierarchy is the v2 interface of cgroup and this function
 277 * can be used to test whether a cgroup is on the default hierarchy for
 278 * cases where a subsystem should behave differnetly depending on the
 279 * interface version.
 280 *
 281 * The set of behaviors which change on the default hierarchy are still
 282 * being determined and the mount option is prefixed with __DEVEL__.
 283 *
 284 * List of changed behaviors:
 285 *
 286 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
 287 *   and "name" are disallowed.
 288 *
 289 * - When mounting an existing superblock, mount options should match.
 290 *
 291 * - Remount is disallowed.
 292 *
 293 * - rename(2) is disallowed.
 294 *
 295 * - "tasks" is removed.  Everything should be at process granularity.  Use
 296 *   "cgroup.procs" instead.
 297 *
 298 * - "cgroup.procs" is not sorted.  pids will be unique unless they got
 299 *   recycled inbetween reads.
 300 *
 301 * - "release_agent" and "notify_on_release" are removed.  Replacement
 302 *   notification mechanism will be implemented.
 303 *
 304 * - "cgroup.clone_children" is removed.
 305 *
 306 * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
 307 *   and its descendants contain no task; otherwise, 1.  The file also
 308 *   generates kernfs notification which can be monitored through poll and
 309 *   [di]notify when the value of the file changes.
 310 *
 311 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
 312 *   take masks of ancestors with non-empty cpus/mems, instead of being
 313 *   moved to an ancestor.
 314 *
 315 * - cpuset: a task can be moved into an empty cpuset, and again it takes
 316 *   masks of ancestors.
 317 *
 318 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
 319 *   is not created.
 320 *
 321 * - blkcg: blk-throttle becomes properly hierarchical.
 322 *
 323 * - debug: disallowed on the default hierarchy.
 324 */
 325static bool cgroup_on_dfl(const struct cgroup *cgrp)
 326{
 327        return cgrp->root == &cgrp_dfl_root;
 328}
 329
 330/* IDR wrappers which synchronize using cgroup_idr_lock */
 331static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
 332                            gfp_t gfp_mask)
 333{
 334        int ret;
 335
 336        idr_preload(gfp_mask);
 337        spin_lock_bh(&cgroup_idr_lock);
 338        ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
 339        spin_unlock_bh(&cgroup_idr_lock);
 340        idr_preload_end();
 341        return ret;
 342}
 343
 344static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
 345{
 346        void *ret;
 347
 348        spin_lock_bh(&cgroup_idr_lock);
 349        ret = idr_replace(idr, ptr, id);
 350        spin_unlock_bh(&cgroup_idr_lock);
 351        return ret;
 352}
 353
 354static void cgroup_idr_remove(struct idr *idr, int id)
 355{
 356        spin_lock_bh(&cgroup_idr_lock);
 357        idr_remove(idr, id);
 358        spin_unlock_bh(&cgroup_idr_lock);
 359}
 360
 361static struct cgroup *cgroup_parent(struct cgroup *cgrp)
 362{
 363        struct cgroup_subsys_state *parent_css = cgrp->self.parent;
 364
 365        if (parent_css)
 366                return container_of(parent_css, struct cgroup, self);
 367        return NULL;
 368}
 369
 370/* subsystems visibly enabled on a cgroup */
 371static u16 cgroup_control(struct cgroup *cgrp)
 372{
 373        struct cgroup *parent = cgroup_parent(cgrp);
 374        u16 root_ss_mask = cgrp->root->subsys_mask;
 375
 376        if (parent)
 377                return parent->subtree_control;
 378
 379        if (cgroup_on_dfl(cgrp))
 380                root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
 381                                  cgrp_dfl_implicit_ss_mask);
 382        return root_ss_mask;
 383}
 384
 385/* subsystems enabled on a cgroup */
 386static u16 cgroup_ss_mask(struct cgroup *cgrp)
 387{
 388        struct cgroup *parent = cgroup_parent(cgrp);
 389
 390        if (parent)
 391                return parent->subtree_ss_mask;
 392
 393        return cgrp->root->subsys_mask;
 394}
 395
 396/**
 397 * cgroup_css - obtain a cgroup's css for the specified subsystem
 398 * @cgrp: the cgroup of interest
 399 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 400 *
 401 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 402 * function must be called either under cgroup_mutex or rcu_read_lock() and
 403 * the caller is responsible for pinning the returned css if it wants to
 404 * keep accessing it outside the said locks.  This function may return
 405 * %NULL if @cgrp doesn't have @subsys_id enabled.
 406 */
 407static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
 408                                              struct cgroup_subsys *ss)
 409{
 410        if (ss)
 411                return rcu_dereference_check(cgrp->subsys[ss->id],
 412                                        lockdep_is_held(&cgroup_mutex));
 413        else
 414                return &cgrp->self;
 415}
 416
 417/**
 418 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
 419 * @cgrp: the cgroup of interest
 420 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 421 *
 422 * Similar to cgroup_css() but returns the effective css, which is defined
 423 * as the matching css of the nearest ancestor including self which has @ss
 424 * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
 425 * function is guaranteed to return non-NULL css.
 426 */
 427static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
 428                                                struct cgroup_subsys *ss)
 429{
 430        lockdep_assert_held(&cgroup_mutex);
 431
 432        if (!ss)
 433                return &cgrp->self;
 434
 435        /*
 436         * This function is used while updating css associations and thus
 437         * can't test the csses directly.  Test ss_mask.
 438         */
 439        while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
 440                cgrp = cgroup_parent(cgrp);
 441                if (!cgrp)
 442                        return NULL;
 443        }
 444
 445        return cgroup_css(cgrp, ss);
 446}
 447
 448/**
 449 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
 450 * @cgrp: the cgroup of interest
 451 * @ss: the subsystem of interest
 452 *
 453 * Find and get the effective css of @cgrp for @ss.  The effective css is
 454 * defined as the matching css of the nearest ancestor including self which
 455 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 456 * the root css is returned, so this function always returns a valid css.
 457 * The returned css must be put using css_put().
 458 */
 459struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
 460                                             struct cgroup_subsys *ss)
 461{
 462        struct cgroup_subsys_state *css;
 463
 464        rcu_read_lock();
 465
 466        do {
 467                css = cgroup_css(cgrp, ss);
 468
 469                if (css && css_tryget_online(css))
 470                        goto out_unlock;
 471                cgrp = cgroup_parent(cgrp);
 472        } while (cgrp);
 473
 474        css = init_css_set.subsys[ss->id];
 475        css_get(css);
 476out_unlock:
 477        rcu_read_unlock();
 478        return css;
 479}
 480
 481/* convenient tests for these bits */
 482static inline bool cgroup_is_dead(const struct cgroup *cgrp)
 483{
 484        return !(cgrp->self.flags & CSS_ONLINE);
 485}
 486
 487static void cgroup_get(struct cgroup *cgrp)
 488{
 489        WARN_ON_ONCE(cgroup_is_dead(cgrp));
 490        css_get(&cgrp->self);
 491}
 492
 493static bool cgroup_tryget(struct cgroup *cgrp)
 494{
 495        return css_tryget(&cgrp->self);
 496}
 497
 498struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
 499{
 500        struct cgroup *cgrp = of->kn->parent->priv;
 501        struct cftype *cft = of_cft(of);
 502
 503        /*
 504         * This is open and unprotected implementation of cgroup_css().
 505         * seq_css() is only called from a kernfs file operation which has
 506         * an active reference on the file.  Because all the subsystem
 507         * files are drained before a css is disassociated with a cgroup,
 508         * the matching css from the cgroup's subsys table is guaranteed to
 509         * be and stay valid until the enclosing operation is complete.
 510         */
 511        if (cft->ss)
 512                return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
 513        else
 514                return &cgrp->self;
 515}
 516EXPORT_SYMBOL_GPL(of_css);
 517
 518static int notify_on_release(const struct cgroup *cgrp)
 519{
 520        return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 521}
 522
 523/**
 524 * for_each_css - iterate all css's of a cgroup
 525 * @css: the iteration cursor
 526 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 527 * @cgrp: the target cgroup to iterate css's of
 528 *
 529 * Should be called under cgroup_[tree_]mutex.
 530 */
 531#define for_each_css(css, ssid, cgrp)                                   \
 532        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
 533                if (!((css) = rcu_dereference_check(                    \
 534                                (cgrp)->subsys[(ssid)],                 \
 535                                lockdep_is_held(&cgroup_mutex)))) { }   \
 536                else
 537
 538/**
 539 * for_each_e_css - iterate all effective css's of a cgroup
 540 * @css: the iteration cursor
 541 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 542 * @cgrp: the target cgroup to iterate css's of
 543 *
 544 * Should be called under cgroup_[tree_]mutex.
 545 */
 546#define for_each_e_css(css, ssid, cgrp)                                 \
 547        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
 548                if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
 549                        ;                                               \
 550                else
 551
 552/**
 553 * for_each_subsys - iterate all enabled cgroup subsystems
 554 * @ss: the iteration cursor
 555 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 556 */
 557#define for_each_subsys(ss, ssid)                                       \
 558        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT &&                \
 559             (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
 560
 561/**
 562 * do_each_subsys_mask - filter for_each_subsys with a bitmask
 563 * @ss: the iteration cursor
 564 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 565 * @ss_mask: the bitmask
 566 *
 567 * The block will only run for cases where the ssid-th bit (1 << ssid) of
 568 * @ss_mask is set.
 569 */
 570#define do_each_subsys_mask(ss, ssid, ss_mask) do {                     \
 571        unsigned long __ss_mask = (ss_mask);                            \
 572        if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
 573                (ssid) = 0;                                             \
 574                break;                                                  \
 575        }                                                               \
 576        for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {       \
 577                (ss) = cgroup_subsys[ssid];                             \
 578                {
 579
 580#define while_each_subsys_mask()                                        \
 581                }                                                       \
 582        }                                                               \
 583} while (false)
 584
 585/* iterate across the hierarchies */
 586#define for_each_root(root)                                             \
 587        list_for_each_entry((root), &cgroup_roots, root_list)
 588
 589/* iterate over child cgrps, lock should be held throughout iteration */
 590#define cgroup_for_each_live_child(child, cgrp)                         \
 591        list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
 592                if (({ lockdep_assert_held(&cgroup_mutex);              \
 593                       cgroup_is_dead(child); }))                       \
 594                        ;                                               \
 595                else
 596
 597/* walk live descendants in preorder */
 598#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)          \
 599        css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))  \
 600                if (({ lockdep_assert_held(&cgroup_mutex);              \
 601                       (dsct) = (d_css)->cgroup;                        \
 602                       cgroup_is_dead(dsct); }))                        \
 603                        ;                                               \
 604                else
 605
 606/* walk live descendants in postorder */
 607#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)         \
 608        css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
 609                if (({ lockdep_assert_held(&cgroup_mutex);              \
 610                       (dsct) = (d_css)->cgroup;                        \
 611                       cgroup_is_dead(dsct); }))                        \
 612                        ;                                               \
 613                else
 614
 615static void cgroup_release_agent(struct work_struct *work);
 616static void check_for_release(struct cgroup *cgrp);
 617
 618/*
 619 * A cgroup can be associated with multiple css_sets as different tasks may
 620 * belong to different cgroups on different hierarchies.  In the other
 621 * direction, a css_set is naturally associated with multiple cgroups.
 622 * This M:N relationship is represented by the following link structure
 623 * which exists for each association and allows traversing the associations
 624 * from both sides.
 625 */
 626struct cgrp_cset_link {
 627        /* the cgroup and css_set this link associates */
 628        struct cgroup           *cgrp;
 629        struct css_set          *cset;
 630
 631        /* list of cgrp_cset_links anchored at cgrp->cset_links */
 632        struct list_head        cset_link;
 633
 634        /* list of cgrp_cset_links anchored at css_set->cgrp_links */
 635        struct list_head        cgrp_link;
 636};
 637
 638/*
 639 * The default css_set - used by init and its children prior to any
 640 * hierarchies being mounted. It contains a pointer to the root state
 641 * for each subsystem. Also used to anchor the list of css_sets. Not
 642 * reference-counted, to improve performance when child cgroups
 643 * haven't been created.
 644 */
 645struct css_set init_css_set = {
 646        .refcount               = ATOMIC_INIT(1),
 647        .cgrp_links             = LIST_HEAD_INIT(init_css_set.cgrp_links),
 648        .tasks                  = LIST_HEAD_INIT(init_css_set.tasks),
 649        .mg_tasks               = LIST_HEAD_INIT(init_css_set.mg_tasks),
 650        .mg_preload_node        = LIST_HEAD_INIT(init_css_set.mg_preload_node),
 651        .mg_node                = LIST_HEAD_INIT(init_css_set.mg_node),
 652        .task_iters             = LIST_HEAD_INIT(init_css_set.task_iters),
 653};
 654
 655static int css_set_count        = 1;    /* 1 for init_css_set */
 656
 657/**
 658 * css_set_populated - does a css_set contain any tasks?
 659 * @cset: target css_set
 660 */
 661static bool css_set_populated(struct css_set *cset)
 662{
 663        lockdep_assert_held(&css_set_lock);
 664
 665        return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
 666}
 667
 668/**
 669 * cgroup_update_populated - updated populated count of a cgroup
 670 * @cgrp: the target cgroup
 671 * @populated: inc or dec populated count
 672 *
 673 * One of the css_sets associated with @cgrp is either getting its first
 674 * task or losing the last.  Update @cgrp->populated_cnt accordingly.  The
 675 * count is propagated towards root so that a given cgroup's populated_cnt
 676 * is zero iff the cgroup and all its descendants don't contain any tasks.
 677 *
 678 * @cgrp's interface file "cgroup.populated" is zero if
 679 * @cgrp->populated_cnt is zero and 1 otherwise.  When @cgrp->populated_cnt
 680 * changes from or to zero, userland is notified that the content of the
 681 * interface file has changed.  This can be used to detect when @cgrp and
 682 * its descendants become populated or empty.
 683 */
 684static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
 685{
 686        lockdep_assert_held(&css_set_lock);
 687
 688        do {
 689                bool trigger;
 690
 691                if (populated)
 692                        trigger = !cgrp->populated_cnt++;
 693                else
 694                        trigger = !--cgrp->populated_cnt;
 695
 696                if (!trigger)
 697                        break;
 698
 699                check_for_release(cgrp);
 700                cgroup_file_notify(&cgrp->events_file);
 701
 702                cgrp = cgroup_parent(cgrp);
 703        } while (cgrp);
 704}
 705
 706/**
 707 * css_set_update_populated - update populated state of a css_set
 708 * @cset: target css_set
 709 * @populated: whether @cset is populated or depopulated
 710 *
 711 * @cset is either getting the first task or losing the last.  Update the
 712 * ->populated_cnt of all associated cgroups accordingly.
 713 */
 714static void css_set_update_populated(struct css_set *cset, bool populated)
 715{
 716        struct cgrp_cset_link *link;
 717
 718        lockdep_assert_held(&css_set_lock);
 719
 720        list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
 721                cgroup_update_populated(link->cgrp, populated);
 722}
 723
 724/**
 725 * css_set_move_task - move a task from one css_set to another
 726 * @task: task being moved
 727 * @from_cset: css_set @task currently belongs to (may be NULL)
 728 * @to_cset: new css_set @task is being moved to (may be NULL)
 729 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
 730 *
 731 * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
 732 * css_set, @from_cset can be NULL.  If @task is being disassociated
 733 * instead of moved, @to_cset can be NULL.
 734 *
 735 * This function automatically handles populated_cnt updates and
 736 * css_task_iter adjustments but the caller is responsible for managing
 737 * @from_cset and @to_cset's reference counts.
 738 */
 739static void css_set_move_task(struct task_struct *task,
 740                              struct css_set *from_cset, struct css_set *to_cset,
 741                              bool use_mg_tasks)
 742{
 743        lockdep_assert_held(&css_set_lock);
 744
 745        if (to_cset && !css_set_populated(to_cset))
 746                css_set_update_populated(to_cset, true);
 747
 748        if (from_cset) {
 749                struct css_task_iter *it, *pos;
 750
 751                WARN_ON_ONCE(list_empty(&task->cg_list));
 752
 753                /*
 754                 * @task is leaving, advance task iterators which are
 755                 * pointing to it so that they can resume at the next
 756                 * position.  Advancing an iterator might remove it from
 757                 * the list, use safe walk.  See css_task_iter_advance*()
 758                 * for details.
 759                 */
 760                list_for_each_entry_safe(it, pos, &from_cset->task_iters,
 761                                         iters_node)
 762                        if (it->task_pos == &task->cg_list)
 763                                css_task_iter_advance(it);
 764
 765                list_del_init(&task->cg_list);
 766                if (!css_set_populated(from_cset))
 767                        css_set_update_populated(from_cset, false);
 768        } else {
 769                WARN_ON_ONCE(!list_empty(&task->cg_list));
 770        }
 771
 772        if (to_cset) {
 773                /*
 774                 * We are synchronized through cgroup_threadgroup_rwsem
 775                 * against PF_EXITING setting such that we can't race
 776                 * against cgroup_exit() changing the css_set to
 777                 * init_css_set and dropping the old one.
 778                 */
 779                WARN_ON_ONCE(task->flags & PF_EXITING);
 780
 781                rcu_assign_pointer(task->cgroups, to_cset);
 782                list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
 783                                                             &to_cset->tasks);
 784        }
 785}
 786
 787/*
 788 * hash table for cgroup groups. This improves the performance to find
 789 * an existing css_set. This hash doesn't (currently) take into
 790 * account cgroups in empty hierarchies.
 791 */
 792#define CSS_SET_HASH_BITS       7
 793static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
 794
 795static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
 796{
 797        unsigned long key = 0UL;
 798        struct cgroup_subsys *ss;
 799        int i;
 800
 801        for_each_subsys(ss, i)
 802                key += (unsigned long)css[i];
 803        key = (key >> 16) ^ key;
 804
 805        return key;
 806}
 807
 808static void put_css_set_locked(struct css_set *cset)
 809{
 810        struct cgrp_cset_link *link, *tmp_link;
 811        struct cgroup_subsys *ss;
 812        int ssid;
 813
 814        lockdep_assert_held(&css_set_lock);
 815
 816        if (!atomic_dec_and_test(&cset->refcount))
 817                return;
 818
 819        /* This css_set is dead. unlink it and release cgroup and css refs */
 820        for_each_subsys(ss, ssid) {
 821                list_del(&cset->e_cset_node[ssid]);
 822                css_put(cset->subsys[ssid]);
 823        }
 824        hash_del(&cset->hlist);
 825        css_set_count--;
 826
 827        list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
 828                list_del(&link->cset_link);
 829                list_del(&link->cgrp_link);
 830                if (cgroup_parent(link->cgrp))
 831                        cgroup_put(link->cgrp);
 832                kfree(link);
 833        }
 834
 835        kfree_rcu(cset, rcu_head);
 836}
 837
 838static void put_css_set(struct css_set *cset)
 839{
 840        unsigned long flags;
 841
 842        /*
 843         * Ensure that the refcount doesn't hit zero while any readers
 844         * can see it. Similar to atomic_dec_and_lock(), but for an
 845         * rwlock
 846         */
 847        if (atomic_add_unless(&cset->refcount, -1, 1))
 848                return;
 849
 850        spin_lock_irqsave(&css_set_lock, flags);
 851        put_css_set_locked(cset);
 852        spin_unlock_irqrestore(&css_set_lock, flags);
 853}
 854
 855/*
 856 * refcounted get/put for css_set objects
 857 */
 858static inline void get_css_set(struct css_set *cset)
 859{
 860        atomic_inc(&cset->refcount);
 861}
 862
 863/**
 864 * compare_css_sets - helper function for find_existing_css_set().
 865 * @cset: candidate css_set being tested
 866 * @old_cset: existing css_set for a task
 867 * @new_cgrp: cgroup that's being entered by the task
 868 * @template: desired set of css pointers in css_set (pre-calculated)
 869 *
 870 * Returns true if "cset" matches "old_cset" except for the hierarchy
 871 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 872 */
 873static bool compare_css_sets(struct css_set *cset,
 874                             struct css_set *old_cset,
 875                             struct cgroup *new_cgrp,
 876                             struct cgroup_subsys_state *template[])
 877{
 878        struct list_head *l1, *l2;
 879
 880        /*
 881         * On the default hierarchy, there can be csets which are
 882         * associated with the same set of cgroups but different csses.
 883         * Let's first ensure that csses match.
 884         */
 885        if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
 886                return false;
 887
 888        /*
 889         * Compare cgroup pointers in order to distinguish between
 890         * different cgroups in hierarchies.  As different cgroups may
 891         * share the same effective css, this comparison is always
 892         * necessary.
 893         */
 894        l1 = &cset->cgrp_links;
 895        l2 = &old_cset->cgrp_links;
 896        while (1) {
 897                struct cgrp_cset_link *link1, *link2;
 898                struct cgroup *cgrp1, *cgrp2;
 899
 900                l1 = l1->next;
 901                l2 = l2->next;
 902                /* See if we reached the end - both lists are equal length. */
 903                if (l1 == &cset->cgrp_links) {
 904                        BUG_ON(l2 != &old_cset->cgrp_links);
 905                        break;
 906                } else {
 907                        BUG_ON(l2 == &old_cset->cgrp_links);
 908                }
 909                /* Locate the cgroups associated with these links. */
 910                link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
 911                link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
 912                cgrp1 = link1->cgrp;
 913                cgrp2 = link2->cgrp;
 914                /* Hierarchies should be linked in the same order. */
 915                BUG_ON(cgrp1->root != cgrp2->root);
 916
 917                /*
 918                 * If this hierarchy is the hierarchy of the cgroup
 919                 * that's changing, then we need to check that this
 920                 * css_set points to the new cgroup; if it's any other
 921                 * hierarchy, then this css_set should point to the
 922                 * same cgroup as the old css_set.
 923                 */
 924                if (cgrp1->root == new_cgrp->root) {
 925                        if (cgrp1 != new_cgrp)
 926                                return false;
 927                } else {
 928                        if (cgrp1 != cgrp2)
 929                                return false;
 930                }
 931        }
 932        return true;
 933}
 934
 935/**
 936 * find_existing_css_set - init css array and find the matching css_set
 937 * @old_cset: the css_set that we're using before the cgroup transition
 938 * @cgrp: the cgroup that we're moving into
 939 * @template: out param for the new set of csses, should be clear on entry
 940 */
 941static struct css_set *find_existing_css_set(struct css_set *old_cset,
 942                                        struct cgroup *cgrp,
 943                                        struct cgroup_subsys_state *template[])
 944{
 945        struct cgroup_root *root = cgrp->root;
 946        struct cgroup_subsys *ss;
 947        struct css_set *cset;
 948        unsigned long key;
 949        int i;
 950
 951        /*
 952         * Build the set of subsystem state objects that we want to see in the
 953         * new css_set. while subsystems can change globally, the entries here
 954         * won't change, so no need for locking.
 955         */
 956        for_each_subsys(ss, i) {
 957                if (root->subsys_mask & (1UL << i)) {
 958                        /*
 959                         * @ss is in this hierarchy, so we want the
 960                         * effective css from @cgrp.
 961                         */
 962                        template[i] = cgroup_e_css(cgrp, ss);
 963                } else {
 964                        /*
 965                         * @ss is not in this hierarchy, so we don't want
 966                         * to change the css.
 967                         */
 968                        template[i] = old_cset->subsys[i];
 969                }
 970        }
 971
 972        key = css_set_hash(template);
 973        hash_for_each_possible(css_set_table, cset, hlist, key) {
 974                if (!compare_css_sets(cset, old_cset, cgrp, template))
 975                        continue;
 976
 977                /* This css_set matches what we need */
 978                return cset;
 979        }
 980
 981        /* No existing cgroup group matched */
 982        return NULL;
 983}
 984
 985static void free_cgrp_cset_links(struct list_head *links_to_free)
 986{
 987        struct cgrp_cset_link *link, *tmp_link;
 988
 989        list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
 990                list_del(&link->cset_link);
 991                kfree(link);
 992        }
 993}
 994
 995/**
 996 * allocate_cgrp_cset_links - allocate cgrp_cset_links
 997 * @count: the number of links to allocate
 998 * @tmp_links: list_head the allocated links are put on
 999 *
1000 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1001 * through ->cset_link.  Returns 0 on success or -errno.
1002 */
1003static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1004{
1005        struct cgrp_cset_link *link;
1006        int i;
1007
1008        INIT_LIST_HEAD(tmp_links);
1009
1010        for (i = 0; i < count; i++) {
1011                link = kzalloc(sizeof(*link), GFP_KERNEL);
1012                if (!link) {
1013                        free_cgrp_cset_links(tmp_links);
1014                        return -ENOMEM;
1015                }
1016                list_add(&link->cset_link, tmp_links);
1017        }
1018        return 0;
1019}
1020
1021/**
1022 * link_css_set - a helper function to link a css_set to a cgroup
1023 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1024 * @cset: the css_set to be linked
1025 * @cgrp: the destination cgroup
1026 */
1027static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1028                         struct cgroup *cgrp)
1029{
1030        struct cgrp_cset_link *link;
1031
1032        BUG_ON(list_empty(tmp_links));
1033
1034        if (cgroup_on_dfl(cgrp))
1035                cset->dfl_cgrp = cgrp;
1036
1037        link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1038        link->cset = cset;
1039        link->cgrp = cgrp;
1040
1041        /*
1042         * Always add links to the tail of the lists so that the lists are
1043         * in choronological order.
