linux/kernel/kexec_core.c
<<
>>
Prefs
   1/*
   2 * kexec.c - kexec system call core code.
   3 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/capability.h>
  12#include <linux/mm.h>
  13#include <linux/file.h>
  14#include <linux/slab.h>
  15#include <linux/fs.h>
  16#include <linux/kexec.h>
  17#include <linux/mutex.h>
  18#include <linux/list.h>
  19#include <linux/highmem.h>
  20#include <linux/syscalls.h>
  21#include <linux/reboot.h>
  22#include <linux/ioport.h>
  23#include <linux/hardirq.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/utsname.h>
  27#include <linux/numa.h>
  28#include <linux/suspend.h>
  29#include <linux/device.h>
  30#include <linux/freezer.h>
  31#include <linux/pm.h>
  32#include <linux/cpu.h>
  33#include <linux/uaccess.h>
  34#include <linux/io.h>
  35#include <linux/console.h>
  36#include <linux/vmalloc.h>
  37#include <linux/swap.h>
  38#include <linux/syscore_ops.h>
  39#include <linux/compiler.h>
  40#include <linux/hugetlb.h>
  41
  42#include <asm/page.h>
  43#include <asm/sections.h>
  44
  45#include <crypto/hash.h>
  46#include <crypto/sha.h>
  47#include "kexec_internal.h"
  48
  49DEFINE_MUTEX(kexec_mutex);
  50
  51/* Per cpu memory for storing cpu states in case of system crash. */
  52note_buf_t __percpu *crash_notes;
  53
  54/* vmcoreinfo stuff */
  55static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
  56u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
  57size_t vmcoreinfo_size;
  58size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
  59
  60/* Flag to indicate we are going to kexec a new kernel */
  61bool kexec_in_progress = false;
  62
  63
  64/* Location of the reserved area for the crash kernel */
  65struct resource crashk_res = {
  66        .name  = "Crash kernel",
  67        .start = 0,
  68        .end   = 0,
  69        .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  70        .desc  = IORES_DESC_CRASH_KERNEL
  71};
  72struct resource crashk_low_res = {
  73        .name  = "Crash kernel",
  74        .start = 0,
  75        .end   = 0,
  76        .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  77        .desc  = IORES_DESC_CRASH_KERNEL
  78};
  79
  80int kexec_should_crash(struct task_struct *p)
  81{
  82        /*
  83         * If crash_kexec_post_notifiers is enabled, don't run
  84         * crash_kexec() here yet, which must be run after panic
  85         * notifiers in panic().
  86         */
  87        if (crash_kexec_post_notifiers)
  88                return 0;
  89        /*
  90         * There are 4 panic() calls in do_exit() path, each of which
  91         * corresponds to each of these 4 conditions.
  92         */
  93        if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
  94                return 1;
  95        return 0;
  96}
  97
  98int kexec_crash_loaded(void)
  99{
 100        return !!kexec_crash_image;
 101}
 102EXPORT_SYMBOL_GPL(kexec_crash_loaded);
 103
 104/*
 105 * When kexec transitions to the new kernel there is a one-to-one
 106 * mapping between physical and virtual addresses.  On processors
 107 * where you can disable the MMU this is trivial, and easy.  For
 108 * others it is still a simple predictable page table to setup.
 109 *
 110 * In that environment kexec copies the new kernel to its final
 111 * resting place.  This means I can only support memory whose
 112 * physical address can fit in an unsigned long.  In particular
 113 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 114 * If the assembly stub has more restrictive requirements
 115 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 116 * defined more restrictively in <asm/kexec.h>.
 117 *
 118 * The code for the transition from the current kernel to the
 119 * the new kernel is placed in the control_code_buffer, whose size
 120 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
 121 * page of memory is necessary, but some architectures require more.
 122 * Because this memory must be identity mapped in the transition from
 123 * virtual to physical addresses it must live in the range
 124 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 125 * modifiable.
 126 *
 127 * The assembly stub in the control code buffer is passed a linked list
 128 * of descriptor pages detailing the source pages of the new kernel,
 129 * and the destination addresses of those source pages.  As this data
 130 * structure is not used in the context of the current OS, it must
 131 * be self-contained.
 132 *
 133 * The code has been made to work with highmem pages and will use a
 134 * destination page in its final resting place (if it happens
 135 * to allocate it).  The end product of this is that most of the
 136 * physical address space, and most of RAM can be used.
 137 *
 138 * Future directions include:
 139 *  - allocating a page table with the control code buffer identity
 140 *    mapped, to simplify machine_kexec and make kexec_on_panic more
 141 *    reliable.
 142 */
 143
 144/*
 145 * KIMAGE_NO_DEST is an impossible destination address..., for
 146 * allocating pages whose destination address we do not care about.
 147 */
 148#define KIMAGE_NO_DEST (-1UL)
 149#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
 150
 151static struct page *kimage_alloc_page(struct kimage *image,
 152                                       gfp_t gfp_mask,
 153                                       unsigned long dest);
 154
 155int sanity_check_segment_list(struct kimage *image)
 156{
 157        int i;
 158        unsigned long nr_segments = image->nr_segments;
 159        unsigned long total_pages = 0;
 160
 161        /*
 162         * Verify we have good destination addresses.  The caller is
 163         * responsible for making certain we don't attempt to load
 164         * the new image into invalid or reserved areas of RAM.  This
 165         * just verifies it is an address we can use.
