linux/kernel/futex.c
<<
>>
Prefs
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/export.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62#include <linux/ptrace.h>
  63#include <linux/sched/rt.h>
  64#include <linux/hugetlb.h>
  65#include <linux/freezer.h>
  66#include <linux/bootmem.h>
  67#include <linux/fault-inject.h>
  68
  69#include <asm/futex.h>
  70
  71#include "locking/rtmutex_common.h"
  72
  73/*
  74 * READ this before attempting to hack on futexes!
  75 *
  76 * Basic futex operation and ordering guarantees
  77 * =============================================
  78 *
  79 * The waiter reads the futex value in user space and calls
  80 * futex_wait(). This function computes the hash bucket and acquires
  81 * the hash bucket lock. After that it reads the futex user space value
  82 * again and verifies that the data has not changed. If it has not changed
  83 * it enqueues itself into the hash bucket, releases the hash bucket lock
  84 * and schedules.
  85 *
  86 * The waker side modifies the user space value of the futex and calls
  87 * futex_wake(). This function computes the hash bucket and acquires the
  88 * hash bucket lock. Then it looks for waiters on that futex in the hash
  89 * bucket and wakes them.
  90 *
  91 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  92 * the hb spinlock can be avoided and simply return. In order for this
  93 * optimization to work, ordering guarantees must exist so that the waiter
  94 * being added to the list is acknowledged when the list is concurrently being
  95 * checked by the waker, avoiding scenarios like the following:
  96 *
  97 * CPU 0                               CPU 1
  98 * val = *futex;
  99 * sys_futex(WAIT, futex, val);
 100 *   futex_wait(futex, val);
 101 *   uval = *futex;
 102 *                                     *futex = newval;
 103 *                                     sys_futex(WAKE, futex);
 104 *                                       futex_wake(futex);
 105 *                                       if (queue_empty())
 106 *                                         return;
 107 *   if (uval == val)
 108 *      lock(hash_bucket(futex));
 109 *      queue();
 110 *     unlock(hash_bucket(futex));
 111 *     schedule();
 112 *
 113 * This would cause the waiter on CPU 0 to wait forever because it
 114 * missed the transition of the user space value from val to newval
 115 * and the waker did not find the waiter in the hash bucket queue.
 116 *
 117 * The correct serialization ensures that a waiter either observes
 118 * the changed user space value before blocking or is woken by a
 119 * concurrent waker:
 120 *
 121 * CPU 0                                 CPU 1
 122 * val = *futex;
 123 * sys_futex(WAIT, futex, val);
 124 *   futex_wait(futex, val);
 125 *
 126 *   waiters++; (a)
 127 *   smp_mb(); (A) <-- paired with -.
 128 *                                  |
 129 *   lock(hash_bucket(futex));      |
 130 *                                  |
 131 *   uval = *futex;                 |
 132 *                                  |        *futex = newval;
 133 *                                  |        sys_futex(WAKE, futex);
 134 *                                  |          futex_wake(futex);
 135 *                                  |
 136 *                                  `--------> smp_mb(); (B)
 137 *   if (uval == val)
 138 *     queue();
 139 *     unlock(hash_bucket(futex));
 140 *     schedule();                         if (waiters)
 141 *                                           lock(hash_bucket(futex));
 142 *   else                                    wake_waiters(futex);
 143 *     waiters--; (b)                        unlock(hash_bucket(futex));
 144 *
 145 * Where (A) orders the waiters increment and the futex value read through
 146 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 147 * to futex and the waiters read -- this is done by the barriers for both
 148 * shared and private futexes in get_futex_key_refs().
 149 *
 150 * This yields the following case (where X:=waiters, Y:=futex):
 151 *
 152 *      X = Y = 0
 153 *
 154 *      w[X]=1          w[Y]=1
 155 *      MB              MB
 156 *      r[Y]=y          r[X]=x
 157 *
 158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 159 * the guarantee that we cannot both miss the futex variable change and the
 160 * enqueue.
 161 *
 162 * Note that a new waiter is accounted for in (a) even when it is possible that
 163 * the wait call can return error, in which case we backtrack from it in (b).
 164 * Refer to the comment in queue_lock().
 165 *
 166 * Similarly, in order to account for waiters being requeued on another
 167 * address we always increment the waiters for the destination bucket before
 168 * acquiring the lock. It then decrements them again  after releasing it -
 169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 170 * will do the additional required waiter count housekeeping. This is done for
 171 * double_lock_hb() and double_unlock_hb(), respectively.
 172 */
 173
 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
 175int __read_mostly futex_cmpxchg_enabled;
 176#endif
 177
 178/*
 179 * Futex flags used to encode options to functions and preserve them across
 180 * restarts.
 181 */
 182#ifdef CONFIG_MMU
 183# define FLAGS_SHARED           0x01
 184#else
 185/*
 186 * NOMMU does not have per process address space. Let the compiler optimize
 187 * code away.
 188 */
 189# define FLAGS_SHARED           0x00
 190#endif
 191#define FLAGS_CLOCKRT           0x02
 192#define FLAGS_HAS_TIMEOUT       0x04
 193
 194/*
 195 * Priority Inheritance state:
 196 */
 197struct futex_pi_state {
 198        /*
 199         * list of 'owned' pi_state instances - these have to be
 200         * cleaned up in do_exit() if the task exits prematurely:
 201         */
 202        struct list_head list;
 203
 204        /*
 205         * The PI object:
 206         */
 207        struct rt_mutex pi_mutex;
 208
 209        struct task_struct *owner;
 210        atomic_t refcount;
 211
 212        union futex_key key;
 213};
 214
 215/**
 216 * struct futex_q - The hashed futex queue entry, one per waiting task
 217 * @list:               priority-sorted list of tasks waiting on this futex
 218 * @task:               the task waiting on the futex
 219 * @lock_ptr:           the hash bucket lock
 220 * @key:                the key the futex is hashed on
 221 * @pi_state:           optional priority inheritance state
 222 * @rt_waiter:          rt_waiter storage for use with requeue_pi
 223 * @requeue_pi_key:     the requeue_pi target futex key
 224 * @bitset:             bitset for the optional bitmasked wakeup
 225 *
 226 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
 227 * we can wake only the relevant ones (hashed queues may be shared).
 228 *
 229 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 230 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 231 * The order of wakeup is always to make the first condition true, then
 232 * the second.
 233 *
 234 * PI futexes are typically woken before they are removed from the hash list via
 235 * the rt_mutex code. See unqueue_me_pi().
 236 */
 237struct futex_q {
 238        struct plist_node list;
 239
 240        struct task_struct *task;
 241        spinlock_t *lock_ptr;
 242        union futex_key key;
 243        struct futex_pi_state *pi_state;
 244        struct rt_mutex_waiter *rt_waiter;
 245        union futex_key *requeue_pi_key;
 246        u32 bitset;
 247};
 248
 249static const struct futex_q futex_q_init = {
 250        /* list gets initialized in queue_me()*/
 251        .key = FUTEX_KEY_INIT,
 252        .bitset = FUTEX_BITSET_MATCH_ANY
 253};
 254
 255/*
 256 * Hash buckets are shared by all the futex_keys that hash to the same
 257 * location.  Each key may have multiple futex_q structures, one for each task
 258 * waiting on a futex.
 259 */
 260struct futex_hash_bucket {
 261        atomic_t waiters;
 262        spinlock_t lock;
 263        struct plist_head chain;
 264} ____cacheline_aligned_in_smp;
 265
 266/*
 267 * The base of the bucket array and its size are always used together
 268 * (after initialization only in hash_futex()), so ensure that they
 269 * reside in the same cacheline.
 270 */
 271static struct {
 272        struct futex_hash_bucket *queues;
 273        unsigned long            hashsize;
 274} __futex_data __read_mostly __aligned(2*sizeof(long));
 275#define futex_queues   (__futex_data.queues)
 276#define futex_hashsize (__futex_data.hashsize)
 277
 278
 279/*
 280 * Fault injections for futexes.
 281 */
 282#ifdef CONFIG_FAIL_FUTEX
 283
 284static struct {
 285        struct fault_attr attr;
 286
 287        bool ignore_private;
 288} fail_futex = {
 289        .attr = FAULT_ATTR_INITIALIZER,
 290        .ignore_private = false,
 291};
 292
 293static int __init setup_fail_futex(char *str)
 294{
 295        return setup_fault_attr(&fail_futex.attr, str);
 296}
 297__setup("fail_futex=", setup_fail_futex);
 298
 299static bool should_fail_futex(bool fshared)
 300{
 301        if (fail_futex.ignore_private && !fshared)
 302                return false;
 303
 304        return should_fail(&fail_futex.attr, 1);
 305}
 306
 307#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 308
 309static int __init fail_futex_debugfs(void)
 310{
 311        umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 312        struct dentry *dir;
 313
 314        dir = fault_create_debugfs_attr("fail_futex", NULL,
 315                                        &fail_futex.attr);
 316        if (IS_ERR(dir))
 317                return PTR_ERR(dir);
 318
 319        if (!debugfs_create_bool("ignore-private", mode, dir,
 320                                 &fail_futex.ignore_private)) {
 321                debugfs_remove_recursive(dir);
 322                return -ENOMEM;
 323        }
 324
 325        return 0;
 326}
 327
 328late_initcall(fail_futex_debugfs);
 329
 330#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 331
 332#else
 333static inline bool should_fail_futex(bool fshared)
 334{
 335        return false;
 336}
 337#endif /* CONFIG_FAIL_FUTEX */
 338
 339static inline void futex_get_mm(union futex_key *key)
 340{
 341        atomic_inc(&key->private.mm->mm_count);
 342        /*
 343         * Ensure futex_get_mm() implies a full barrier such that
 344         * get_futex_key() implies a full barrier. This is relied upon
 345         * as smp_mb(); (B), see the ordering comment above.
 346         */
 347        smp_mb__after_atomic();
 348}
 349
 350/*
 351 * Reflects a new waiter being added to the waitqueue.
 352 */
 353static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 354{
 355#ifdef CONFIG_SMP
 356        atomic_inc(&hb->waiters);
 357        /*
 358         * Full barrier (A), see the ordering comment above.
 359         */
 360        smp_mb__after_atomic();
 361#endif
 362}
 363
 364/*
 365 * Reflects a waiter being removed from the waitqueue by wakeup
 366 * paths.
 367 */
 368static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 369{
 370#ifdef CONFIG_SMP
 371        atomic_dec(&hb->waiters);
 372#endif
 373}
 374
 375static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 376{
 377#ifdef CONFIG_SMP
 378        return atomic_read(&hb->waiters);
 379#else
 380        return 1;
 381#endif
 382}
 383
 384/*
 385 * We hash on the keys returned from get_futex_key (see below).
 386 */
 387static struct futex_hash_bucket *hash_futex(union futex_key *key)
 388{
 389        u32 hash = jhash2((u32*)&key->both.word,
 390                          (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 391                          key->both.offset);
 392        return &futex_queues[hash & (futex_hashsize - 1)];
 393}
 394
 395/*
 396 * Return 1 if two futex_keys are equal, 0 otherwise.
 397 */
 398static inline int match_futex(union futex_key *key1, union futex_key *key2)
 399{
 400        return (key1 && key2
 401                && key1->both.word == key2->both.word
 402                && key1->both.ptr == key2->both.ptr
 403                && key1->both.offset == key2->both.offset);
 404}
 405
 406/*
 407 * Take a reference to the resource addressed by a key.
 408 * Can be called while holding spinlocks.
 409 *
 410 */
 411static void get_futex_key_refs(union futex_key *key)
 412{
 413        if (!key->both.ptr)
 414                return;
 415
 416        /*
 417         * On MMU less systems futexes are always "private" as there is no per
 418         * process address space. We need the smp wmb nevertheless - yes,
 419         * arch/blackfin has MMU less SMP ...
 420         */
 421        if (!IS_ENABLED(CONFIG_MMU)) {
 422                smp_mb(); /* explicit smp_mb(); (B) */
 423                return;
 424        }
 425
 426        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 427        case FUT_OFF_INODE:
 428                ihold(key->shared.inode); /* implies smp_mb(); (B) */
 429                break;
 430        case FUT_OFF_MMSHARED:
 431                futex_get_mm(key); /* implies smp_mb(); (B) */
 432                break;
 433        default:
 434                /*
 435                 * Private futexes do not hold reference on an inode or
 436                 * mm, therefore the only purpose of calling get_futex_key_refs
 437                 * is because we need the barrier for the lockless waiter check.
 438                 */
 439                smp_mb(); /* explicit smp_mb(); (B) */
 440        }
 441}
 442
 443/*
 444 * Drop a reference to the resource addressed by a key.
 445 * The hash bucket spinlock must not be held. This is
 446 * a no-op for private futexes, see comment in the get
 447 * counterpart.