1044         */
1045        list_move_tail(&link->cset_link, &cgrp->cset_links);
1046        list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1047
1048        if (cgroup_parent(cgrp))
1049                cgroup_get(cgrp);
1050}
1051
1052/**
1053 * find_css_set - return a new css_set with one cgroup updated
1054 * @old_cset: the baseline css_set
1055 * @cgrp: the cgroup to be updated
1056 *
1057 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1058 * substituted into the appropriate hierarchy.
1059 */
1060static struct css_set *find_css_set(struct css_set *old_cset,
1061                                    struct cgroup *cgrp)
1062{
1063        struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1064        struct css_set *cset;
1065        struct list_head tmp_links;
1066        struct cgrp_cset_link *link;
1067        struct cgroup_subsys *ss;
1068        unsigned long key;
1069        int ssid;
1070
1071        lockdep_assert_held(&cgroup_mutex);
1072
1073        /* First see if we already have a cgroup group that matches
1074         * the desired set */
1075        spin_lock_irq(&css_set_lock);
1076        cset = find_existing_css_set(old_cset, cgrp, template);
1077        if (cset)
1078                get_css_set(cset);
1079        spin_unlock_irq(&css_set_lock);
1080
1081        if (cset)
1082                return cset;
1083
1084        cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1085        if (!cset)
1086                return NULL;
1087
1088        /* Allocate all the cgrp_cset_link objects that we'll need */
1089        if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1090                kfree(cset);
1091                return NULL;
1092        }
1093
1094        atomic_set(&cset->refcount, 1);
1095        INIT_LIST_HEAD(&cset->cgrp_links);
1096        INIT_LIST_HEAD(&cset->tasks);
1097        INIT_LIST_HEAD(&cset->mg_tasks);
1098        INIT_LIST_HEAD(&cset->mg_preload_node);
1099        INIT_LIST_HEAD(&cset->mg_node);
1100        INIT_LIST_HEAD(&cset->task_iters);
1101        INIT_HLIST_NODE(&cset->hlist);
1102
1103        /* Copy the set of subsystem state objects generated in
1104         * find_existing_css_set() */
1105        memcpy(cset->subsys, template, sizeof(cset->subsys));
1106
1107        spin_lock_irq(&css_set_lock);
1108        /* Add reference counts and links from the new css_set. */
1109        list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1110                struct cgroup *c = link->cgrp;
1111
1112                if (c->root == cgrp->root)
1113                        c = cgrp;
1114                link_css_set(&tmp_links, cset, c);
1115        }
1116
1117        BUG_ON(!list_empty(&tmp_links));
1118
1119        css_set_count++;
1120
1121        /* Add @cset to the hash table */
1122        key = css_set_hash(cset->subsys);
1123        hash_add(css_set_table, &cset->hlist, key);
1124
1125        for_each_subsys(ss, ssid) {
1126                struct cgroup_subsys_state *css = cset->subsys[ssid];
1127
1128                list_add_tail(&cset->e_cset_node[ssid],
1129                              &css->cgroup->e_csets[ssid]);
1130                css_get(css);
1131        }
1132
1133        spin_unlock_irq(&css_set_lock);
1134
1135        return cset;
1136}
1137
1138static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1139{
1140        struct cgroup *root_cgrp = kf_root->kn->priv;
1141
1142        return root_cgrp->root;
1143}
1144
1145static int cgroup_init_root_id(struct cgroup_root *root)
1146{
1147        int id;
1148
1149        lockdep_assert_held(&cgroup_mutex);
1150
1151        id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1152        if (id < 0)
1153                return id;
1154
1155        root->hierarchy_id = id;
1156        return 0;
1157}
1158
1159static void cgroup_exit_root_id(struct cgroup_root *root)
1160{
1161        lockdep_assert_held(&cgroup_mutex);
1162
1163        idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1164}
1165
1166static void cgroup_free_root(struct cgroup_root *root)
1167{
1168        if (root) {
1169                idr_destroy(&root->cgroup_idr);
1170                kfree(root);
1171        }
1172}
1173
1174static void cgroup_destroy_root(struct cgroup_root *root)
1175{
1176        struct cgroup *cgrp = &root->cgrp;
1177        struct cgrp_cset_link *link, *tmp_link;
1178
1179        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1180
1181        BUG_ON(atomic_read(&root->nr_cgrps));
1182        BUG_ON(!list_empty(&cgrp->self.children));
1183
1184        /* Rebind all subsystems back to the default hierarchy */
1185        WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1186
1187        /*
1188         * Release all the links from cset_links to this hierarchy's
1189         * root cgroup
1190         */
1191        spin_lock_irq(&css_set_lock);
1192
1193        list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1194                list_del(&link->cset_link);
1195                list_del(&link->cgrp_link);
1196                kfree(link);
1197        }
1198
1199        spin_unlock_irq(&css_set_lock);
1200
1201        if (!list_empty(&root->root_list)) {
1202                list_del(&root->root_list);
1203                cgroup_root_count--;
1204        }
1205
1206        cgroup_exit_root_id(root);
1207
1208        mutex_unlock(&cgroup_mutex);
1209
1210        kernfs_destroy_root(root->kf_root);
1211        cgroup_free_root(root);
1212}
1213
1214/*
1215 * look up cgroup associated with current task's cgroup namespace on the
1216 * specified hierarchy
1217 */
1218static struct cgroup *
1219current_cgns_cgroup_from_root(struct cgroup_root *root)
1220{
1221        struct cgroup *res = NULL;
1222        struct css_set *cset;
1223
1224        lockdep_assert_held(&css_set_lock);
1225
1226        rcu_read_lock();
1227
1228        cset = current->nsproxy->cgroup_ns->root_cset;
1229        if (cset == &init_css_set) {
1230                res = &root->cgrp;
1231        } else {
1232                struct cgrp_cset_link *link;
1233
1234                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1235                        struct cgroup *c = link->cgrp;
1236
1237                        if (c->root == root) {
1238                                res = c;
1239                                break;
1240                        }
1241                }
1242        }
1243        rcu_read_unlock();
1244
1245        BUG_ON(!res);
1246        return res;
1247}
1248
1249/* look up cgroup associated with given css_set on the specified hierarchy */
1250static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1251                                            struct cgroup_root *root)
1252{
1253        struct cgroup *res = NULL;
1254
1255        lockdep_assert_held(&cgroup_mutex);
1256        lockdep_assert_held(&css_set_lock);
1257
1258        if (cset == &init_css_set) {
1259                res = &root->cgrp;
1260        } else {
1261                struct cgrp_cset_link *link;
1262
1263                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1264                        struct cgroup *c = link->cgrp;
1265
1266                        if (c->root == root) {
1267                                res = c;
1268                                break;
1269                        }
1270                }
1271        }
1272
1273        BUG_ON(!res);
1274        return res;
1275}
1276
1277/*
1278 * Return the cgroup for "task" from the given hierarchy. Must be
1279 * called with cgroup_mutex and css_set_lock held.
1280 */
1281static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1282                                            struct cgroup_root *root)
1283{
1284        /*
1285         * No need to lock the task - since we hold cgroup_mutex the
1286         * task can't change groups, so the only thing that can happen
1287         * is that it exits and its css is set back to init_css_set.
1288         */
1289        return cset_cgroup_from_root(task_css_set(task), root);
1290}
1291
1292/*
1293 * A task must hold cgroup_mutex to modify cgroups.
1294 *
1295 * Any task can increment and decrement the count field without lock.
1296 * So in general, code holding cgroup_mutex can't rely on the count
1297 * field not changing.  However, if the count goes to zero, then only
1298 * cgroup_attach_task() can increment it again.  Because a count of zero
1299 * means that no tasks are currently attached, therefore there is no
1300 * way a task attached to that cgroup can fork (the other way to
1301 * increment the count).  So code holding cgroup_mutex can safely
1302 * assume that if the count is zero, it will stay zero. Similarly, if
1303 * a task holds cgroup_mutex on a cgroup with zero count, it
1304 * knows that the cgroup won't be removed, as cgroup_rmdir()
1305 * needs that mutex.
1306 *
1307 * A cgroup can only be deleted if both its 'count' of using tasks
1308 * is zero, and its list of 'children' cgroups is empty.  Since all
1309 * tasks in the system use _some_ cgroup, and since there is always at
1310 * least one task in the system (init, pid == 1), therefore, root cgroup
1311 * always has either children cgroups and/or using tasks.  So we don't
1312 * need a special hack to ensure that root cgroup cannot be deleted.
1313 *
1314 * P.S.  One more locking exception.  RCU is used to guard the
1315 * update of a tasks cgroup pointer by cgroup_attach_task()
1316 */
1317
1318static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1319static const struct file_operations proc_cgroupstats_operations;
1320
1321static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1322                              char *buf)
1323{
1324        struct cgroup_subsys *ss = cft->ss;
1325
1326        if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1327            !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1328                snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1329                         cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1330                         cft->name);
1331        else
1332                strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1333        return buf;
1334}
1335
1336/**
1337 * cgroup_file_mode - deduce file mode of a control file
1338 * @cft: the control file in question
1339 *
1340 * S_IRUGO for read, S_IWUSR for write.
1341 */
1342static umode_t cgroup_file_mode(const struct cftype *cft)
1343{
1344        umode_t mode = 0;
1345
1346        if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1347                mode |= S_IRUGO;
1348
1349        if (cft->write_u64 || cft->write_s64 || cft->write) {
1350                if (cft->flags & CFTYPE_WORLD_WRITABLE)
1351                        mode |= S_IWUGO;
1352                else
1353                        mode |= S_IWUSR;
1354        }
1355
1356        return mode;
1357}
1358
1359/**
1360 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1361 * @subtree_control: the new subtree_control mask to consider
1362 * @this_ss_mask: available subsystems
1363 *
1364 * On the default hierarchy, a subsystem may request other subsystems to be
1365 * enabled together through its ->depends_on mask.  In such cases, more
1366 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1367 *
1368 * This function calculates which subsystems need to be enabled if
1369 * @subtree_control is to be applied while restricted to @this_ss_mask.
1370 */
1371static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1372{
1373        u16 cur_ss_mask = subtree_control;
1374        struct cgroup_subsys *ss;
1375        int ssid;
1376
1377        lockdep_assert_held(&cgroup_mutex);
1378
1379        cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1380
1381        while (true) {
1382                u16 new_ss_mask = cur_ss_mask;
1383
1384                do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1385                        new_ss_mask |= ss->depends_on;
1386                } while_each_subsys_mask();
1387
1388                /*
1389                 * Mask out subsystems which aren't available.  This can
1390                 * happen only if some depended-upon subsystems were bound
1391                 * to non-default hierarchies.
1392                 */
1393                new_ss_mask &= this_ss_mask;
1394
1395                if (new_ss_mask == cur_ss_mask)
1396                        break;
1397                cur_ss_mask = new_ss_mask;
1398        }
1399
1400        return cur_ss_mask;
1401}
1402
1403/**
1404 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1405 * @kn: the kernfs_node being serviced
1406 *
1407 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1408 * the method finishes if locking succeeded.  Note that once this function
1409 * returns the cgroup returned by cgroup_kn_lock_live() may become
1410 * inaccessible any time.  If the caller intends to continue to access the
1411 * cgroup, it should pin it before invoking this function.
1412 */
1413static void cgroup_kn_unlock(struct kernfs_node *kn)
1414{
1415        struct cgroup *cgrp;
1416
1417        if (kernfs_type(kn) == KERNFS_DIR)
1418                cgrp = kn->priv;
1419        else
1420                cgrp = kn->parent->priv;
1421
1422        mutex_unlock(&cgroup_mutex);
1423
1424        kernfs_unbreak_active_protection(kn);
1425        cgroup_put(cgrp);
1426}
1427
1428/**
1429 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1430 * @kn: the kernfs_node being serviced
1431 * @drain_offline: perform offline draining on the cgroup
1432 *
1433 * This helper is to be used by a cgroup kernfs method currently servicing
1434 * @kn.  It breaks the active protection, performs cgroup locking and
1435 * verifies that the associated cgroup is alive.  Returns the cgroup if
1436 * alive; otherwise, %NULL.  A successful return should be undone by a
1437 * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1438 * cgroup is drained of offlining csses before return.
1439 *
1440 * Any cgroup kernfs method implementation which requires locking the
1441 * associated cgroup should use this helper.  It avoids nesting cgroup
1442 * locking under kernfs active protection and allows all kernfs operations
1443 * including self-removal.
1444 */
1445static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1446                                          bool drain_offline)
1447{
1448        struct cgroup *cgrp;
1449
1450        if (kernfs_type(kn) == KERNFS_DIR)
1451                cgrp = kn->priv;
1452        else
1453                cgrp = kn->parent->priv;
1454
1455        /*
1456         * We're gonna grab cgroup_mutex which nests outside kernfs
1457         * active_ref.  cgroup liveliness check alone provides enough
1458         * protection against removal.  Ensure @cgrp stays accessible and
1459         * break the active_ref protection.
1460         */
1461        if (!cgroup_tryget(cgrp))
1462                return NULL;
1463        kernfs_break_active_protection(kn);
1464
1465        if (drain_offline)
1466                cgroup_lock_and_drain_offline(cgrp);
1467        else
1468                mutex_lock(&cgroup_mutex);
1469
1470        if (!cgroup_is_dead(cgrp))
1471                return cgrp;
1472
1473        cgroup_kn_unlock(kn);
1474        return NULL;
1475}
1476
1477static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1478{
1479        char name[CGROUP_FILE_NAME_MAX];
1480
1481        lockdep_assert_held(&cgroup_mutex);
1482
1483        if (cft->file_offset) {
1484                struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1485                struct cgroup_file *cfile = (void *)css + cft->file_offset;
1486
1487                spin_lock_irq(&cgroup_file_kn_lock);
1488                cfile->kn = NULL;
1489                spin_unlock_irq(&cgroup_file_kn_lock);
1490        }
1491
1492        kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1493}
1494
1495/**
1496 * css_clear_dir - remove subsys files in a cgroup directory
1497 * @css: taget css
1498 */
1499static void css_clear_dir(struct cgroup_subsys_state *css)
1500{
1501        struct cgroup *cgrp = css->cgroup;
1502        struct cftype *cfts;
1503
1504        if (!(css->flags & CSS_VISIBLE))
1505                return;
1506
1507        css->flags &= ~CSS_VISIBLE;
1508
1509        list_for_each_entry(cfts, &css->ss->cfts, node)
1510                cgroup_addrm_files(css, cgrp, cfts, false);
1511}
1512
1513/**
1514 * css_populate_dir - create subsys files in a cgroup directory
1515 * @css: target css
1516 *
1517 * On failure, no file is added.
1518 */
1519static int css_populate_dir(struct cgroup_subsys_state *css)
1520{
1521        struct cgroup *cgrp = css->cgroup;
1522        struct cftype *cfts, *failed_cfts;
1523        int ret;
1524
1525        if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1526                return 0;
1527
1528        if (!css->ss) {
1529                if (cgroup_on_dfl(cgrp))
1530                        cfts = cgroup_dfl_base_files;
1531                else
1532                        cfts = cgroup_legacy_base_files;
1533
1534                return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1535        }
1536
1537        list_for_each_entry(cfts, &css->ss->cfts, node) {
1538                ret = cgroup_addrm_files(css, cgrp, cfts, true);
1539                if (ret < 0) {
1540                        failed_cfts = cfts;
1541                        goto err;
1542                }
1543        }
1544
1545        css->flags |= CSS_VISIBLE;
1546
1547        return 0;
1548err:
1549        list_for_each_entry(cfts, &css->ss->cfts, node) {
1550                if (cfts == failed_cfts)
1551                        break;
1552                cgroup_addrm_files(css, cgrp, cfts, false);
1553        }
1554        return ret;
1555}
1556
1557static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1558{
1559        struct cgroup *dcgrp = &dst_root->cgrp;
1560        struct cgroup_subsys *ss;
1561        int ssid, i, ret;
1562
1563        lockdep_assert_held(&cgroup_mutex);
1564
1565        do_each_subsys_mask(ss, ssid, ss_mask) {
1566                /*
1567                 * If @ss has non-root csses attached to it, can't move.
1568                 * If @ss is an implicit controller, it is exempt from this
1569                 * rule and can be stolen.
1570                 */
1571                if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1572                    !ss->implicit_on_dfl)
1573                        return -EBUSY;
1574
1575                /* can't move between two non-dummy roots either */
1576                if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1577                        return -EBUSY;
1578        } while_each_subsys_mask();
1579
1580        do_each_subsys_mask(ss, ssid, ss_mask) {
1581                struct cgroup_root *src_root = ss->root;
1582                struct cgroup *scgrp = &src_root->cgrp;
1583                struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1584                struct css_set *cset;
1585
1586                WARN_ON(!css || cgroup_css(dcgrp, ss));
1587
1588                /* disable from the source */
1589                src_root->subsys_mask &= ~(1 << ssid);
1590                WARN_ON(cgroup_apply_control(scgrp));
1591                cgroup_finalize_control(scgrp, 0);
1592
1593                /* rebind */
1594                RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1595                rcu_assign_pointer(dcgrp->subsys[ssid], css);
1596                ss->root = dst_root;
1597                css->cgroup = dcgrp;
1598
1599                spin_lock_irq(&css_set_lock);
1600                hash_for_each(css_set_table, i, cset, hlist)
1601                        list_move_tail(&cset->e_cset_node[ss->id],
1602                                       &dcgrp->e_csets[ss->id]);
1603                spin_unlock_irq(&css_set_lock);
1604
1605                /* default hierarchy doesn't enable controllers by default */
1606                dst_root->subsys_mask |= 1 << ssid;
1607                if (dst_root == &cgrp_dfl_root) {
1608                        static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1609                } else {
1610                        dcgrp->subtree_control |= 1 << ssid;
1611                        static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1612                }
1613
1614                ret = cgroup_apply_control(dcgrp);
1615                if (ret)
1616                        pr_warn("partial failure to rebind %s controller (err=%d)\n",
1617                                ss->name, ret);
1618
1619                if (ss->bind)
1620                        ss->bind(css);
1621        } while_each_subsys_mask();
1622
1623        kernfs_activate(dcgrp->kn);
1624        return 0;
1625}
1626
1627static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1628                            struct kernfs_root *kf_root)
1629{
1630        int len = 0;
1631        char *buf = NULL;
1632        struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1633        struct cgroup *ns_cgroup;
1634
1635        buf = kmalloc(PATH_MAX, GFP_KERNEL);
1636        if (!buf)
1637                return -ENOMEM;
1638
1639        spin_lock_irq(&css_set_lock);
1640        ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1641        len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1642        spin_unlock_irq(&css_set_lock);
1643
1644        if (len >= PATH_MAX)
1645                len = -ERANGE;
1646        else if (len > 0) {
1647                seq_escape(sf, buf, " \t\n\\");
1648                len = 0;
1649        }
1650        kfree(buf);
1651        return len;
1652}
1653
1654static int cgroup_show_options(struct seq_file *seq,
1655                               struct kernfs_root *kf_root)
1656{
1657        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1658        struct cgroup_subsys *ss;
1659        int ssid;
1660
1661        if (root != &cgrp_dfl_root)
1662                for_each_subsys(ss, ssid)
1663                        if (root->subsys_mask & (1 << ssid))
1664                                seq_show_option(seq, ss->legacy_name, NULL);
1665        if (root->flags & CGRP_ROOT_NOPREFIX)
1666                seq_puts(seq, ",noprefix");
1667        if (root->flags & CGRP_ROOT_XATTR)
1668                seq_puts(seq, ",xattr");
1669
1670        spin_lock(&release_agent_path_lock);
1671        if (strlen(root->release_agent_path))
1672                seq_show_option(seq, "release_agent",
1673                                root->release_agent_path);
1674        spin_unlock(&release_agent_path_lock);
1675
1676        if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1677                seq_puts(seq, ",clone_children");
1678        if (strlen(root->name))
1679                seq_show_option(seq, "name", root->name);
1680        return 0;
1681}
1682
1683struct cgroup_sb_opts {
1684        u16 subsys_mask;
1685        unsigned int flags;
1686        char *release_agent;
1687        bool cpuset_clone_children;
1688        char *name;
1689        /* User explicitly requested empty subsystem */
1690        bool none;
1691};
1692
1693static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1694{
1695        char *token, *o = data;
1696        bool all_ss = false, one_ss = false;
1697        u16 mask = U16_MAX;
1698        struct cgroup_subsys *ss;
1699        int nr_opts = 0;
1700        int i;
1701
1702#ifdef CONFIG_CPUSETS
1703        mask = ~((u16)1 << cpuset_cgrp_id);
1704#endif
1705
1706        memset(opts, 0, sizeof(*opts));
1707
1708        while ((token = strsep(&o, ",")) != NULL) {
1709                nr_opts++;
1710
1711                if (!*token)
1712                        return -EINVAL;
1713                if (!strcmp(token, "none")) {
1714                        /* Explicitly have no subsystems */
1715                        opts->none = true;
1716                        continue;
1717                }
1718                if (!strcmp(token, "all")) {
1719                        /* Mutually exclusive option 'all' + subsystem name */
1720                        if (one_ss)
1721                                return -EINVAL;
1722                        all_ss = true;
1723                        continue;
1724                }
1725                if (!strcmp(token, "noprefix")) {
1726                        opts->flags |= CGRP_ROOT_NOPREFIX;
1727                        continue;
1728                }
1729                if (!strcmp(token, "clone_children")) {
1730                        opts->cpuset_clone_children = true;
1731                        continue;
1732                }
1733                if (!strcmp(token, "xattr")) {
1734                        opts->flags |= CGRP_ROOT_XATTR;
1735                        continue;
1736                }
1737                if (!strncmp(token, "release_agent=", 14)) {
1738                        /* Specifying two release agents is forbidden */
1739                        if (opts->release_agent)
1740                                return -EINVAL;
1741                        opts->release_agent =
1742                                kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1743                        if (!opts->release_agent)
1744                                return -ENOMEM;
1745                        continue;
1746                }
1747                if (!strncmp(token, "name=", 5)) {
1748                        const char *name = token + 5;
1749                        /* Can't specify an empty name */
1750                        if (!strlen(name))
1751                                return -EINVAL;
1752                        /* Must match [\w.-]+ */
1753                        for (i = 0; i < strlen(name); i++) {
1754                                char c = name[i];
1755                                if (isalnum(c))
1756                                        continue;
1757                                if ((c == '.') || (c == '-') || (c == '_'))
1758                                        continue;
1759                                return -EINVAL;
1760                        }
1761                        /* Specifying two names is forbidden */
1762                        if (opts->name)
1763                                return -EINVAL;
1764                        opts->name = kstrndup(name,
1765                                              MAX_CGROUP_ROOT_NAMELEN - 1,
1766                                              GFP_KERNEL);
1767                        if (!opts->name)
1768                                return -ENOMEM;
1769
1770                        continue;
1771                }
1772
1773                for_each_subsys(ss, i) {
1774                        if (strcmp(token, ss->legacy_name))
1775                                continue;
1776                        if (!cgroup_ssid_enabled(i))
1777                                continue;
1778                        if (cgroup_ssid_no_v1(i))
1779                                continue;
1780
1781                        /* Mutually exclusive option 'all' + subsystem name */
1782                        if (all_ss)
1783                                return -EINVAL;
1784                        opts->subsys_mask |= (1 << i);
1785                        one_ss = true;
1786
1787                        break;
1788                }
1789                if (i == CGROUP_SUBSYS_COUNT)
1790                        return -ENOENT;
1791        }
1792
1793        /*
1794         * If the 'all' option was specified select all the subsystems,
1795         * otherwise if 'none', 'name=' and a subsystem name options were
1796         * not specified, let's default to 'all'
1797         */
1798        if (all_ss || (!one_ss && !opts->none && !opts->name))
1799                for_each_subsys(ss, i)
1800                        if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
1801                                opts->subsys_mask |= (1 << i);
1802
1803        /*
1804         * We either have to specify by name or by subsystems. (So all
1805         * empty hierarchies must have a name).
1806         */
1807        if (!opts->subsys_mask && !opts->name)
1808                return -EINVAL;
1809
1810        /*
1811         * Option noprefix was introduced just for backward compatibility
1812         * with the old cpuset, so we allow noprefix only if mounting just
1813         * the cpuset subsystem.