 166         *
 167         * Since the kernel does everything in page size chunks ensure
 168         * the destination addresses are page aligned.  Too many
 169         * special cases crop of when we don't do this.  The most
 170         * insidious is getting overlapping destination addresses
 171         * simply because addresses are changed to page size
 172         * granularity.
 173         */
 174        for (i = 0; i < nr_segments; i++) {
 175                unsigned long mstart, mend;
 176
 177                mstart = image->segment[i].mem;
 178                mend   = mstart + image->segment[i].memsz;
 179                if (mstart > mend)
 180                        return -EADDRNOTAVAIL;
 181                if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
 182                        return -EADDRNOTAVAIL;
 183                if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
 184                        return -EADDRNOTAVAIL;
 185        }
 186
 187        /* Verify our destination addresses do not overlap.
 188         * If we alloed overlapping destination addresses
 189         * through very weird things can happen with no
 190         * easy explanation as one segment stops on another.
 191         */
 192        for (i = 0; i < nr_segments; i++) {
 193                unsigned long mstart, mend;
 194                unsigned long j;
 195
 196                mstart = image->segment[i].mem;
 197                mend   = mstart + image->segment[i].memsz;
 198                for (j = 0; j < i; j++) {
 199                        unsigned long pstart, pend;
 200
 201                        pstart = image->segment[j].mem;
 202                        pend   = pstart + image->segment[j].memsz;
 203                        /* Do the segments overlap ? */
 204                        if ((mend > pstart) && (mstart < pend))
 205                                return -EINVAL;
 206                }
 207        }
 208
 209        /* Ensure our buffer sizes are strictly less than
 210         * our memory sizes.  This should always be the case,
 211         * and it is easier to check up front than to be surprised
 212         * later on.
 213         */
 214        for (i = 0; i < nr_segments; i++) {
 215                if (image->segment[i].bufsz > image->segment[i].memsz)
 216                        return -EINVAL;
 217        }
 218
 219        /*
 220         * Verify that no more than half of memory will be consumed. If the
 221         * request from userspace is too large, a large amount of time will be
 222         * wasted allocating pages, which can cause a soft lockup.
 223         */
 224        for (i = 0; i < nr_segments; i++) {
 225                if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2)
 226                        return -EINVAL;
 227
 228                total_pages += PAGE_COUNT(image->segment[i].memsz);
 229        }
 230
 231        if (total_pages > totalram_pages / 2)
 232                return -EINVAL;
 233
 234        /*
 235         * Verify we have good destination addresses.  Normally
 236         * the caller is responsible for making certain we don't
 237         * attempt to load the new image into invalid or reserved
 238         * areas of RAM.  But crash kernels are preloaded into a
 239         * reserved area of ram.  We must ensure the addresses
 240         * are in the reserved area otherwise preloading the
 241         * kernel could corrupt things.
 242         */
 243
 244        if (image->type == KEXEC_TYPE_CRASH) {
 245                for (i = 0; i < nr_segments; i++) {
 246                        unsigned long mstart, mend;
 247
 248                        mstart = image->segment[i].mem;
 249                        mend = mstart + image->segment[i].memsz - 1;
 250                        /* Ensure we are within the crash kernel limits */
 251                        if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
 252                            (mend > phys_to_boot_phys(crashk_res.end)))
 253                                return -EADDRNOTAVAIL;
 254                }
 255        }
 256
 257        return 0;
 258}
 259
 260struct kimage *do_kimage_alloc_init(void)
 261{
 262        struct kimage *image;
 263
 264        /* Allocate a controlling structure */
 265        image = kzalloc(sizeof(*image), GFP_KERNEL);
 266        if (!image)
 267                return NULL;
 268
 269        image->head = 0;
 270        image->entry = &image->head;
 271        image->last_entry = &image->head;
 272        image->control_page = ~0; /* By default this does not apply */
 273        image->type = KEXEC_TYPE_DEFAULT;
 274
 275        /* Initialize the list of control pages */
 276        INIT_LIST_HEAD(&image->control_pages);
 277
 278        /* Initialize the list of destination pages */
 279        INIT_LIST_HEAD(&image->dest_pages);
 280
 281        /* Initialize the list of unusable pages */
 282        INIT_LIST_HEAD(&image->unusable_pages);
 283
 284        return image;
 285}
 286
 287int kimage_is_destination_range(struct kimage *image,
 288                                        unsigned long start,
 289                                        unsigned long end)
 290{
 291        unsigned long i;
 292
 293        for (i = 0; i < image->nr_segments; i++) {
 294                unsigned long mstart, mend;
 295
 296                mstart = image->segment[i].mem;
 297                mend = mstart + image->segment[i].memsz;
 298                if ((end > mstart) && (start < mend))
 299                        return 1;
 300        }
 301
 302        return 0;
 303}
 304
 305static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
 306{
 307        struct page *pages;
 308
 309        pages = alloc_pages(gfp_mask, order);
 310        if (pages) {
 311                unsigned int count, i;
 312
 313                pages->mapping = NULL;
 314                set_page_private(pages, order);
 315                count = 1 << order;
 316                for (i = 0; i < count; i++)
 317                        SetPageReserved(pages + i);
 318        }
 319
 320        return pages;
 321}
 322
 323static void kimage_free_pages(struct page *page)
 324{
 325        unsigned int order, count, i;
 326
 327        order = page_private(page);
 328        count = 1 << order;
 329        for (i = 0; i < count; i++)
 330                ClearPageReserved(page + i);
 331        __free_pages(page, order);
 332}
 333
 334void kimage_free_page_list(struct list_head *list)
 335{
 336        struct page *page, *next;
 337
 338        list_for_each_entry_safe(page, next, list, lru) {
 339                list_del(&page->lru);
 340                kimage_free_pages(page);
 341        }
 342}
 343
 344static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
 345                                                        unsigned int order)
 346{
 347        /* Control pages are special, they are the intermediaries
 348         * that are needed while we copy the rest of the pages
 349         * to their final resting place.  As such they must
 350         * not conflict with either the destination addresses
 351         * or memory the kernel is already using.