 448 */
 449static void drop_futex_key_refs(union futex_key *key)
 450{
 451        if (!key->both.ptr) {
 452                /* If we're here then we tried to put a key we failed to get */
 453                WARN_ON_ONCE(1);
 454                return;
 455        }
 456
 457        if (!IS_ENABLED(CONFIG_MMU))
 458                return;
 459
 460        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 461        case FUT_OFF_INODE:
 462                iput(key->shared.inode);
 463                break;
 464        case FUT_OFF_MMSHARED:
 465                mmdrop(key->private.mm);
 466                break;
 467        }
 468}
 469
 470/**
 471 * get_futex_key() - Get parameters which are the keys for a futex
 472 * @uaddr:      virtual address of the futex
 473 * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 474 * @key:        address where result is stored.
 475 * @rw:         mapping needs to be read/write (values: VERIFY_READ,
 476 *              VERIFY_WRITE)
 477 *
 478 * Return: a negative error code or 0
 479 *
 480 * The key words are stored in *key on success.
 481 *
 482 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
 483 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 484 * We can usually work out the index without swapping in the page.
 485 *
 486 * lock_page() might sleep, the caller should not hold a spinlock.
 487 */
 488static int
 489get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 490{
 491        unsigned long address = (unsigned long)uaddr;
 492        struct mm_struct *mm = current->mm;
 493        struct page *page, *tail;
 494        struct address_space *mapping;
 495        int err, ro = 0;
 496
 497        /*
 498         * The futex address must be "naturally" aligned.
 499         */
 500        key->both.offset = address % PAGE_SIZE;
 501        if (unlikely((address % sizeof(u32)) != 0))
 502                return -EINVAL;
 503        address -= key->both.offset;
 504
 505        if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
 506                return -EFAULT;
 507
 508        if (unlikely(should_fail_futex(fshared)))
 509                return -EFAULT;
 510
 511        /*
 512         * PROCESS_PRIVATE futexes are fast.
 513         * As the mm cannot disappear under us and the 'key' only needs
 514         * virtual address, we dont even have to find the underlying vma.
 515         * Note : We do have to check 'uaddr' is a valid user address,
 516         *        but access_ok() should be faster than find_vma()
 517         */
 518        if (!fshared) {
 519                key->private.mm = mm;
 520                key->private.address = address;
 521                get_futex_key_refs(key);  /* implies smp_mb(); (B) */
 522                return 0;
 523        }
 524
 525again:
 526        /* Ignore any VERIFY_READ mapping (futex common case) */
 527        if (unlikely(should_fail_futex(fshared)))
 528                return -EFAULT;
 529
 530        err = get_user_pages_fast(address, 1, 1, &page);
 531        /*
 532         * If write access is not required (eg. FUTEX_WAIT), try
 533         * and get read-only access.
 534         */
 535        if (err == -EFAULT && rw == VERIFY_READ) {
 536                err = get_user_pages_fast(address, 1, 0, &page);
 537                ro = 1;
 538        }
 539        if (err < 0)
 540                return err;
 541        else
 542                err = 0;
 543
 544        /*
 545         * The treatment of mapping from this point on is critical. The page
 546         * lock protects many things but in this context the page lock
 547         * stabilizes mapping, prevents inode freeing in the shared
 548         * file-backed region case and guards against movement to swap cache.
 549         *
 550         * Strictly speaking the page lock is not needed in all cases being
 551         * considered here and page lock forces unnecessarily serialization
 552         * From this point on, mapping will be re-verified if necessary and
 553         * page lock will be acquired only if it is unavoidable
 554         *
 555         * Mapping checks require the head page for any compound page so the
 556         * head page and mapping is looked up now. For anonymous pages, it
 557         * does not matter if the page splits in the future as the key is
 558         * based on the address. For filesystem-backed pages, the tail is
 559         * required as the index of the page determines the key. For
 560         * base pages, there is no tail page and tail == page.
 561         */
 562        tail = page;
 563        page = compound_head(page);
 564        mapping = READ_ONCE(page->mapping);
 565
 566        /*
 567         * If page->mapping is NULL, then it cannot be a PageAnon
 568         * page; but it might be the ZERO_PAGE or in the gate area or
 569         * in a special mapping (all cases which we are happy to fail);
 570         * or it may have been a good file page when get_user_pages_fast
 571         * found it, but truncated or holepunched or subjected to
 572         * invalidate_complete_page2 before we got the page lock (also
 573         * cases which we are happy to fail).  And we hold a reference,
 574         * so refcount care in invalidate_complete_page's remove_mapping
 575         * prevents drop_caches from setting mapping to NULL beneath us.
 576         *
 577         * The case we do have to guard against is when memory pressure made
 578         * shmem_writepage move it from filecache to swapcache beneath us:
 579         * an unlikely race, but we do need to retry for page->mapping.
 580         */
 581        if (unlikely(!mapping)) {
 582                int shmem_swizzled;
 583
 584                /*
 585                 * Page lock is required to identify which special case above
 586                 * applies. If this is really a shmem page then the page lock
 587                 * will prevent unexpected transitions.
 588                 */
 589                lock_page(page);
 590                shmem_swizzled = PageSwapCache(page) || page->mapping;
 591                unlock_page(page);
 592                put_page(page);
 593
 594                if (shmem_swizzled)
 595                        goto again;
 596
 597                return -EFAULT;
 598        }
 599
 600        /*
 601         * Private mappings are handled in a simple way.
 602         *
 603         * If the futex key is stored on an anonymous page, then the associated
 604         * object is the mm which is implicitly pinned by the calling process.
 605         *
 606         * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 607         * it's a read-only handle, it's expected that futexes attach to
 608         * the object not the particular process.
 609         */
 610        if (PageAnon(page)) {
 611                /*
 612                 * A RO anonymous page will never change and thus doesn't make
 613                 * sense for futex operations.
 614                 */
 615                if (unlikely(should_fail_futex(fshared)) || ro) {
 616                        err = -EFAULT;
 617                        goto out;
 618                }
 619
 620                key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 621                key->private.mm = mm;
 622                key->private.address = address;
 623
 624                get_futex_key_refs(key); /* implies smp_mb(); (B) */
 625
 626        } else {
 627                struct inode *inode;
 628
 629                /*
 630                 * The associated futex object in this case is the inode and
 631                 * the page->mapping must be traversed. Ordinarily this should
 632                 * be stabilised under page lock but it's not strictly
 633                 * necessary in this case as we just want to pin the inode, not
 634                 * update the radix tree or anything like that.
 635                 *
 636                 * The RCU read lock is taken as the inode is finally freed
 637                 * under RCU. If the mapping still matches expectations then the
 638                 * mapping->host can be safely accessed as being a valid inode.
 639                 */
 640                rcu_read_lock();
 641
 642                if (READ_ONCE(page->mapping) != mapping) {
 643                        rcu_read_unlock();
 644                        put_page(page);
 645
 646                        goto again;
 647                }
 648
 649                inode = READ_ONCE(mapping->host);
 650                if (!inode) {
 651                        rcu_read_unlock();
 652                        put_page(page);
 653
 654                        goto again;
 655                }
 656
 657                /*
 658                 * Take a reference unless it is about to be freed. Previously
 659                 * this reference was taken by ihold under the page lock
 660                 * pinning the inode in place so i_lock was unnecessary. The
 661                 * only way for this check to fail is if the inode was
 662                 * truncated in parallel so warn for now if this happens.
 663                 *
 664                 * We are not calling into get_futex_key_refs() in file-backed
 665                 * cases, therefore a successful atomic_inc return below will
 666                 * guarantee that get_futex_key() will still imply smp_mb(); (B).
 667                 */
 668                if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
 669                        rcu_read_unlock();
 670                        put_page(page);
 671
 672                        goto again;
 673                }
 674
 675                /* Should be impossible but lets be paranoid for now */
 676                if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
 677                        err = -EFAULT;
 678                        rcu_read_unlock();
 679                        iput(inode);
 680
 681                        goto out;
 682                }
 683
 684                key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 685                key->shared.inode = inode;
 686                key->shared.pgoff = basepage_index(tail);
 687                rcu_read_unlock();
 688        }
 689
 690out:
 691        put_page(page);
 692        return err;
 693}
 694
 695static inline void put_futex_key(union futex_key *key)
 696{
 697        drop_futex_key_refs(key);
 698}
 699
 700/**
 701 * fault_in_user_writeable() - Fault in user address and verify RW access
 702 * @uaddr:      pointer to faulting user space address
 703 *
 704 * Slow path to fixup the fault we just took in the atomic write
 705 * access to @uaddr.
 706 *
 707 * We have no generic implementation of a non-destructive write to the
 708 * user address. We know that we faulted in the atomic pagefault
 709 * disabled section so we can as well avoid the #PF overhead by
 710 * calling get_user_pages() right away.
 711 */
 712static int fault_in_user_writeable(u32 __user *uaddr)
 713{
 714        struct mm_struct *mm = current->mm;
 715        int ret;
 716
 717        down_read(&mm->mmap_sem);
 718        ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 719                               FAULT_FLAG_WRITE, NULL);
 720        up_read(&mm->mmap_sem);
 721
 722        return ret < 0 ? ret : 0;
 723}
 724
 725/**
 726 * futex_top_waiter() - Return the highest priority waiter on a futex
 727 * @hb:         the hash bucket the futex_q's reside in
 728 * @key:        the futex key (to distinguish it from other futex futex_q's)
 729 *
 730 * Must be called with the hb lock held.
 731 */
 732static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 733                                        union futex_key *key)
 734{
 735        struct futex_q *this;
 736
 737        plist_for_each_entry(this, &hb->chain, list) {
 738                if (match_futex(&this->key, key))
 739                        return this;
 740        }
 741        return NULL;
 742}
 743
 744static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 745                                      u32 uval, u32 newval)
 746{
 747        int ret;
 748
 749        pagefault_disable();
 750        ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 751        pagefault_enable();
 752
 753        return ret;
 754}
 755
 756static int get_futex_value_locked(u32 *dest, u32 __user *from)
 757{
 758        int ret;
 759
 760        pagefault_disable();
 761        ret = __get_user(*dest, from);
 762        pagefault_enable();
 763
 764        return ret ? -EFAULT : 0;
 765}
 766
 767
 768/*
 769 * PI code:
 770 */
 771static int refill_pi_state_cache(void)
 772{
 773        struct futex_pi_state *pi_state;
 774
 775        if (likely(current->pi_state_cache))
 776                return 0;
 777
 778        pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 779
 780        if (!pi_state)
 781                return -ENOMEM;
 782
 783        INIT_LIST_HEAD(&pi_state->list);
 784        /* pi_mutex gets initialized later */
 785        pi_state->owner = NULL;
 786        atomic_set(&pi_state->refcount, 1);
 787        pi_state->key = FUTEX_KEY_INIT;
 788
 789        current->pi_state_cache = pi_state;
 790
 791        return 0;
 792}
 793
 794static struct futex_pi_state * alloc_pi_state(void)
 795{
 796        struct futex_pi_state *pi_state = current->pi_state_cache;
 797
 798        WARN_ON(!pi_state);
 799        current->pi_state_cache = NULL;
 800
 801        return pi_state;
 802}
 803
 804/*
 805 * Drops a reference to the pi_state object and frees or caches it
 806 * when the last reference is gone.
 807 *
 808 * Must be called with the hb lock held.
 809 */
 810static void put_pi_state(struct futex_pi_state *pi_state)
 811{
 812        if (!pi_state)
 813                return;
 814
 815        if (!atomic_dec_and_test(&pi_state->refcount))
 816                return;
 817
 818        /*
 819         * If pi_state->owner is NULL, the owner is most probably dying
 820         * and has cleaned up the pi_state already
 821         */
 822        if (pi_state->owner) {
 823                raw_spin_lock_irq(&pi_state->owner->pi_lock);
 824                list_del_init(&pi_state->list);
 825                raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 826
 827                rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
 828        }
 829
 830        if (current->pi_state_cache)
 831                kfree(pi_state);
 832        else {
 833                /*
 834                 * pi_state->list is already empty.
 835                 * clear pi_state->owner.
 836                 * refcount is at 0 - put it back to 1.
 837                 */
 838                pi_state->owner = NULL;
 839                atomic_set(&pi_state->refcount, 1);
 840                current->pi_state_cache = pi_state;
 841        }
 842}
 843
 844/*
 845 * Look up the task based on what TID userspace gave us.
 846 * We dont trust it.
 847 */
 848static struct task_struct * futex_find_get_task(pid_t pid)
 849{
 850        struct task_struct *p;
 851
 852        rcu_read_lock();
 853        p = find_task_by_vpid(pid);
 854        if (p)
 855                get_task_struct(p);
 856
 857        rcu_read_unlock();
 858
 859        return p;
 860}
 861
 862/*
 863 * This task is holding PI mutexes at exit time => bad.
 864 * Kernel cleans up PI-state, but userspace is likely hosed.
 865 * (Robust-futex cleanup is separate and might save the day for userspace.)