1814         */
1815        if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1816                return -EINVAL;
1817
1818        /* Can't specify "none" and some subsystems */
1819        if (opts->subsys_mask && opts->none)
1820                return -EINVAL;
1821
1822        return 0;
1823}
1824
1825static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1826{
1827        int ret = 0;
1828        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1829        struct cgroup_sb_opts opts;
1830        u16 added_mask, removed_mask;
1831
1832        if (root == &cgrp_dfl_root) {
1833                pr_err("remount is not allowed\n");
1834                return -EINVAL;
1835        }
1836
1837        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1838
1839        /* See what subsystems are wanted */
1840        ret = parse_cgroupfs_options(data, &opts);
1841        if (ret)
1842                goto out_unlock;
1843
1844        if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1845                pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1846                        task_tgid_nr(current), current->comm);
1847
1848        added_mask = opts.subsys_mask & ~root->subsys_mask;
1849        removed_mask = root->subsys_mask & ~opts.subsys_mask;
1850
1851        /* Don't allow flags or name to change at remount */
1852        if ((opts.flags ^ root->flags) ||
1853            (opts.name && strcmp(opts.name, root->name))) {
1854                pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1855                       opts.flags, opts.name ?: "", root->flags, root->name);
1856                ret = -EINVAL;
1857                goto out_unlock;
1858        }
1859
1860        /* remounting is not allowed for populated hierarchies */
1861        if (!list_empty(&root->cgrp.self.children)) {
1862                ret = -EBUSY;
1863                goto out_unlock;
1864        }
1865
1866        ret = rebind_subsystems(root, added_mask);
1867        if (ret)
1868                goto out_unlock;
1869
1870        WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1871
1872        if (opts.release_agent) {
1873                spin_lock(&release_agent_path_lock);
1874                strcpy(root->release_agent_path, opts.release_agent);
1875                spin_unlock(&release_agent_path_lock);
1876        }
1877 out_unlock:
1878        kfree(opts.release_agent);
1879        kfree(opts.name);
1880        mutex_unlock(&cgroup_mutex);
1881        return ret;
1882}
1883
1884/*
1885 * To reduce the fork() overhead for systems that are not actually using
1886 * their cgroups capability, we don't maintain the lists running through
1887 * each css_set to its tasks until we see the list actually used - in other
1888 * words after the first mount.
1889 */
1890static bool use_task_css_set_links __read_mostly;
1891
1892static void cgroup_enable_task_cg_lists(void)
1893{
1894        struct task_struct *p, *g;
1895
1896        spin_lock_irq(&css_set_lock);
1897
1898        if (use_task_css_set_links)
1899                goto out_unlock;
1900
1901        use_task_css_set_links = true;
1902
1903        /*
1904         * We need tasklist_lock because RCU is not safe against
1905         * while_each_thread(). Besides, a forking task that has passed
1906         * cgroup_post_fork() without seeing use_task_css_set_links = 1
1907         * is not guaranteed to have its child immediately visible in the
1908         * tasklist if we walk through it with RCU.
1909         */
1910        read_lock(&tasklist_lock);
1911        do_each_thread(g, p) {
1912                WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1913                             task_css_set(p) != &init_css_set);
1914
1915                /*
1916                 * We should check if the process is exiting, otherwise
1917                 * it will race with cgroup_exit() in that the list
1918                 * entry won't be deleted though the process has exited.
1919                 * Do it while holding siglock so that we don't end up
1920                 * racing against cgroup_exit().
1921                 *
1922                 * Interrupts were already disabled while acquiring
1923                 * the css_set_lock, so we do not need to disable it
1924                 * again when acquiring the sighand->siglock here.
1925                 */
1926                spin_lock(&p->sighand->siglock);
1927                if (!(p->flags & PF_EXITING)) {
1928                        struct css_set *cset = task_css_set(p);
1929
1930                        if (!css_set_populated(cset))
1931                                css_set_update_populated(cset, true);
1932                        list_add_tail(&p->cg_list, &cset->tasks);
1933                        get_css_set(cset);
1934                }
1935                spin_unlock(&p->sighand->siglock);
1936        } while_each_thread(g, p);
1937        read_unlock(&tasklist_lock);
1938out_unlock:
1939        spin_unlock_irq(&css_set_lock);
1940}
1941
1942static void init_cgroup_housekeeping(struct cgroup *cgrp)
1943{
1944        struct cgroup_subsys *ss;
1945        int ssid;
1946
1947        INIT_LIST_HEAD(&cgrp->self.sibling);
1948        INIT_LIST_HEAD(&cgrp->self.children);
1949        INIT_LIST_HEAD(&cgrp->cset_links);
1950        INIT_LIST_HEAD(&cgrp->pidlists);
1951        mutex_init(&cgrp->pidlist_mutex);
1952        cgrp->self.cgroup = cgrp;
1953        cgrp->self.flags |= CSS_ONLINE;
1954
1955        for_each_subsys(ss, ssid)
1956                INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1957
1958        init_waitqueue_head(&cgrp->offline_waitq);
1959        INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1960}
1961
1962static void init_cgroup_root(struct cgroup_root *root,
1963                             struct cgroup_sb_opts *opts)
1964{
1965        struct cgroup *cgrp = &root->cgrp;
1966
1967        INIT_LIST_HEAD(&root->root_list);
1968        atomic_set(&root->nr_cgrps, 1);
1969        cgrp->root = root;
1970        init_cgroup_housekeeping(cgrp);
1971        idr_init(&root->cgroup_idr);
1972
1973        root->flags = opts->flags;
1974        if (opts->release_agent)
1975                strcpy(root->release_agent_path, opts->release_agent);
1976        if (opts->name)
1977                strcpy(root->name, opts->name);
1978        if (opts->cpuset_clone_children)
1979                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1980}
1981
1982static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1983{
1984        LIST_HEAD(tmp_links);
1985        struct cgroup *root_cgrp = &root->cgrp;
1986        struct css_set *cset;
1987        int i, ret;
1988
1989        lockdep_assert_held(&cgroup_mutex);
1990
1991        ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1992        if (ret < 0)
1993                goto out;
1994        root_cgrp->id = ret;
1995        root_cgrp->ancestor_ids[0] = ret;
1996
1997        ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1998                              GFP_KERNEL);
1999        if (ret)
2000                goto out;
2001
2002        /*
2003         * We're accessing css_set_count without locking css_set_lock here,
2004         * but that's OK - it can only be increased by someone holding
2005         * cgroup_lock, and that's us.  Later rebinding may disable
2006         * controllers on the default hierarchy and thus create new csets,
2007         * which can't be more than the existing ones.  Allocate 2x.
2008         */
2009        ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2010        if (ret)
2011                goto cancel_ref;
2012
2013        ret = cgroup_init_root_id(root);
2014        if (ret)
2015                goto cancel_ref;
2016
2017        root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
2018                                           KERNFS_ROOT_CREATE_DEACTIVATED,
2019                                           root_cgrp);
2020        if (IS_ERR(root->kf_root)) {
2021                ret = PTR_ERR(root->kf_root);
2022                goto exit_root_id;
2023        }
2024        root_cgrp->kn = root->kf_root->kn;
2025
2026        ret = css_populate_dir(&root_cgrp->self);
2027        if (ret)
2028                goto destroy_root;
2029
2030        ret = rebind_subsystems(root, ss_mask);
2031        if (ret)
2032                goto destroy_root;
2033
2034        /*
2035         * There must be no failure case after here, since rebinding takes
2036         * care of subsystems' refcounts, which are explicitly dropped in
2037         * the failure exit path.
2038         */
2039        list_add(&root->root_list, &cgroup_roots);
2040        cgroup_root_count++;
2041
2042        /*
2043         * Link the root cgroup in this hierarchy into all the css_set
2044         * objects.
2045         */
2046        spin_lock_irq(&css_set_lock);
2047        hash_for_each(css_set_table, i, cset, hlist) {
2048                link_css_set(&tmp_links, cset, root_cgrp);
2049                if (css_set_populated(cset))
2050                        cgroup_update_populated(root_cgrp, true);
2051        }
2052        spin_unlock_irq(&css_set_lock);
2053
2054        BUG_ON(!list_empty(&root_cgrp->self.children));
2055        BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2056
2057        kernfs_activate(root_cgrp->kn);
2058        ret = 0;
2059        goto out;
2060
2061destroy_root:
2062        kernfs_destroy_root(root->kf_root);
2063        root->kf_root = NULL;
2064exit_root_id:
2065        cgroup_exit_root_id(root);
2066cancel_ref:
2067        percpu_ref_exit(&root_cgrp->self.refcnt);
2068out:
2069        free_cgrp_cset_links(&tmp_links);
2070        return ret;
2071}
2072
2073static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2074                         int flags, const char *unused_dev_name,
2075                         void *data)
2076{
2077        bool is_v2 = fs_type == &cgroup2_fs_type;
2078        struct super_block *pinned_sb = NULL;
2079        struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2080        struct cgroup_subsys *ss;
2081        struct cgroup_root *root;
2082        struct cgroup_sb_opts opts;
2083        struct dentry *dentry;
2084        int ret;
2085        int i;
2086        bool new_sb;
2087
2088        get_cgroup_ns(ns);
2089
2090        /* Check if the caller has permission to mount. */
2091        if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2092                put_cgroup_ns(ns);
2093                return ERR_PTR(-EPERM);
2094        }
2095
2096        /*
2097         * The first time anyone tries to mount a cgroup, enable the list
2098         * linking each css_set to its tasks and fix up all existing tasks.
2099         */
2100        if (!use_task_css_set_links)
2101                cgroup_enable_task_cg_lists();
2102
2103        if (is_v2) {
2104                if (data) {
2105                        pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2106                        put_cgroup_ns(ns);
2107                        return ERR_PTR(-EINVAL);
2108                }
2109                cgrp_dfl_visible = true;
2110                root = &cgrp_dfl_root;
2111                cgroup_get(&root->cgrp);
2112                goto out_mount;
2113        }
2114
2115        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
2116
2117        /* First find the desired set of subsystems */
2118        ret = parse_cgroupfs_options(data, &opts);
2119        if (ret)
2120                goto out_unlock;
2121
2122        /*
2123         * Destruction of cgroup root is asynchronous, so subsystems may
2124         * still be dying after the previous unmount.  Let's drain the
2125         * dying subsystems.  We just need to ensure that the ones
2126         * unmounted previously finish dying and don't care about new ones
2127         * starting.  Testing ref liveliness is good enough.
2128         */
2129        for_each_subsys(ss, i) {
2130                if (!(opts.subsys_mask & (1 << i)) ||
2131                    ss->root == &cgrp_dfl_root)
2132                        continue;
2133
2134                if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2135                        mutex_unlock(&cgroup_mutex);
2136                        msleep(10);
2137                        ret = restart_syscall();
2138                        goto out_free;
2139                }
2140                cgroup_put(&ss->root->cgrp);
2141        }
2142
2143        for_each_root(root) {
2144                bool name_match = false;
2145
2146                if (root == &cgrp_dfl_root)
2147                        continue;
2148
2149                /*
2150                 * If we asked for a name then it must match.  Also, if
2151                 * name matches but sybsys_mask doesn't, we should fail.
2152                 * Remember whether name matched.
2153                 */
2154                if (opts.name) {
2155                        if (strcmp(opts.name, root->name))
2156                                continue;
2157                        name_match = true;
2158                }
2159
2160                /*
2161                 * If we asked for subsystems (or explicitly for no
2162                 * subsystems) then they must match.
2163                 */
2164                if ((opts.subsys_mask || opts.none) &&
2165                    (opts.subsys_mask != root->subsys_mask)) {
2166                        if (!name_match)
2167                                continue;
2168                        ret = -EBUSY;
2169                        goto out_unlock;
2170                }
2171
2172                if (root->flags ^ opts.flags)
2173                        pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2174
2175                /*
2176                 * We want to reuse @root whose lifetime is governed by its
2177                 * ->cgrp.  Let's check whether @root is alive and keep it
2178                 * that way.  As cgroup_kill_sb() can happen anytime, we
2179                 * want to block it by pinning the sb so that @root doesn't
2180                 * get killed before mount is complete.
2181                 *
2182                 * With the sb pinned, tryget_live can reliably indicate
2183                 * whether @root can be reused.  If it's being killed,
2184                 * drain it.  We can use wait_queue for the wait but this
2185                 * path is super cold.  Let's just sleep a bit and retry.
2186                 */
2187                pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2188                if (IS_ERR(pinned_sb) ||
2189                    !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2190                        mutex_unlock(&cgroup_mutex);
2191                        if (!IS_ERR_OR_NULL(pinned_sb))
2192                                deactivate_super(pinned_sb);
2193                        msleep(10);
2194                        ret = restart_syscall();
2195                        goto out_free;
2196                }
2197
2198                ret = 0;
2199                goto out_unlock;
2200        }
2201
2202        /*
2203         * No such thing, create a new one.  name= matching without subsys
2204         * specification is allowed for already existing hierarchies but we
2205         * can't create new one without subsys specification.
2206         */
2207        if (!opts.subsys_mask && !opts.none) {
2208                ret = -EINVAL;
2209                goto out_unlock;
2210        }
2211
2212        /* Hierarchies may only be created in the initial cgroup namespace. */
2213        if (ns != &init_cgroup_ns) {
2214                ret = -EPERM;
2215                goto out_unlock;
2216        }
2217
2218        root = kzalloc(sizeof(*root), GFP_KERNEL);
2219        if (!root) {
2220                ret = -ENOMEM;
2221                goto out_unlock;
2222        }
2223
2224        init_cgroup_root(root, &opts);
2225
2226        ret = cgroup_setup_root(root, opts.subsys_mask);
2227        if (ret)
2228                cgroup_free_root(root);
2229
2230out_unlock:
2231        mutex_unlock(&cgroup_mutex);
2232out_free:
2233        kfree(opts.release_agent);
2234        kfree(opts.name);
2235
2236        if (ret) {
2237                put_cgroup_ns(ns);
2238                return ERR_PTR(ret);
2239        }
2240out_mount:
2241        dentry = kernfs_mount(fs_type, flags, root->kf_root,
2242                              is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2243                              &new_sb);
2244
2245        /*
2246         * In non-init cgroup namespace, instead of root cgroup's
2247         * dentry, we return the dentry corresponding to the
2248         * cgroupns->root_cgrp.
2249         */
2250        if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2251                struct dentry *nsdentry;
2252                struct cgroup *cgrp;
2253
2254                mutex_lock(&cgroup_mutex);
2255                spin_lock_irq(&css_set_lock);
2256
2257                cgrp = cset_cgroup_from_root(ns->root_cset, root);
2258
2259                spin_unlock_irq(&css_set_lock);
2260                mutex_unlock(&cgroup_mutex);
2261
2262                nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2263                dput(dentry);
2264                dentry = nsdentry;
2265        }
2266
2267        if (IS_ERR(dentry) || !new_sb)
2268                cgroup_put(&root->cgrp);
2269
2270        /*
2271         * If @pinned_sb, we're reusing an existing root and holding an
2272         * extra ref on its sb.  Mount is complete.  Put the extra ref.
2273         */
2274        if (pinned_sb) {
2275                WARN_ON(new_sb);
2276                deactivate_super(pinned_sb);
2277        }
2278
2279        put_cgroup_ns(ns);
2280        return dentry;
2281}
2282
2283static void cgroup_kill_sb(struct super_block *sb)
2284{
2285        struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2286        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2287
2288        /*
2289         * If @root doesn't have any mounts or children, start killing it.
2290         * This prevents new mounts by disabling percpu_ref_tryget_live().
2291         * cgroup_mount() may wait for @root's release.
2292         *
2293         * And don't kill the default root.
2294         */
2295        if (!list_empty(&root->cgrp.self.children) ||
2296            root == &cgrp_dfl_root)
2297                cgroup_put(&root->cgrp);
2298        else
2299                percpu_ref_kill(&root->cgrp.self.refcnt);
2300
2301        kernfs_kill_sb(sb);
2302}
2303
2304static struct file_system_type cgroup_fs_type = {
2305        .name = "cgroup",
2306        .mount = cgroup_mount,
2307        .kill_sb = cgroup_kill_sb,
2308        .fs_flags = FS_USERNS_MOUNT,
2309};
2310
2311static struct file_system_type cgroup2_fs_type = {
2312        .name = "cgroup2",
2313        .mount = cgroup_mount,
2314        .kill_sb = cgroup_kill_sb,
2315        .fs_flags = FS_USERNS_MOUNT,
2316};
2317
2318static char *cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2319                                   struct cgroup_namespace *ns)
2320{
2321        struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2322        int ret;
2323
2324        ret = kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2325        if (ret < 0 || ret >= buflen)
2326                return NULL;
2327        return buf;
2328}
2329
2330char *cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2331                     struct cgroup_namespace *ns)
2332{
2333        char *ret;
2334
2335        mutex_lock(&cgroup_mutex);
2336        spin_lock_irq(&css_set_lock);
2337
2338        ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2339
2340        spin_unlock_irq(&css_set_lock);
2341        mutex_unlock(&cgroup_mutex);
2342
2343        return ret;
2344}
2345EXPORT_SYMBOL_GPL(cgroup_path_ns);
2346
2347/**
2348 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2349 * @task: target task
2350 * @buf: the buffer to write the path into
2351 * @buflen: the length of the buffer
2352 *
2353 * Determine @task's cgroup on the first (the one with the lowest non-zero
2354 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2355 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2356 * cgroup controller callbacks.
2357 *
2358 * Return value is the same as kernfs_path().
2359 */
2360char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2361{
2362        struct cgroup_root *root;
2363        struct cgroup *cgrp;
2364        int hierarchy_id = 1;
2365        char *path = NULL;
2366
2367        mutex_lock(&cgroup_mutex);
2368        spin_lock_irq(&css_set_lock);
2369
2370        root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2371
2372        if (root) {
2373                cgrp = task_cgroup_from_root(task, root);
2374                path = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2375        } else {
2376                /* if no hierarchy exists, everyone is in "/" */
2377                if (strlcpy(buf, "/", buflen) < buflen)
2378                        path = buf;
2379        }
2380
2381        spin_unlock_irq(&css_set_lock);
2382        mutex_unlock(&cgroup_mutex);
2383        return path;
2384}
2385EXPORT_SYMBOL_GPL(task_cgroup_path);
2386
2387/* used to track tasks and other necessary states during migration */
2388struct cgroup_taskset {
2389        /* the src and dst cset list running through cset->mg_node */
2390        struct list_head        src_csets;
2391        struct list_head        dst_csets;
2392
2393        /* the subsys currently being processed */
2394        int                     ssid;
2395
2396        /*
2397         * Fields for cgroup_taskset_*() iteration.
2398         *
2399         * Before migration is committed, the target migration tasks are on
2400         * ->mg_tasks of the csets on ->src_csets.  After, on ->mg_tasks of
2401         * the csets on ->dst_csets.  ->csets point to either ->src_csets
2402         * or ->dst_csets depending on whether migration is committed.
2403         *
2404         * ->cur_csets and ->cur_task point to the current task position
2405         * during iteration.
2406         */
2407        struct list_head        *csets;
2408        struct css_set          *cur_cset;
2409        struct task_struct      *cur_task;
2410};
2411
2412#define CGROUP_TASKSET_INIT(tset)       (struct cgroup_taskset){        \
2413        .src_csets              = LIST_HEAD_INIT(tset.src_csets),       \
2414        .dst_csets              = LIST_HEAD_INIT(tset.dst_csets),       \
2415        .csets                  = &tset.src_csets,                      \
2416}
2417
2418/**
2419 * cgroup_taskset_add - try to add a migration target task to a taskset
2420 * @task: target task
2421 * @tset: target taskset
2422 *
2423 * Add @task, which is a migration target, to @tset.  This function becomes
2424 * noop if @task doesn't need to be migrated.  @task's css_set should have
2425 * been added as a migration source and @task->cg_list will be moved from
2426 * the css_set's tasks list to mg_tasks one.
2427 */
2428static void cgroup_taskset_add(struct task_struct *task,
2429                               struct cgroup_taskset *tset)
2430{
2431        struct css_set *cset;
2432
2433        lockdep_assert_held(&css_set_lock);
2434
2435        /* @task either already exited or can't exit until the end */
2436        if (task->flags & PF_EXITING)
2437                return;
2438
2439        /* leave @task alone if post_fork() hasn't linked it yet */
2440        if (list_empty(&task->cg_list))
2441                return;
2442
2443        cset = task_css_set(task);
2444        if (!cset->mg_src_cgrp)
2445                return;
2446
2447        list_move_tail(&task->cg_list, &cset->mg_tasks);
2448        if (list_empty(&cset->mg_node))
2449                list_add_tail(&cset->mg_node, &tset->src_csets);
2450        if (list_empty(&cset->mg_dst_cset->mg_node))
2451                list_move_tail(&cset->mg_dst_cset->mg_node,
2452                               &tset->dst_csets);
2453}
2454
2455/**
2456 * cgroup_taskset_first - reset taskset and return the first task
2457 * @tset: taskset of interest
2458 * @dst_cssp: output variable for the destination css
2459 *
2460 * @tset iteration is initialized and the first task is returned.
2461 */
2462struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2463                                         struct cgroup_subsys_state **dst_cssp)
2464{
2465        tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2466        tset->cur_task = NULL;
2467
2468        return cgroup_taskset_next(tset, dst_cssp);
2469}
2470
2471/**
2472 * cgroup_taskset_next - iterate to the next task in taskset
2473 * @tset: taskset of interest
2474 * @dst_cssp: output variable for the destination css
2475 *
2476 * Return the next task in @tset.  Iteration must have been initialized
2477 * with cgroup_taskset_first().
2478 */
2479struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2480                                        struct cgroup_subsys_state **dst_cssp)
2481{
2482        struct css_set *cset = tset->cur_cset;
2483        struct task_struct *task = tset->cur_task;
2484
2485        while (&cset->mg_node != tset->csets) {
2486                if (!task)
2487                        task = list_first_entry(&cset->mg_tasks,
2488                                                struct task_struct, cg_list);
2489                else
2490                        task = list_next_entry(task, cg_list);
2491
2492                if (&task->cg_list != &cset->mg_tasks) {
2493                        tset->cur_cset = cset;
2494                        tset->cur_task = task;
2495
2496                        /*
2497                         * This function may be called both before and
2498                         * after cgroup_taskset_migrate().  The two cases
2499                         * can be distinguished by looking at whether @cset
2500                         * has its ->mg_dst_cset set.
2501                         */
2502                        if (cset->mg_dst_cset)
2503                                *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2504                        else
2505                                *dst_cssp = cset->subsys[tset->ssid];
2506
2507                        return task;
2508                }
2509
2510                cset = list_next_entry(cset, mg_node);
2511                task = NULL;
2512        }
2513
2514        return NULL;
2515}
2516
2517/**
2518 * cgroup_taskset_migrate - migrate a taskset
2519 * @tset: taget taskset
2520 * @root: cgroup root the migration is taking place on
2521 *
2522 * Migrate tasks in @tset as setup by migration preparation functions.
2523 * This function fails iff one of the ->can_attach callbacks fails and
2524 * guarantees that either all or none of the tasks in @tset are migrated.
2525 * @tset is consumed regardless of success.
2526 */
2527static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2528                                  struct cgroup_root *root)
2529{
2530        struct cgroup_subsys *ss;
2531        struct task_struct *task, *tmp_task;
2532        struct css_set *cset, *tmp_cset;
2533        int ssid, failed_ssid, ret;
2534
2535        /* methods shouldn't be called if no task is actually migrating */
2536        if (list_empty(&tset->src_csets))
2537                return 0;
2538
2539        /* check that we can legitimately attach to the cgroup */
2540        do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2541                if (ss->can_attach) {
2542                        tset->ssid = ssid;
2543                        ret = ss->can_attach(tset);
2544                        if (ret) {
2545                                failed_ssid = ssid;
2546                                goto out_cancel_attach;
2547                        }
2548                }
2549        } while_each_subsys_mask();
2550
2551        /*
2552         * Now that we're guaranteed success, proceed to move all tasks to
2553         * the new cgroup.  There are no failure cases after here, so this
2554         * is the commit point.
2555         */
2556        spin_lock_irq(&css_set_lock);
2557        list_for_each_entry(cset, &tset->src_csets, mg_node) {
2558                list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2559                        struct css_set *from_cset = task_css_set(task);
2560                        struct css_set *to_cset = cset->mg_dst_cset;
2561
2562                        get_css_set(to_cset);
2563                        css_set_move_task(task, from_cset, to_cset, true);
2564                        put_css_set_locked(from_cset);
2565                }
2566        }
2567        spin_unlock_irq(&css_set_lock);
2568
2569        /*
2570         * Migration is committed, all target tasks are now on dst_csets.
2571         * Nothing is sensitive to fork() after this point.  Notify
2572         * controllers that migration is complete.
2573         */
2574        tset->csets = &tset->dst_csets;
2575
2576        do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2577                if (ss->attach) {
2578                        tset->ssid = ssid;
2579                        ss->attach(tset);
2580                }
2581        } while_each_subsys_mask();
2582
2583        ret = 0;
2584        goto out_release_tset;
2585
2586out_cancel_attach:
2587        do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2588                if (ssid == failed_ssid)
2589                        break;
2590                if (ss->cancel_attach) {
2591                        tset->ssid = ssid;
2592                        ss->cancel_attach(tset);
2593                }
2594        } while_each_subsys_mask();
2595out_release_tset:
2596        spin_lock_irq(&css_set_lock);
2597        list_splice_init(&tset->dst_csets, &tset->src_csets);
2598        list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2599                list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2600                list_del_init(&cset->mg_node);
2601        }
2602        spin_unlock_irq(&css_set_lock);
2603        return ret;
2604}
2605
2606/**
2607 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2608 * @dst_cgrp: destination cgroup to test
2609 *
2610 * On the default hierarchy, except for the root, subtree_control must be
2611 * zero for migration destination cgroups with tasks so that child cgroups
2612 * don't compete against tasks.