 352         *
 353         * The only case where we really need more than one of
 354         * these are for architectures where we cannot disable
 355         * the MMU and must instead generate an identity mapped
 356         * page table for all of the memory.
 357         *
 358         * At worst this runs in O(N) of the image size.
 359         */
 360        struct list_head extra_pages;
 361        struct page *pages;
 362        unsigned int count;
 363
 364        count = 1 << order;
 365        INIT_LIST_HEAD(&extra_pages);
 366
 367        /* Loop while I can allocate a page and the page allocated
 368         * is a destination page.
 369         */
 370        do {
 371                unsigned long pfn, epfn, addr, eaddr;
 372
 373                pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
 374                if (!pages)
 375                        break;
 376                pfn   = page_to_boot_pfn(pages);
 377                epfn  = pfn + count;
 378                addr  = pfn << PAGE_SHIFT;
 379                eaddr = epfn << PAGE_SHIFT;
 380                if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
 381                              kimage_is_destination_range(image, addr, eaddr)) {
 382                        list_add(&pages->lru, &extra_pages);
 383                        pages = NULL;
 384                }
 385        } while (!pages);
 386
 387        if (pages) {
 388                /* Remember the allocated page... */
 389                list_add(&pages->lru, &image->control_pages);
 390
 391                /* Because the page is already in it's destination
 392                 * location we will never allocate another page at
 393                 * that address.  Therefore kimage_alloc_pages
 394                 * will not return it (again) and we don't need
 395                 * to give it an entry in image->segment[].
 396                 */
 397        }
 398        /* Deal with the destination pages I have inadvertently allocated.
 399         *
 400         * Ideally I would convert multi-page allocations into single
 401         * page allocations, and add everything to image->dest_pages.
 402         *
 403         * For now it is simpler to just free the pages.
 404         */
 405        kimage_free_page_list(&extra_pages);
 406
 407        return pages;
 408}
 409
 410static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
 411                                                      unsigned int order)
 412{
 413        /* Control pages are special, they are the intermediaries
 414         * that are needed while we copy the rest of the pages
 415         * to their final resting place.  As such they must
 416         * not conflict with either the destination addresses
 417         * or memory the kernel is already using.
 418         *
 419         * Control pages are also the only pags we must allocate
 420         * when loading a crash kernel.  All of the other pages
 421         * are specified by the segments and we just memcpy
 422         * into them directly.
 423         *
 424         * The only case where we really need more than one of
 425         * these are for architectures where we cannot disable
 426         * the MMU and must instead generate an identity mapped
 427         * page table for all of the memory.
 428         *
 429         * Given the low demand this implements a very simple
 430         * allocator that finds the first hole of the appropriate
 431         * size in the reserved memory region, and allocates all
 432         * of the memory up to and including the hole.
 433         */
 434        unsigned long hole_start, hole_end, size;
 435        struct page *pages;
 436
 437        pages = NULL;
 438        size = (1 << order) << PAGE_SHIFT;
 439        hole_start = (image->control_page + (size - 1)) & ~(size - 1);
 440        hole_end   = hole_start + size - 1;
 441        while (hole_end <= crashk_res.end) {
 442                unsigned long i;
 443
 444                if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
 445                        break;
 446                /* See if I overlap any of the segments */
 447                for (i = 0; i < image->nr_segments; i++) {
 448                        unsigned long mstart, mend;
 449
 450                        mstart = image->segment[i].mem;
 451                        mend   = mstart + image->segment[i].memsz - 1;
 452                        if ((hole_end >= mstart) && (hole_start <= mend)) {
 453                                /* Advance the hole to the end of the segment */
 454                                hole_start = (mend + (size - 1)) & ~(size - 1);
 455                                hole_end   = hole_start + size - 1;
 456                                break;
 457                        }
 458                }
 459                /* If I don't overlap any segments I have found my hole! */
 460                if (i == image->nr_segments) {
 461                        pages = pfn_to_page(hole_start >> PAGE_SHIFT);
 462                        image->control_page = hole_end;
 463                        break;
 464                }
 465        }
 466
 467        return pages;
 468}
 469
 470
 471struct page *kimage_alloc_control_pages(struct kimage *image,
 472                                         unsigned int order)
 473{
 474        struct page *pages = NULL;
 475
 476        switch (image->type) {
 477        case KEXEC_TYPE_DEFAULT:
 478                pages = kimage_alloc_normal_control_pages(image, order);
 479                break;
 480        case KEXEC_TYPE_CRASH:
 481                pages = kimage_alloc_crash_control_pages(image, order);
 482                break;
 483        }
 484
 485        return pages;
 486}
 487
 488static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
 489{
 490        if (*image->entry != 0)
 491                image->entry++;
 492
 493        if (image->entry == image->last_entry) {
 494                kimage_entry_t *ind_page;
 495                struct page *page;
 496
 497                page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
 498                if (!page)
 499                        return -ENOMEM;
 500
 501                ind_page = page_address(page);
 502                *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
 503                image->entry = ind_page;
 504                image->last_entry = ind_page +
 505                                      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
 506        }
 507        *image->entry = entry;
 508        image->entry++;