 866 */
 867void exit_pi_state_list(struct task_struct *curr)
 868{
 869        struct list_head *next, *head = &curr->pi_state_list;
 870        struct futex_pi_state *pi_state;
 871        struct futex_hash_bucket *hb;
 872        union futex_key key = FUTEX_KEY_INIT;
 873
 874        if (!futex_cmpxchg_enabled)
 875                return;
 876        /*
 877         * We are a ZOMBIE and nobody can enqueue itself on
 878         * pi_state_list anymore, but we have to be careful
 879         * versus waiters unqueueing themselves:
 880         */
 881        raw_spin_lock_irq(&curr->pi_lock);
 882        while (!list_empty(head)) {
 883
 884                next = head->next;
 885                pi_state = list_entry(next, struct futex_pi_state, list);
 886                key = pi_state->key;
 887                hb = hash_futex(&key);
 888                raw_spin_unlock_irq(&curr->pi_lock);
 889
 890                spin_lock(&hb->lock);
 891
 892                raw_spin_lock_irq(&curr->pi_lock);
 893                /*
 894                 * We dropped the pi-lock, so re-check whether this
 895                 * task still owns the PI-state:
 896                 */
 897                if (head->next != next) {
 898                        spin_unlock(&hb->lock);
 899                        continue;
 900                }
 901
 902                WARN_ON(pi_state->owner != curr);
 903                WARN_ON(list_empty(&pi_state->list));
 904                list_del_init(&pi_state->list);
 905                pi_state->owner = NULL;
 906                raw_spin_unlock_irq(&curr->pi_lock);
 907
 908                rt_mutex_unlock(&pi_state->pi_mutex);
 909
 910                spin_unlock(&hb->lock);
 911
 912                raw_spin_lock_irq(&curr->pi_lock);
 913        }
 914        raw_spin_unlock_irq(&curr->pi_lock);
 915}
 916
 917/*
 918 * We need to check the following states:
 919 *
 920 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 921 *
 922 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 923 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 924 *
 925 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 926 *
 927 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 928 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 929 *
 930 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 931 *
 932 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 933 *
 934 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 935 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 936 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 937 *
 938 * [1]  Indicates that the kernel can acquire the futex atomically. We
 939 *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 940 *
 941 * [2]  Valid, if TID does not belong to a kernel thread. If no matching
 942 *      thread is found then it indicates that the owner TID has died.
 943 *
 944 * [3]  Invalid. The waiter is queued on a non PI futex
 945 *
 946 * [4]  Valid state after exit_robust_list(), which sets the user space
 947 *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 948 *
 949 * [5]  The user space value got manipulated between exit_robust_list()
 950 *      and exit_pi_state_list()
 951 *
 952 * [6]  Valid state after exit_pi_state_list() which sets the new owner in
 953 *      the pi_state but cannot access the user space value.
 954 *
 955 * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 956 *
 957 * [8]  Owner and user space value match
 958 *
 959 * [9]  There is no transient state which sets the user space TID to 0
 960 *      except exit_robust_list(), but this is indicated by the
 961 *      FUTEX_OWNER_DIED bit. See [4]
 962 *
 963 * [10] There is no transient state which leaves owner and user space
 964 *      TID out of sync.
 965 */
 966
 967/*
 968 * Validate that the existing waiter has a pi_state and sanity check
 969 * the pi_state against the user space value. If correct, attach to
 970 * it.
 971 */
 972static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
 973                              struct futex_pi_state **ps)
 974{
 975        pid_t pid = uval & FUTEX_TID_MASK;
 976
 977        /*
 978         * Userspace might have messed up non-PI and PI futexes [3]
 979         */
 980        if (unlikely(!pi_state))
 981                return -EINVAL;
 982
 983        WARN_ON(!atomic_read(&pi_state->refcount));
 984
 985        /*
 986         * Handle the owner died case:
 987         */
 988        if (uval & FUTEX_OWNER_DIED) {
 989                /*
 990                 * exit_pi_state_list sets owner to NULL and wakes the
 991                 * topmost waiter. The task which acquires the
 992                 * pi_state->rt_mutex will fixup owner.
 993                 */
 994                if (!pi_state->owner) {
 995                        /*
 996                         * No pi state owner, but the user space TID
 997                         * is not 0. Inconsistent state. [5]
 998                         */
 999                        if (pid)
1000                                return -EINVAL;
1001                        /*
1002                         * Take a ref on the state and return success. [4]
1003                         */
1004                        goto out_state;
1005                }
1006
1007                /*
1008                 * If TID is 0, then either the dying owner has not
1009                 * yet executed exit_pi_state_list() or some waiter
1010                 * acquired the rtmutex in the pi state, but did not
1011                 * yet fixup the TID in user space.
1012                 *
1013                 * Take a ref on the state and return success. [6]
1014                 */
1015                if (!pid)
1016                        goto out_state;
1017        } else {
1018                /*
1019                 * If the owner died bit is not set, then the pi_state
1020                 * must have an owner. [7]
1021                 */
1022                if (!pi_state->owner)
1023                        return -EINVAL;
1024        }
1025
1026        /*
1027         * Bail out if user space manipulated the futex value. If pi
1028         * state exists then the owner TID must be the same as the
1029         * user space TID. [9/10]
1030         */
1031        if (pid != task_pid_vnr(pi_state->owner))
1032                return -EINVAL;
1033out_state:
1034        atomic_inc(&pi_state->refcount);
1035        *ps = pi_state;
1036        return 0;
1037}
1038
1039/*
1040 * Lookup the task for the TID provided from user space and attach to
1041 * it after doing proper sanity checks.
1042 */
1043static int attach_to_pi_owner(u32 uval, union futex_key *key,
1044                              struct futex_pi_state **ps)
1045{
1046        pid_t pid = uval & FUTEX_TID_MASK;
1047        struct futex_pi_state *pi_state;
1048        struct task_struct *p;
1049
1050        /*
1051         * We are the first waiter - try to look up the real owner and attach
1052         * the new pi_state to it, but bail out when TID = 0 [1]
1053         */
1054        if (!pid)
1055                return -ESRCH;
1056        p = futex_find_get_task(pid);
1057        if (!p)
1058                return -ESRCH;
1059
1060        if (unlikely(p->flags & PF_KTHREAD)) {
1061                put_task_struct(p);
1062                return -EPERM;
1063        }
1064
1065        /*
1066         * We need to look at the task state flags to figure out,
1067         * whether the task is exiting. To protect against the do_exit
1068         * change of the task flags, we do this protected by
1069         * p->pi_lock:
1070         */
1071        raw_spin_lock_irq(&p->pi_lock);
1072        if (unlikely(p->flags & PF_EXITING)) {
1073                /*
1074                 * The task is on the way out. When PF_EXITPIDONE is
1075                 * set, we know that the task has finished the
1076                 * cleanup:
1077                 */
1078                int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1079
1080                raw_spin_unlock_irq(&p->pi_lock);
1081                put_task_struct(p);
1082                return ret;
1083        }
1084
1085        /*
1086         * No existing pi state. First waiter. [2]
1087         */
1088        pi_state = alloc_pi_state();
1089
1090        /*
1091         * Initialize the pi_mutex in locked state and make @p
1092         * the owner of it:
1093         */
1094        rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1095
1096        /* Store the key for possible exit cleanups: */
1097        pi_state->key = *key;
1098
1099        WARN_ON(!list_empty(&pi_state->list));
1100        list_add(&pi_state->list, &p->pi_state_list);
1101        pi_state->owner = p;
1102        raw_spin_unlock_irq(&p->pi_lock);
1103
1104        put_task_struct(p);
1105
1106        *ps = pi_state;
1107
1108        return 0;
1109}
1110
1111static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1112                           union futex_key *key, struct futex_pi_state **ps)
1113{
1114        struct futex_q *match = futex_top_waiter(hb, key);
1115
1116        /*
1117         * If there is a waiter on that futex, validate it and
1118         * attach to the pi_state when the validation succeeds.
1119         */
1120        if (match)
1121                return attach_to_pi_state(uval, match->pi_state, ps);
1122
1123        /*
1124         * We are the first waiter - try to look up the owner based on
1125         * @uval and attach to it.
1126         */
1127        return attach_to_pi_owner(uval, key, ps);
1128}
1129
1130static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1131{
1132        u32 uninitialized_var(curval);
1133
1134        if (unlikely(should_fail_futex(true)))
1135                return -EFAULT;
1136
1137        if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1138                return -EFAULT;
1139
1140        /*If user space value changed, let the caller retry */
1141        return curval != uval ? -EAGAIN : 0;
1142}
1143
1144/**
1145 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1146 * @uaddr:              the pi futex user address
1147 * @hb:                 the pi futex hash bucket
1148 * @key:                the futex key associated with uaddr and hb
1149 * @ps:                 the pi_state pointer where we store the result of the
1150 *                      lookup
1151 * @task:               the task to perform the atomic lock work for.  This will
1152 *                      be "current" except in the case of requeue pi.
1153 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1154 *
1155 * Return:
1156 *  0 - ready to wait;
1157 *  1 - acquired the lock;
1158 * <0 - error
1159 *
1160 * The hb->lock and futex_key refs shall be held by the caller.
1161 */
1162static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1163                                union futex_key *key,
1164                                struct futex_pi_state **ps,
1165                                struct task_struct *task, int set_waiters)
1166{
1167        u32 uval, newval, vpid = task_pid_vnr(task);
1168        struct futex_q *match;
1169        int ret;
1170
1171        /*
1172         * Read the user space value first so we can validate a few
1173         * things before proceeding further.
1174         */
1175        if (get_futex_value_locked(&uval, uaddr))
1176                return -EFAULT;
1177
1178        if (unlikely(should_fail_futex(true)))
1179                return -EFAULT;
1180
1181        /*
1182         * Detect deadlocks.
1183         */
1184        if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1185                return -EDEADLK;
1186
1187        if ((unlikely(should_fail_futex(true))))
1188                return -EDEADLK;
1189
1190        /*
1191         * Lookup existing state first. If it exists, try to attach to
1192         * its pi_state.
1193         */
1194        match = futex_top_waiter(hb, key);
1195        if (match)
1196                return attach_to_pi_state(uval, match->pi_state, ps);
1197
1198        /*
1199         * No waiter and user TID is 0. We are here because the
1200         * waiters or the owner died bit is set or called from
1201         * requeue_cmp_pi or for whatever reason something took the
1202         * syscall.
1203         */
1204        if (!(uval & FUTEX_TID_MASK)) {
1205                /*
1206                 * We take over the futex. No other waiters and the user space
1207                 * TID is 0. We preserve the owner died bit.
1208                 */
1209                newval = uval & FUTEX_OWNER_DIED;
1210                newval |= vpid;
1211
1212                /* The futex requeue_pi code can enforce the waiters bit */
1213                if (set_waiters)
1214                        newval |= FUTEX_WAITERS;
1215
1216                ret = lock_pi_update_atomic(uaddr, uval, newval);
1217                /* If the take over worked, return 1 */
1218                return ret < 0 ? ret : 1;
1219        }
1220
1221        /*
1222         * First waiter. Set the waiters bit before attaching ourself to
1223         * the owner. If owner tries to unlock, it will be forced into
1224         * the kernel and blocked on hb->lock.
1225         */
1226        newval = uval | FUTEX_WAITERS;
1227        ret = lock_pi_update_atomic(uaddr, uval, newval);
1228        if (ret)
1229                return ret;
1230        /*
1231         * If the update of the user space value succeeded, we try to
1232         * attach to the owner. If that fails, no harm done, we only
1233         * set the FUTEX_WAITERS bit in the user space variable.
1234         */
1235        return attach_to_pi_owner(uval, key, ps);
1236}
1237
1238/**
1239 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1240 * @q:  The futex_q to unqueue
1241 *
1242 * The q->lock_ptr must not be NULL and must be held by the caller.
1243 */
1244static void __unqueue_futex(struct futex_q *q)
1245{
1246        struct futex_hash_bucket *hb;
1247
1248        if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1249            || WARN_ON(plist_node_empty(&q->list)))
1250                return;
1251
1252        hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1253        plist_del(&q->list, &hb->chain);
1254        hb_waiters_dec(hb);
1255}
1256
1257/*
1258 * The hash bucket lock must be held when this is called.
1259 * Afterwards, the futex_q must not be accessed. Callers
1260 * must ensure to later call wake_up_q() for the actual
1261 * wakeups to occur.
1262 */
1263static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1264{
1265        struct task_struct *p = q->task;
1266
1267        if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1268                return;
1269
1270        /*
1271         * Queue the task for later wakeup for after we've released
1272         * the hb->lock. wake_q_add() grabs reference to p.
1273         */
1274        wake_q_add(wake_q, p);
1275        __unqueue_futex(q);
1276        /*
1277         * The waiting task can free the futex_q as soon as
1278         * q->lock_ptr = NULL is written, without taking any locks. A
1279         * memory barrier is required here to prevent the following
1280         * store to lock_ptr from getting ahead of the plist_del.