2613 */
2614static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2615{
2616        return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2617                !dst_cgrp->subtree_control;
2618}
2619
2620/**
2621 * cgroup_migrate_finish - cleanup after attach
2622 * @preloaded_csets: list of preloaded css_sets
2623 *
2624 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2625 * those functions for details.
2626 */
2627static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2628{
2629        struct css_set *cset, *tmp_cset;
2630
2631        lockdep_assert_held(&cgroup_mutex);
2632
2633        spin_lock_irq(&css_set_lock);
2634        list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2635                cset->mg_src_cgrp = NULL;
2636                cset->mg_dst_cgrp = NULL;
2637                cset->mg_dst_cset = NULL;
2638                list_del_init(&cset->mg_preload_node);
2639                put_css_set_locked(cset);
2640        }
2641        spin_unlock_irq(&css_set_lock);
2642}
2643
2644/**
2645 * cgroup_migrate_add_src - add a migration source css_set
2646 * @src_cset: the source css_set to add
2647 * @dst_cgrp: the destination cgroup
2648 * @preloaded_csets: list of preloaded css_sets
2649 *
2650 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2651 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2652 * up by cgroup_migrate_finish().
2653 *
2654 * This function may be called without holding cgroup_threadgroup_rwsem
2655 * even if the target is a process.  Threads may be created and destroyed
2656 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2657 * into play and the preloaded css_sets are guaranteed to cover all
2658 * migrations.
2659 */
2660static void cgroup_migrate_add_src(struct css_set *src_cset,
2661                                   struct cgroup *dst_cgrp,
2662                                   struct list_head *preloaded_csets)
2663{
2664        struct cgroup *src_cgrp;
2665
2666        lockdep_assert_held(&cgroup_mutex);
2667        lockdep_assert_held(&css_set_lock);
2668
2669        /*
2670         * If ->dead, @src_set is associated with one or more dead cgroups
2671         * and doesn't contain any migratable tasks.  Ignore it early so
2672         * that the rest of migration path doesn't get confused by it.
2673         */
2674        if (src_cset->dead)
2675                return;
2676
2677        src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2678
2679        if (!list_empty(&src_cset->mg_preload_node))
2680                return;
2681
2682        WARN_ON(src_cset->mg_src_cgrp);
2683        WARN_ON(src_cset->mg_dst_cgrp);
2684        WARN_ON(!list_empty(&src_cset->mg_tasks));
2685        WARN_ON(!list_empty(&src_cset->mg_node));
2686
2687        src_cset->mg_src_cgrp = src_cgrp;
2688        src_cset->mg_dst_cgrp = dst_cgrp;
2689        get_css_set(src_cset);
2690        list_add(&src_cset->mg_preload_node, preloaded_csets);
2691}
2692
2693/**
2694 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2695 * @preloaded_csets: list of preloaded source css_sets
2696 *
2697 * Tasks are about to be moved and all the source css_sets have been
2698 * preloaded to @preloaded_csets.  This function looks up and pins all
2699 * destination css_sets, links each to its source, and append them to
2700 * @preloaded_csets.
2701 *
2702 * This function must be called after cgroup_migrate_add_src() has been
2703 * called on each migration source css_set.  After migration is performed
2704 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2705 * @preloaded_csets.
2706 */
2707static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
2708{
2709        LIST_HEAD(csets);
2710        struct css_set *src_cset, *tmp_cset;
2711
2712        lockdep_assert_held(&cgroup_mutex);
2713
2714        /* look up the dst cset for each src cset and link it to src */
2715        list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2716                struct css_set *dst_cset;
2717
2718                dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2719                if (!dst_cset)
2720                        goto err;
2721
2722                WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2723
2724                /*
2725                 * If src cset equals dst, it's noop.  Drop the src.
2726                 * cgroup_migrate() will skip the cset too.  Note that we
2727                 * can't handle src == dst as some nodes are used by both.
2728                 */
2729                if (src_cset == dst_cset) {
2730                        src_cset->mg_src_cgrp = NULL;
2731                        src_cset->mg_dst_cgrp = NULL;
2732                        list_del_init(&src_cset->mg_preload_node);
2733                        put_css_set(src_cset);
2734                        put_css_set(dst_cset);
2735                        continue;
2736                }
2737
2738                src_cset->mg_dst_cset = dst_cset;
2739
2740                if (list_empty(&dst_cset->mg_preload_node))
2741                        list_add(&dst_cset->mg_preload_node, &csets);
2742                else
2743                        put_css_set(dst_cset);
2744        }
2745
2746        list_splice_tail(&csets, preloaded_csets);
2747        return 0;
2748err:
2749        cgroup_migrate_finish(&csets);
2750        return -ENOMEM;
2751}
2752
2753/**
2754 * cgroup_migrate - migrate a process or task to a cgroup
2755 * @leader: the leader of the process or the task to migrate
2756 * @threadgroup: whether @leader points to the whole process or a single task
2757 * @root: cgroup root migration is taking place on
2758 *
2759 * Migrate a process or task denoted by @leader.  If migrating a process,
2760 * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2761 * responsible for invoking cgroup_migrate_add_src() and
2762 * cgroup_migrate_prepare_dst() on the targets before invoking this
2763 * function and following up with cgroup_migrate_finish().
2764 *
2765 * As long as a controller's ->can_attach() doesn't fail, this function is
2766 * guaranteed to succeed.  This means that, excluding ->can_attach()
2767 * failure, when migrating multiple targets, the success or failure can be
2768 * decided for all targets by invoking group_migrate_prepare_dst() before
2769 * actually starting migrating.
2770 */
2771static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2772                          struct cgroup_root *root)
2773{
2774        struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2775        struct task_struct *task;
2776
2777        /*
2778         * Prevent freeing of tasks while we take a snapshot. Tasks that are
2779         * already PF_EXITING could be freed from underneath us unless we
2780         * take an rcu_read_lock.
2781         */
2782        spin_lock_irq(&css_set_lock);
2783        rcu_read_lock();
2784        task = leader;
2785        do {
2786                cgroup_taskset_add(task, &tset);
2787                if (!threadgroup)
2788                        break;
2789        } while_each_thread(leader, task);
2790        rcu_read_unlock();
2791        spin_unlock_irq(&css_set_lock);
2792
2793        return cgroup_taskset_migrate(&tset, root);
2794}
2795
2796/**
2797 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2798 * @dst_cgrp: the cgroup to attach to
2799 * @leader: the task or the leader of the threadgroup to be attached
2800 * @threadgroup: attach the whole threadgroup?
2801 *
2802 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2803 */
2804static int cgroup_attach_task(struct cgroup *dst_cgrp,
2805                              struct task_struct *leader, bool threadgroup)
2806{
2807        LIST_HEAD(preloaded_csets);
2808        struct task_struct *task;
2809        int ret;
2810
2811        if (!cgroup_may_migrate_to(dst_cgrp))
2812                return -EBUSY;
2813
2814        /* look up all src csets */
2815        spin_lock_irq(&css_set_lock);
2816        rcu_read_lock();
2817        task = leader;
2818        do {
2819                cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2820                                       &preloaded_csets);
2821                if (!threadgroup)
2822                        break;
2823        } while_each_thread(leader, task);
2824        rcu_read_unlock();
2825        spin_unlock_irq(&css_set_lock);
2826
2827        /* prepare dst csets and commit */
2828        ret = cgroup_migrate_prepare_dst(&preloaded_csets);
2829        if (!ret)
2830                ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
2831
2832        cgroup_migrate_finish(&preloaded_csets);
2833        return ret;
2834}
2835
2836static int cgroup_procs_write_permission(struct task_struct *task,
2837                                         struct cgroup *dst_cgrp,
2838                                         struct kernfs_open_file *of)
2839{
2840        const struct cred *cred = current_cred();
2841        const struct cred *tcred = get_task_cred(task);
2842        int ret = 0;
2843
2844        /*
2845         * even if we're attaching all tasks in the thread group, we only
2846         * need to check permissions on one of them.
2847         */
2848        if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2849            !uid_eq(cred->euid, tcred->uid) &&
2850            !uid_eq(cred->euid, tcred->suid))
2851                ret = -EACCES;
2852
2853        if (!ret && cgroup_on_dfl(dst_cgrp)) {
2854                struct super_block *sb = of->file->f_path.dentry->d_sb;
2855                struct cgroup *cgrp;
2856                struct inode *inode;
2857
2858                spin_lock_irq(&css_set_lock);
2859                cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2860                spin_unlock_irq(&css_set_lock);
2861
2862                while (!cgroup_is_descendant(dst_cgrp, cgrp))
2863                        cgrp = cgroup_parent(cgrp);
2864
2865                ret = -ENOMEM;
2866                inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2867                if (inode) {
2868                        ret = inode_permission(inode, MAY_WRITE);
2869                        iput(inode);
2870                }
2871        }
2872
2873        put_cred(tcred);
2874        return ret;
2875}
2876
2877/*
2878 * Find the task_struct of the task to attach by vpid and pass it along to the
2879 * function to attach either it or all tasks in its threadgroup. Will lock
2880 * cgroup_mutex and threadgroup.
2881 */
2882static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2883                                    size_t nbytes, loff_t off, bool threadgroup)
2884{
2885        struct task_struct *tsk;
2886        struct cgroup_subsys *ss;
2887        struct cgroup *cgrp;
2888        pid_t pid;
2889        int ssid, ret;
2890
2891        if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2892                return -EINVAL;
2893
2894        cgrp = cgroup_kn_lock_live(of->kn, false);
2895        if (!cgrp)
2896                return -ENODEV;
2897
2898        percpu_down_write(&cgroup_threadgroup_rwsem);
2899        rcu_read_lock();
2900        if (pid) {
2901                tsk = find_task_by_vpid(pid);
2902                if (!tsk) {
2903                        ret = -ESRCH;
2904                        goto out_unlock_rcu;
2905                }
2906        } else {
2907                tsk = current;
2908        }
2909
2910        if (threadgroup)
2911                tsk = tsk->group_leader;
2912
2913        /*
2914         * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2915         * trapped in a cpuset, or RT worker may be born in a cgroup
2916         * with no rt_runtime allocated.  Just say no.
2917         */
2918        if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2919                ret = -EINVAL;
2920                goto out_unlock_rcu;
2921        }
2922
2923        get_task_struct(tsk);
2924        rcu_read_unlock();
2925
2926        ret = cgroup_procs_write_permission(tsk, cgrp, of);
2927        if (!ret)
2928                ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2929
2930        put_task_struct(tsk);
2931        goto out_unlock_threadgroup;
2932
2933out_unlock_rcu:
2934        rcu_read_unlock();
2935out_unlock_threadgroup:
2936        percpu_up_write(&cgroup_threadgroup_rwsem);
2937        for_each_subsys(ss, ssid)
2938                if (ss->post_attach)
2939                        ss->post_attach();
2940        cgroup_kn_unlock(of->kn);
2941        return ret ?: nbytes;
2942}
2943
2944/**
2945 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2946 * @from: attach to all cgroups of a given task
2947 * @tsk: the task to be attached
2948 */
2949int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2950{
2951        struct cgroup_root *root;
2952        int retval = 0;
2953
2954        mutex_lock(&cgroup_mutex);
2955        percpu_down_write(&cgroup_threadgroup_rwsem);
2956        for_each_root(root) {
2957                struct cgroup *from_cgrp;
2958
2959                if (root == &cgrp_dfl_root)
2960                        continue;
2961
2962                spin_lock_irq(&css_set_lock);
2963                from_cgrp = task_cgroup_from_root(from, root);
2964                spin_unlock_irq(&css_set_lock);
2965
2966                retval = cgroup_attach_task(from_cgrp, tsk, false);
2967                if (retval)
2968                        break;
2969        }
2970        percpu_up_write(&cgroup_threadgroup_rwsem);
2971        mutex_unlock(&cgroup_mutex);
2972
2973        return retval;
2974}
2975EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2976
2977static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2978                                  char *buf, size_t nbytes, loff_t off)
2979{
2980        return __cgroup_procs_write(of, buf, nbytes, off, false);
2981}
2982
2983static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2984                                  char *buf, size_t nbytes, loff_t off)
2985{
2986        return __cgroup_procs_write(of, buf, nbytes, off, true);
2987}
2988
2989static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2990                                          char *buf, size_t nbytes, loff_t off)
2991{
2992        struct cgroup *cgrp;
2993
2994        BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2995
2996        cgrp = cgroup_kn_lock_live(of->kn, false);
2997        if (!cgrp)
2998                return -ENODEV;
2999        spin_lock(&release_agent_path_lock);
3000        strlcpy(cgrp->root->release_agent_path, strstrip(buf),
3001                sizeof(cgrp->root->release_agent_path));
3002        spin_unlock(&release_agent_path_lock);
3003        cgroup_kn_unlock(of->kn);
3004        return nbytes;
3005}
3006
3007static int cgroup_release_agent_show(struct seq_file *seq, void *v)
3008{
3009        struct cgroup *cgrp = seq_css(seq)->cgroup;
3010
3011        spin_lock(&release_agent_path_lock);
3012        seq_puts(seq, cgrp->root->release_agent_path);
3013        spin_unlock(&release_agent_path_lock);
3014        seq_putc(seq, '\n');
3015        return 0;
3016}
3017
3018static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
3019{
3020        seq_puts(seq, "0\n");
3021        return 0;
3022}
3023
3024static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3025{
3026        struct cgroup_subsys *ss;
3027        bool printed = false;
3028        int ssid;
3029
3030        do_each_subsys_mask(ss, ssid, ss_mask) {
3031                if (printed)
3032                        seq_putc(seq, ' ');
3033                seq_printf(seq, "%s", ss->name);
3034                printed = true;
3035        } while_each_subsys_mask();
3036        if (printed)
3037                seq_putc(seq, '\n');
3038}
3039
3040/* show controllers which are enabled from the parent */
3041static int cgroup_controllers_show(struct seq_file *seq, void *v)
3042{
3043        struct cgroup *cgrp = seq_css(seq)->cgroup;
3044
3045        cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3046        return 0;
3047}
3048
3049/* show controllers which are enabled for a given cgroup's children */
3050static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3051{
3052        struct cgroup *cgrp = seq_css(seq)->cgroup;
3053
3054        cgroup_print_ss_mask(seq, cgrp->subtree_control);
3055        return 0;
3056}
3057
3058/**
3059 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3060 * @cgrp: root of the subtree to update csses for
3061 *
3062 * @cgrp's control masks have changed and its subtree's css associations
3063 * need to be updated accordingly.  This function looks up all css_sets
3064 * which are attached to the subtree, creates the matching updated css_sets
3065 * and migrates the tasks to the new ones.
3066 */
3067static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3068{
3069        LIST_HEAD(preloaded_csets);
3070        struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
3071        struct cgroup_subsys_state *d_css;
3072        struct cgroup *dsct;
3073        struct css_set *src_cset;
3074        int ret;
3075
3076        lockdep_assert_held(&cgroup_mutex);
3077
3078        percpu_down_write(&cgroup_threadgroup_rwsem);
3079
3080        /* look up all csses currently attached to @cgrp's subtree */
3081        spin_lock_irq(&css_set_lock);
3082        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3083                struct cgrp_cset_link *link;
3084
3085                list_for_each_entry(link, &dsct->cset_links, cset_link)
3086                        cgroup_migrate_add_src(link->cset, dsct,
3087                                               &preloaded_csets);
3088        }
3089        spin_unlock_irq(&css_set_lock);
3090
3091        /* NULL dst indicates self on default hierarchy */
3092        ret = cgroup_migrate_prepare_dst(&preloaded_csets);
3093        if (ret)
3094                goto out_finish;
3095
3096        spin_lock_irq(&css_set_lock);
3097        list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
3098                struct task_struct *task, *ntask;
3099
3100                /* src_csets precede dst_csets, break on the first dst_cset */
3101                if (!src_cset->mg_src_cgrp)
3102                        break;
3103
3104                /* all tasks in src_csets need to be migrated */
3105                list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3106                        cgroup_taskset_add(task, &tset);
3107        }
3108        spin_unlock_irq(&css_set_lock);
3109
3110        ret = cgroup_taskset_migrate(&tset, cgrp->root);
3111out_finish:
3112        cgroup_migrate_finish(&preloaded_csets);
3113        percpu_up_write(&cgroup_threadgroup_rwsem);
3114        return ret;
3115}
3116
3117/**
3118 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3119 * @cgrp: root of the target subtree
3120 *
3121 * Because css offlining is asynchronous, userland may try to re-enable a
3122 * controller while the previous css is still around.  This function grabs
3123 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3124 */
3125static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3126        __acquires(&cgroup_mutex)
3127{
3128        struct cgroup *dsct;
3129        struct cgroup_subsys_state *d_css;
3130        struct cgroup_subsys *ss;
3131        int ssid;
3132
3133restart:
3134        mutex_lock(&cgroup_mutex);
3135
3136        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3137                for_each_subsys(ss, ssid) {
3138                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3139                        DEFINE_WAIT(wait);
3140
3141                        if (!css || !percpu_ref_is_dying(&css->refcnt))
3142                                continue;
3143
3144                        cgroup_get(dsct);
3145                        prepare_to_wait(&dsct->offline_waitq, &wait,
3146                                        TASK_UNINTERRUPTIBLE);
3147
3148                        mutex_unlock(&cgroup_mutex);
3149                        schedule();
3150                        finish_wait(&dsct->offline_waitq, &wait);
3151
3152                        cgroup_put(dsct);
3153                        goto restart;
3154                }
3155        }
3156}
3157
3158/**
3159 * cgroup_save_control - save control masks of a subtree
3160 * @cgrp: root of the target subtree
3161 *
3162 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3163 * prefixed fields for @cgrp's subtree including @cgrp itself.
3164 */
3165static void cgroup_save_control(struct cgroup *cgrp)
3166{
3167        struct cgroup *dsct;
3168        struct cgroup_subsys_state *d_css;
3169
3170        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3171                dsct->old_subtree_control = dsct->subtree_control;
3172                dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3173        }
3174}
3175
3176/**
3177 * cgroup_propagate_control - refresh control masks of a subtree
3178 * @cgrp: root of the target subtree
3179 *
3180 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3181 * ->subtree_control and propagate controller availability through the
3182 * subtree so that descendants don't have unavailable controllers enabled.
3183 */
3184static void cgroup_propagate_control(struct cgroup *cgrp)
3185{
3186        struct cgroup *dsct;
3187        struct cgroup_subsys_state *d_css;
3188
3189        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3190                dsct->subtree_control &= cgroup_control(dsct);
3191                dsct->subtree_ss_mask =
3192                        cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3193                                                    cgroup_ss_mask(dsct));
3194        }
3195}
3196
3197/**
3198 * cgroup_restore_control - restore control masks of a subtree
3199 * @cgrp: root of the target subtree
3200 *
3201 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3202 * prefixed fields for @cgrp's subtree including @cgrp itself.
3203 */
3204static void cgroup_restore_control(struct cgroup *cgrp)
3205{
3206        struct cgroup *dsct;
3207        struct cgroup_subsys_state *d_css;
3208
3209        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3210                dsct->subtree_control = dsct->old_subtree_control;
3211                dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3212        }
3213}
3214
3215static bool css_visible(struct cgroup_subsys_state *css)
3216{
3217        struct cgroup_subsys *ss = css->ss;
3218        struct cgroup *cgrp = css->cgroup;
3219
3220        if (cgroup_control(cgrp) & (1 << ss->id))
3221                return true;
3222        if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3223                return false;
3224        return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3225}
3226
3227/**
3228 * cgroup_apply_control_enable - enable or show csses according to control
3229 * @cgrp: root of the target subtree
3230 *
3231 * Walk @cgrp's subtree and create new csses or make the existing ones
3232 * visible.  A css is created invisible if it's being implicitly enabled
3233 * through dependency.  An invisible css is made visible when the userland
3234 * explicitly enables it.
3235 *
3236 * Returns 0 on success, -errno on failure.  On failure, csses which have
3237 * been processed already aren't cleaned up.  The caller is responsible for
3238 * cleaning up with cgroup_apply_control_disble().
3239 */
3240static int cgroup_apply_control_enable(struct cgroup *cgrp)
3241{
3242        struct cgroup *dsct;
3243        struct cgroup_subsys_state *d_css;
3244        struct cgroup_subsys *ss;
3245        int ssid, ret;
3246
3247        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3248                for_each_subsys(ss, ssid) {
3249                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3250
3251                        WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3252
3253                        if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3254                                continue;
3255
3256                        if (!css) {
3257                                css = css_create(dsct, ss);
3258                                if (IS_ERR(css))
3259                                        return PTR_ERR(css);
3260                        }
3261
3262                        if (css_visible(css)) {
3263                                ret = css_populate_dir(css);
3264                                if (ret)
3265                                        return ret;
3266                        }
3267                }
3268        }
3269
3270        return 0;
3271}
3272
3273/**
3274 * cgroup_apply_control_disable - kill or hide csses according to control
3275 * @cgrp: root of the target subtree
3276 *
3277 * Walk @cgrp's subtree and kill and hide csses so that they match
3278 * cgroup_ss_mask() and cgroup_visible_mask().
3279 *
3280 * A css is hidden when the userland requests it to be disabled while other
3281 * subsystems are still depending on it.  The css must not actively control
3282 * resources and be in the vanilla state if it's made visible again later.
3283 * Controllers which may be depended upon should provide ->css_reset() for
3284 * this purpose.
3285 */
3286static void cgroup_apply_control_disable(struct cgroup *cgrp)
3287{
3288        struct cgroup *dsct;
3289        struct cgroup_subsys_state *d_css;
3290        struct cgroup_subsys *ss;
3291        int ssid;
3292
3293        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3294                for_each_subsys(ss, ssid) {
3295                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3296
3297                        WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3298
3299                        if (!css)
3300                                continue;
3301
3302                        if (css->parent &&
3303                            !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3304                                kill_css(css);
3305                        } else if (!css_visible(css)) {
3306                                css_clear_dir(css);
3307                                if (ss->css_reset)
3308                                        ss->css_reset(css);
3309                        }
3310                }
3311        }
3312}
3313
3314/**
3315 * cgroup_apply_control - apply control mask updates to the subtree
3316 * @cgrp: root of the target subtree
3317 *
3318 * subsystems can be enabled and disabled in a subtree using the following
3319 * steps.
3320 *
3321 * 1. Call cgroup_save_control() to stash the current state.
3322 * 2. Update ->subtree_control masks in the subtree as desired.
3323 * 3. Call cgroup_apply_control() to apply the changes.
3324 * 4. Optionally perform other related operations.
3325 * 5. Call cgroup_finalize_control() to finish up.
3326 *
3327 * This function implements step 3 and propagates the mask changes
3328 * throughout @cgrp's subtree, updates csses accordingly and perform
3329 * process migrations.
3330 */
3331static int cgroup_apply_control(struct cgroup *cgrp)
3332{
3333        int ret;
3334
3335        cgroup_propagate_control(cgrp);
3336
3337        ret = cgroup_apply_control_enable(cgrp);
3338        if (ret)
3339                return ret;
3340
3341        /*
3342         * At this point, cgroup_e_css() results reflect the new csses
3343         * making the following cgroup_update_dfl_csses() properly update
3344         * css associations of all tasks in the subtree.
3345         */
3346        ret = cgroup_update_dfl_csses(cgrp);
3347        if (ret)
3348                return ret;
3349
3350        return 0;
3351}
3352
3353/**
3354 * cgroup_finalize_control - finalize control mask update
3355 * @cgrp: root of the target subtree
3356 * @ret: the result of the update
3357 *
3358 * Finalize control mask update.  See cgroup_apply_control() for more info.
3359 */
3360static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3361{
3362        if (ret) {
3363                cgroup_restore_control(cgrp);
3364                cgroup_propagate_control(cgrp);
3365        }
3366
3367        cgroup_apply_control_disable(cgrp);
3368}
3369
3370/* change the enabled child controllers for a cgroup in the default hierarchy */
3371static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3372                                            char *buf, size_t nbytes,
3373                                            loff_t off)
3374{
3375        u16 enable = 0, disable = 0;
3376        struct cgroup *cgrp, *child;
3377        struct cgroup_subsys *ss;
3378        char *tok;
3379        int ssid, ret;
3380
3381        /*
3382         * Parse input - space separated list of subsystem names prefixed
3383         * with either + or -.