 509        *image->entry = 0;
 510
 511        return 0;
 512}
 513
 514static int kimage_set_destination(struct kimage *image,
 515                                   unsigned long destination)
 516{
 517        int result;
 518
 519        destination &= PAGE_MASK;
 520        result = kimage_add_entry(image, destination | IND_DESTINATION);
 521
 522        return result;
 523}
 524
 525
 526static int kimage_add_page(struct kimage *image, unsigned long page)
 527{
 528        int result;
 529
 530        page &= PAGE_MASK;
 531        result = kimage_add_entry(image, page | IND_SOURCE);
 532
 533        return result;
 534}
 535
 536
 537static void kimage_free_extra_pages(struct kimage *image)
 538{
 539        /* Walk through and free any extra destination pages I may have */
 540        kimage_free_page_list(&image->dest_pages);
 541
 542        /* Walk through and free any unusable pages I have cached */
 543        kimage_free_page_list(&image->unusable_pages);
 544
 545}
 546void kimage_terminate(struct kimage *image)
 547{
 548        if (*image->entry != 0)
 549                image->entry++;
 550
 551        *image->entry = IND_DONE;
 552}
 553
 554#define for_each_kimage_entry(image, ptr, entry) \
 555        for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
 556                ptr = (entry & IND_INDIRECTION) ? \
 557                        boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
 558
 559static void kimage_free_entry(kimage_entry_t entry)
 560{
 561        struct page *page;
 562
 563        page = boot_pfn_to_page(entry >> PAGE_SHIFT);
 564        kimage_free_pages(page);
 565}
 566
 567void kimage_free(struct kimage *image)
 568{
 569        kimage_entry_t *ptr, entry;
 570        kimage_entry_t ind = 0;
 571
 572        if (!image)
 573                return;
 574
 575        kimage_free_extra_pages(image);
 576        for_each_kimage_entry(image, ptr, entry) {
 577                if (entry & IND_INDIRECTION) {
 578                        /* Free the previous indirection page */
 579                        if (ind & IND_INDIRECTION)
 580                                kimage_free_entry(ind);
 581                        /* Save this indirection page until we are
 582                         * done with it.
 583                         */
 584                        ind = entry;
 585                } else if (entry & IND_SOURCE)
 586                        kimage_free_entry(entry);
 587        }
 588        /* Free the final indirection page */
 589        if (ind & IND_INDIRECTION)
 590                kimage_free_entry(ind);
 591
 592        /* Handle any machine specific cleanup */
 593        machine_kexec_cleanup(image);
 594
 595        /* Free the kexec control pages... */
 596        kimage_free_page_list(&image->control_pages);
 597
 598        /*
 599         * Free up any temporary buffers allocated. This might hit if
 600         * error occurred much later after buffer allocation.
 601         */
 602        if (image->file_mode)
 603                kimage_file_post_load_cleanup(image);
 604
 605        kfree(image);
 606}
 607
 608static kimage_entry_t *kimage_dst_used(struct kimage *image,
 609                                        unsigned long page)
 610{
 611        kimage_entry_t *ptr, entry;
 612        unsigned long destination = 0;
 613
 614        for_each_kimage_entry(image, ptr, entry) {
 615                if (entry & IND_DESTINATION)
 616                        destination = entry & PAGE_MASK;
 617                else if (entry & IND_SOURCE) {
 618                        if (page == destination)
 619                                return ptr;
 620                        destination += PAGE_SIZE;
 621                }
 622        }
 623
 624        return NULL;
 625}
 626
 627static struct page *kimage_alloc_page(struct kimage *image,
 628                                        gfp_t gfp_mask,
 629                                        unsigned long destination)
 630{
 631        /*
 632         * Here we implement safeguards to ensure that a source page
 633         * is not copied to its destination page before the data on
 634         * the destination page is no longer useful.
 635         *
 636         * To do this we maintain the invariant that a source page is
 637         * either its own destination page, or it is not a
 638         * destination page at all.
 639         *
 640         * That is slightly stronger than required, but the proof
 641         * that no problems will not occur is trivial, and the
 642         * implementation is simply to verify.
 643         *
 644         * When allocating all pages normally this algorithm will run
 645         * in O(N) time, but in the worst case it will run in O(N^2)
 646         * time.   If the runtime is a problem the data structures can
 647         * be fixed.
 648         */
 649        struct page *page;
 650        unsigned long addr;
 651
 652        /*
 653         * Walk through the list of destination pages, and see if I
 654         * have a match.
 655         */
 656        list_for_each_entry(page, &image->dest_pages, lru) {
 657                addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 658                if (addr == destination) {
 659                        list_del(&page->lru);
 660                        return page;
 661                }
 662        }
 663        page = NULL;
 664        while (1) {
 665                kimage_entry_t *old;
 666
 667                /* Allocate a page, if we run out of memory give up */
 668                page = kimage_alloc_pages(gfp_mask, 0);
 669                if (!page)
 670                        return NULL;
 671                /* If the page cannot be used file it away */
 672                if (page_to_boot_pfn(page) >
 673                                (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
 674                        list_add(&page->lru, &image->unusable_pages);
 675                        continue;
 676                }
 677                addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 678
 679                /* If it is the destination page we want use it */
 680                if (addr == destination)
 681                        break;
 682
 683                /* If the page is not a destination page use it */
 684                if (!kimage_is_destination_range(image, addr,
 685                                                  addr + PAGE_SIZE))
 686                        break;
 687
 688                /*
 689                 * I know that the page is someones destination page.