1281         */
1282        smp_wmb();
1283        q->lock_ptr = NULL;
1284}
1285
1286static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1287                         struct futex_hash_bucket *hb)
1288{
1289        struct task_struct *new_owner;
1290        struct futex_pi_state *pi_state = this->pi_state;
1291        u32 uninitialized_var(curval), newval;
1292        WAKE_Q(wake_q);
1293        bool deboost;
1294        int ret = 0;
1295
1296        if (!pi_state)
1297                return -EINVAL;
1298
1299        /*
1300         * If current does not own the pi_state then the futex is
1301         * inconsistent and user space fiddled with the futex value.
1302         */
1303        if (pi_state->owner != current)
1304                return -EINVAL;
1305
1306        raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1307        new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1308
1309        /*
1310         * It is possible that the next waiter (the one that brought
1311         * this owner to the kernel) timed out and is no longer
1312         * waiting on the lock.
1313         */
1314        if (!new_owner)
1315                new_owner = this->task;
1316
1317        /*
1318         * We pass it to the next owner. The WAITERS bit is always
1319         * kept enabled while there is PI state around. We cleanup the
1320         * owner died bit, because we are the owner.
1321         */
1322        newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1323
1324        if (unlikely(should_fail_futex(true)))
1325                ret = -EFAULT;
1326
1327        if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1328                ret = -EFAULT;
1329        } else if (curval != uval) {
1330                /*
1331                 * If a unconditional UNLOCK_PI operation (user space did not
1332                 * try the TID->0 transition) raced with a waiter setting the
1333                 * FUTEX_WAITERS flag between get_user() and locking the hash
1334                 * bucket lock, retry the operation.
1335                 */
1336                if ((FUTEX_TID_MASK & curval) == uval)
1337                        ret = -EAGAIN;
1338                else
1339                        ret = -EINVAL;
1340        }
1341        if (ret) {
1342                raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1343                return ret;
1344        }
1345
1346        raw_spin_lock(&pi_state->owner->pi_lock);
1347        WARN_ON(list_empty(&pi_state->list));
1348        list_del_init(&pi_state->list);
1349        raw_spin_unlock(&pi_state->owner->pi_lock);
1350
1351        raw_spin_lock(&new_owner->pi_lock);
1352        WARN_ON(!list_empty(&pi_state->list));
1353        list_add(&pi_state->list, &new_owner->pi_state_list);
1354        pi_state->owner = new_owner;
1355        raw_spin_unlock(&new_owner->pi_lock);
1356
1357        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1358
1359        deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1360
1361        /*
1362         * First unlock HB so the waiter does not spin on it once he got woken
1363         * up. Second wake up the waiter before the priority is adjusted. If we
1364         * deboost first (and lose our higher priority), then the task might get
1365         * scheduled away before the wake up can take place.
1366         */
1367        spin_unlock(&hb->lock);
1368        wake_up_q(&wake_q);
1369        if (deboost)
1370                rt_mutex_adjust_prio(current);
1371
1372        return 0;
1373}
1374
1375/*
1376 * Express the locking dependencies for lockdep:
1377 */
1378static inline void
1379double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1380{
1381        if (hb1 <= hb2) {
1382                spin_lock(&hb1->lock);
1383                if (hb1 < hb2)
1384                        spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1385        } else { /* hb1 > hb2 */
1386                spin_lock(&hb2->lock);
1387                spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1388        }
1389}
1390
1391static inline void
1392double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1393{
1394        spin_unlock(&hb1->lock);
1395        if (hb1 != hb2)
1396                spin_unlock(&hb2->lock);
1397}
1398
1399/*
1400 * Wake up waiters matching bitset queued on this futex (uaddr).
1401 */
1402static int
1403futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1404{
1405        struct futex_hash_bucket *hb;
1406        struct futex_q *this, *next;
1407        union futex_key key = FUTEX_KEY_INIT;
1408        int ret;
1409        WAKE_Q(wake_q);
1410
1411        if (!bitset)
1412                return -EINVAL;
1413
1414        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1415        if (unlikely(ret != 0))
1416                goto out;
1417
1418        hb = hash_futex(&key);
1419
1420        /* Make sure we really have tasks to wakeup */
1421        if (!hb_waiters_pending(hb))
1422                goto out_put_key;
1423
1424        spin_lock(&hb->lock);
1425
1426        plist_for_each_entry_safe(this, next, &hb->chain, list) {
1427                if (match_futex (&this->key, &key)) {
1428                        if (this->pi_state || this->rt_waiter) {
1429                                ret = -EINVAL;
1430                                break;
1431                        }
1432
1433                        /* Check if one of the bits is set in both bitsets */
1434                        if (!(this->bitset & bitset))
1435                                continue;
1436
1437                        mark_wake_futex(&wake_q, this);
1438                        if (++ret >= nr_wake)
1439                                break;
1440                }
1441        }
1442
1443        spin_unlock(&hb->lock);
1444        wake_up_q(&wake_q);
1445out_put_key:
1446        put_futex_key(&key);
1447out:
1448        return ret;
1449}
1450
1451/*
1452 * Wake up all waiters hashed on the physical page that is mapped
1453 * to this virtual address:
1454 */
1455static int
1456futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1457              int nr_wake, int nr_wake2, int op)
1458{
1459        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1460        struct futex_hash_bucket *hb1, *hb2;
1461        struct futex_q *this, *next;
1462        int ret, op_ret;
1463        WAKE_Q(wake_q);
1464
1465retry:
1466        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1467        if (unlikely(ret != 0))
1468                goto out;
1469        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1470        if (unlikely(ret != 0))
1471                goto out_put_key1;
1472
1473        hb1 = hash_futex(&key1);
1474        hb2 = hash_futex(&key2);
1475
1476retry_private:
1477        double_lock_hb(hb1, hb2);
1478        op_ret = futex_atomic_op_inuser(op, uaddr2);
1479        if (unlikely(op_ret < 0)) {
1480
1481                double_unlock_hb(hb1, hb2);
1482
1483#ifndef CONFIG_MMU
1484                /*
1485                 * we don't get EFAULT from MMU faults if we don't have an MMU,
1486                 * but we might get them from range checking
1487                 */
1488                ret = op_ret;
1489                goto out_put_keys;
1490#endif
1491
1492                if (unlikely(op_ret != -EFAULT)) {
1493                        ret = op_ret;
1494                        goto out_put_keys;
1495                }
1496
1497                ret = fault_in_user_writeable(uaddr2);
1498                if (ret)
1499                        goto out_put_keys;
1500
1501                if (!(flags & FLAGS_SHARED))
1502                        goto retry_private;
1503
1504                put_futex_key(&key2);
1505                put_futex_key(&key1);
1506                goto retry;
1507        }
1508
1509        plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1510                if (match_futex (&this->key, &key1)) {
1511                        if (this->pi_state || this->rt_waiter) {
1512                                ret = -EINVAL;
1513                                goto out_unlock;
1514                        }
1515                        mark_wake_futex(&wake_q, this);
1516                        if (++ret >= nr_wake)
1517                                break;
1518                }
1519        }
1520
1521        if (op_ret > 0) {
1522                op_ret = 0;
1523                plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1524                        if (match_futex (&this->key, &key2)) {
1525                                if (this->pi_state || this->rt_waiter) {
1526                                        ret = -EINVAL;
1527                                        goto out_unlock;
1528                                }
1529                                mark_wake_futex(&wake_q, this);
1530                                if (++op_ret >= nr_wake2)
1531                                        break;
1532                        }
1533                }
1534                ret += op_ret;
1535        }
1536
1537out_unlock:
1538        double_unlock_hb(hb1, hb2);
1539        wake_up_q(&wake_q);
1540out_put_keys:
1541        put_futex_key(&key2);
1542out_put_key1:
1543        put_futex_key(&key1);
1544out:
1545        return ret;
1546}
1547
1548/**
1549 * requeue_futex() - Requeue a futex_q from one hb to another
1550 * @q:          the futex_q to requeue
1551 * @hb1:        the source hash_bucket
1552 * @hb2:        the target hash_bucket
1553 * @key2:       the new key for the requeued futex_q
1554 */
1555static inline
1556void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1557                   struct futex_hash_bucket *hb2, union futex_key *key2)
1558{
1559
1560        /*
1561         * If key1 and key2 hash to the same bucket, no need to
1562         * requeue.
1563         */
1564        if (likely(&hb1->chain != &hb2->chain)) {
1565                plist_del(&q->list, &hb1->chain);
1566                hb_waiters_dec(hb1);
1567                hb_waiters_inc(hb2);
1568                plist_add(&q->list, &hb2->chain);
1569                q->lock_ptr = &hb2->lock;
1570        }
1571        get_futex_key_refs(key2);
1572        q->key = *key2;
1573}
1574
1575/**
1576 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1577 * @q:          the futex_q
1578 * @key:        the key of the requeue target futex
1579 * @hb:         the hash_bucket of the requeue target futex
1580 *
1581 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1582 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1583 * to the requeue target futex so the waiter can detect the wakeup on the right
1584 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1585 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1586 * to protect access to the pi_state to fixup the owner later.  Must be called
1587 * with both q->lock_ptr and hb->lock held.
1588 */
1589static inline
1590void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1591                           struct futex_hash_bucket *hb)
1592{
1593        get_futex_key_refs(key);
1594        q->key = *key;
1595
1596        __unqueue_futex(q);
1597
1598        WARN_ON(!q->rt_waiter);
1599        q->rt_waiter = NULL;
1600
1601        q->lock_ptr = &hb->lock;
1602
1603        wake_up_state(q->task, TASK_NORMAL);
1604}
1605
1606/**
1607 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1608 * @pifutex:            the user address of the to futex
1609 * @hb1:                the from futex hash bucket, must be locked by the caller
1610 * @hb2:                the to futex hash bucket, must be locked by the caller
1611 * @key1:               the from futex key
1612 * @key2:               the to futex key
1613 * @ps:                 address to store the pi_state pointer
1614 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1615 *
1616 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1617 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1618 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1619 * hb1 and hb2 must be held by the caller.
1620 *
1621 * Return:
1622 *  0 - failed to acquire the lock atomically;
1623 * >0 - acquired the lock, return value is vpid of the top_waiter
1624 * <0 - error
1625 */
1626static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1627                                 struct futex_hash_bucket *hb1,
1628                                 struct futex_hash_bucket *hb2,
1629                                 union futex_key *key1, union futex_key *key2,
1630                                 struct futex_pi_state **ps, int set_waiters)
1631{
1632        struct futex_q *top_waiter = NULL;
1633        u32 curval;
1634        int ret, vpid;
1635
1636        if (get_futex_value_locked(&curval, pifutex))
1637                return -EFAULT;
1638
1639        if (unlikely(should_fail_futex(true)))
1640                return -EFAULT;
1641
1642        /*
1643         * Find the top_waiter and determine if there are additional waiters.
1644         * If the caller intends to requeue more than 1 waiter to pifutex,
1645         * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1646         * as we have means to handle the possible fault.  If not, don't set
1647         * the bit unecessarily as it will force the subsequent unlock to enter
1648         * the kernel.
1649         */
1650        top_waiter = futex_top_waiter(hb1, key1);
1651
1652        /* There are no waiters, nothing for us to do. */
1653        if (!top_waiter)
1654                return 0;
1655
1656        /* Ensure we requeue to the expected futex. */
1657        if (!match_futex(top_waiter->requeue_pi_key, key2))
1658                return -EINVAL;
1659
1660        /*
1661         * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1662         * the contended case or if set_waiters is 1.  The pi_state is returned
1663         * in ps in contended cases.
1664         */
1665        vpid = task_pid_vnr(top_waiter->task);
1666        ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1667                                   set_waiters);
1668        if (ret == 1) {
1669                requeue_pi_wake_futex(top_waiter, key2, hb2);
1670                return vpid;
1671        }
1672        return ret;
1673}
1674
1675/**
1676 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1677 * @uaddr1:     source futex user address
1678 * @flags:      futex flags (FLAGS_SHARED, etc.)
1679 * @uaddr2:     target futex user address
1680 * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1681 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1682 * @cmpval:     @uaddr1 expected value (or %NULL)
1683 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1684 *              pi futex (pi to pi requeue is not supported)
1685 *
1686 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1687 * uaddr2 atomically on behalf of the top waiter.
1688 *
1689 * Return:
1690 * >=0 - on success, the number of tasks requeued or woken;
1691 *  <0 - on error
1692 */
1693static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1694                         u32 __user *uaddr2, int nr_wake, int nr_requeue,
1695                         u32 *cmpval, int requeue_pi)
1696{
1697        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1698        int drop_count = 0, task_count = 0, ret;
1699        struct futex_pi_state *pi_state = NULL;
1700        struct futex_hash_bucket *hb1, *hb2;
1701        struct futex_q *this, *next;
1702        WAKE_Q(wake_q);
1703
1704        if (requeue_pi) {
1705                /*
1706                 * Requeue PI only works on two distinct uaddrs. This
1707                 * check is only valid for private futexes. See below.