3384         */
3385        buf = strstrip(buf);
3386        while ((tok = strsep(&buf, " "))) {
3387                if (tok[0] == '\0')
3388                        continue;
3389                do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3390                        if (!cgroup_ssid_enabled(ssid) ||
3391                            strcmp(tok + 1, ss->name))
3392                                continue;
3393
3394                        if (*tok == '+') {
3395                                enable |= 1 << ssid;
3396                                disable &= ~(1 << ssid);
3397                        } else if (*tok == '-') {
3398                                disable |= 1 << ssid;
3399                                enable &= ~(1 << ssid);
3400                        } else {
3401                                return -EINVAL;
3402                        }
3403                        break;
3404                } while_each_subsys_mask();
3405                if (ssid == CGROUP_SUBSYS_COUNT)
3406                        return -EINVAL;
3407        }
3408
3409        cgrp = cgroup_kn_lock_live(of->kn, true);
3410        if (!cgrp)
3411                return -ENODEV;
3412
3413        for_each_subsys(ss, ssid) {
3414                if (enable & (1 << ssid)) {
3415                        if (cgrp->subtree_control & (1 << ssid)) {
3416                                enable &= ~(1 << ssid);
3417                                continue;
3418                        }
3419
3420                        if (!(cgroup_control(cgrp) & (1 << ssid))) {
3421                                ret = -ENOENT;
3422                                goto out_unlock;
3423                        }
3424                } else if (disable & (1 << ssid)) {
3425                        if (!(cgrp->subtree_control & (1 << ssid))) {
3426                                disable &= ~(1 << ssid);
3427                                continue;
3428                        }
3429
3430                        /* a child has it enabled? */
3431                        cgroup_for_each_live_child(child, cgrp) {
3432                                if (child->subtree_control & (1 << ssid)) {
3433                                        ret = -EBUSY;
3434                                        goto out_unlock;
3435                                }
3436                        }
3437                }
3438        }
3439
3440        if (!enable && !disable) {
3441                ret = 0;
3442                goto out_unlock;
3443        }
3444
3445        /*
3446         * Except for the root, subtree_control must be zero for a cgroup
3447         * with tasks so that child cgroups don't compete against tasks.
3448         */
3449        if (enable && cgroup_parent(cgrp)) {
3450                struct cgrp_cset_link *link;
3451
3452                /*
3453                 * Because namespaces pin csets too, @cgrp->cset_links
3454                 * might not be empty even when @cgrp is empty.  Walk and
3455                 * verify each cset.
3456                 */
3457                spin_lock_irq(&css_set_lock);
3458
3459                ret = 0;
3460                list_for_each_entry(link, &cgrp->cset_links, cset_link) {
3461                        if (css_set_populated(link->cset)) {
3462                                ret = -EBUSY;
3463                                break;
3464                        }
3465                }
3466
3467                spin_unlock_irq(&css_set_lock);
3468
3469                if (ret)
3470                        goto out_unlock;
3471        }
3472
3473        /* save and update control masks and prepare csses */
3474        cgroup_save_control(cgrp);
3475
3476        cgrp->subtree_control |= enable;
3477        cgrp->subtree_control &= ~disable;
3478
3479        ret = cgroup_apply_control(cgrp);
3480
3481        cgroup_finalize_control(cgrp, ret);
3482
3483        kernfs_activate(cgrp->kn);
3484        ret = 0;
3485out_unlock:
3486        cgroup_kn_unlock(of->kn);
3487        return ret ?: nbytes;
3488}
3489
3490static int cgroup_events_show(struct seq_file *seq, void *v)
3491{
3492        seq_printf(seq, "populated %d\n",
3493                   cgroup_is_populated(seq_css(seq)->cgroup));
3494        return 0;
3495}
3496
3497static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3498                                 size_t nbytes, loff_t off)
3499{
3500        struct cgroup *cgrp = of->kn->parent->priv;
3501        struct cftype *cft = of->kn->priv;
3502        struct cgroup_subsys_state *css;
3503        int ret;
3504
3505        if (cft->write)
3506                return cft->write(of, buf, nbytes, off);
3507
3508        /*
3509         * kernfs guarantees that a file isn't deleted with operations in
3510         * flight, which means that the matching css is and stays alive and
3511         * doesn't need to be pinned.  The RCU locking is not necessary
3512         * either.  It's just for the convenience of using cgroup_css().
3513         */
3514        rcu_read_lock();
3515        css = cgroup_css(cgrp, cft->ss);
3516        rcu_read_unlock();
3517
3518        if (cft->write_u64) {
3519                unsigned long long v;
3520                ret = kstrtoull(buf, 0, &v);
3521                if (!ret)
3522                        ret = cft->write_u64(css, cft, v);
3523        } else if (cft->write_s64) {
3524                long long v;
3525                ret = kstrtoll(buf, 0, &v);
3526                if (!ret)
3527                        ret = cft->write_s64(css, cft, v);
3528        } else {
3529                ret = -EINVAL;
3530        }
3531
3532        return ret ?: nbytes;
3533}
3534
3535static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3536{
3537        return seq_cft(seq)->seq_start(seq, ppos);
3538}
3539
3540static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3541{
3542        return seq_cft(seq)->seq_next(seq, v, ppos);
3543}
3544
3545static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3546{
3547        seq_cft(seq)->seq_stop(seq, v);
3548}
3549
3550static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3551{
3552        struct cftype *cft = seq_cft(m);
3553        struct cgroup_subsys_state *css = seq_css(m);
3554
3555        if (cft->seq_show)
3556                return cft->seq_show(m, arg);
3557
3558        if (cft->read_u64)
3559                seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3560        else if (cft->read_s64)
3561                seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3562        else
3563                return -EINVAL;
3564        return 0;
3565}
3566
3567static struct kernfs_ops cgroup_kf_single_ops = {
3568        .atomic_write_len       = PAGE_SIZE,
3569        .write                  = cgroup_file_write,
3570        .seq_show               = cgroup_seqfile_show,
3571};
3572
3573static struct kernfs_ops cgroup_kf_ops = {
3574        .atomic_write_len       = PAGE_SIZE,
3575        .write                  = cgroup_file_write,
3576        .seq_start              = cgroup_seqfile_start,
3577        .seq_next               = cgroup_seqfile_next,
3578        .seq_stop               = cgroup_seqfile_stop,
3579        .seq_show               = cgroup_seqfile_show,
3580};
3581
3582/*
3583 * cgroup_rename - Only allow simple rename of directories in place.
3584 */
3585static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3586                         const char *new_name_str)
3587{
3588        struct cgroup *cgrp = kn->priv;
3589        int ret;
3590
3591        if (kernfs_type(kn) != KERNFS_DIR)
3592                return -ENOTDIR;
3593        if (kn->parent != new_parent)
3594                return -EIO;
3595
3596        /*
3597         * This isn't a proper migration and its usefulness is very
3598         * limited.  Disallow on the default hierarchy.
3599         */
3600        if (cgroup_on_dfl(cgrp))
3601                return -EPERM;
3602
3603        /*
3604         * We're gonna grab cgroup_mutex which nests outside kernfs
3605         * active_ref.  kernfs_rename() doesn't require active_ref
3606         * protection.  Break them before grabbing cgroup_mutex.
3607         */
3608        kernfs_break_active_protection(new_parent);
3609        kernfs_break_active_protection(kn);
3610
3611        mutex_lock(&cgroup_mutex);
3612
3613        ret = kernfs_rename(kn, new_parent, new_name_str);
3614
3615        mutex_unlock(&cgroup_mutex);
3616
3617        kernfs_unbreak_active_protection(kn);
3618        kernfs_unbreak_active_protection(new_parent);
3619        return ret;
3620}
3621
3622/* set uid and gid of cgroup dirs and files to that of the creator */
3623static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3624{
3625        struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3626                               .ia_uid = current_fsuid(),
3627                               .ia_gid = current_fsgid(), };
3628
3629        if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3630            gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3631                return 0;
3632
3633        return kernfs_setattr(kn, &iattr);
3634}
3635
3636static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3637                           struct cftype *cft)
3638{
3639        char name[CGROUP_FILE_NAME_MAX];
3640        struct kernfs_node *kn;
3641        struct lock_class_key *key = NULL;
3642        int ret;
3643
3644#ifdef CONFIG_DEBUG_LOCK_ALLOC
3645        key = &cft->lockdep_key;
3646#endif
3647        kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3648                                  cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3649                                  NULL, key);
3650        if (IS_ERR(kn))
3651                return PTR_ERR(kn);
3652
3653        ret = cgroup_kn_set_ugid(kn);
3654        if (ret) {
3655                kernfs_remove(kn);
3656                return ret;
3657        }
3658
3659        if (cft->file_offset) {
3660                struct cgroup_file *cfile = (void *)css + cft->file_offset;
3661
3662                spin_lock_irq(&cgroup_file_kn_lock);
3663                cfile->kn = kn;
3664                spin_unlock_irq(&cgroup_file_kn_lock);
3665        }
3666
3667        return 0;
3668}
3669
3670/**
3671 * cgroup_addrm_files - add or remove files to a cgroup directory
3672 * @css: the target css
3673 * @cgrp: the target cgroup (usually css->cgroup)
3674 * @cfts: array of cftypes to be added
3675 * @is_add: whether to add or remove
3676 *
3677 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3678 * For removals, this function never fails.
3679 */
3680static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3681                              struct cgroup *cgrp, struct cftype cfts[],
3682                              bool is_add)
3683{
3684        struct cftype *cft, *cft_end = NULL;
3685        int ret = 0;
3686
3687        lockdep_assert_held(&cgroup_mutex);
3688
3689restart:
3690        for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3691                /* does cft->flags tell us to skip this file on @cgrp? */
3692                if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3693                        continue;
3694                if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3695                        continue;
3696                if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3697                        continue;
3698                if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3699                        continue;
3700
3701                if (is_add) {
3702                        ret = cgroup_add_file(css, cgrp, cft);
3703                        if (ret) {
3704                                pr_warn("%s: failed to add %s, err=%d\n",
3705                                        __func__, cft->name, ret);
3706                                cft_end = cft;
3707                                is_add = false;
3708                                goto restart;
3709                        }
3710                } else {
3711                        cgroup_rm_file(cgrp, cft);
3712                }
3713        }
3714        return ret;
3715}
3716
3717static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3718{
3719        LIST_HEAD(pending);
3720        struct cgroup_subsys *ss = cfts[0].ss;
3721        struct cgroup *root = &ss->root->cgrp;
3722        struct cgroup_subsys_state *css;
3723        int ret = 0;
3724
3725        lockdep_assert_held(&cgroup_mutex);
3726
3727        /* add/rm files for all cgroups created before */
3728        css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3729                struct cgroup *cgrp = css->cgroup;
3730
3731                if (!(css->flags & CSS_VISIBLE))
3732                        continue;
3733
3734                ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3735                if (ret)
3736                        break;
3737        }
3738
3739        if (is_add && !ret)
3740                kernfs_activate(root->kn);
3741        return ret;
3742}
3743
3744static void cgroup_exit_cftypes(struct cftype *cfts)
3745{
3746        struct cftype *cft;
3747
3748        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3749                /* free copy for custom atomic_write_len, see init_cftypes() */
3750                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3751                        kfree(cft->kf_ops);
3752                cft->kf_ops = NULL;
3753                cft->ss = NULL;
3754
3755                /* revert flags set by cgroup core while adding @cfts */
3756                cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3757        }
3758}
3759
3760static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3761{
3762        struct cftype *cft;
3763
3764        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3765                struct kernfs_ops *kf_ops;
3766
3767                WARN_ON(cft->ss || cft->kf_ops);
3768
3769                if (cft->seq_start)
3770                        kf_ops = &cgroup_kf_ops;
3771                else
3772                        kf_ops = &cgroup_kf_single_ops;
3773
3774                /*
3775                 * Ugh... if @cft wants a custom max_write_len, we need to
3776                 * make a copy of kf_ops to set its atomic_write_len.
3777                 */
3778                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3779                        kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3780                        if (!kf_ops) {
3781                                cgroup_exit_cftypes(cfts);
3782                                return -ENOMEM;
3783                        }
3784                        kf_ops->atomic_write_len = cft->max_write_len;
3785                }
3786
3787                cft->kf_ops = kf_ops;
3788                cft->ss = ss;
3789        }
3790
3791        return 0;
3792}
3793
3794static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3795{
3796        lockdep_assert_held(&cgroup_mutex);
3797
3798        if (!cfts || !cfts[0].ss)
3799                return -ENOENT;
3800
3801        list_del(&cfts->node);
3802        cgroup_apply_cftypes(cfts, false);
3803        cgroup_exit_cftypes(cfts);
3804        return 0;
3805}
3806
3807/**
3808 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3809 * @cfts: zero-length name terminated array of cftypes
3810 *
3811 * Unregister @cfts.  Files described by @cfts are removed from all
3812 * existing cgroups and all future cgroups won't have them either.  This
3813 * function can be called anytime whether @cfts' subsys is attached or not.
3814 *
3815 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3816 * registered.
3817 */
3818int cgroup_rm_cftypes(struct cftype *cfts)
3819{
3820        int ret;
3821
3822        mutex_lock(&cgroup_mutex);
3823        ret = cgroup_rm_cftypes_locked(cfts);
3824        mutex_unlock(&cgroup_mutex);
3825        return ret;
3826}
3827
3828/**
3829 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3830 * @ss: target cgroup subsystem
3831 * @cfts: zero-length name terminated array of cftypes
3832 *
3833 * Register @cfts to @ss.  Files described by @cfts are created for all
3834 * existing cgroups to which @ss is attached and all future cgroups will
3835 * have them too.  This function can be called anytime whether @ss is
3836 * attached or not.
3837 *
3838 * Returns 0 on successful registration, -errno on failure.  Note that this
3839 * function currently returns 0 as long as @cfts registration is successful
3840 * even if some file creation attempts on existing cgroups fail.
3841 */
3842static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3843{
3844        int ret;
3845
3846        if (!cgroup_ssid_enabled(ss->id))
3847                return 0;
3848
3849        if (!cfts || cfts[0].name[0] == '\0')
3850                return 0;
3851
3852        ret = cgroup_init_cftypes(ss, cfts);
3853        if (ret)
3854                return ret;
3855
3856        mutex_lock(&cgroup_mutex);
3857
3858        list_add_tail(&cfts->node, &ss->cfts);
3859        ret = cgroup_apply_cftypes(cfts, true);
3860        if (ret)
3861                cgroup_rm_cftypes_locked(cfts);
3862
3863        mutex_unlock(&cgroup_mutex);
3864        return ret;
3865}
3866
3867/**
3868 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3869 * @ss: target cgroup subsystem
3870 * @cfts: zero-length name terminated array of cftypes
3871 *
3872 * Similar to cgroup_add_cftypes() but the added files are only used for
3873 * the default hierarchy.
3874 */
3875int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3876{
3877        struct cftype *cft;
3878
3879        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3880                cft->flags |= __CFTYPE_ONLY_ON_DFL;
3881        return cgroup_add_cftypes(ss, cfts);
3882}
3883
3884/**
3885 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3886 * @ss: target cgroup subsystem
3887 * @cfts: zero-length name terminated array of cftypes
3888 *
3889 * Similar to cgroup_add_cftypes() but the added files are only used for
3890 * the legacy hierarchies.
3891 */
3892int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3893{
3894        struct cftype *cft;
3895
3896        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3897                cft->flags |= __CFTYPE_NOT_ON_DFL;
3898        return cgroup_add_cftypes(ss, cfts);
3899}
3900
3901/**
3902 * cgroup_file_notify - generate a file modified event for a cgroup_file
3903 * @cfile: target cgroup_file
3904 *
3905 * @cfile must have been obtained by setting cftype->file_offset.
3906 */
3907void cgroup_file_notify(struct cgroup_file *cfile)
3908{
3909        unsigned long flags;
3910
3911        spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3912        if (cfile->kn)
3913                kernfs_notify(cfile->kn);
3914        spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3915}
3916
3917/**
3918 * cgroup_task_count - count the number of tasks in a cgroup.
3919 * @cgrp: the cgroup in question
3920 *
3921 * Return the number of tasks in the cgroup.  The returned number can be
3922 * higher than the actual number of tasks due to css_set references from
3923 * namespace roots and temporary usages.
3924 */
3925static int cgroup_task_count(const struct cgroup *cgrp)
3926{
3927        int count = 0;
3928        struct cgrp_cset_link *link;
3929
3930        spin_lock_irq(&css_set_lock);
3931        list_for_each_entry(link, &cgrp->cset_links, cset_link)
3932                count += atomic_read(&link->cset->refcount);
3933        spin_unlock_irq(&css_set_lock);
3934        return count;
3935}
3936
3937/**
3938 * css_next_child - find the next child of a given css
3939 * @pos: the current position (%NULL to initiate traversal)
3940 * @parent: css whose children to walk
3941 *
3942 * This function returns the next child of @parent and should be called
3943 * under either cgroup_mutex or RCU read lock.  The only requirement is
3944 * that @parent and @pos are accessible.  The next sibling is guaranteed to
3945 * be returned regardless of their states.
3946 *
3947 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3948 * css which finished ->css_online() is guaranteed to be visible in the
3949 * future iterations and will stay visible until the last reference is put.
3950 * A css which hasn't finished ->css_online() or already finished
3951 * ->css_offline() may show up during traversal.  It's each subsystem's
3952 * responsibility to synchronize against on/offlining.
3953 */
3954struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3955                                           struct cgroup_subsys_state *parent)
3956{
3957        struct cgroup_subsys_state *next;
3958
3959        cgroup_assert_mutex_or_rcu_locked();
3960
3961        /*
3962         * @pos could already have been unlinked from the sibling list.
3963         * Once a cgroup is removed, its ->sibling.next is no longer
3964         * updated when its next sibling changes.  CSS_RELEASED is set when
3965         * @pos is taken off list, at which time its next pointer is valid,
3966         * and, as releases are serialized, the one pointed to by the next
3967         * pointer is guaranteed to not have started release yet.  This
3968         * implies that if we observe !CSS_RELEASED on @pos in this RCU
3969         * critical section, the one pointed to by its next pointer is
3970         * guaranteed to not have finished its RCU grace period even if we
3971         * have dropped rcu_read_lock() inbetween iterations.
3972         *
3973         * If @pos has CSS_RELEASED set, its next pointer can't be
3974         * dereferenced; however, as each css is given a monotonically
3975         * increasing unique serial number and always appended to the
3976         * sibling list, the next one can be found by walking the parent's
3977         * children until the first css with higher serial number than
3978         * @pos's.  While this path can be slower, it happens iff iteration
3979         * races against release and the race window is very small.
3980         */
3981        if (!pos) {
3982                next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3983        } else if (likely(!(pos->flags & CSS_RELEASED))) {
3984                next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3985        } else {
3986                list_for_each_entry_rcu(next, &parent->children, sibling)
3987                        if (next->serial_nr > pos->serial_nr)
3988                                break;
3989        }
3990
3991        /*
3992         * @next, if not pointing to the head, can be dereferenced and is
3993         * the next sibling.
3994         */
3995        if (&next->sibling != &parent->children)
3996                return next;
3997        return NULL;
3998}
3999
4000/**
4001 * css_next_descendant_pre - find the next descendant for pre-order walk
4002 * @pos: the current position (%NULL to initiate traversal)
4003 * @root: css whose descendants to walk
4004 *
4005 * To be used by css_for_each_descendant_pre().  Find the next descendant
4006 * to visit for pre-order traversal of @root's descendants.  @root is
4007 * included in the iteration and the first node to be visited.
4008 *
4009 * While this function requires cgroup_mutex or RCU read locking, it
4010 * doesn't require the whole traversal to be contained in a single critical
4011 * section.  This function will return the correct next descendant as long
4012 * as both @pos and @root are accessible and @pos is a descendant of @root.
4013 *
4014 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4015 * css which finished ->css_online() is guaranteed to be visible in the
4016 * future iterations and will stay visible until the last reference is put.
4017 * A css which hasn't finished ->css_online() or already finished
4018 * ->css_offline() may show up during traversal.  It's each subsystem's
4019 * responsibility to synchronize against on/offlining.
4020 */
4021struct cgroup_subsys_state *
4022css_next_descendant_pre(struct cgroup_subsys_state *pos,
4023                        struct cgroup_subsys_state *root)
4024{
4025        struct cgroup_subsys_state *next;
4026
4027        cgroup_assert_mutex_or_rcu_locked();
4028
4029        /* if first iteration, visit @root */
4030        if (!pos)
4031                return root;
4032
4033        /* visit the first child if exists */
4034        next = css_next_child(NULL, pos);
4035        if (next)
4036                return next;
4037
4038        /* no child, visit my or the closest ancestor's next sibling */
4039        while (pos != root) {
4040                next = css_next_child(pos, pos->parent);
4041                if (next)
4042                        return next;
4043                pos = pos->parent;
4044        }
4045
4046        return NULL;
4047}
4048
4049/**
4050 * css_rightmost_descendant - return the rightmost descendant of a css
4051 * @pos: css of interest
4052 *
4053 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4054 * is returned.  This can be used during pre-order traversal to skip
4055 * subtree of @pos.
4056 *
4057 * While this function requires cgroup_mutex or RCU read locking, it
4058 * doesn't require the whole traversal to be contained in a single critical
4059 * section.  This function will return the correct rightmost descendant as
4060 * long as @pos is accessible.
4061 */
4062struct cgroup_subsys_state *
4063css_rightmost_descendant(struct cgroup_subsys_state *pos)
4064{
4065        struct cgroup_subsys_state *last, *tmp;
4066
4067        cgroup_assert_mutex_or_rcu_locked();
4068
4069        do {
4070                last = pos;
4071                /* ->prev isn't RCU safe, walk ->next till the end */
4072                pos = NULL;
4073                css_for_each_child(tmp, last)
4074                        pos = tmp;
4075        } while (pos);
4076
4077        return last;
4078}
4079
4080static struct cgroup_subsys_state *
4081css_leftmost_descendant(struct cgroup_subsys_state *pos)
4082{
4083        struct cgroup_subsys_state *last;
4084
4085        do {
4086                last = pos;
4087                pos = css_next_child(NULL, pos);
4088        } while (pos);
4089
4090        return last;
4091}
4092
4093/**
4094 * css_next_descendant_post - find the next descendant for post-order walk
4095 * @pos: the current position (%NULL to initiate traversal)
4096 * @root: css whose descendants to walk
4097 *
4098 * To be used by css_for_each_descendant_post().  Find the next descendant
4099 * to visit for post-order traversal of @root's descendants.  @root is
4100 * included in the iteration and the last node to be visited.
4101 *
4102 * While this function requires cgroup_mutex or RCU read locking, it
4103 * doesn't require the whole traversal to be contained in a single critical
4104 * section.  This function will return the correct next descendant as long
4105 * as both @pos and @cgroup are accessible and @pos is a descendant of
4106 * @cgroup.
4107 *
4108 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4109 * css which finished ->css_online() is guaranteed to be visible in the
4110 * future iterations and will stay visible until the last reference is put.
4111 * A css which hasn't finished ->css_online() or already finished
4112 * ->css_offline() may show up during traversal.  It's each subsystem's
4113 * responsibility to synchronize against on/offlining.
4114 */
4115struct cgroup_subsys_state *
4116css_next_descendant_post(struct cgroup_subsys_state *pos,
4117                         struct cgroup_subsys_state *root)
4118{
4119        struct cgroup_subsys_state *next;
4120
4121        cgroup_assert_mutex_or_rcu_locked();
4122
4123        /* if first iteration, visit leftmost descendant which may be @root */
4124        if (!pos)
4125                return css_leftmost_descendant(root);
4126
4127        /* if we visited @root, we're done */
4128        if (pos == root)
4129                return NULL;
4130
4131        /* if there's an unvisited sibling, visit its leftmost descendant */
4132        next = css_next_child(pos, pos->parent);
4133        if (next)
4134                return css_leftmost_descendant(next);
4135
4136        /* no sibling left, visit parent */
4137        return pos->parent;
4138}
4139
4140/**
4141 * css_has_online_children - does a css have online children
4142 * @css: the target css
4143 *
4144 * Returns %true if @css has any online children; otherwise, %false.  This
4145 * function can be called from any context but the caller is responsible
4146 * for synchronizing against on/offlining as necessary.
4147 */
4148bool css_has_online_children(struct cgroup_subsys_state *css)
4149{
4150        struct cgroup_subsys_state *child;
4151        bool ret = false;
4152
4153        rcu_read_lock();
4154        css_for_each_child(child, css) {
4155                if (child->flags & CSS_ONLINE) {
4156                        ret = true;
4157                        break;
4158                }
4159        }
4160        rcu_read_unlock();
4161        return ret;
4162}
4163
4164/**
4165 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4166 * @it: the iterator to advance
4167 *
4168 * Advance @it to the next css_set to walk.