 690                 * See if there is already a source page for this
 691                 * destination page.  And if so swap the source pages.
 692                 */
 693                old = kimage_dst_used(image, addr);
 694                if (old) {
 695                        /* If so move it */
 696                        unsigned long old_addr;
 697                        struct page *old_page;
 698
 699                        old_addr = *old & PAGE_MASK;
 700                        old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
 701                        copy_highpage(page, old_page);
 702                        *old = addr | (*old & ~PAGE_MASK);
 703
 704                        /* The old page I have found cannot be a
 705                         * destination page, so return it if it's
 706                         * gfp_flags honor the ones passed in.
 707                         */
 708                        if (!(gfp_mask & __GFP_HIGHMEM) &&
 709                            PageHighMem(old_page)) {
 710                                kimage_free_pages(old_page);
 711                                continue;
 712                        }
 713                        addr = old_addr;
 714                        page = old_page;
 715                        break;
 716                }
 717                /* Place the page on the destination list, to be used later */
 718                list_add(&page->lru, &image->dest_pages);
 719        }
 720
 721        return page;
 722}
 723
 724static int kimage_load_normal_segment(struct kimage *image,
 725                                         struct kexec_segment *segment)
 726{
 727        unsigned long maddr;
 728        size_t ubytes, mbytes;
 729        int result;
 730        unsigned char __user *buf = NULL;
 731        unsigned char *kbuf = NULL;
 732
 733        result = 0;
 734        if (image->file_mode)
 735                kbuf = segment->kbuf;
 736        else
 737                buf = segment->buf;
 738        ubytes = segment->bufsz;
 739        mbytes = segment->memsz;
 740        maddr = segment->mem;
 741
 742        result = kimage_set_destination(image, maddr);
 743        if (result < 0)
 744                goto out;
 745
 746        while (mbytes) {
 747                struct page *page;
 748                char *ptr;
 749                size_t uchunk, mchunk;
 750
 751                page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
 752                if (!page) {
 753                        result  = -ENOMEM;
 754                        goto out;
 755                }
 756                result = kimage_add_page(image, page_to_boot_pfn(page)
 757                                                                << PAGE_SHIFT);
 758                if (result < 0)
 759                        goto out;
 760
 761                ptr = kmap(page);
 762                /* Start with a clear page */
 763                clear_page(ptr);
 764                ptr += maddr & ~PAGE_MASK;
 765                mchunk = min_t(size_t, mbytes,
 766                                PAGE_SIZE - (maddr & ~PAGE_MASK));
 767                uchunk = min(ubytes, mchunk);
 768
 769                /* For file based kexec, source pages are in kernel memory */
 770                if (image->file_mode)
 771                        memcpy(ptr, kbuf, uchunk);
 772                else
 773                        result = copy_from_user(ptr, buf, uchunk);
 774                kunmap(page);
 775                if (result) {
 776                        result = -EFAULT;
 777                        goto out;
 778                }
 779                ubytes -= uchunk;
 780                maddr  += mchunk;
 781                if (image->file_mode)
 782                        kbuf += mchunk;
 783                else
 784                        buf += mchunk;
 785                mbytes -= mchunk;
 786        }
 787out:
 788        return result;
 789}
 790
 791static int kimage_load_crash_segment(struct kimage *image,
 792                                        struct kexec_segment *segment)
 793{
 794        /* For crash dumps kernels we simply copy the data from
 795         * user space to it's destination.
 796         * We do things a page at a time for the sake of kmap.
 797         */
 798        unsigned long maddr;
 799        size_t ubytes, mbytes;
 800        int result;
 801        unsigned char __user *buf = NULL;
 802        unsigned char *kbuf = NULL;
 803
 804        result = 0;
 805        if (image->file_mode)
 806                kbuf = segment->kbuf;
 807        else
 808                buf = segment->buf;
 809        ubytes = segment->bufsz;
 810        mbytes = segment->memsz;
 811        maddr = segment->mem;
 812        while (mbytes) {
 813                struct page *page;
 814                char *ptr;
 815                size_t uchunk, mchunk;
 816
 817                page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
 818                if (!page) {
 819                        result  = -ENOMEM;
 820                        goto out;
 821                }
 822                ptr = kmap(page);
 823                ptr += maddr & ~PAGE_MASK;
 824                mchunk = min_t(size_t, mbytes,
 825                                PAGE_SIZE - (maddr & ~PAGE_MASK));
 826                uchunk = min(ubytes, mchunk);
 827                if (mchunk > uchunk) {
 828                        /* Zero the trailing part of the page */
 829                        memset(ptr + uchunk, 0, mchunk - uchunk);
 830                }
 831
 832                /* For file based kexec, source pages are in kernel memory */
 833                if (image->file_mode)
 834                        memcpy(ptr, kbuf, uchunk);
 835                else
 836                        result = copy_from_user(ptr, buf, uchunk);
 837                kexec_flush_icache_page(page);
 838                kunmap(page);
 839                if (result) {
 840                        result = -EFAULT;
 841                        goto out;
 842                }
 843                ubytes -= uchunk;
 844                maddr  += mchunk;
 845                if (image->file_mode)
 846                        kbuf += mchunk;
 847                else
 848                        buf += mchunk;
 849                mbytes -= mchunk;
 850        }
 851out:
 852        return result;
 853}
 854
 855int kimage_load_segment(struct kimage *image,
 856                                struct kexec_segment *segment)
 857{
 858        int result = -ENOMEM;
 859
 860        switch (image->type) {
 861        case KEXEC_TYPE_DEFAULT:
 862                result = kimage_load_normal_segment(image, segment);
 863                break;
 864        case KEXEC_TYPE_CRASH:
 865                result = kimage_load_crash_segment(image, segment);
 866                break;
 867        }
 868
 869        return result;
 870}
 871
 872struct kimage *kexec_image;
 873struct kimage *kexec_crash_image;
 874int kexec_load_disabled;
 875
 876/*
 877 * No panic_cpu check version of crash_kexec().  This function is called
 878 * only when panic_cpu holds the current CPU number; this is the only CPU
 879 * which processes crash_kexec routines.