1708                 */
1709                if (uaddr1 == uaddr2)
1710                        return -EINVAL;
1711
1712                /*
1713                 * requeue_pi requires a pi_state, try to allocate it now
1714                 * without any locks in case it fails.
1715                 */
1716                if (refill_pi_state_cache())
1717                        return -ENOMEM;
1718                /*
1719                 * requeue_pi must wake as many tasks as it can, up to nr_wake
1720                 * + nr_requeue, since it acquires the rt_mutex prior to
1721                 * returning to userspace, so as to not leave the rt_mutex with
1722                 * waiters and no owner.  However, second and third wake-ups
1723                 * cannot be predicted as they involve race conditions with the
1724                 * first wake and a fault while looking up the pi_state.  Both
1725                 * pthread_cond_signal() and pthread_cond_broadcast() should
1726                 * use nr_wake=1.
1727                 */
1728                if (nr_wake != 1)
1729                        return -EINVAL;
1730        }
1731
1732retry:
1733        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1734        if (unlikely(ret != 0))
1735                goto out;
1736        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1737                            requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1738        if (unlikely(ret != 0))
1739                goto out_put_key1;
1740
1741        /*
1742         * The check above which compares uaddrs is not sufficient for
1743         * shared futexes. We need to compare the keys:
1744         */
1745        if (requeue_pi && match_futex(&key1, &key2)) {
1746                ret = -EINVAL;
1747                goto out_put_keys;
1748        }
1749
1750        hb1 = hash_futex(&key1);
1751        hb2 = hash_futex(&key2);
1752
1753retry_private:
1754        hb_waiters_inc(hb2);
1755        double_lock_hb(hb1, hb2);
1756
1757        if (likely(cmpval != NULL)) {
1758                u32 curval;
1759
1760                ret = get_futex_value_locked(&curval, uaddr1);
1761
1762                if (unlikely(ret)) {
1763                        double_unlock_hb(hb1, hb2);
1764                        hb_waiters_dec(hb2);
1765
1766                        ret = get_user(curval, uaddr1);
1767                        if (ret)
1768                                goto out_put_keys;
1769
1770                        if (!(flags & FLAGS_SHARED))
1771                                goto retry_private;
1772
1773                        put_futex_key(&key2);
1774                        put_futex_key(&key1);
1775                        goto retry;
1776                }
1777                if (curval != *cmpval) {
1778                        ret = -EAGAIN;
1779                        goto out_unlock;
1780                }
1781        }
1782
1783        if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1784                /*
1785                 * Attempt to acquire uaddr2 and wake the top waiter. If we
1786                 * intend to requeue waiters, force setting the FUTEX_WAITERS
1787                 * bit.  We force this here where we are able to easily handle
1788                 * faults rather in the requeue loop below.
1789                 */
1790                ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1791                                                 &key2, &pi_state, nr_requeue);
1792
1793                /*
1794                 * At this point the top_waiter has either taken uaddr2 or is
1795                 * waiting on it.  If the former, then the pi_state will not
1796                 * exist yet, look it up one more time to ensure we have a
1797                 * reference to it. If the lock was taken, ret contains the
1798                 * vpid of the top waiter task.
1799                 * If the lock was not taken, we have pi_state and an initial
1800                 * refcount on it. In case of an error we have nothing.
1801                 */
1802                if (ret > 0) {
1803                        WARN_ON(pi_state);
1804                        drop_count++;
1805                        task_count++;
1806                        /*
1807                         * If we acquired the lock, then the user space value
1808                         * of uaddr2 should be vpid. It cannot be changed by
1809                         * the top waiter as it is blocked on hb2 lock if it
1810                         * tries to do so. If something fiddled with it behind
1811                         * our back the pi state lookup might unearth it. So
1812                         * we rather use the known value than rereading and
1813                         * handing potential crap to lookup_pi_state.
1814                         *
1815                         * If that call succeeds then we have pi_state and an
1816                         * initial refcount on it.
1817                         */
1818                        ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1819                }
1820
1821                switch (ret) {
1822                case 0:
1823                        /* We hold a reference on the pi state. */
1824                        break;
1825
1826                        /* If the above failed, then pi_state is NULL */
1827                case -EFAULT:
1828                        double_unlock_hb(hb1, hb2);
1829                        hb_waiters_dec(hb2);
1830                        put_futex_key(&key2);
1831                        put_futex_key(&key1);
1832                        ret = fault_in_user_writeable(uaddr2);
1833                        if (!ret)
1834                                goto retry;
1835                        goto out;
1836                case -EAGAIN:
1837                        /*
1838                         * Two reasons for this:
1839                         * - Owner is exiting and we just wait for the
1840                         *   exit to complete.
1841                         * - The user space value changed.
1842                         */
1843                        double_unlock_hb(hb1, hb2);
1844                        hb_waiters_dec(hb2);
1845                        put_futex_key(&key2);
1846                        put_futex_key(&key1);
1847                        cond_resched();
1848                        goto retry;
1849                default:
1850                        goto out_unlock;
1851                }
1852        }
1853
1854        plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1855                if (task_count - nr_wake >= nr_requeue)
1856                        break;
1857
1858                if (!match_futex(&this->key, &key1))
1859                        continue;
1860
1861                /*
1862                 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1863                 * be paired with each other and no other futex ops.
1864                 *
1865                 * We should never be requeueing a futex_q with a pi_state,
1866                 * which is awaiting a futex_unlock_pi().
1867                 */
1868                if ((requeue_pi && !this->rt_waiter) ||
1869                    (!requeue_pi && this->rt_waiter) ||
1870                    this->pi_state) {
1871                        ret = -EINVAL;
1872                        break;
1873                }
1874
1875                /*
1876                 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1877                 * lock, we already woke the top_waiter.  If not, it will be
1878                 * woken by futex_unlock_pi().
1879                 */
1880                if (++task_count <= nr_wake && !requeue_pi) {
1881                        mark_wake_futex(&wake_q, this);
1882                        continue;
1883                }
1884
1885                /* Ensure we requeue to the expected futex for requeue_pi. */
1886                if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1887                        ret = -EINVAL;
1888                        break;
1889                }
1890
1891                /*
1892                 * Requeue nr_requeue waiters and possibly one more in the case
1893                 * of requeue_pi if we couldn't acquire the lock atomically.
1894                 */
1895                if (requeue_pi) {
1896                        /*
1897                         * Prepare the waiter to take the rt_mutex. Take a
1898                         * refcount on the pi_state and store the pointer in
1899                         * the futex_q object of the waiter.
1900                         */
1901                        atomic_inc(&pi_state->refcount);
1902                        this->pi_state = pi_state;
1903                        ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1904                                                        this->rt_waiter,
1905                                                        this->task);
1906                        if (ret == 1) {
1907                                /*
1908                                 * We got the lock. We do neither drop the
1909                                 * refcount on pi_state nor clear
1910                                 * this->pi_state because the waiter needs the
1911                                 * pi_state for cleaning up the user space
1912                                 * value. It will drop the refcount after
1913                                 * doing so.
1914                                 */
1915                                requeue_pi_wake_futex(this, &key2, hb2);
1916                                drop_count++;
1917                                continue;
1918                        } else if (ret) {
1919                                /*
1920                                 * rt_mutex_start_proxy_lock() detected a
1921                                 * potential deadlock when we tried to queue
1922                                 * that waiter. Drop the pi_state reference
1923                                 * which we took above and remove the pointer
1924                                 * to the state from the waiters futex_q
1925                                 * object.
1926                                 */
1927                                this->pi_state = NULL;
1928                                put_pi_state(pi_state);
1929                                /*
1930                                 * We stop queueing more waiters and let user
1931                                 * space deal with the mess.
1932                                 */
1933                                break;
1934                        }
1935                }
1936                requeue_futex(this, hb1, hb2, &key2);
1937                drop_count++;
1938        }
1939
1940        /*
1941         * We took an extra initial reference to the pi_state either
1942         * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1943         * need to drop it here again.
1944         */
1945        put_pi_state(pi_state);
1946
1947out_unlock:
1948        double_unlock_hb(hb1, hb2);
1949        wake_up_q(&wake_q);
1950        hb_waiters_dec(hb2);
1951
1952        /*
1953         * drop_futex_key_refs() must be called outside the spinlocks. During
1954         * the requeue we moved futex_q's from the hash bucket at key1 to the
1955         * one at key2 and updated their key pointer.  We no longer need to
1956         * hold the references to key1.
1957         */
1958        while (--drop_count >= 0)
1959                drop_futex_key_refs(&key1);
1960
1961out_put_keys:
1962        put_futex_key(&key2);
1963out_put_key1:
1964        put_futex_key(&key1);
1965out:
1966        return ret ? ret : task_count;
1967}
1968
1969/* The key must be already stored in q->key. */
1970static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1971        __acquires(&hb->lock)
1972{
1973        struct futex_hash_bucket *hb;
1974
1975        hb = hash_futex(&q->key);
1976
1977        /*
1978         * Increment the counter before taking the lock so that
1979         * a potential waker won't miss a to-be-slept task that is
1980         * waiting for the spinlock. This is safe as all queue_lock()
1981         * users end up calling queue_me(). Similarly, for housekeeping,
1982         * decrement the counter at queue_unlock() when some error has
1983         * occurred and we don't end up adding the task to the list.
1984         */
1985        hb_waiters_inc(hb);
1986
1987        q->lock_ptr = &hb->lock;
1988
1989        spin_lock(&hb->lock); /* implies smp_mb(); (A) */
1990        return hb;
1991}
1992
1993static inline void
1994queue_unlock(struct futex_hash_bucket *hb)
1995        __releases(&hb->lock)
1996{
1997        spin_unlock(&hb->lock);
1998        hb_waiters_dec(hb);
1999}
2000
2001/**
2002 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2003 * @q:  The futex_q to enqueue
2004 * @hb: The destination hash bucket
2005 *
2006 * The hb->lock must be held by the caller, and is released here. A call to
2007 * queue_me() is typically paired with exactly one call to unqueue_me().  The
2008 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2009 * or nothing if the unqueue is done as part of the wake process and the unqueue
2010 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2011 * an example).
2012 */
2013static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2014        __releases(&hb->lock)
2015{
2016        int prio;
2017
2018        /*
2019         * The priority used to register this element is
2020         * - either the real thread-priority for the real-time threads
2021         * (i.e. threads with a priority lower than MAX_RT_PRIO)
2022         * - or MAX_RT_PRIO for non-RT threads.
2023         * Thus, all RT-threads are woken first in priority order, and
2024         * the others are woken last, in FIFO order.
2025         */
2026        prio = min(current->normal_prio, MAX_RT_PRIO);
2027
2028        plist_node_init(&q->list, prio);
2029        plist_add(&q->list, &hb->chain);
2030        q->task = current;
2031        spin_unlock(&hb->lock);
2032}
2033
2034/**
2035 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2036 * @q:  The futex_q to unqueue
2037 *
2038 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2039 * be paired with exactly one earlier call to queue_me().
2040 *
2041 * Return:
2042 *   1 - if the futex_q was still queued (and we removed unqueued it);
2043 *   0 - if the futex_q was already removed by the waking thread
2044 */
2045static int unqueue_me(struct futex_q *q)
2046{
2047        spinlock_t *lock_ptr;
2048        int ret = 0;
2049
2050        /* In the common case we don't take the spinlock, which is nice. */
2051retry:
2052        /*
2053         * q->lock_ptr can change between this read and the following spin_lock.
2054         * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2055         * optimizing lock_ptr out of the logic below.
2056         */
2057        lock_ptr = READ_ONCE(q->lock_ptr);
2058        if (lock_ptr != NULL) {
2059                spin_lock(lock_ptr);
2060                /*
2061                 * q->lock_ptr can change between reading it and
2062                 * spin_lock(), causing us to take the wrong lock.  This
2063                 * corrects the race condition.
2064                 *
2065                 * Reasoning goes like this: if we have the wrong lock,
2066                 * q->lock_ptr must have changed (maybe several times)
2067                 * between reading it and the spin_lock().  It can
2068                 * change again after the spin_lock() but only if it was
2069                 * already changed before the spin_lock().  It cannot,
2070                 * however, change back to the original value.  Therefore
2071                 * we can detect whether we acquired the correct lock.
2072                 */
2073                if (unlikely(lock_ptr != q->lock_ptr)) {
2074                        spin_unlock(lock_ptr);
2075                        goto retry;
2076                }
2077                __unqueue_futex(q);
2078
2079                BUG_ON(q->pi_state);
2080
2081                spin_unlock(lock_ptr);
2082                ret = 1;
2083        }
2084
2085        drop_futex_key_refs(&q->key);
2086        return ret;
2087}
2088
2089/*
2090 * PI futexes can not be requeued and must remove themself from the
2091 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2092 * and dropped here.