4169 */
4170static void css_task_iter_advance_css_set(struct css_task_iter *it)
4171{
4172        struct list_head *l = it->cset_pos;
4173        struct cgrp_cset_link *link;
4174        struct css_set *cset;
4175
4176        lockdep_assert_held(&css_set_lock);
4177
4178        /* Advance to the next non-empty css_set */
4179        do {
4180                l = l->next;
4181                if (l == it->cset_head) {
4182                        it->cset_pos = NULL;
4183                        it->task_pos = NULL;
4184                        return;
4185                }
4186
4187                if (it->ss) {
4188                        cset = container_of(l, struct css_set,
4189                                            e_cset_node[it->ss->id]);
4190                } else {
4191                        link = list_entry(l, struct cgrp_cset_link, cset_link);
4192                        cset = link->cset;
4193                }
4194        } while (!css_set_populated(cset));
4195
4196        it->cset_pos = l;
4197
4198        if (!list_empty(&cset->tasks))
4199                it->task_pos = cset->tasks.next;
4200        else
4201                it->task_pos = cset->mg_tasks.next;
4202
4203        it->tasks_head = &cset->tasks;
4204        it->mg_tasks_head = &cset->mg_tasks;
4205
4206        /*
4207         * We don't keep css_sets locked across iteration steps and thus
4208         * need to take steps to ensure that iteration can be resumed after
4209         * the lock is re-acquired.  Iteration is performed at two levels -
4210         * css_sets and tasks in them.
4211         *
4212         * Once created, a css_set never leaves its cgroup lists, so a
4213         * pinned css_set is guaranteed to stay put and we can resume
4214         * iteration afterwards.
4215         *
4216         * Tasks may leave @cset across iteration steps.  This is resolved
4217         * by registering each iterator with the css_set currently being
4218         * walked and making css_set_move_task() advance iterators whose
4219         * next task is leaving.
4220         */
4221        if (it->cur_cset) {
4222                list_del(&it->iters_node);
4223                put_css_set_locked(it->cur_cset);
4224        }
4225        get_css_set(cset);
4226        it->cur_cset = cset;
4227        list_add(&it->iters_node, &cset->task_iters);
4228}
4229
4230static void css_task_iter_advance(struct css_task_iter *it)
4231{
4232        struct list_head *l = it->task_pos;
4233
4234        lockdep_assert_held(&css_set_lock);
4235        WARN_ON_ONCE(!l);
4236
4237        /*
4238         * Advance iterator to find next entry.  cset->tasks is consumed
4239         * first and then ->mg_tasks.  After ->mg_tasks, we move onto the
4240         * next cset.
4241         */
4242        l = l->next;
4243
4244        if (l == it->tasks_head)
4245                l = it->mg_tasks_head->next;
4246
4247        if (l == it->mg_tasks_head)
4248                css_task_iter_advance_css_set(it);
4249        else
4250                it->task_pos = l;
4251}
4252
4253/**
4254 * css_task_iter_start - initiate task iteration
4255 * @css: the css to walk tasks of
4256 * @it: the task iterator to use
4257 *
4258 * Initiate iteration through the tasks of @css.  The caller can call
4259 * css_task_iter_next() to walk through the tasks until the function
4260 * returns NULL.  On completion of iteration, css_task_iter_end() must be
4261 * called.
4262 */
4263void css_task_iter_start(struct cgroup_subsys_state *css,
4264                         struct css_task_iter *it)
4265{
4266        /* no one should try to iterate before mounting cgroups */
4267        WARN_ON_ONCE(!use_task_css_set_links);
4268
4269        memset(it, 0, sizeof(*it));
4270
4271        spin_lock_irq(&css_set_lock);
4272
4273        it->ss = css->ss;
4274
4275        if (it->ss)
4276                it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4277        else
4278                it->cset_pos = &css->cgroup->cset_links;
4279
4280        it->cset_head = it->cset_pos;
4281
4282        css_task_iter_advance_css_set(it);
4283
4284        spin_unlock_irq(&css_set_lock);
4285}
4286
4287/**
4288 * css_task_iter_next - return the next task for the iterator
4289 * @it: the task iterator being iterated
4290 *
4291 * The "next" function for task iteration.  @it should have been
4292 * initialized via css_task_iter_start().  Returns NULL when the iteration
4293 * reaches the end.
4294 */
4295struct task_struct *css_task_iter_next(struct css_task_iter *it)
4296{
4297        if (it->cur_task) {
4298                put_task_struct(it->cur_task);
4299                it->cur_task = NULL;
4300        }
4301
4302        spin_lock_irq(&css_set_lock);
4303
4304        if (it->task_pos) {
4305                it->cur_task = list_entry(it->task_pos, struct task_struct,
4306                                          cg_list);
4307                get_task_struct(it->cur_task);
4308                css_task_iter_advance(it);
4309        }
4310
4311        spin_unlock_irq(&css_set_lock);
4312
4313        return it->cur_task;
4314}
4315
4316/**
4317 * css_task_iter_end - finish task iteration
4318 * @it: the task iterator to finish
4319 *
4320 * Finish task iteration started by css_task_iter_start().
4321 */
4322void css_task_iter_end(struct css_task_iter *it)
4323{
4324        if (it->cur_cset) {
4325                spin_lock_irq(&css_set_lock);
4326                list_del(&it->iters_node);
4327                put_css_set_locked(it->cur_cset);
4328                spin_unlock_irq(&css_set_lock);
4329        }
4330
4331        if (it->cur_task)
4332                put_task_struct(it->cur_task);
4333}
4334
4335/**
4336 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4337 * @to: cgroup to which the tasks will be moved
4338 * @from: cgroup in which the tasks currently reside
4339 *
4340 * Locking rules between cgroup_post_fork() and the migration path
4341 * guarantee that, if a task is forking while being migrated, the new child
4342 * is guaranteed to be either visible in the source cgroup after the
4343 * parent's migration is complete or put into the target cgroup.  No task
4344 * can slip out of migration through forking.
4345 */
4346int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4347{
4348        LIST_HEAD(preloaded_csets);
4349        struct cgrp_cset_link *link;
4350        struct css_task_iter it;
4351        struct task_struct *task;
4352        int ret;
4353
4354        if (!cgroup_may_migrate_to(to))
4355                return -EBUSY;
4356
4357        mutex_lock(&cgroup_mutex);
4358
4359        percpu_down_write(&cgroup_threadgroup_rwsem);
4360
4361        /* all tasks in @from are being moved, all csets are source */
4362        spin_lock_irq(&css_set_lock);
4363        list_for_each_entry(link, &from->cset_links, cset_link)
4364                cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4365        spin_unlock_irq(&css_set_lock);
4366
4367        ret = cgroup_migrate_prepare_dst(&preloaded_csets);
4368        if (ret)
4369                goto out_err;
4370
4371        /*
4372         * Migrate tasks one-by-one until @from is empty.  This fails iff
4373         * ->can_attach() fails.
4374         */
4375        do {
4376                css_task_iter_start(&from->self, &it);
4377                task = css_task_iter_next(&it);
4378                if (task)
4379                        get_task_struct(task);
4380                css_task_iter_end(&it);
4381
4382                if (task) {
4383                        ret = cgroup_migrate(task, false, to->root);
4384                        put_task_struct(task);
4385                }
4386        } while (task && !ret);
4387out_err:
4388        cgroup_migrate_finish(&preloaded_csets);
4389        percpu_up_write(&cgroup_threadgroup_rwsem);
4390        mutex_unlock(&cgroup_mutex);
4391        return ret;
4392}
4393
4394/*
4395 * Stuff for reading the 'tasks'/'procs' files.
4396 *
4397 * Reading this file can return large amounts of data if a cgroup has
4398 * *lots* of attached tasks. So it may need several calls to read(),
4399 * but we cannot guarantee that the information we produce is correct
4400 * unless we produce it entirely atomically.
4401 *
4402 */
4403
4404/* which pidlist file are we talking about? */
4405enum cgroup_filetype {
4406        CGROUP_FILE_PROCS,
4407        CGROUP_FILE_TASKS,
4408};
4409
4410/*
4411 * A pidlist is a list of pids that virtually represents the contents of one
4412 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4413 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4414 * to the cgroup.
4415 */
4416struct cgroup_pidlist {
4417        /*
4418         * used to find which pidlist is wanted. doesn't change as long as
4419         * this particular list stays in the list.
4420        */
4421        struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4422        /* array of xids */
4423        pid_t *list;
4424        /* how many elements the above list has */
4425        int length;
4426        /* each of these stored in a list by its cgroup */
4427        struct list_head links;
4428        /* pointer to the cgroup we belong to, for list removal purposes */
4429        struct cgroup *owner;
4430        /* for delayed destruction */
4431        struct delayed_work destroy_dwork;
4432};
4433
4434/*
4435 * The following two functions "fix" the issue where there are more pids
4436 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4437 * TODO: replace with a kernel-wide solution to this problem
4438 */
4439#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4440static void *pidlist_allocate(int count)
4441{
4442        if (PIDLIST_TOO_LARGE(count))
4443                return vmalloc(count * sizeof(pid_t));
4444        else
4445                return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4446}
4447
4448static void pidlist_free(void *p)
4449{
4450        kvfree(p);
4451}
4452
4453/*
4454 * Used to destroy all pidlists lingering waiting for destroy timer.  None
4455 * should be left afterwards.
4456 */
4457static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4458{
4459        struct cgroup_pidlist *l, *tmp_l;
4460
4461        mutex_lock(&cgrp->pidlist_mutex);
4462        list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4463                mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4464        mutex_unlock(&cgrp->pidlist_mutex);
4465
4466        flush_workqueue(cgroup_pidlist_destroy_wq);
4467        BUG_ON(!list_empty(&cgrp->pidlists));
4468}
4469
4470static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4471{
4472        struct delayed_work *dwork = to_delayed_work(work);
4473        struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4474                                                destroy_dwork);
4475        struct cgroup_pidlist *tofree = NULL;
4476
4477        mutex_lock(&l->owner->pidlist_mutex);
4478
4479        /*
4480         * Destroy iff we didn't get queued again.  The state won't change
4481         * as destroy_dwork can only be queued while locked.
4482         */
4483        if (!delayed_work_pending(dwork)) {
4484                list_del(&l->links);
4485                pidlist_free(l->list);
4486                put_pid_ns(l->key.ns);
4487                tofree = l;
4488        }
4489
4490        mutex_unlock(&l->owner->pidlist_mutex);
4491        kfree(tofree);
4492}
4493
4494/*
4495 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4496 * Returns the number of unique elements.
4497 */
4498static int pidlist_uniq(pid_t *list, int length)
4499{
4500        int src, dest = 1;
4501
4502        /*
4503         * we presume the 0th element is unique, so i starts at 1. trivial
4504         * edge cases first; no work needs to be done for either
4505         */
4506        if (length == 0 || length == 1)
4507                return length;
4508        /* src and dest walk down the list; dest counts unique elements */
4509        for (src = 1; src < length; src++) {
4510                /* find next unique element */
4511                while (list[src] == list[src-1]) {
4512                        src++;
4513                        if (src == length)
4514                                goto after;
4515                }
4516                /* dest always points to where the next unique element goes */
4517                list[dest] = list[src];
4518                dest++;
4519        }
4520after:
4521        return dest;
4522}
4523
4524/*
4525 * The two pid files - task and cgroup.procs - guaranteed that the result
4526 * is sorted, which forced this whole pidlist fiasco.  As pid order is
4527 * different per namespace, each namespace needs differently sorted list,
4528 * making it impossible to use, for example, single rbtree of member tasks
4529 * sorted by task pointer.  As pidlists can be fairly large, allocating one
4530 * per open file is dangerous, so cgroup had to implement shared pool of
4531 * pidlists keyed by cgroup and namespace.
4532 *
4533 * All this extra complexity was caused by the original implementation
4534 * committing to an entirely unnecessary property.  In the long term, we
4535 * want to do away with it.  Explicitly scramble sort order if on the
4536 * default hierarchy so that no such expectation exists in the new
4537 * interface.
4538 *
4539 * Scrambling is done by swapping every two consecutive bits, which is
4540 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4541 */
4542static pid_t pid_fry(pid_t pid)
4543{
4544        unsigned a = pid & 0x55555555;
4545        unsigned b = pid & 0xAAAAAAAA;
4546
4547        return (a << 1) | (b >> 1);
4548}
4549
4550static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4551{
4552        if (cgroup_on_dfl(cgrp))
4553                return pid_fry(pid);
4554        else
4555                return pid;
4556}
4557
4558static int cmppid(const void *a, const void *b)
4559{
4560        return *(pid_t *)a - *(pid_t *)b;
4561}
4562
4563static int fried_cmppid(const void *a, const void *b)
4564{
4565        return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4566}
4567
4568static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4569                                                  enum cgroup_filetype type)
4570{
4571        struct cgroup_pidlist *l;
4572        /* don't need task_nsproxy() if we're looking at ourself */
4573        struct pid_namespace *ns = task_active_pid_ns(current);
4574
4575        lockdep_assert_held(&cgrp->pidlist_mutex);
4576
4577        list_for_each_entry(l, &cgrp->pidlists, links)
4578                if (l->key.type == type && l->key.ns == ns)
4579                        return l;
4580        return NULL;
4581}
4582
4583/*
4584 * find the appropriate pidlist for our purpose (given procs vs tasks)
4585 * returns with the lock on that pidlist already held, and takes care
4586 * of the use count, or returns NULL with no locks held if we're out of
4587 * memory.
4588 */
4589static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4590                                                enum cgroup_filetype type)
4591{
4592        struct cgroup_pidlist *l;
4593
4594        lockdep_assert_held(&cgrp->pidlist_mutex);
4595
4596        l = cgroup_pidlist_find(cgrp, type);
4597        if (l)
4598                return l;
4599
4600        /* entry not found; create a new one */
4601        l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4602        if (!l)
4603                return l;
4604
4605        INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4606        l->key.type = type;
4607        /* don't need task_nsproxy() if we're looking at ourself */
4608        l->key.ns = get_pid_ns(task_active_pid_ns(current));
4609        l->owner = cgrp;
4610        list_add(&l->links, &cgrp->pidlists);
4611        return l;
4612}
4613
4614/*
4615 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4616 */
4617static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4618                              struct cgroup_pidlist **lp)
4619{
4620        pid_t *array;
4621        int length;
4622        int pid, n = 0; /* used for populating the array */
4623        struct css_task_iter it;
4624        struct task_struct *tsk;
4625        struct cgroup_pidlist *l;
4626
4627        lockdep_assert_held(&cgrp->pidlist_mutex);
4628
4629        /*
4630         * If cgroup gets more users after we read count, we won't have
4631         * enough space - tough.  This race is indistinguishable to the
4632         * caller from the case that the additional cgroup users didn't
4633         * show up until sometime later on.
4634         */
4635        length = cgroup_task_count(cgrp);
4636        array = pidlist_allocate(length);
4637        if (!array)
4638                return -ENOMEM;
4639        /* now, populate the array */
4640        css_task_iter_start(&cgrp->self, &it);
4641        while ((tsk = css_task_iter_next(&it))) {
4642                if (unlikely(n == length))
4643                        break;
4644                /* get tgid or pid for procs or tasks file respectively */
4645                if (type == CGROUP_FILE_PROCS)
4646                        pid = task_tgid_vnr(tsk);
4647                else
4648                        pid = task_pid_vnr(tsk);
4649                if (pid > 0) /* make sure to only use valid results */
4650                        array[n++] = pid;
4651        }
4652        css_task_iter_end(&it);
4653        length = n;
4654        /* now sort & (if procs) strip out duplicates */
4655        if (cgroup_on_dfl(cgrp))
4656                sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4657        else
4658                sort(array, length, sizeof(pid_t), cmppid, NULL);
4659        if (type == CGROUP_FILE_PROCS)
4660                length = pidlist_uniq(array, length);
4661
4662        l = cgroup_pidlist_find_create(cgrp, type);
4663        if (!l) {
4664                pidlist_free(array);
4665                return -ENOMEM;
4666        }
4667
4668        /* store array, freeing old if necessary */
4669        pidlist_free(l->list);
4670        l->list = array;
4671        l->length = length;
4672        *lp = l;
4673        return 0;
4674}
4675
4676/**
4677 * cgroupstats_build - build and fill cgroupstats
4678 * @stats: cgroupstats to fill information into
4679 * @dentry: A dentry entry belonging to the cgroup for which stats have
4680 * been requested.
4681 *
4682 * Build and fill cgroupstats so that taskstats can export it to user
4683 * space.
4684 */
4685int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4686{
4687        struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4688        struct cgroup *cgrp;
4689        struct css_task_iter it;
4690        struct task_struct *tsk;
4691
4692        /* it should be kernfs_node belonging to cgroupfs and is a directory */
4693        if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4694            kernfs_type(kn) != KERNFS_DIR)
4695                return -EINVAL;
4696
4697        mutex_lock(&cgroup_mutex);
4698
4699        /*
4700         * We aren't being called from kernfs and there's no guarantee on
4701         * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
4702         * @kn->priv is RCU safe.  Let's do the RCU dancing.
4703         */
4704        rcu_read_lock();
4705        cgrp = rcu_dereference(kn->priv);
4706        if (!cgrp || cgroup_is_dead(cgrp)) {
4707                rcu_read_unlock();
4708                mutex_unlock(&cgroup_mutex);
4709                return -ENOENT;
4710        }
4711        rcu_read_unlock();
4712
4713        css_task_iter_start(&cgrp->self, &it);
4714        while ((tsk = css_task_iter_next(&it))) {
4715                switch (tsk->state) {
4716                case TASK_RUNNING:
4717                        stats->nr_running++;
4718                        break;
4719                case TASK_INTERRUPTIBLE:
4720                        stats->nr_sleeping++;
4721                        break;
4722                case TASK_UNINTERRUPTIBLE:
4723                        stats->nr_uninterruptible++;
4724                        break;
4725                case TASK_STOPPED:
4726                        stats->nr_stopped++;
4727                        break;
4728                default:
4729                        if (delayacct_is_task_waiting_on_io(tsk))
4730                                stats->nr_io_wait++;
4731                        break;
4732                }
4733        }
4734        css_task_iter_end(&it);
4735
4736        mutex_unlock(&cgroup_mutex);
4737        return 0;
4738}
4739
4740
4741/*
4742 * seq_file methods for the tasks/procs files. The seq_file position is the
4743 * next pid to display; the seq_file iterator is a pointer to the pid
4744 * in the cgroup->l->list array.
4745 */
4746
4747static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4748{
4749        /*
4750         * Initially we receive a position value that corresponds to
4751         * one more than the last pid shown (or 0 on the first call or
4752         * after a seek to the start). Use a binary-search to find the
4753         * next pid to display, if any
4754         */
4755        struct kernfs_open_file *of = s->private;
4756        struct cgroup *cgrp = seq_css(s)->cgroup;
4757        struct cgroup_pidlist *l;
4758        enum cgroup_filetype type = seq_cft(s)->private;
4759        int index = 0, pid = *pos;
4760        int *iter, ret;
4761
4762        mutex_lock(&cgrp->pidlist_mutex);
4763
4764        /*
4765         * !NULL @of->priv indicates that this isn't the first start()
4766         * after open.  If the matching pidlist is around, we can use that.
4767         * Look for it.  Note that @of->priv can't be used directly.  It
4768         * could already have been destroyed.
4769         */
4770        if (of->priv)
4771                of->priv = cgroup_pidlist_find(cgrp, type);
4772
4773        /*
4774         * Either this is the first start() after open or the matching
4775         * pidlist has been destroyed inbetween.  Create a new one.
4776         */
4777        if (!of->priv) {
4778                ret = pidlist_array_load(cgrp, type,
4779                                         (struct cgroup_pidlist **)&of->priv);
4780                if (ret)
4781                        return ERR_PTR(ret);
4782        }
4783        l = of->priv;
4784
4785        if (pid) {
4786                int end = l->length;
4787
4788                while (index < end) {
4789                        int mid = (index + end) / 2;
4790                        if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4791                                index = mid;
4792                                break;
4793                        } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4794                                index = mid + 1;
4795                        else
4796                                end = mid;
4797                }
4798        }
4799        /* If we're off the end of the array, we're done */
4800        if (index >= l->length)
4801                return NULL;
4802        /* Update the abstract position to be the actual pid that we found */
4803        iter = l->list + index;
4804        *pos = cgroup_pid_fry(cgrp, *iter);
4805        return iter;
4806}
4807
4808static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4809{
4810        struct kernfs_open_file *of = s->private;
4811        struct cgroup_pidlist *l = of->priv;
4812
4813        if (l)
4814                mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4815                                 CGROUP_PIDLIST_DESTROY_DELAY);
4816        mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4817}
4818
4819static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4820{
4821        struct kernfs_open_file *of = s->private;
4822        struct cgroup_pidlist *l = of->priv;
4823        pid_t *p = v;
4824        pid_t *end = l->list + l->length;
4825        /*
4826         * Advance to the next pid in the array. If this goes off the
4827         * end, we're done
4828         */
4829        p++;
4830        if (p >= end) {
4831                return NULL;
4832        } else {
4833                *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4834                return p;
4835        }
4836}
4837
4838static int cgroup_pidlist_show(struct seq_file *s, void *v)
4839{
4840        seq_printf(s, "%d\n", *(int *)v);
4841
4842        return 0;
4843}
4844
4845static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4846                                         struct cftype *cft)
4847{
4848        return notify_on_release(css->cgroup);
4849}
4850
4851static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4852                                          struct cftype *cft, u64 val)
4853{
4854        if (val)
4855                set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4856        else
4857                clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4858        return 0;
4859}
4860
4861static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4862                                      struct cftype *cft)
4863{
4864        return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4865}
4866
4867static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4868                                       struct cftype *cft, u64 val)
4869{
4870        if (val)
4871                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4872        else
4873                clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4874        return 0;
4875}
4876
4877/* cgroup core interface files for the default hierarchy */
4878static struct cftype cgroup_dfl_base_files[] = {
4879        {
4880                .name = "cgroup.procs",
4881                .file_offset = offsetof(struct cgroup, procs_file),
4882                .seq_start = cgroup_pidlist_start,
4883                .seq_next = cgroup_pidlist_next,
4884                .seq_stop = cgroup_pidlist_stop,
4885                .seq_show = cgroup_pidlist_show,
4886                .private = CGROUP_FILE_PROCS,
4887                .write = cgroup_procs_write,
4888        },
4889        {
4890                .name = "cgroup.controllers",
4891                .seq_show = cgroup_controllers_show,
4892        },
4893        {
4894                .name = "cgroup.subtree_control",
4895                .seq_show = cgroup_subtree_control_show,
4896                .write = cgroup_subtree_control_write,
4897        },
4898        {
4899                .name = "cgroup.events",
4900                .flags = CFTYPE_NOT_ON_ROOT,
4901                .file_offset = offsetof(struct cgroup, events_file),
4902                .seq_show = cgroup_events_show,
4903        },
4904        { }     /* terminate */
4905};
4906
4907/* cgroup core interface files for the legacy hierarchies */
4908static struct cftype cgroup_legacy_base_files[] = {
4909        {
4910                .name = "cgroup.procs",
4911                .seq_start = cgroup_pidlist_start,
4912                .seq_next = cgroup_pidlist_next,
4913                .seq_stop = cgroup_pidlist_stop,
4914                .seq_show = cgroup_pidlist_show,
4915                .private = CGROUP_FILE_PROCS,
4916                .write = cgroup_procs_write,
4917        },
4918        {
4919                .name = "cgroup.clone_children",
4920                .read_u64 = cgroup_clone_children_read,
4921                .write_u64 = cgroup_clone_children_write,
4922        },
4923        {
4924                .name = "cgroup.sane_behavior",
4925                .flags = CFTYPE_ONLY_ON_ROOT,
4926                .seq_show = cgroup_sane_behavior_show,
4927        },
4928        {
4929                .name = "tasks",
4930                .seq_start = cgroup_pidlist_start,
4931                .seq_next = cgroup_pidlist_next,
4932                .seq_stop = cgroup_pidlist_stop,
4933                .seq_show = cgroup_pidlist_show,
4934                .private = CGROUP_FILE_TASKS,
4935                .write = cgroup_tasks_write,
4936        },
4937        {
4938                .name = "notify_on_release",
4939                .read_u64 = cgroup_read_notify_on_release,
4940                .write_u64 = cgroup_write_notify_on_release,
4941        },
4942        {
4943                .name = "release_agent",
4944                .flags = CFTYPE_ONLY_ON_ROOT,
4945                .seq_show = cgroup_release_agent_show,
4946                .write = cgroup_release_agent_write,
4947                .max_write_len = PATH_MAX - 1,
4948        },
4949        { }     /* terminate */
4950};
4951
4952/*
4953 * css destruction is four-stage process.
4954 *
4955 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4956 *    Implemented in kill_css().
4957 *
4958 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4959 *    and thus css_tryget_online() is guaranteed to fail, the css can be
4960 *    offlined by invoking offline_css().  After offlining, the base ref is
4961 *    put.  Implemented in css_killed_work_fn().
4962 *
4963 * 3. When the percpu_ref reaches zero, the only possible remaining
4964 *    accessors are inside RCU read sections.  css_release() schedules the
4965 *    RCU callback.
4966 *
4967 * 4. After the grace period, the css can be freed.  Implemented in
4968 *    css_free_work_fn().
4969 *
4970 * It is actually hairier because both step 2 and 4 require process context
4971 * and thus involve punting to css->destroy_work adding two additional
4972 * steps to the already complex sequence.