 880 */
 881void __crash_kexec(struct pt_regs *regs)
 882{
 883        /* Take the kexec_mutex here to prevent sys_kexec_load
 884         * running on one cpu from replacing the crash kernel
 885         * we are using after a panic on a different cpu.
 886         *
 887         * If the crash kernel was not located in a fixed area
 888         * of memory the xchg(&kexec_crash_image) would be
 889         * sufficient.  But since I reuse the memory...
 890         */
 891        if (mutex_trylock(&kexec_mutex)) {
 892                if (kexec_crash_image) {
 893                        struct pt_regs fixed_regs;
 894
 895                        crash_setup_regs(&fixed_regs, regs);
 896                        crash_save_vmcoreinfo();
 897                        machine_crash_shutdown(&fixed_regs);
 898                        machine_kexec(kexec_crash_image);
 899                }
 900                mutex_unlock(&kexec_mutex);
 901        }
 902}
 903
 904void crash_kexec(struct pt_regs *regs)
 905{
 906        int old_cpu, this_cpu;
 907
 908        /*
 909         * Only one CPU is allowed to execute the crash_kexec() code as with
 910         * panic().  Otherwise parallel calls of panic() and crash_kexec()
 911         * may stop each other.  To exclude them, we use panic_cpu here too.
 912         */
 913        this_cpu = raw_smp_processor_id();
 914        old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
 915        if (old_cpu == PANIC_CPU_INVALID) {
 916                /* This is the 1st CPU which comes here, so go ahead. */
 917                printk_nmi_flush_on_panic();
 918                __crash_kexec(regs);
 919
 920                /*
 921                 * Reset panic_cpu to allow another panic()/crash_kexec()
 922                 * call.
 923                 */
 924                atomic_set(&panic_cpu, PANIC_CPU_INVALID);
 925        }
 926}
 927
 928size_t crash_get_memory_size(void)
 929{
 930        size_t size = 0;
 931
 932        mutex_lock(&kexec_mutex);
 933        if (crashk_res.end != crashk_res.start)
 934                size = resource_size(&crashk_res);
 935        mutex_unlock(&kexec_mutex);
 936        return size;
 937}
 938
 939void __weak crash_free_reserved_phys_range(unsigned long begin,
 940                                           unsigned long end)
 941{
 942        unsigned long addr;
 943
 944        for (addr = begin; addr < end; addr += PAGE_SIZE)
 945                free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
 946}
 947
 948int crash_shrink_memory(unsigned long new_size)
 949{
 950        int ret = 0;
 951        unsigned long start, end;
 952        unsigned long old_size;
 953        struct resource *ram_res;
 954
 955        mutex_lock(&kexec_mutex);
 956
 957        if (kexec_crash_image) {
 958                ret = -ENOENT;
 959                goto unlock;
 960        }
 961        start = crashk_res.start;
 962        end = crashk_res.end;
 963        old_size = (end == 0) ? 0 : end - start + 1;
 964        if (new_size >= old_size) {
 965                ret = (new_size == old_size) ? 0 : -EINVAL;
 966                goto unlock;
 967        }
 968
 969        ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
 970        if (!ram_res) {
 971                ret = -ENOMEM;
 972                goto unlock;
 973        }
 974
 975        start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
 976        end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
 977
 978        crash_free_reserved_phys_range(end, crashk_res.end);
 979
 980        if ((start == end) && (crashk_res.parent != NULL))
 981                release_resource(&crashk_res);
 982
 983        ram_res->start = end;
 984        ram_res->end = crashk_res.end;
 985        ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
 986        ram_res->name = "System RAM";
 987
 988        crashk_res.end = end - 1;
 989
 990        insert_resource(&iomem_resource, ram_res);
 991
 992unlock:
 993        mutex_unlock(&kexec_mutex);
 994        return ret;
 995}
 996
 997static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
 998                            size_t data_len)
 999{
1000        struct elf_note note;
1001
1002        note.n_namesz = strlen(name) + 1;
1003        note.n_descsz = data_len;
1004        note.n_type   = type;
1005        memcpy(buf, &note, sizeof(note));
1006        buf += (sizeof(note) + 3)/4;
1007        memcpy(buf, name, note.n_namesz);
1008        buf += (note.n_namesz + 3)/4;
1009        memcpy(buf, data, note.n_descsz);
1010        buf += (note.n_descsz + 3)/4;
1011
1012        return buf;
1013}
1014
1015static void final_note(u32 *buf)
1016{
1017        struct elf_note note;
1018
1019        note.n_namesz = 0;
1020        note.n_descsz = 0;
1021        note.n_type   = 0;
1022        memcpy(buf, &note, sizeof(note));
1023}
1024
1025void crash_save_cpu(struct pt_regs *regs, int cpu)
1026{
1027        struct elf_prstatus prstatus;
1028        u32 *buf;
1029
1030        if ((cpu < 0) || (cpu >= nr_cpu_ids))
1031                return;
1032
1033        /* Using ELF notes here is opportunistic.