2093 */
2094static void unqueue_me_pi(struct futex_q *q)
2095        __releases(q->lock_ptr)
2096{
2097        __unqueue_futex(q);
2098
2099        BUG_ON(!q->pi_state);
2100        put_pi_state(q->pi_state);
2101        q->pi_state = NULL;
2102
2103        spin_unlock(q->lock_ptr);
2104}
2105
2106/*
2107 * Fixup the pi_state owner with the new owner.
2108 *
2109 * Must be called with hash bucket lock held and mm->sem held for non
2110 * private futexes.
2111 */
2112static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2113                                struct task_struct *newowner)
2114{
2115        u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2116        struct futex_pi_state *pi_state = q->pi_state;
2117        struct task_struct *oldowner = pi_state->owner;
2118        u32 uval, uninitialized_var(curval), newval;
2119        int ret;
2120
2121        /* Owner died? */
2122        if (!pi_state->owner)
2123                newtid |= FUTEX_OWNER_DIED;
2124
2125        /*
2126         * We are here either because we stole the rtmutex from the
2127         * previous highest priority waiter or we are the highest priority
2128         * waiter but failed to get the rtmutex the first time.
2129         * We have to replace the newowner TID in the user space variable.
2130         * This must be atomic as we have to preserve the owner died bit here.
2131         *
2132         * Note: We write the user space value _before_ changing the pi_state
2133         * because we can fault here. Imagine swapped out pages or a fork
2134         * that marked all the anonymous memory readonly for cow.
2135         *
2136         * Modifying pi_state _before_ the user space value would
2137         * leave the pi_state in an inconsistent state when we fault
2138         * here, because we need to drop the hash bucket lock to
2139         * handle the fault. This might be observed in the PID check
2140         * in lookup_pi_state.
2141         */
2142retry:
2143        if (get_futex_value_locked(&uval, uaddr))
2144                goto handle_fault;
2145
2146        while (1) {
2147                newval = (uval & FUTEX_OWNER_DIED) | newtid;
2148
2149                if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2150                        goto handle_fault;
2151                if (curval == uval)
2152                        break;
2153                uval = curval;
2154        }
2155
2156        /*
2157         * We fixed up user space. Now we need to fix the pi_state
2158         * itself.
2159         */
2160        if (pi_state->owner != NULL) {
2161                raw_spin_lock_irq(&pi_state->owner->pi_lock);
2162                WARN_ON(list_empty(&pi_state->list));
2163                list_del_init(&pi_state->list);
2164                raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2165        }
2166
2167        pi_state->owner = newowner;
2168
2169        raw_spin_lock_irq(&newowner->pi_lock);
2170        WARN_ON(!list_empty(&pi_state->list));
2171        list_add(&pi_state->list, &newowner->pi_state_list);
2172        raw_spin_unlock_irq(&newowner->pi_lock);
2173        return 0;
2174
2175        /*
2176         * To handle the page fault we need to drop the hash bucket
2177         * lock here. That gives the other task (either the highest priority
2178         * waiter itself or the task which stole the rtmutex) the
2179         * chance to try the fixup of the pi_state. So once we are
2180         * back from handling the fault we need to check the pi_state
2181         * after reacquiring the hash bucket lock and before trying to
2182         * do another fixup. When the fixup has been done already we
2183         * simply return.
2184         */
2185handle_fault:
2186        spin_unlock(q->lock_ptr);
2187
2188        ret = fault_in_user_writeable(uaddr);
2189
2190        spin_lock(q->lock_ptr);
2191
2192        /*
2193         * Check if someone else fixed it for us:
2194         */
2195        if (pi_state->owner != oldowner)
2196                return 0;
2197
2198        if (ret)
2199                return ret;
2200
2201        goto retry;
2202}
2203
2204static long futex_wait_restart(struct restart_block *restart);
2205
2206/**
2207 * fixup_owner() - Post lock pi_state and corner case management
2208 * @uaddr:      user address of the futex
2209 * @q:          futex_q (contains pi_state and access to the rt_mutex)
2210 * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2211 *
2212 * After attempting to lock an rt_mutex, this function is called to cleanup
2213 * the pi_state owner as well as handle race conditions that may allow us to
2214 * acquire the lock. Must be called with the hb lock held.
2215 *
2216 * Return:
2217 *  1 - success, lock taken;
2218 *  0 - success, lock not taken;
2219 * <0 - on error (-EFAULT)
2220 */
2221static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2222{
2223        struct task_struct *owner;
2224        int ret = 0;
2225
2226        if (locked) {
2227                /*
2228                 * Got the lock. We might not be the anticipated owner if we
2229                 * did a lock-steal - fix up the PI-state in that case:
2230                 */
2231                if (q->pi_state->owner != current)
2232                        ret = fixup_pi_state_owner(uaddr, q, current);
2233                goto out;
2234        }
2235
2236        /*
2237         * Catch the rare case, where the lock was released when we were on the
2238         * way back before we locked the hash bucket.
2239         */
2240        if (q->pi_state->owner == current) {
2241                /*
2242                 * Try to get the rt_mutex now. This might fail as some other
2243                 * task acquired the rt_mutex after we removed ourself from the
2244                 * rt_mutex waiters list.
2245                 */
2246                if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2247                        locked = 1;
2248                        goto out;
2249                }
2250
2251                /*
2252                 * pi_state is incorrect, some other task did a lock steal and
2253                 * we returned due to timeout or signal without taking the
2254                 * rt_mutex. Too late.
2255                 */
2256                raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2257                owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2258                if (!owner)
2259                        owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2260                raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2261                ret = fixup_pi_state_owner(uaddr, q, owner);
2262                goto out;
2263        }
2264
2265        /*
2266         * Paranoia check. If we did not take the lock, then we should not be
2267         * the owner of the rt_mutex.
2268         */
2269        if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2270                printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2271                                "pi-state %p\n", ret,
2272                                q->pi_state->pi_mutex.owner,
2273                                q->pi_state->owner);
2274
2275out:
2276        return ret ? ret : locked;
2277}
2278
2279/**
2280 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2281 * @hb:         the futex hash bucket, must be locked by the caller
2282 * @q:          the futex_q to queue up on
2283 * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2284 */
2285static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2286                                struct hrtimer_sleeper *timeout)
2287{
2288        /*
2289         * The task state is guaranteed to be set before another task can
2290         * wake it. set_current_state() is implemented using smp_store_mb() and
2291         * queue_me() calls spin_unlock() upon completion, both serializing
2292         * access to the hash list and forcing another memory barrier.
2293         */
2294        set_current_state(TASK_INTERRUPTIBLE);
2295        queue_me(q, hb);
2296
2297        /* Arm the timer */
2298        if (timeout)
2299                hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2300
2301        /*
2302         * If we have been removed from the hash list, then another task
2303         * has tried to wake us, and we can skip the call to schedule().
2304         */
2305        if (likely(!plist_node_empty(&q->list))) {
2306                /*
2307                 * If the timer has already expired, current will already be
2308                 * flagged for rescheduling. Only call schedule if there
2309                 * is no timeout, or if it has yet to expire.
2310                 */
2311                if (!timeout || timeout->task)
2312                        freezable_schedule();
2313        }
2314        __set_current_state(TASK_RUNNING);
2315}
2316
2317/**
2318 * futex_wait_setup() - Prepare to wait on a futex
2319 * @uaddr:      the futex userspace address
2320 * @val:        the expected value
2321 * @flags:      futex flags (FLAGS_SHARED, etc.)
2322 * @q:          the associated futex_q
2323 * @hb:         storage for hash_bucket pointer to be returned to caller
2324 *
2325 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2326 * compare it with the expected value.  Handle atomic faults internally.
2327 * Return with the hb lock held and a q.key reference on success, and unlocked
2328 * with no q.key reference on failure.
2329 *
2330 * Return:
2331 *  0 - uaddr contains val and hb has been locked;
2332 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2333 */
2334static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2335                           struct futex_q *q, struct futex_hash_bucket **hb)
2336{
2337        u32 uval;
2338        int ret;
2339
2340        /*
2341         * Access the page AFTER the hash-bucket is locked.
2342         * Order is important:
2343         *
2344         *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2345         *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2346         *
2347         * The basic logical guarantee of a futex is that it blocks ONLY
2348         * if cond(var) is known to be true at the time of blocking, for
2349         * any cond.  If we locked the hash-bucket after testing *uaddr, that
2350         * would open a race condition where we could block indefinitely with
2351         * cond(var) false, which would violate the guarantee.
2352         *
2353         * On the other hand, we insert q and release the hash-bucket only
2354         * after testing *uaddr.  This guarantees that futex_wait() will NOT
2355         * absorb a wakeup if *uaddr does not match the desired values
2356         * while the syscall executes.
2357         */
2358retry:
2359        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2360        if (unlikely(ret != 0))
2361                return ret;
2362
2363retry_private:
2364        *hb = queue_lock(q);
2365
2366        ret = get_futex_value_locked(&uval, uaddr);
2367
2368        if (ret) {
2369                queue_unlock(*hb);
2370
2371                ret = get_user(uval, uaddr);
2372                if (ret)
2373                        goto out;
2374
2375                if (!(flags & FLAGS_SHARED))
2376                        goto retry_private;
2377
2378                put_futex_key(&q->key);
2379                goto retry;
2380        }
2381
2382        if (uval != val) {
2383                queue_unlock(*hb);
2384                ret = -EWOULDBLOCK;
2385        }
2386
2387out:
2388        if (ret)
2389                put_futex_key(&q->key);
2390        return ret;
2391}
2392
2393static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2394                      ktime_t *abs_time, u32 bitset)
2395{
2396        struct hrtimer_sleeper timeout, *to = NULL;
2397        struct restart_block *restart;
2398        struct futex_hash_bucket *hb;
2399        struct futex_q q = futex_q_init;
2400        int ret;
2401
2402        if (!bitset)
2403                return -EINVAL;
2404        q.bitset = bitset;
2405
2406        if (abs_time) {
2407                to = &timeout;
2408
2409                hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2410                                      CLOCK_REALTIME : CLOCK_MONOTONIC,
2411                                      HRTIMER_MODE_ABS);
2412                hrtimer_init_sleeper(to, current);
2413                hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2414                                             current->timer_slack_ns);
2415        }
2416
2417retry:
2418        /*
2419         * Prepare to wait on uaddr. On success, holds hb lock and increments
2420         * q.key refs.
2421         */
2422        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2423        if (ret)
2424                goto out;
2425
2426        /* queue_me and wait for wakeup, timeout, or a signal. */
2427        futex_wait_queue_me(hb, &q, to);
2428
2429        /* If we were woken (and unqueued), we succeeded, whatever. */
2430        ret = 0;
2431        /* unqueue_me() drops q.key ref */
2432        if (!unqueue_me(&q))
2433                goto out;
2434        ret = -ETIMEDOUT;
2435        if (to && !to->task)
2436                goto out;
2437
2438        /*
2439         * We expect signal_pending(current), but we might be the
2440         * victim of a spurious wakeup as well.
2441         */
2442        if (!signal_pending(current))
2443                goto retry;
2444
2445        ret = -ERESTARTSYS;
2446        if (!abs_time)
2447                goto out;
2448
2449        restart = &current->restart_block;
2450        restart->fn = futex_wait_restart;
2451        restart->futex.uaddr = uaddr;
2452        restart->futex.val = val;
2453        restart->futex.time = abs_time->tv64;
2454        restart->futex.bitset = bitset;
2455        restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2456
2457        ret = -ERESTART_RESTARTBLOCK;
2458
2459out:
2460        if (to) {
2461                hrtimer_cancel(&to->timer);
2462                destroy_hrtimer_on_stack(&to->timer);
2463        }
2464        return ret;
2465}
2466
2467
2468static long futex_wait_restart(struct restart_block *restart)
2469{
2470        u32 __user *uaddr = restart->futex.uaddr;
2471        ktime_t t, *tp = NULL;
2472
2473        if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2474                t.tv64 = restart->futex.time;
2475                tp = &t;
2476        }
2477        restart->fn = do_no_restart_syscall;
2478
2479        return (long)futex_wait(uaddr, restart->futex.flags,
2480                                restart->futex.val, tp, restart->futex.bitset);
2481}
2482
2483
2484/*
2485 * Userspace tried a 0 -> TID atomic transition of the futex value
2486 * and failed. The kernel side here does the whole locking operation:
2487 * if there are waiters then it will block as a consequence of relying
2488 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2489 * a 0 value of the futex too.).
2490 *
2491 * Also serves as futex trylock_pi()'ing, and due semantics.