4973 */
4974static void css_free_work_fn(struct work_struct *work)
4975{
4976        struct cgroup_subsys_state *css =
4977                container_of(work, struct cgroup_subsys_state, destroy_work);
4978        struct cgroup_subsys *ss = css->ss;
4979        struct cgroup *cgrp = css->cgroup;
4980
4981        percpu_ref_exit(&css->refcnt);
4982
4983        if (ss) {
4984                /* css free path */
4985                struct cgroup_subsys_state *parent = css->parent;
4986                int id = css->id;
4987
4988                ss->css_free(css);
4989                cgroup_idr_remove(&ss->css_idr, id);
4990                cgroup_put(cgrp);
4991
4992                if (parent)
4993                        css_put(parent);
4994        } else {
4995                /* cgroup free path */
4996                atomic_dec(&cgrp->root->nr_cgrps);
4997                cgroup_pidlist_destroy_all(cgrp);
4998                cancel_work_sync(&cgrp->release_agent_work);
4999
5000                if (cgroup_parent(cgrp)) {
5001                        /*
5002                         * We get a ref to the parent, and put the ref when
5003                         * this cgroup is being freed, so it's guaranteed
5004                         * that the parent won't be destroyed before its
5005                         * children.
5006                         */
5007                        cgroup_put(cgroup_parent(cgrp));
5008                        kernfs_put(cgrp->kn);
5009                        kfree(cgrp);
5010                } else {
5011                        /*
5012                         * This is root cgroup's refcnt reaching zero,
5013                         * which indicates that the root should be
5014                         * released.
5015                         */
5016                        cgroup_destroy_root(cgrp->root);
5017                }
5018        }
5019}
5020
5021static void css_free_rcu_fn(struct rcu_head *rcu_head)
5022{
5023        struct cgroup_subsys_state *css =
5024                container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
5025
5026        INIT_WORK(&css->destroy_work, css_free_work_fn);
5027        queue_work(cgroup_destroy_wq, &css->destroy_work);
5028}
5029
5030static void css_release_work_fn(struct work_struct *work)
5031{
5032        struct cgroup_subsys_state *css =
5033                container_of(work, struct cgroup_subsys_state, destroy_work);
5034        struct cgroup_subsys *ss = css->ss;
5035        struct cgroup *cgrp = css->cgroup;
5036
5037        mutex_lock(&cgroup_mutex);
5038
5039        css->flags |= CSS_RELEASED;
5040        list_del_rcu(&css->sibling);
5041
5042        if (ss) {
5043                /* css release path */
5044                cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5045                if (ss->css_released)
5046                        ss->css_released(css);
5047        } else {
5048                /* cgroup release path */
5049                cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5050                cgrp->id = -1;
5051
5052                /*
5053                 * There are two control paths which try to determine
5054                 * cgroup from dentry without going through kernfs -
5055                 * cgroupstats_build() and css_tryget_online_from_dir().
5056                 * Those are supported by RCU protecting clearing of
5057                 * cgrp->kn->priv backpointer.
5058                 */
5059                if (cgrp->kn)
5060                        RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5061                                         NULL);
5062        }
5063
5064        mutex_unlock(&cgroup_mutex);
5065
5066        call_rcu(&css->rcu_head, css_free_rcu_fn);
5067}
5068
5069static void css_release(struct percpu_ref *ref)
5070{
5071        struct cgroup_subsys_state *css =
5072                container_of(ref, struct cgroup_subsys_state, refcnt);
5073
5074        INIT_WORK(&css->destroy_work, css_release_work_fn);
5075        queue_work(cgroup_destroy_wq, &css->destroy_work);
5076}
5077
5078static void init_and_link_css(struct cgroup_subsys_state *css,
5079                              struct cgroup_subsys *ss, struct cgroup *cgrp)
5080{
5081        lockdep_assert_held(&cgroup_mutex);
5082
5083        cgroup_get(cgrp);
5084
5085        memset(css, 0, sizeof(*css));
5086        css->cgroup = cgrp;
5087        css->ss = ss;
5088        css->id = -1;
5089        INIT_LIST_HEAD(&css->sibling);
5090        INIT_LIST_HEAD(&css->children);
5091        css->serial_nr = css_serial_nr_next++;
5092        atomic_set(&css->online_cnt, 0);
5093
5094        if (cgroup_parent(cgrp)) {
5095                css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5096                css_get(css->parent);
5097        }
5098
5099        BUG_ON(cgroup_css(cgrp, ss));
5100}
5101
5102/* invoke ->css_online() on a new CSS and mark it online if successful */
5103static int online_css(struct cgroup_subsys_state *css)
5104{
5105        struct cgroup_subsys *ss = css->ss;
5106        int ret = 0;
5107
5108        lockdep_assert_held(&cgroup_mutex);
5109
5110        if (ss->css_online)
5111                ret = ss->css_online(css);
5112        if (!ret) {
5113                css->flags |= CSS_ONLINE;
5114                rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5115
5116                atomic_inc(&css->online_cnt);
5117                if (css->parent)
5118                        atomic_inc(&css->parent->online_cnt);
5119        }
5120        return ret;
5121}
5122
5123/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5124static void offline_css(struct cgroup_subsys_state *css)
5125{
5126        struct cgroup_subsys *ss = css->ss;
5127
5128        lockdep_assert_held(&cgroup_mutex);
5129
5130        if (!(css->flags & CSS_ONLINE))
5131                return;
5132
5133        if (ss->css_reset)
5134                ss->css_reset(css);
5135
5136        if (ss->css_offline)
5137                ss->css_offline(css);
5138
5139        css->flags &= ~CSS_ONLINE;
5140        RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5141
5142        wake_up_all(&css->cgroup->offline_waitq);
5143}
5144
5145/**
5146 * css_create - create a cgroup_subsys_state
5147 * @cgrp: the cgroup new css will be associated with
5148 * @ss: the subsys of new css
5149 *
5150 * Create a new css associated with @cgrp - @ss pair.  On success, the new
5151 * css is online and installed in @cgrp.  This function doesn't create the
5152 * interface files.  Returns 0 on success, -errno on failure.
5153 */
5154static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5155                                              struct cgroup_subsys *ss)
5156{
5157        struct cgroup *parent = cgroup_parent(cgrp);
5158        struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5159        struct cgroup_subsys_state *css;
5160        int err;
5161
5162        lockdep_assert_held(&cgroup_mutex);
5163
5164        css = ss->css_alloc(parent_css);
5165        if (!css)
5166                css = ERR_PTR(-ENOMEM);
5167        if (IS_ERR(css))
5168                return css;
5169
5170        init_and_link_css(css, ss, cgrp);
5171
5172        err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5173        if (err)
5174                goto err_free_css;
5175
5176        err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5177        if (err < 0)
5178                goto err_free_css;
5179        css->id = err;
5180
5181        /* @css is ready to be brought online now, make it visible */
5182        list_add_tail_rcu(&css->sibling, &parent_css->children);
5183        cgroup_idr_replace(&ss->css_idr, css, css->id);
5184
5185        err = online_css(css);
5186        if (err)
5187                goto err_list_del;
5188
5189        if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5190            cgroup_parent(parent)) {
5191                pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5192                        current->comm, current->pid, ss->name);
5193                if (!strcmp(ss->name, "memory"))
5194                        pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5195                ss->warned_broken_hierarchy = true;
5196        }
5197
5198        return css;
5199
5200err_list_del:
5201        list_del_rcu(&css->sibling);
5202err_free_css:
5203        call_rcu(&css->rcu_head, css_free_rcu_fn);
5204        return ERR_PTR(err);
5205}
5206
5207static struct cgroup *cgroup_create(struct cgroup *parent)
5208{
5209        struct cgroup_root *root = parent->root;
5210        struct cgroup *cgrp, *tcgrp;
5211        int level = parent->level + 1;
5212        int ret;
5213
5214        /* allocate the cgroup and its ID, 0 is reserved for the root */
5215        cgrp = kzalloc(sizeof(*cgrp) +
5216                       sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
5217        if (!cgrp)
5218                return ERR_PTR(-ENOMEM);
5219
5220        ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5221        if (ret)
5222                goto out_free_cgrp;
5223
5224        /*
5225         * Temporarily set the pointer to NULL, so idr_find() won't return
5226         * a half-baked cgroup.
5227         */
5228        cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5229        if (cgrp->id < 0) {
5230                ret = -ENOMEM;
5231                goto out_cancel_ref;
5232        }
5233
5234        init_cgroup_housekeeping(cgrp);
5235
5236        cgrp->self.parent = &parent->self;
5237        cgrp->root = root;
5238        cgrp->level = level;
5239
5240        for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5241                cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5242
5243        if (notify_on_release(parent))
5244                set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5245
5246        if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5247                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5248
5249        cgrp->self.serial_nr = css_serial_nr_next++;
5250
5251        /* allocation complete, commit to creation */
5252        list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5253        atomic_inc(&root->nr_cgrps);
5254        cgroup_get(parent);
5255
5256        /*
5257         * @cgrp is now fully operational.  If something fails after this
5258         * point, it'll be released via the normal destruction path.
5259         */
5260        cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5261
5262        /*
5263         * On the default hierarchy, a child doesn't automatically inherit
5264         * subtree_control from the parent.  Each is configured manually.
5265         */
5266        if (!cgroup_on_dfl(cgrp))
5267                cgrp->subtree_control = cgroup_control(cgrp);
5268
5269        cgroup_propagate_control(cgrp);
5270
5271        /* @cgrp doesn't have dir yet so the following will only create csses */
5272        ret = cgroup_apply_control_enable(cgrp);
5273        if (ret)
5274                goto out_destroy;
5275
5276        return cgrp;
5277
5278out_cancel_ref:
5279        percpu_ref_exit(&cgrp->self.refcnt);
5280out_free_cgrp:
5281        kfree(cgrp);
5282        return ERR_PTR(ret);
5283out_destroy:
5284        cgroup_destroy_locked(cgrp);
5285        return ERR_PTR(ret);
5286}
5287
5288static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5289                        umode_t mode)
5290{
5291        struct cgroup *parent, *cgrp;
5292        struct kernfs_node *kn;
5293        int ret;
5294
5295        /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5296        if (strchr(name, '\n'))
5297                return -EINVAL;
5298
5299        parent = cgroup_kn_lock_live(parent_kn, false);
5300        if (!parent)
5301                return -ENODEV;
5302
5303        cgrp = cgroup_create(parent);
5304        if (IS_ERR(cgrp)) {
5305                ret = PTR_ERR(cgrp);
5306                goto out_unlock;
5307        }
5308
5309        /* create the directory */
5310        kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5311        if (IS_ERR(kn)) {
5312                ret = PTR_ERR(kn);
5313                goto out_destroy;
5314        }
5315        cgrp->kn = kn;
5316
5317        /*
5318         * This extra ref will be put in cgroup_free_fn() and guarantees
5319         * that @cgrp->kn is always accessible.
5320         */
5321        kernfs_get(kn);
5322
5323        ret = cgroup_kn_set_ugid(kn);
5324        if (ret)
5325                goto out_destroy;
5326
5327        ret = css_populate_dir(&cgrp->self);
5328        if (ret)
5329                goto out_destroy;
5330
5331        ret = cgroup_apply_control_enable(cgrp);
5332        if (ret)
5333                goto out_destroy;
5334
5335        /* let's create and online css's */
5336        kernfs_activate(kn);
5337
5338        ret = 0;
5339        goto out_unlock;
5340
5341out_destroy:
5342        cgroup_destroy_locked(cgrp);
5343out_unlock:
5344        cgroup_kn_unlock(parent_kn);
5345        return ret;
5346}
5347
5348/*
5349 * This is called when the refcnt of a css is confirmed to be killed.
5350 * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5351 * initate destruction and put the css ref from kill_css().
5352 */
5353static void css_killed_work_fn(struct work_struct *work)
5354{
5355        struct cgroup_subsys_state *css =
5356                container_of(work, struct cgroup_subsys_state, destroy_work);
5357
5358        mutex_lock(&cgroup_mutex);
5359
5360        do {
5361                offline_css(css);
5362                css_put(css);
5363                /* @css can't go away while we're holding cgroup_mutex */
5364                css = css->parent;
5365        } while (css && atomic_dec_and_test(&css->online_cnt));
5366
5367        mutex_unlock(&cgroup_mutex);
5368}
5369
5370/* css kill confirmation processing requires process context, bounce */
5371static void css_killed_ref_fn(struct percpu_ref *ref)
5372{
5373        struct cgroup_subsys_state *css =
5374                container_of(ref, struct cgroup_subsys_state, refcnt);
5375
5376        if (atomic_dec_and_test(&css->online_cnt)) {
5377                INIT_WORK(&css->destroy_work, css_killed_work_fn);
5378                queue_work(cgroup_destroy_wq, &css->destroy_work);
5379        }
5380}
5381
5382/**
5383 * kill_css - destroy a css
5384 * @css: css to destroy
5385 *
5386 * This function initiates destruction of @css by removing cgroup interface
5387 * files and putting its base reference.  ->css_offline() will be invoked
5388 * asynchronously once css_tryget_online() is guaranteed to fail and when
5389 * the reference count reaches zero, @css will be released.
5390 */
5391static void kill_css(struct cgroup_subsys_state *css)
5392{
5393        lockdep_assert_held(&cgroup_mutex);
5394
5395        /*
5396         * This must happen before css is disassociated with its cgroup.
5397         * See seq_css() for details.
5398         */
5399        css_clear_dir(css);
5400
5401        /*
5402         * Killing would put the base ref, but we need to keep it alive
5403         * until after ->css_offline().
5404         */
5405        css_get(css);
5406
5407        /*
5408         * cgroup core guarantees that, by the time ->css_offline() is
5409         * invoked, no new css reference will be given out via
5410         * css_tryget_online().  We can't simply call percpu_ref_kill() and
5411         * proceed to offlining css's because percpu_ref_kill() doesn't
5412         * guarantee that the ref is seen as killed on all CPUs on return.
5413         *
5414         * Use percpu_ref_kill_and_confirm() to get notifications as each
5415         * css is confirmed to be seen as killed on all CPUs.
5416         */
5417        percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5418}
5419
5420/**
5421 * cgroup_destroy_locked - the first stage of cgroup destruction
5422 * @cgrp: cgroup to be destroyed
5423 *
5424 * css's make use of percpu refcnts whose killing latency shouldn't be
5425 * exposed to userland and are RCU protected.  Also, cgroup core needs to
5426 * guarantee that css_tryget_online() won't succeed by the time
5427 * ->css_offline() is invoked.  To satisfy all the requirements,
5428 * destruction is implemented in the following two steps.
5429 *
5430 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5431 *     userland visible parts and start killing the percpu refcnts of
5432 *     css's.  Set up so that the next stage will be kicked off once all
5433 *     the percpu refcnts are confirmed to be killed.
5434 *
5435 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5436 *     rest of destruction.  Once all cgroup references are gone, the
5437 *     cgroup is RCU-freed.
5438 *
5439 * This function implements s1.  After this step, @cgrp is gone as far as
5440 * the userland is concerned and a new cgroup with the same name may be
5441 * created.  As cgroup doesn't care about the names internally, this
5442 * doesn't cause any problem.
5443 */
5444static int cgroup_destroy_locked(struct cgroup *cgrp)
5445        __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5446{
5447        struct cgroup_subsys_state *css;
5448        struct cgrp_cset_link *link;
5449        int ssid;
5450
5451        lockdep_assert_held(&cgroup_mutex);
5452
5453        /*
5454         * Only migration can raise populated from zero and we're already
5455         * holding cgroup_mutex.
5456         */
5457        if (cgroup_is_populated(cgrp))
5458                return -EBUSY;
5459
5460        /*
5461         * Make sure there's no live children.  We can't test emptiness of
5462         * ->self.children as dead children linger on it while being
5463         * drained; otherwise, "rmdir parent/child parent" may fail.
5464         */
5465        if (css_has_online_children(&cgrp->self))
5466                return -EBUSY;
5467
5468        /*
5469         * Mark @cgrp and the associated csets dead.  The former prevents
5470         * further task migration and child creation by disabling
5471         * cgroup_lock_live_group().  The latter makes the csets ignored by
5472         * the migration path.
5473         */
5474        cgrp->self.flags &= ~CSS_ONLINE;
5475
5476        spin_lock_irq(&css_set_lock);
5477        list_for_each_entry(link, &cgrp->cset_links, cset_link)
5478                link->cset->dead = true;
5479        spin_unlock_irq(&css_set_lock);
5480
5481        /* initiate massacre of all css's */
5482        for_each_css(css, ssid, cgrp)
5483                kill_css(css);
5484
5485        /*
5486         * Remove @cgrp directory along with the base files.  @cgrp has an
5487         * extra ref on its kn.
5488         */
5489        kernfs_remove(cgrp->kn);
5490
5491        check_for_release(cgroup_parent(cgrp));
5492
5493        /* put the base reference */
5494        percpu_ref_kill(&cgrp->self.refcnt);
5495
5496        return 0;
5497};
5498
5499static int cgroup_rmdir(struct kernfs_node *kn)
5500{
5501        struct cgroup *cgrp;
5502        int ret = 0;
5503
5504        cgrp = cgroup_kn_lock_live(kn, false);
5505        if (!cgrp)
5506                return 0;
5507
5508        ret = cgroup_destroy_locked(cgrp);
5509
5510        cgroup_kn_unlock(kn);
5511        return ret;
5512}
5513
5514static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5515        .remount_fs             = cgroup_remount,
5516        .show_options           = cgroup_show_options,
5517        .mkdir                  = cgroup_mkdir,
5518        .rmdir                  = cgroup_rmdir,
5519        .rename                 = cgroup_rename,
5520        .show_path              = cgroup_show_path,
5521};
5522
5523static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5524{
5525        struct cgroup_subsys_state *css;
5526
5527        pr_debug("Initializing cgroup subsys %s\n", ss->name);
5528
5529        mutex_lock(&cgroup_mutex);
5530
5531        idr_init(&ss->css_idr);
5532        INIT_LIST_HEAD(&ss->cfts);
5533
5534        /* Create the root cgroup state for this subsystem */
5535        ss->root = &cgrp_dfl_root;
5536        css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5537        /* We don't handle early failures gracefully */
5538        BUG_ON(IS_ERR(css));
5539        init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5540
5541        /*
5542         * Root csses are never destroyed and we can't initialize
5543         * percpu_ref during early init.  Disable refcnting.
5544         */
5545        css->flags |= CSS_NO_REF;
5546
5547        if (early) {
5548                /* allocation can't be done safely during early init */
5549                css->id = 1;
5550        } else {
5551                css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5552                BUG_ON(css->id < 0);
5553        }
5554
5555        /* Update the init_css_set to contain a subsys
5556         * pointer to this state - since the subsystem is
5557         * newly registered, all tasks and hence the
5558         * init_css_set is in the subsystem's root cgroup. */
5559        init_css_set.subsys[ss->id] = css;
5560
5561        have_fork_callback |= (bool)ss->fork << ss->id;
5562        have_exit_callback |= (bool)ss->exit << ss->id;
5563        have_free_callback |= (bool)ss->free << ss->id;
5564        have_canfork_callback |= (bool)ss->can_fork << ss->id;
5565
5566        /* At system boot, before all subsystems have been
5567         * registered, no tasks have been forked, so we don't
5568         * need to invoke fork callbacks here. */
5569        BUG_ON(!list_empty(&init_task.tasks));
5570
5571        BUG_ON(online_css(css));
5572
5573        mutex_unlock(&cgroup_mutex);
5574}
5575
5576/**
5577 * cgroup_init_early - cgroup initialization at system boot
5578 *
5579 * Initialize cgroups at system boot, and initialize any
5580 * subsystems that request early init.
5581 */
5582int __init cgroup_init_early(void)
5583{
5584        static struct cgroup_sb_opts __initdata opts;
5585        struct cgroup_subsys *ss;
5586        int i;
5587
5588        init_cgroup_root(&cgrp_dfl_root, &opts);
5589        cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5590
5591        RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5592
5593        for_each_subsys(ss, i) {
5594                WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5595                     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5596                     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5597                     ss->id, ss->name);
5598                WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5599                     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5600
5601                ss->id = i;
5602                ss->name = cgroup_subsys_name[i];
5603                if (!ss->legacy_name)
5604                        ss->legacy_name = cgroup_subsys_name[i];
5605
5606                if (ss->early_init)
5607                        cgroup_init_subsys(ss, true);
5608        }
5609        return 0;
5610}
5611
5612static u16 cgroup_disable_mask __initdata;
5613
5614/**
5615 * cgroup_init - cgroup initialization
5616 *
5617 * Register cgroup filesystem and /proc file, and initialize
5618 * any subsystems that didn't request early init.
5619 */
5620int __init cgroup_init(void)
5621{
5622        struct cgroup_subsys *ss;
5623        int ssid;
5624
5625        BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5626        BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5627        BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5628        BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5629
5630        get_user_ns(init_cgroup_ns.user_ns);
5631
5632        mutex_lock(&cgroup_mutex);
5633
5634        /*
5635         * Add init_css_set to the hash table so that dfl_root can link to
5636         * it during init.
5637         */
5638        hash_add(css_set_table, &init_css_set.hlist,
5639                 css_set_hash(init_css_set.subsys));
5640
5641        BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5642
5643        mutex_unlock(&cgroup_mutex);
5644
5645        for_each_subsys(ss, ssid) {
5646                if (ss->early_init) {
5647                        struct cgroup_subsys_state *css =
5648                                init_css_set.subsys[ss->id];
5649
5650                        css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5651                                                   GFP_KERNEL);
5652                        BUG_ON(css->id < 0);
5653                } else {
5654                        cgroup_init_subsys(ss, false);
5655                }
5656
5657                list_add_tail(&init_css_set.e_cset_node[ssid],
5658                              &cgrp_dfl_root.cgrp.e_csets[ssid]);
5659
5660                /*
5661                 * Setting dfl_root subsys_mask needs to consider the
5662                 * disabled flag and cftype registration needs kmalloc,
5663                 * both of which aren't available during early_init.
5664                 */
5665                if (cgroup_disable_mask & (1 << ssid)) {
5666                        static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5667                        printk(KERN_INFO "Disabling %s control group subsystem\n",
5668                               ss->name);
5669                        continue;
5670                }
5671
5672                if (cgroup_ssid_no_v1(ssid))
5673                        printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5674                               ss->name);
5675
5676                cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5677
5678                if (ss->implicit_on_dfl)
5679                        cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5680                else if (!ss->dfl_cftypes)
5681                        cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5682
5683                if (ss->dfl_cftypes == ss->legacy_cftypes) {
5684                        WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5685                } else {
5686                        WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5687                        WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5688                }
5689
5690                if (ss->bind)
5691                        ss->bind(init_css_set.subsys[ssid]);
5692        }
5693
5694        /* init_css_set.subsys[] has been updated, re-hash */
5695        hash_del(&init_css_set.hlist);
5696        hash_add(css_set_table, &init_css_set.hlist,
5697                 css_set_hash(init_css_set.subsys));
5698
5699        WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5700        WARN_ON(register_filesystem(&cgroup_fs_type));
5701        WARN_ON(register_filesystem(&cgroup2_fs_type));
5702        WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5703
5704        return 0;
5705}
5706
5707static int __init cgroup_wq_init(void)
5708{
5709        /*
5710         * There isn't much point in executing destruction path in
5711         * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5712         * Use 1 for @max_active.
5713         *
5714         * We would prefer to do this in cgroup_init() above, but that
5715         * is called before init_workqueues(): so leave this until after.
5716         */
5717        cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5718        BUG_ON(!cgroup_destroy_wq);
5719
5720        /*
5721         * Used to destroy pidlists and separate to serve as flush domain.
5722         * Cap @max_active to 1 too.
5723         */
5724        cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5725                                                    0, 1);
5726        BUG_ON(!cgroup_pidlist_destroy_wq);
5727
5728        return 0;
5729}
5730core_initcall(cgroup_wq_init);
5731
5732/*
5733 * proc_cgroup_show()
5734 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5735 *  - Used for /proc/<pid>/cgroup.
5736 */
5737int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5738                     struct pid *pid, struct task_struct *tsk)
5739{
5740        char *buf, *path;
5741        int retval;
5742        struct cgroup_root *root;
5743
5744        retval = -ENOMEM;
5745        buf = kmalloc(PATH_MAX, GFP_KERNEL);
5746        if (!buf)
5747                goto out;
5748
5749        mutex_lock(&cgroup_mutex);
5750        spin_lock_irq(&css_set_lock);
5751
5752        for_each_root(root) {
5753                struct cgroup_subsys *ss;
5754                struct cgroup *cgrp;
5755                int ssid, count = 0;
5756
5757                if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5758                        continue;
5759
5760                seq_printf(m, "%d:", root->hierarchy_id);
5761                if (root != &cgrp_dfl_root)
5762                        for_each_subsys(ss, ssid)
5763                                if (root->subsys_mask & (1 << ssid))
5764                                        seq_printf(m, "%s%s", count++ ? "," : "",
5765                                                   ss->legacy_name);
5766                if (strlen(root->name))
5767                        seq_printf(m, "%sname=%s", count ? "," : "",
5768                                   root->name);
5769                seq_putc(m, ':');
5770
5771                cgrp = task_cgroup_from_root(tsk, root);
5772
5773                /*
5774                 * On traditional hierarchies, all zombie tasks show up as
5775                 * belonging to the root cgroup.  On the default hierarchy,
5776                 * while a zombie doesn't show up in "cgroup.procs" and
5777                 * thus can't be migrated, its /proc/PID/cgroup keeps
5778                 * reporting the cgroup it belonged to before exiting.  If
5779                 * the cgroup is removed before the zombie is reaped,
5780                 * " (deleted)" is appended to the cgroup path.