1034         * I need a well defined structure format
1035         * for the data I pass, and I need tags
1036         * on the data to indicate what information I have
1037         * squirrelled away.  ELF notes happen to provide
1038         * all of that, so there is no need to invent something new.
1039         */
1040        buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1041        if (!buf)
1042                return;
1043        memset(&prstatus, 0, sizeof(prstatus));
1044        prstatus.pr_pid = current->pid;
1045        elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1046        buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1047                              &prstatus, sizeof(prstatus));
1048        final_note(buf);
1049}
1050
1051static int __init crash_notes_memory_init(void)
1052{
1053        /* Allocate memory for saving cpu registers. */
1054        size_t size, align;
1055
1056        /*
1057         * crash_notes could be allocated across 2 vmalloc pages when percpu
1058         * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1059         * pages are also on 2 continuous physical pages. In this case the
1060         * 2nd part of crash_notes in 2nd page could be lost since only the
1061         * starting address and size of crash_notes are exported through sysfs.
1062         * Here round up the size of crash_notes to the nearest power of two
1063         * and pass it to __alloc_percpu as align value. This can make sure
1064         * crash_notes is allocated inside one physical page.
1065         */
1066        size = sizeof(note_buf_t);
1067        align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1068
1069        /*
1070         * Break compile if size is bigger than PAGE_SIZE since crash_notes
1071         * definitely will be in 2 pages with that.
1072         */
1073        BUILD_BUG_ON(size > PAGE_SIZE);
1074
1075        crash_notes = __alloc_percpu(size, align);
1076        if (!crash_notes) {
1077                pr_warn("Memory allocation for saving cpu register states failed\n");
1078                return -ENOMEM;
1079        }
1080        return 0;
1081}
1082subsys_initcall(crash_notes_memory_init);
1083
1084
1085/*
1086 * parsing the "crashkernel" commandline
1087 *
1088 * this code is intended to be called from architecture specific code
1089 */
1090
1091
1092/*
1093 * This function parses command lines in the format
1094 *
1095 *   crashkernel=ramsize-range:size[,...][@offset]
1096 *
1097 * The function returns 0 on success and -EINVAL on failure.
1098 */
1099static int __init parse_crashkernel_mem(char *cmdline,
1100                                        unsigned long long system_ram,
1101                                        unsigned long long *crash_size,
1102                                        unsigned long long *crash_base)
1103{
1104        char *cur = cmdline, *tmp;
1105
1106        /* for each entry of the comma-separated list */
1107        do {
1108                unsigned long long start, end = ULLONG_MAX, size;
1109
1110                /* get the start of the range */
1111                start = memparse(cur, &tmp);
1112                if (cur == tmp) {
1113                        pr_warn("crashkernel: Memory value expected\n");
1114                        return -EINVAL;
1115                }
1116                cur = tmp;
1117                if (*cur != '-') {
1118                        pr_warn("crashkernel: '-' expected\n");
1119                        return -EINVAL;
1120                }
1121                cur++;
1122
1123                /* if no ':' is here, than we read the end */
1124                if (*cur != ':') {
1125                        end = memparse(cur, &tmp);
1126                        if (cur == tmp) {
1127                                pr_warn("crashkernel: Memory value expected\n");
1128                                return -EINVAL;
1129                        }
1130                        cur = tmp;
1131                        if (end <= start) {
1132                                pr_warn("crashkernel: end <= start\n");
1133                                return -EINVAL;
1134                        }
1135                }
1136
1137                if (*cur != ':') {
1138                        pr_warn("crashkernel: ':' expected\n");
1139                        return -EINVAL;
1140                }
1141                cur++;
1142
1143                size = memparse(cur, &tmp);
1144                if (cur == tmp) {
1145                        pr_warn("Memory value expected\n");
1146                        return -EINVAL;
1147                }
1148                cur = tmp;
1149                if (size >= system_ram) {
1150                        pr_warn("crashkernel: invalid size\n");
1151                        return -EINVAL;
1152                }
1153
1154                /* match ? */
1155                if (system_ram >= start && system_ram < end) {
1156                        *crash_size = size;
1157                        break;
1158                }
1159        } while (*cur++ == ',');
1160
1161        if (*crash_size > 0) {
1162                while (*cur && *cur != ' ' && *cur != '@')
1163                        cur++;
1164                if (*cur == '@') {
1165                        cur++;
1166                        *crash_base = memparse(cur, &tmp);
1167                        if (cur == tmp) {
1168                                pr_warn("Memory value expected after '@'\n");
1169                                return -EINVAL;
1170                        }
1171                }
1172        }
1173
1174        return 0;
1175}
1176
1177/*
1178 * That function parses "simple" (old) crashkernel command lines like
1179 *
1180 *      crashkernel=size[@offset]
1181 *
1182 * It returns 0 on success and -EINVAL on failure.