2492 */
2493static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2494                         ktime_t *time, int trylock)
2495{
2496        struct hrtimer_sleeper timeout, *to = NULL;
2497        struct futex_hash_bucket *hb;
2498        struct futex_q q = futex_q_init;
2499        int res, ret;
2500
2501        if (refill_pi_state_cache())
2502                return -ENOMEM;
2503
2504        if (time) {
2505                to = &timeout;
2506                hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2507                                      HRTIMER_MODE_ABS);
2508                hrtimer_init_sleeper(to, current);
2509                hrtimer_set_expires(&to->timer, *time);
2510        }
2511
2512retry:
2513        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2514        if (unlikely(ret != 0))
2515                goto out;
2516
2517retry_private:
2518        hb = queue_lock(&q);
2519
2520        ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2521        if (unlikely(ret)) {
2522                /*
2523                 * Atomic work succeeded and we got the lock,
2524                 * or failed. Either way, we do _not_ block.
2525                 */
2526                switch (ret) {
2527                case 1:
2528                        /* We got the lock. */
2529                        ret = 0;
2530                        goto out_unlock_put_key;
2531                case -EFAULT:
2532                        goto uaddr_faulted;
2533                case -EAGAIN:
2534                        /*
2535                         * Two reasons for this:
2536                         * - Task is exiting and we just wait for the
2537                         *   exit to complete.
2538                         * - The user space value changed.
2539                         */
2540                        queue_unlock(hb);
2541                        put_futex_key(&q.key);
2542                        cond_resched();
2543                        goto retry;
2544                default:
2545                        goto out_unlock_put_key;
2546                }
2547        }
2548
2549        /*
2550         * Only actually queue now that the atomic ops are done:
2551         */
2552        queue_me(&q, hb);
2553
2554        WARN_ON(!q.pi_state);
2555        /*
2556         * Block on the PI mutex:
2557         */
2558        if (!trylock) {
2559                ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2560        } else {
2561                ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2562                /* Fixup the trylock return value: */
2563                ret = ret ? 0 : -EWOULDBLOCK;
2564        }
2565
2566        spin_lock(q.lock_ptr);
2567        /*
2568         * Fixup the pi_state owner and possibly acquire the lock if we
2569         * haven't already.
2570         */
2571        res = fixup_owner(uaddr, &q, !ret);
2572        /*
2573         * If fixup_owner() returned an error, proprogate that.  If it acquired
2574         * the lock, clear our -ETIMEDOUT or -EINTR.
2575         */
2576        if (res)
2577                ret = (res < 0) ? res : 0;
2578
2579        /*
2580         * If fixup_owner() faulted and was unable to handle the fault, unlock
2581         * it and return the fault to userspace.
2582         */
2583        if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2584                rt_mutex_unlock(&q.pi_state->pi_mutex);
2585
2586        /* Unqueue and drop the lock */
2587        unqueue_me_pi(&q);
2588
2589        goto out_put_key;
2590
2591out_unlock_put_key:
2592        queue_unlock(hb);
2593
2594out_put_key:
2595        put_futex_key(&q.key);
2596out:
2597        if (to)
2598                destroy_hrtimer_on_stack(&to->timer);
2599        return ret != -EINTR ? ret : -ERESTARTNOINTR;
2600
2601uaddr_faulted:
2602        queue_unlock(hb);
2603
2604        ret = fault_in_user_writeable(uaddr);
2605        if (ret)
2606                goto out_put_key;
2607
2608        if (!(flags & FLAGS_SHARED))
2609                goto retry_private;
2610
2611        put_futex_key(&q.key);
2612        goto retry;
2613}
2614
2615/*
2616 * Userspace attempted a TID -> 0 atomic transition, and failed.
2617 * This is the in-kernel slowpath: we look up the PI state (if any),
2618 * and do the rt-mutex unlock.
2619 */
2620static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2621{
2622        u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2623        union futex_key key = FUTEX_KEY_INIT;
2624        struct futex_hash_bucket *hb;
2625        struct futex_q *match;
2626        int ret;
2627
2628retry:
2629        if (get_user(uval, uaddr))
2630                return -EFAULT;
2631        /*
2632         * We release only a lock we actually own:
2633         */
2634        if ((uval & FUTEX_TID_MASK) != vpid)
2635                return -EPERM;
2636
2637        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2638        if (ret)
2639                return ret;
2640
2641        hb = hash_futex(&key);
2642        spin_lock(&hb->lock);
2643
2644        /*
2645         * Check waiters first. We do not trust user space values at
2646         * all and we at least want to know if user space fiddled
2647         * with the futex value instead of blindly unlocking.
2648         */
2649        match = futex_top_waiter(hb, &key);
2650        if (match) {
2651                ret = wake_futex_pi(uaddr, uval, match, hb);
2652                /*
2653                 * In case of success wake_futex_pi dropped the hash
2654                 * bucket lock.
2655                 */
2656                if (!ret)
2657                        goto out_putkey;
2658                /*
2659                 * The atomic access to the futex value generated a
2660                 * pagefault, so retry the user-access and the wakeup:
2661                 */
2662                if (ret == -EFAULT)
2663                        goto pi_faulted;
2664                /*
2665                 * A unconditional UNLOCK_PI op raced against a waiter
2666                 * setting the FUTEX_WAITERS bit. Try again.
2667                 */
2668                if (ret == -EAGAIN) {
2669                        spin_unlock(&hb->lock);
2670                        put_futex_key(&key);
2671                        goto retry;
2672                }
2673                /*
2674                 * wake_futex_pi has detected invalid state. Tell user
2675                 * space.
2676                 */
2677                goto out_unlock;
2678        }
2679
2680        /*
2681         * We have no kernel internal state, i.e. no waiters in the
2682         * kernel. Waiters which are about to queue themselves are stuck
2683         * on hb->lock. So we can safely ignore them. We do neither
2684         * preserve the WAITERS bit not the OWNER_DIED one. We are the
2685         * owner.
2686         */
2687        if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2688                goto pi_faulted;
2689
2690        /*
2691         * If uval has changed, let user space handle it.
2692         */
2693        ret = (curval == uval) ? 0 : -EAGAIN;
2694
2695out_unlock:
2696        spin_unlock(&hb->lock);
2697out_putkey:
2698        put_futex_key(&key);
2699        return ret;
2700
2701pi_faulted:
2702        spin_unlock(&hb->lock);
2703        put_futex_key(&key);
2704
2705        ret = fault_in_user_writeable(uaddr);
2706        if (!ret)
2707                goto retry;
2708
2709        return ret;
2710}
2711
2712/**
2713 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2714 * @hb:         the hash_bucket futex_q was original enqueued on
2715 * @q:          the futex_q woken while waiting to be requeued
2716 * @key2:       the futex_key of the requeue target futex
2717 * @timeout:    the timeout associated with the wait (NULL if none)
2718 *
2719 * Detect if the task was woken on the initial futex as opposed to the requeue
2720 * target futex.  If so, determine if it was a timeout or a signal that caused
2721 * the wakeup and return the appropriate error code to the caller.  Must be
2722 * called with the hb lock held.
2723 *
2724 * Return:
2725 *  0 = no early wakeup detected;
2726 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2727 */
2728static inline
2729int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2730                                   struct futex_q *q, union futex_key *key2,
2731                                   struct hrtimer_sleeper *timeout)
2732{
2733        int ret = 0;
2734
2735        /*
2736         * With the hb lock held, we avoid races while we process the wakeup.
2737         * We only need to hold hb (and not hb2) to ensure atomicity as the
2738         * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2739         * It can't be requeued from uaddr2 to something else since we don't
2740         * support a PI aware source futex for requeue.
2741         */
2742        if (!match_futex(&q->key, key2)) {
2743                WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2744                /*
2745                 * We were woken prior to requeue by a timeout or a signal.
2746                 * Unqueue the futex_q and determine which it was.
2747                 */
2748                plist_del(&q->list, &hb->chain);
2749                hb_waiters_dec(hb);
2750
2751                /* Handle spurious wakeups gracefully */
2752                ret = -EWOULDBLOCK;
2753                if (timeout && !timeout->task)
2754                        ret = -ETIMEDOUT;
2755                else if (signal_pending(current))
2756                        ret = -ERESTARTNOINTR;
2757        }
2758        return ret;
2759}
2760
2761/**
2762 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2763 * @uaddr:      the futex we initially wait on (non-pi)
2764 * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2765 *              the same type, no requeueing from private to shared, etc.
2766 * @val:        the expected value of uaddr
2767 * @abs_time:   absolute timeout
2768 * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2769 * @uaddr2:     the pi futex we will take prior to returning to user-space
2770 *
2771 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2772 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2773 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2774 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2775 * without one, the pi logic would not know which task to boost/deboost, if
2776 * there was a need to.
2777 *
2778 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2779 * via the following--
2780 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2781 * 2) wakeup on uaddr2 after a requeue
2782 * 3) signal
2783 * 4) timeout
2784 *
2785 * If 3, cleanup and return -ERESTARTNOINTR.
2786 *
2787 * If 2, we may then block on trying to take the rt_mutex and return via:
2788 * 5) successful lock
2789 * 6) signal
2790 * 7) timeout
2791 * 8) other lock acquisition failure
2792 *
2793 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2794 *
2795 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2796 *
2797 * Return:
2798 *  0 - On success;
2799 * <0 - On error
2800 */
2801static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2802                                 u32 val, ktime_t *abs_time, u32 bitset,
2803                                 u32 __user *uaddr2)
2804{
2805        struct hrtimer_sleeper timeout, *to = NULL;
2806        struct rt_mutex_waiter rt_waiter;
2807        struct rt_mutex *pi_mutex = NULL;
2808        struct futex_hash_bucket *hb;
2809        union futex_key key2 = FUTEX_KEY_INIT;
2810        struct futex_q q = futex_q_init;
2811        int res, ret;
2812
2813        if (uaddr == uaddr2)
2814                return -EINVAL;
2815
2816        if (!bitset)
2817                return -EINVAL;
2818
2819        if (abs_time) {
2820                to = &timeout;
2821                hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2822                                      CLOCK_REALTIME : CLOCK_MONOTONIC,
2823                                      HRTIMER_MODE_ABS);
2824                hrtimer_init_sleeper(to, current);
2825                hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2826                                             current->timer_slack_ns);
2827        }
2828
2829        /*
2830         * The waiter is allocated on our stack, manipulated by the requeue
2831         * code while we sleep on uaddr.
2832         */
2833        debug_rt_mutex_init_waiter(&rt_waiter);
2834        RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2835        RB_CLEAR_NODE(&rt_waiter.tree_entry);
2836        rt_waiter.task = NULL;
2837
2838        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2839        if (unlikely(ret != 0))
2840                goto out;
2841
2842        q.bitset = bitset;
2843        q.rt_waiter = &rt_waiter;
2844        q.requeue_pi_key = &key2;
2845
2846        /*
2847         * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2848         * count.
2849         */
2850        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2851        if (ret)
2852                goto out_key2;
2853
2854        /*
2855         * The check above which compares uaddrs is not sufficient for
2856         * shared futexes. We need to compare the keys:
2857         */
2858        if (match_futex(&q.key, &key2)) {
2859                queue_unlock(hb);
2860                ret = -EINVAL;
2861                goto out_put_keys;
2862        }
2863
2864        /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2865        futex_wait_queue_me(hb, &q, to);
2866
2867        spin_lock(&hb->lock);
2868        ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2869        spin_unlock(&hb->lock);
2870        if (ret)
2871                goto out_put_keys;
2872
2873        /*
2874         * In order for us to be here, we know our q.key == key2, and since
2875         * we took the hb->lock above, we also know that futex_requeue() has
2876         * completed and we no longer have to concern ourselves with a wakeup
2877         * race with the atomic proxy lock acquisition by the requeue code. The
2878         * futex_requeue dropped our key1 reference and incremented our key2
2879         * reference count.
2880         */
2881
2882        /* Check if the requeue code acquired the second futex for us. */
2883        if (!q.rt_waiter) {
2884                /*
2885                 * Got the lock. We might not be the anticipated owner if we
2886                 * did a lock-steal - fix up the PI-state in that case.
2887                 */
2888                if (q.pi_state && (q.pi_state->owner != current)) {
2889                        spin_lock(q.lock_ptr);
2890                        ret = fixup_pi_state_owner(uaddr2, &q, current);
2891                        /*
2892                         * Drop the reference to the pi state which
2893                         * the requeue_pi() code acquired for us.
2894                         */
2895                        put_pi_state(q.pi_state);
2896                        spin_unlock(q.lock_ptr);
2897                }
2898        } else {
2899                /*
2900                 * We have been woken up by futex_unlock_pi(), a timeout, or a
2901                 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2902                 * the pi_state.
2903                 */
2904                WARN_ON(!q.pi_state);
2905                pi_mutex = &q.pi_state->pi_mutex;
2906                ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2907                debug_rt_mutex_free_waiter(&rt_waiter);
2908
2909                spin_lock(q.lock_ptr);
2910                /*
2911                 * Fixup the pi_state owner and possibly acquire the lock if we
2912                 * haven't already.