5781                 */
5782                if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5783                        path = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5784                                                current->nsproxy->cgroup_ns);
5785                        if (!path) {
5786                                retval = -ENAMETOOLONG;
5787                                goto out_unlock;
5788                        }
5789                } else {
5790                        path = "/";
5791                }
5792
5793                seq_puts(m, path);
5794
5795                if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5796                        seq_puts(m, " (deleted)\n");
5797                else
5798                        seq_putc(m, '\n');
5799        }
5800
5801        retval = 0;
5802out_unlock:
5803        spin_unlock_irq(&css_set_lock);
5804        mutex_unlock(&cgroup_mutex);
5805        kfree(buf);
5806out:
5807        return retval;
5808}
5809
5810/* Display information about each subsystem and each hierarchy */
5811static int proc_cgroupstats_show(struct seq_file *m, void *v)
5812{
5813        struct cgroup_subsys *ss;
5814        int i;
5815
5816        seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5817        /*
5818         * ideally we don't want subsystems moving around while we do this.
5819         * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5820         * subsys/hierarchy state.
5821         */
5822        mutex_lock(&cgroup_mutex);
5823
5824        for_each_subsys(ss, i)
5825                seq_printf(m, "%s\t%d\t%d\t%d\n",
5826                           ss->legacy_name, ss->root->hierarchy_id,
5827                           atomic_read(&ss->root->nr_cgrps),
5828                           cgroup_ssid_enabled(i));
5829
5830        mutex_unlock(&cgroup_mutex);
5831        return 0;
5832}
5833
5834static int cgroupstats_open(struct inode *inode, struct file *file)
5835{
5836        return single_open(file, proc_cgroupstats_show, NULL);
5837}
5838
5839static const struct file_operations proc_cgroupstats_operations = {
5840        .open = cgroupstats_open,
5841        .read = seq_read,
5842        .llseek = seq_lseek,
5843        .release = single_release,
5844};
5845
5846/**
5847 * cgroup_fork - initialize cgroup related fields during copy_process()
5848 * @child: pointer to task_struct of forking parent process.
5849 *
5850 * A task is associated with the init_css_set until cgroup_post_fork()
5851 * attaches it to the parent's css_set.  Empty cg_list indicates that
5852 * @child isn't holding reference to its css_set.
5853 */
5854void cgroup_fork(struct task_struct *child)
5855{
5856        RCU_INIT_POINTER(child->cgroups, &init_css_set);
5857        INIT_LIST_HEAD(&child->cg_list);
5858}
5859
5860/**
5861 * cgroup_can_fork - called on a new task before the process is exposed
5862 * @child: the task in question.
5863 *
5864 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5865 * returns an error, the fork aborts with that error code. This allows for
5866 * a cgroup subsystem to conditionally allow or deny new forks.
5867 */
5868int cgroup_can_fork(struct task_struct *child)
5869{
5870        struct cgroup_subsys *ss;
5871        int i, j, ret;
5872
5873        do_each_subsys_mask(ss, i, have_canfork_callback) {
5874                ret = ss->can_fork(child);
5875                if (ret)
5876                        goto out_revert;
5877        } while_each_subsys_mask();
5878
5879        return 0;
5880
5881out_revert:
5882        for_each_subsys(ss, j) {
5883                if (j >= i)
5884                        break;
5885                if (ss->cancel_fork)
5886                        ss->cancel_fork(child);
5887        }
5888
5889        return ret;
5890}
5891
5892/**
5893 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5894 * @child: the task in question
5895 *
5896 * This calls the cancel_fork() callbacks if a fork failed *after*
5897 * cgroup_can_fork() succeded.
5898 */
5899void cgroup_cancel_fork(struct task_struct *child)
5900{
5901        struct cgroup_subsys *ss;
5902        int i;
5903
5904        for_each_subsys(ss, i)
5905                if (ss->cancel_fork)
5906                        ss->cancel_fork(child);
5907}
5908
5909/**
5910 * cgroup_post_fork - called on a new task after adding it to the task list
5911 * @child: the task in question
5912 *
5913 * Adds the task to the list running through its css_set if necessary and
5914 * call the subsystem fork() callbacks.  Has to be after the task is
5915 * visible on the task list in case we race with the first call to
5916 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5917 * list.
5918 */
5919void cgroup_post_fork(struct task_struct *child)
5920{
5921        struct cgroup_subsys *ss;
5922        int i;
5923
5924        /*
5925         * This may race against cgroup_enable_task_cg_lists().  As that
5926         * function sets use_task_css_set_links before grabbing
5927         * tasklist_lock and we just went through tasklist_lock to add
5928         * @child, it's guaranteed that either we see the set
5929         * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5930         * @child during its iteration.
5931         *
5932         * If we won the race, @child is associated with %current's
5933         * css_set.  Grabbing css_set_lock guarantees both that the
5934         * association is stable, and, on completion of the parent's
5935         * migration, @child is visible in the source of migration or
5936         * already in the destination cgroup.  This guarantee is necessary
5937         * when implementing operations which need to migrate all tasks of
5938         * a cgroup to another.
5939         *
5940         * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5941         * will remain in init_css_set.  This is safe because all tasks are
5942         * in the init_css_set before cg_links is enabled and there's no
5943         * operation which transfers all tasks out of init_css_set.
5944         */
5945        if (use_task_css_set_links) {
5946                struct css_set *cset;
5947
5948                spin_lock_irq(&css_set_lock);
5949                cset = task_css_set(current);
5950                if (list_empty(&child->cg_list)) {
5951                        get_css_set(cset);
5952                        css_set_move_task(child, NULL, cset, false);
5953                }
5954                spin_unlock_irq(&css_set_lock);
5955        }
5956
5957        /*
5958         * Call ss->fork().  This must happen after @child is linked on
5959         * css_set; otherwise, @child might change state between ->fork()
5960         * and addition to css_set.
5961         */
5962        do_each_subsys_mask(ss, i, have_fork_callback) {
5963                ss->fork(child);
5964        } while_each_subsys_mask();
5965}
5966
5967/**
5968 * cgroup_exit - detach cgroup from exiting task
5969 * @tsk: pointer to task_struct of exiting process
5970 *
5971 * Description: Detach cgroup from @tsk and release it.
5972 *
5973 * Note that cgroups marked notify_on_release force every task in
5974 * them to take the global cgroup_mutex mutex when exiting.
5975 * This could impact scaling on very large systems.  Be reluctant to
5976 * use notify_on_release cgroups where very high task exit scaling
5977 * is required on large systems.
5978 *
5979 * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5980 * call cgroup_exit() while the task is still competent to handle
5981 * notify_on_release(), then leave the task attached to the root cgroup in
5982 * each hierarchy for the remainder of its exit.  No need to bother with
5983 * init_css_set refcnting.  init_css_set never goes away and we can't race
5984 * with migration path - PF_EXITING is visible to migration path.
5985 */
5986void cgroup_exit(struct task_struct *tsk)
5987{
5988        struct cgroup_subsys *ss;
5989        struct css_set *cset;
5990        int i;
5991
5992        /*
5993         * Unlink from @tsk from its css_set.  As migration path can't race
5994         * with us, we can check css_set and cg_list without synchronization.
5995         */
5996        cset = task_css_set(tsk);
5997
5998        if (!list_empty(&tsk->cg_list)) {
5999                spin_lock_irq(&css_set_lock);
6000                css_set_move_task(tsk, cset, NULL, false);
6001                spin_unlock_irq(&css_set_lock);
6002        } else {
6003                get_css_set(cset);
6004        }
6005
6006        /* see cgroup_post_fork() for details */
6007        do_each_subsys_mask(ss, i, have_exit_callback) {
6008                ss->exit(tsk);
6009        } while_each_subsys_mask();
6010}
6011
6012void cgroup_free(struct task_struct *task)
6013{
6014        struct css_set *cset = task_css_set(task);
6015        struct cgroup_subsys *ss;
6016        int ssid;
6017
6018        do_each_subsys_mask(ss, ssid, have_free_callback) {
6019                ss->free(task);
6020        } while_each_subsys_mask();
6021
6022        put_css_set(cset);
6023}
6024
6025static void check_for_release(struct cgroup *cgrp)
6026{
6027        if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
6028            !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
6029                schedule_work(&cgrp->release_agent_work);
6030}
6031
6032/*
6033 * Notify userspace when a cgroup is released, by running the
6034 * configured release agent with the name of the cgroup (path
6035 * relative to the root of cgroup file system) as the argument.
6036 *
6037 * Most likely, this user command will try to rmdir this cgroup.
6038 *
6039 * This races with the possibility that some other task will be
6040 * attached to this cgroup before it is removed, or that some other
6041 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
6042 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
6043 * unused, and this cgroup will be reprieved from its death sentence,
6044 * to continue to serve a useful existence.  Next time it's released,
6045 * we will get notified again, if it still has 'notify_on_release' set.
6046 *
6047 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
6048 * means only wait until the task is successfully execve()'d.  The
6049 * separate release agent task is forked by call_usermodehelper(),
6050 * then control in this thread returns here, without waiting for the
6051 * release agent task.  We don't bother to wait because the caller of
6052 * this routine has no use for the exit status of the release agent
6053 * task, so no sense holding our caller up for that.
6054 */
6055static void cgroup_release_agent(struct work_struct *work)
6056{
6057        struct cgroup *cgrp =
6058                container_of(work, struct cgroup, release_agent_work);
6059        char *pathbuf = NULL, *agentbuf = NULL, *path;
6060        char *argv[3], *envp[3];
6061
6062        mutex_lock(&cgroup_mutex);
6063
6064        pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
6065        agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
6066        if (!pathbuf || !agentbuf)
6067                goto out;
6068
6069        spin_lock_irq(&css_set_lock);
6070        path = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
6071        spin_unlock_irq(&css_set_lock);
6072        if (!path)
6073                goto out;
6074
6075        argv[0] = agentbuf;
6076        argv[1] = path;
6077        argv[2] = NULL;
6078
6079        /* minimal command environment */
6080        envp[0] = "HOME=/";
6081        envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
6082        envp[2] = NULL;
6083
6084        mutex_unlock(&cgroup_mutex);
6085        call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
6086        goto out_free;
6087out:
6088        mutex_unlock(&cgroup_mutex);
6089out_free:
6090        kfree(agentbuf);
6091        kfree(pathbuf);
6092}
6093
6094static int __init cgroup_disable(char *str)
6095{
6096        struct cgroup_subsys *ss;
6097        char *token;
6098        int i;
6099
6100        while ((token = strsep(&str, ",")) != NULL) {
6101                if (!*token)
6102                        continue;
6103
6104                for_each_subsys(ss, i) {
6105                        if (strcmp(token, ss->name) &&
6106                            strcmp(token, ss->legacy_name))
6107                                continue;
6108                        cgroup_disable_mask |= 1 << i;
6109                }
6110        }
6111        return 1;
6112}
6113__setup("cgroup_disable=", cgroup_disable);
6114
6115static int __init cgroup_no_v1(char *str)
6116{
6117        struct cgroup_subsys *ss;
6118        char *token;
6119        int i;
6120
6121        while ((token = strsep(&str, ",")) != NULL) {
6122                if (!*token)
6123                        continue;
6124
6125                if (!strcmp(token, "all")) {
6126                        cgroup_no_v1_mask = U16_MAX;
6127                        break;
6128                }
6129
6130                for_each_subsys(ss, i) {
6131                        if (strcmp(token, ss->name) &&
6132                            strcmp(token, ss->legacy_name))
6133                                continue;
6134
6135                        cgroup_no_v1_mask |= 1 << i;
6136                }
6137        }
6138        return 1;
6139}
6140__setup("cgroup_no_v1=", cgroup_no_v1);
6141
6142/**
6143 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6144 * @dentry: directory dentry of interest
6145 * @ss: subsystem of interest
6146 *
6147 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6148 * to get the corresponding css and return it.  If such css doesn't exist
6149 * or can't be pinned, an ERR_PTR value is returned.
6150 */
6151struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6152                                                       struct cgroup_subsys *ss)
6153{
6154        struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6155        struct file_system_type *s_type = dentry->d_sb->s_type;
6156        struct cgroup_subsys_state *css = NULL;
6157        struct cgroup *cgrp;
6158
6159        /* is @dentry a cgroup dir? */
6160        if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6161            !kn || kernfs_type(kn) != KERNFS_DIR)
6162                return ERR_PTR(-EBADF);
6163
6164        rcu_read_lock();
6165
6166        /*
6167         * This path doesn't originate from kernfs and @kn could already
6168         * have been or be removed at any point.  @kn->priv is RCU
6169         * protected for this access.  See css_release_work_fn() for details.
6170         */
6171        cgrp = rcu_dereference(kn->priv);
6172        if (cgrp)
6173                css = cgroup_css(cgrp, ss);
6174
6175        if (!css || !css_tryget_online(css))
6176                css = ERR_PTR(-ENOENT);
6177
6178        rcu_read_unlock();
6179        return css;
6180}
6181
6182/**
6183 * css_from_id - lookup css by id
6184 * @id: the cgroup id
6185 * @ss: cgroup subsys to be looked into
6186 *
6187 * Returns the css if there's valid one with @id, otherwise returns NULL.
6188 * Should be called under rcu_read_lock().
6189 */
6190struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6191{
6192        WARN_ON_ONCE(!rcu_read_lock_held());
6193        return idr_find(&ss->css_idr, id);
6194}
6195
6196/**
6197 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6198 * @path: path on the default hierarchy
6199 *
6200 * Find the cgroup at @path on the default hierarchy, increment its
6201 * reference count and return it.  Returns pointer to the found cgroup on
6202 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6203 * if @path points to a non-directory.
6204 */
6205struct cgroup *cgroup_get_from_path(const char *path)
6206{
6207        struct kernfs_node *kn;
6208        struct cgroup *cgrp;
6209
6210        mutex_lock(&cgroup_mutex);
6211
6212        kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6213        if (kn) {
6214                if (kernfs_type(kn) == KERNFS_DIR) {
6215                        cgrp = kn->priv;
6216                        cgroup_get(cgrp);
6217                } else {
6218                        cgrp = ERR_PTR(-ENOTDIR);
6219                }
6220                kernfs_put(kn);
6221        } else {
6222                cgrp = ERR_PTR(-ENOENT);
6223        }
6224
6225        mutex_unlock(&cgroup_mutex);
6226        return cgrp;
6227}
6228EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6229
6230/**
6231 * cgroup_get_from_fd - get a cgroup pointer from a fd
6232 * @fd: fd obtained by open(cgroup2_dir)
6233 *
6234 * Find the cgroup from a fd which should be obtained
6235 * by opening a cgroup directory.  Returns a pointer to the
6236 * cgroup on success. ERR_PTR is returned if the cgroup
6237 * cannot be found.
6238 */
6239struct cgroup *cgroup_get_from_fd(int fd)
6240{
6241        struct cgroup_subsys_state *css;
6242        struct cgroup *cgrp;
6243        struct file *f;
6244
6245        f = fget_raw(fd);
6246        if (!f)
6247                return ERR_PTR(-EBADF);
6248
6249        css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6250        fput(f);
6251        if (IS_ERR(css))
6252                return ERR_CAST(css);
6253
6254        cgrp = css->cgroup;
6255        if (!cgroup_on_dfl(cgrp)) {
6256                cgroup_put(cgrp);
6257                return ERR_PTR(-EBADF);
6258        }
6259
6260        return cgrp;
6261}
6262EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6263
6264/*
6265 * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6266 * definition in cgroup-defs.h.
6267 */
6268#ifdef CONFIG_SOCK_CGROUP_DATA
6269
6270#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6271
6272DEFINE_SPINLOCK(cgroup_sk_update_lock);
6273static bool cgroup_sk_alloc_disabled __read_mostly;
6274
6275void cgroup_sk_alloc_disable(void)
6276{
6277        if (cgroup_sk_alloc_disabled)
6278                return;
6279        pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6280        cgroup_sk_alloc_disabled = true;
6281}
6282
6283#else
6284
6285#define cgroup_sk_alloc_disabled        false
6286
6287#endif
6288
6289void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6290{
6291        if (cgroup_sk_alloc_disabled)
6292                return;
6293
6294        /* Socket clone path */
6295        if (skcd->val) {
6296                cgroup_get(sock_cgroup_ptr(skcd));
6297                return;
6298        }
6299
6300        rcu_read_lock();
6301
6302        while (true) {
6303                struct css_set *cset;
6304
6305                cset = task_css_set(current);
6306                if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6307                        skcd->val = (unsigned long)cset->dfl_cgrp;
6308                        break;
6309                }
6310                cpu_relax();
6311        }
6312
6313        rcu_read_unlock();
6314}
6315
6316void cgroup_sk_free(struct sock_cgroup_data *skcd)
6317{
6318        cgroup_put(sock_cgroup_ptr(skcd));
6319}
6320
6321#endif  /* CONFIG_SOCK_CGROUP_DATA */
6322
6323/* cgroup namespaces */
6324
6325static struct cgroup_namespace *alloc_cgroup_ns(void)
6326{
6327        struct cgroup_namespace *new_ns;
6328        int ret;
6329
6330        new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
6331        if (!new_ns)
6332                return ERR_PTR(-ENOMEM);
6333        ret = ns_alloc_inum(&new_ns->ns);
6334        if (ret) {
6335                kfree(new_ns);
6336                return ERR_PTR(ret);
6337        }
6338        atomic_set(&new_ns->count, 1);
6339        new_ns->ns.ops = &cgroupns_operations;
6340        return new_ns;
6341}
6342
6343void free_cgroup_ns(struct cgroup_namespace *ns)
6344{
6345        put_css_set(ns->root_cset);
6346        put_user_ns(ns->user_ns);
6347        ns_free_inum(&ns->ns);
6348        kfree(ns);
6349}
6350EXPORT_SYMBOL(free_cgroup_ns);
6351
6352struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6353                                        struct user_namespace *user_ns,
6354                                        struct cgroup_namespace *old_ns)
6355{
6356        struct cgroup_namespace *new_ns;
6357        struct css_set *cset;
6358
6359        BUG_ON(!old_ns);
6360
6361        if (!(flags & CLONE_NEWCGROUP)) {
6362                get_cgroup_ns(old_ns);
6363                return old_ns;
6364        }
6365
6366        /* Allow only sysadmin to create cgroup namespace. */
6367        if (!ns_capable(user_ns, CAP_SYS_ADMIN))
6368                return ERR_PTR(-EPERM);
6369
6370        /* It is not safe to take cgroup_mutex here */
6371        spin_lock_irq(&css_set_lock);
6372        cset = task_css_set(current);
6373        get_css_set(cset);
6374        spin_unlock_irq(&css_set_lock);
6375
6376        new_ns = alloc_cgroup_ns();
6377        if (IS_ERR(new_ns)) {
6378                put_css_set(cset);
6379                return new_ns;
6380        }
6381
6382        new_ns->user_ns = get_user_ns(user_ns);
6383        new_ns->root_cset = cset;
6384
6385        return new_ns;
6386}
6387
6388static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6389{
6390        return container_of(ns, struct cgroup_namespace, ns);
6391}
6392
6393static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
6394{
6395        struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
6396
6397        if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
6398            !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
6399                return -EPERM;
6400
6401        /* Don't need to do anything if we are attaching to our own cgroupns. */
6402        if (cgroup_ns == nsproxy->cgroup_ns)
6403                return 0;
6404
6405        get_cgroup_ns(cgroup_ns);
6406        put_cgroup_ns(nsproxy->cgroup_ns);
6407        nsproxy->cgroup_ns = cgroup_ns;
6408
6409        return 0;
6410}
6411
6412static struct ns_common *cgroupns_get(struct task_struct *task)
6413{
6414        struct cgroup_namespace *ns = NULL;
6415        struct nsproxy *nsproxy;
6416
6417        task_lock(task);
6418        nsproxy = task->nsproxy;
6419        if (nsproxy) {
6420                ns = nsproxy->cgroup_ns;
6421                get_cgroup_ns(ns);
6422        }
6423        task_unlock(task);
6424
6425        return ns ? &ns->ns : NULL;
6426}
6427
6428static void cgroupns_put(struct ns_common *ns)
6429{
6430        put_cgroup_ns(to_cg_ns(ns));
6431}
6432
6433const struct proc_ns_operations cgroupns_operations = {
6434        .name           = "cgroup",
6435        .type           = CLONE_NEWCGROUP,
6436        .get            = cgroupns_get,
6437        .put            = cgroupns_put,
6438        .install        = cgroupns_install,
6439};
6440
6441static __init int cgroup_namespaces_init(void)
6442{
6443        return 0;
6444}
6445subsys_initcall(cgroup_namespaces_init);
6446
6447#ifdef CONFIG_CGROUP_DEBUG
6448static struct cgroup_subsys_state *
6449debug_css_alloc(struct cgroup_subsys_state *parent_css)
6450{
6451        struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6452
6453        if (!css)
6454                return ERR_PTR(-ENOMEM);
6455
6456        return css;
6457}
6458
6459static void debug_css_free(struct cgroup_subsys_state *css)
6460{
6461        kfree(css);
6462}
6463
6464static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6465                                struct cftype *cft)
6466{
6467        return cgroup_task_count(css->cgroup);
6468}
6469
6470static u64 current_css_set_read(struct cgroup_subsys_state *css,
6471                                struct cftype *cft)
6472{
6473        return (u64)(unsigned long)current->cgroups;
6474}
6475
6476static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
6477                                         struct cftype *cft)
6478{
6479        u64 count;
6480
6481        rcu_read_lock();
6482        count = atomic_read(&task_css_set(current)->refcount);
6483        rcu_read_unlock();
6484        return count;
6485}
6486
6487static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
6488{
6489        struct cgrp_cset_link *link;
6490        struct css_set *cset;
6491        char *name_buf;
6492
6493        name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6494        if (!name_buf)
6495                return -ENOMEM;
6496
6497        spin_lock_irq(&css_set_lock);
6498        rcu_read_lock();
6499        cset = rcu_dereference(current->cgroups);
6500        list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
6501                struct cgroup *c = link->cgrp;
6502
6503                cgroup_name(c, name_buf, NAME_MAX + 1);
6504                seq_printf(seq, "Root %d group %s\n",
6505                           c->root->hierarchy_id, name_buf);
6506        }
6507        rcu_read_unlock();
6508        spin_unlock_irq(&css_set_lock);
6509        kfree(name_buf);
6510        return 0;
6511}
6512
6513#define MAX_TASKS_SHOWN_PER_CSS 25
6514static int cgroup_css_links_read(struct seq_file *seq, void *v)
6515{
6516        struct cgroup_subsys_state *css = seq_css(seq);
6517        struct cgrp_cset_link *link;
6518
6519        spin_lock_irq(&css_set_lock);
6520        list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
6521                struct css_set *cset = link->cset;
6522                struct task_struct *task;
6523                int count = 0;
6524
6525                seq_printf(seq, "css_set %p\n", cset);
6526
6527                list_for_each_entry(task, &cset->tasks, cg_list) {
6528                        if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6529                                goto overflow;
6530                        seq_printf(seq, "  task %d\n", task_pid_vnr(task));
6531                }
6532
6533                list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6534                        if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6535                                goto overflow;
6536                        seq_printf(seq, "  task %d\n", task_pid_vnr(task));
6537                }
6538                continue;
6539        overflow:
6540                seq_puts(seq, "  ...\n");
6541        }
6542        spin_unlock_irq(&css_set_lock);
6543        return 0;
6544}
6545
6546static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
6547{
6548        return (!cgroup_is_populated(css->cgroup) &&
6549                !css_has_online_children(&css->cgroup->self));
6550}
6551
6552static struct cftype debug_files[] =  {
6553        {
6554                .name = "taskcount",
6555                .read_u64 = debug_taskcount_read,
6556        },
6557
6558        {
6559                .name = "current_css_set",
6560                .read_u64 = current_css_set_read,
6561        },
6562
6563        {
6564                .name = "current_css_set_refcount",
6565                .read_u64 = current_css_set_refcount_read,
6566        },
6567
6568        {
6569                .name = "current_css_set_cg_links",
6570                .seq_show = current_css_set_cg_links_read,
6571        },
6572
6573        {
6574                .name = "cgroup_css_links",
6575                .seq_show = cgroup_css_links_read,
6576        },
6577
6578        {
6579                .name = "releasable",
6580                .read_u64 = releasable_read,
6581        },
6582
6583        { }     /* terminate */
6584};
6585
6586struct cgroup_subsys debug_cgrp_subsys = {
6587        .css_alloc = debug_css_alloc,
6588        .css_free = debug_css_free,
6589        .legacy_cftypes = debug_files,
6590};
6591#endif /* CONFIG_CGROUP_DEBUG */
6592