2913                 */
2914                res = fixup_owner(uaddr2, &q, !ret);
2915                /*
2916                 * If fixup_owner() returned an error, proprogate that.  If it
2917                 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2918                 */
2919                if (res)
2920                        ret = (res < 0) ? res : 0;
2921
2922                /* Unqueue and drop the lock. */
2923                unqueue_me_pi(&q);
2924        }
2925
2926        /*
2927         * If fixup_pi_state_owner() faulted and was unable to handle the
2928         * fault, unlock the rt_mutex and return the fault to userspace.
2929         */
2930        if (ret == -EFAULT) {
2931                if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2932                        rt_mutex_unlock(pi_mutex);
2933        } else if (ret == -EINTR) {
2934                /*
2935                 * We've already been requeued, but cannot restart by calling
2936                 * futex_lock_pi() directly. We could restart this syscall, but
2937                 * it would detect that the user space "val" changed and return
2938                 * -EWOULDBLOCK.  Save the overhead of the restart and return
2939                 * -EWOULDBLOCK directly.
2940                 */
2941                ret = -EWOULDBLOCK;
2942        }
2943
2944out_put_keys:
2945        put_futex_key(&q.key);
2946out_key2:
2947        put_futex_key(&key2);
2948
2949out:
2950        if (to) {
2951                hrtimer_cancel(&to->timer);
2952                destroy_hrtimer_on_stack(&to->timer);
2953        }
2954        return ret;
2955}
2956
2957/*
2958 * Support for robust futexes: the kernel cleans up held futexes at
2959 * thread exit time.
2960 *
2961 * Implementation: user-space maintains a per-thread list of locks it
2962 * is holding. Upon do_exit(), the kernel carefully walks this list,
2963 * and marks all locks that are owned by this thread with the
2964 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2965 * always manipulated with the lock held, so the list is private and
2966 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2967 * field, to allow the kernel to clean up if the thread dies after
2968 * acquiring the lock, but just before it could have added itself to
2969 * the list. There can only be one such pending lock.
2970 */
2971
2972/**
2973 * sys_set_robust_list() - Set the robust-futex list head of a task
2974 * @head:       pointer to the list-head
2975 * @len:        length of the list-head, as userspace expects
2976 */
2977SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2978                size_t, len)
2979{
2980        if (!futex_cmpxchg_enabled)
2981                return -ENOSYS;
2982        /*
2983         * The kernel knows only one size for now:
2984         */
2985        if (unlikely(len != sizeof(*head)))
2986                return -EINVAL;
2987
2988        current->robust_list = head;
2989
2990        return 0;
2991}
2992
2993/**
2994 * sys_get_robust_list() - Get the robust-futex list head of a task
2995 * @pid:        pid of the process [zero for current task]
2996 * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2997 * @len_ptr:    pointer to a length field, the kernel fills in the header size
2998 */
2999SYSCALL_DEFINE3(get_robust_list, int, pid,
3000                struct robust_list_head __user * __user *, head_ptr,
3001                size_t __user *, len_ptr)
3002{
3003        struct robust_list_head __user *head;
3004        unsigned long ret;
3005        struct task_struct *p;
3006
3007        if (!futex_cmpxchg_enabled)
3008                return -ENOSYS;
3009
3010        rcu_read_lock();
3011
3012        ret = -ESRCH;
3013        if (!pid)
3014                p = current;
3015        else {
3016                p = find_task_by_vpid(pid);
3017                if (!p)
3018                        goto err_unlock;
3019        }
3020
3021        ret = -EPERM;
3022        if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3023                goto err_unlock;
3024
3025        head = p->robust_list;
3026        rcu_read_unlock();
3027
3028        if (put_user(sizeof(*head), len_ptr))
3029                return -EFAULT;
3030        return put_user(head, head_ptr);
3031
3032err_unlock:
3033        rcu_read_unlock();
3034
3035        return ret;
3036}
3037
3038/*
3039 * Process a futex-list entry, check whether it's owned by the
3040 * dying task, and do notification if so:
3041 */
3042int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3043{
3044        u32 uval, uninitialized_var(nval), mval;
3045
3046retry:
3047        if (get_user(uval, uaddr))
3048                return -1;
3049
3050        if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3051                /*
3052                 * Ok, this dying thread is truly holding a futex
3053                 * of interest. Set the OWNER_DIED bit atomically
3054                 * via cmpxchg, and if the value had FUTEX_WAITERS
3055                 * set, wake up a waiter (if any). (We have to do a
3056                 * futex_wake() even if OWNER_DIED is already set -
3057                 * to handle the rare but possible case of recursive
3058                 * thread-death.) The rest of the cleanup is done in
3059                 * userspace.
3060                 */
3061                mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3062                /*
3063                 * We are not holding a lock here, but we want to have
3064                 * the pagefault_disable/enable() protection because
3065                 * we want to handle the fault gracefully. If the
3066                 * access fails we try to fault in the futex with R/W
3067                 * verification via get_user_pages. get_user() above
3068                 * does not guarantee R/W access. If that fails we
3069                 * give up and leave the futex locked.
3070                 */
3071                if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3072                        if (fault_in_user_writeable(uaddr))
3073                                return -1;
3074                        goto retry;
3075                }
3076                if (nval != uval)
3077                        goto retry;
3078
3079                /*
3080                 * Wake robust non-PI futexes here. The wakeup of
3081                 * PI futexes happens in exit_pi_state():
3082                 */
3083                if (!pi && (uval & FUTEX_WAITERS))
3084                        futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3085        }
3086        return 0;
3087}
3088
3089/*
3090 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3091 */
3092static inline int fetch_robust_entry(struct robust_list __user **entry,
3093                                     struct robust_list __user * __user *head,
3094                                     unsigned int *pi)
3095{
3096        unsigned long uentry;
3097
3098        if (get_user(uentry, (unsigned long __user *)head))
3099                return -EFAULT;
3100
3101        *entry = (void __user *)(uentry & ~1UL);
3102        *pi = uentry & 1;
3103
3104        return 0;
3105}
3106
3107/*
3108 * Walk curr->robust_list (very carefully, it's a userspace list!)
3109 * and mark any locks found there dead, and notify any waiters.
3110 *
3111 * We silently return on any sign of list-walking problem.
3112 */
3113void exit_robust_list(struct task_struct *curr)
3114{
3115        struct robust_list_head __user *head = curr->robust_list;
3116        struct robust_list __user *entry, *next_entry, *pending;
3117        unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3118        unsigned int uninitialized_var(next_pi);
3119        unsigned long futex_offset;
3120        int rc;
3121
3122        if (!futex_cmpxchg_enabled)
3123                return;
3124
3125        /*
3126         * Fetch the list head (which was registered earlier, via
3127         * sys_set_robust_list()):
3128         */
3129        if (fetch_robust_entry(&entry, &head->list.next, &pi))
3130                return;
3131        /*
3132         * Fetch the relative futex offset:
3133         */
3134        if (get_user(futex_offset, &head->futex_offset))
3135                return;
3136        /*
3137         * Fetch any possibly pending lock-add first, and handle it
3138         * if it exists:
3139         */
3140        if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3141                return;
3142
3143        next_entry = NULL;      /* avoid warning with gcc */
3144        while (entry != &head->list) {
3145                /*
3146                 * Fetch the next entry in the list before calling
3147                 * handle_futex_death:
3148                 */
3149                rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3150                /*
3151                 * A pending lock might already be on the list, so
3152                 * don't process it twice:
3153                 */
3154                if (entry != pending)
3155                        if (handle_futex_death((void __user *)entry + futex_offset,
3156                                                curr, pi))
3157                                return;
3158                if (rc)
3159                        return;
3160                entry = next_entry;
3161                pi = next_pi;
3162                /*
3163                 * Avoid excessively long or circular lists:
3164                 */
3165                if (!--limit)
3166                        break;
3167
3168                cond_resched();
3169        }
3170
3171        if (pending)
3172                handle_futex_death((void __user *)pending + futex_offset,
3173                                   curr, pip);
3174}
3175
3176long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3177                u32 __user *uaddr2, u32 val2, u32 val3)
3178{
3179        int cmd = op & FUTEX_CMD_MASK;
3180        unsigned int flags = 0;
3181
3182        if (!(op & FUTEX_PRIVATE_FLAG))
3183                flags |= FLAGS_SHARED;
3184
3185        if (op & FUTEX_CLOCK_REALTIME) {
3186                flags |= FLAGS_CLOCKRT;
3187                if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3188                    cmd != FUTEX_WAIT_REQUEUE_PI)
3189                        return -ENOSYS;
3190        }
3191
3192        switch (cmd) {
3193        case FUTEX_LOCK_PI:
3194        case FUTEX_UNLOCK_PI:
3195        case FUTEX_TRYLOCK_PI:
3196        case FUTEX_WAIT_REQUEUE_PI:
3197        case FUTEX_CMP_REQUEUE_PI:
3198                if (!futex_cmpxchg_enabled)
3199                        return -ENOSYS;
3200        }
3201
3202        switch (cmd) {
3203        case FUTEX_WAIT:
3204                val3 = FUTEX_BITSET_MATCH_ANY;
3205        case FUTEX_WAIT_BITSET:
3206                return futex_wait(uaddr, flags, val, timeout, val3);
3207        case FUTEX_WAKE:
3208                val3 = FUTEX_BITSET_MATCH_ANY;
3209        case FUTEX_WAKE_BITSET:
3210                return futex_wake(uaddr, flags, val, val3);
3211        case FUTEX_REQUEUE:
3212                return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3213        case FUTEX_CMP_REQUEUE:
3214                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3215        case FUTEX_WAKE_OP:
3216                return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3217        case FUTEX_LOCK_PI:
3218                return futex_lock_pi(uaddr, flags, timeout, 0);
3219        case FUTEX_UNLOCK_PI:
3220                return futex_unlock_pi(uaddr, flags);
3221        case FUTEX_TRYLOCK_PI:
3222                return futex_lock_pi(uaddr, flags, NULL, 1);
3223        case FUTEX_WAIT_REQUEUE_PI:
3224                val3 = FUTEX_BITSET_MATCH_ANY;
3225                return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3226                                             uaddr2);
3227        case FUTEX_CMP_REQUEUE_PI:
3228                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3229        }
3230        return -ENOSYS;
3231}
3232
3233
3234SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3235                struct timespec __user *, utime, u32 __user *, uaddr2,
3236                u32, val3)
3237{
3238        struct timespec ts;
3239        ktime_t t, *tp = NULL;
3240        u32 val2 = 0;
3241        int cmd = op & FUTEX_CMD_MASK;
3242
3243        if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3244                      cmd == FUTEX_WAIT_BITSET ||
3245                      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3246                if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3247                        return -EFAULT;
3248                if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3249                        return -EFAULT;
3250                if (!timespec_valid(&ts))
3251                        return -EINVAL;
3252
3253                t = timespec_to_ktime(ts);
3254                if (cmd == FUTEX_WAIT)
3255                        t = ktime_add_safe(ktime_get(), t);
3256                tp = &t;
3257        }
3258        /*
3259         * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3260         * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3261         */
3262        if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3263            cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3264                val2 = (u32) (unsigned long) utime;
3265
3266        return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3267}
3268
3269static void __init futex_detect_cmpxchg(void)
3270{
3271#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3272        u32 curval;
3273
3274        /*
3275         * This will fail and we want it. Some arch implementations do
3276         * runtime detection of the futex_atomic_cmpxchg_inatomic()
3277         * functionality. We want to know that before we call in any
3278         * of the complex code paths. Also we want to prevent
3279         * registration of robust lists in that case. NULL is
3280         * guaranteed to fault and we get -EFAULT on functional
3281         * implementation, the non-functional ones will return
3282         * -ENOSYS.
3283         */
3284        if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3285                futex_cmpxchg_enabled = 1;
3286#endif
3287}
3288
3289static int __init futex_init(void)
3290{
3291        unsigned int futex_shift;
3292        unsigned long i;
3293
3294#if CONFIG_BASE_SMALL
3295        futex_hashsize = 16;
3296#else
3297        futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3298#endif
3299
3300        futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3301                                               futex_hashsize, 0,
3302                                               futex_hashsize < 256 ? HASH_SMALL : 0,
3303                                               &futex_shift, NULL,
3304                                               futex_hashsize, futex_hashsize);
3305        futex_hashsize = 1UL << futex_shift;
3306
3307        futex_detect_cmpxchg();
3308
3309        for (i = 0; i < futex_hashsize; i++) {
3310                atomic_set(&futex_queues[i].waiters, 0);
3311                plist_head_init(&futex_queues[i].chain);
3312                spin_lock_init(&futex_queues[i].lock);
3313        }
3314
3315        return 0;
3316}
3317__initcall(futex_init);
3318