1183 */
1184static int __init parse_crashkernel_simple(char *cmdline,
1185                                           unsigned long long *crash_size,
1186                                           unsigned long long *crash_base)
1187{
1188        char *cur = cmdline;
1189
1190        *crash_size = memparse(cmdline, &cur);
1191        if (cmdline == cur) {
1192                pr_warn("crashkernel: memory value expected\n");
1193                return -EINVAL;
1194        }
1195
1196        if (*cur == '@')
1197                *crash_base = memparse(cur+1, &cur);
1198        else if (*cur != ' ' && *cur != '\0') {
1199                pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1200                return -EINVAL;
1201        }
1202
1203        return 0;
1204}
1205
1206#define SUFFIX_HIGH 0
1207#define SUFFIX_LOW  1
1208#define SUFFIX_NULL 2
1209static __initdata char *suffix_tbl[] = {
1210        [SUFFIX_HIGH] = ",high",
1211        [SUFFIX_LOW]  = ",low",
1212        [SUFFIX_NULL] = NULL,
1213};
1214
1215/*
1216 * That function parses "suffix"  crashkernel command lines like
1217 *
1218 *      crashkernel=size,[high|low]
1219 *
1220 * It returns 0 on success and -EINVAL on failure.
1221 */
1222static int __init parse_crashkernel_suffix(char *cmdline,
1223                                           unsigned long long   *crash_size,
1224                                           const char *suffix)
1225{
1226        char *cur = cmdline;
1227
1228        *crash_size = memparse(cmdline, &cur);
1229        if (cmdline == cur) {
1230                pr_warn("crashkernel: memory value expected\n");
1231                return -EINVAL;
1232        }
1233
1234        /* check with suffix */
1235        if (strncmp(cur, suffix, strlen(suffix))) {
1236                pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1237                return -EINVAL;
1238        }
1239        cur += strlen(suffix);
1240        if (*cur != ' ' && *cur != '\0') {
1241                pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1242                return -EINVAL;
1243        }
1244
1245        return 0;
1246}
1247
1248static __init char *get_last_crashkernel(char *cmdline,
1249                             const char *name,
1250                             const char *suffix)
1251{
1252        char *p = cmdline, *ck_cmdline = NULL;
1253
1254        /* find crashkernel and use the last one if there are more */
1255        p = strstr(p, name);
1256        while (p) {
1257                char *end_p = strchr(p, ' ');
1258                char *q;
1259
1260                if (!end_p)
1261                        end_p = p + strlen(p);
1262
1263                if (!suffix) {
1264                        int i;
1265
1266                        /* skip the one with any known suffix */
1267                        for (i = 0; suffix_tbl[i]; i++) {
1268                                q = end_p - strlen(suffix_tbl[i]);
1269                                if (!strncmp(q, suffix_tbl[i],
1270                                             strlen(suffix_tbl[i])))
1271                                        goto next;
1272                        }
1273                        ck_cmdline = p;
1274                } else {
1275                        q = end_p - strlen(suffix);
1276                        if (!strncmp(q, suffix, strlen(suffix)))
1277                                ck_cmdline = p;
1278                }
1279next:
1280                p = strstr(p+1, name);
1281        }
1282
1283        if (!ck_cmdline)
1284                return NULL;
1285
1286        return ck_cmdline;
1287}
1288
1289static int __init __parse_crashkernel(char *cmdline,
1290                             unsigned long long system_ram,
1291                             unsigned long long *crash_size,
1292                             unsigned long long *crash_base,
1293                             const char *name,
1294                             const char *suffix)
1295{
1296        char    *first_colon, *first_space;
1297        char    *ck_cmdline;
1298
1299        BUG_ON(!crash_size || !crash_base);
1300        *crash_size = 0;
1301        *crash_base = 0;
1302
1303        ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1304
1305        if (!ck_cmdline)
1306                return -EINVAL;
1307
1308        ck_cmdline += strlen(name);
1309
1310        if (suffix)
1311                return parse_crashkernel_suffix(ck_cmdline, crash_size,
1312                                suffix);
1313        /*
1314         * if the commandline contains a ':', then that's the extended
1315         * syntax -- if not, it must be the classic syntax
1316         */
1317        first_colon = strchr(ck_cmdline, ':');
1318        first_space = strchr(ck_cmdline, ' ');
1319        if (first_colon && (!first_space || first_colon < first_space))
1320                return parse_crashkernel_mem(ck_cmdline, system_ram,
1321                                crash_size, crash_base);
1322
1323        return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1324}
1325
1326/*
1327 * That function is the entry point for command line parsing and should be
1328 * called from the arch-specific code.
1329 */
1330int __init parse_crashkernel(char *cmdline,
1331                             unsigned long long system_ram,
1332                             unsigned long long *crash_size,
1333                             unsigned long long *crash_base)
1334{
1335        return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1336                                        "crashkernel=", NULL);
1337}
1338
1339int __init parse_crashkernel_high(char *cmdline,
1340                             unsigned long long system_ram,
1341                             unsigned long long *crash_size,
1342                             unsigned long long *crash_base)
1343{
1344        return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1345                                "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1346}
1347
1348int __init parse_crashkernel_low(char *cmdline,
1349                             unsigned long long system_ram,
1350                             unsigned long long *crash_size,
1351                             unsigned long long *crash_base)
1352{
1353        return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1354                                "crashkernel=", suffix_tbl[SUFFIX_LOW]);
1355}
1356
1357static void update_vmcoreinfo_note(void)
1358{
1359        u32 *buf = vmcoreinfo_note;
1360
1361        if (!vmcoreinfo_size)
1362                return;
1363        buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1364                              vmcoreinfo_size);
1365        final_note(buf);
1366}
1367
1368void crash_save_vmcoreinfo(void)
1369{
1370        vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1371        update_vmcoreinfo_note();
1372}
1373
1374void vmcoreinfo_append_str(const char *fmt, ...)
1375{
1376        va_list args;
1377        char buf[0x50];
1378        size_t r;
1379
1380        va_start(args, fmt);
1381        r = vscnprintf(buf, sizeof(buf), fmt, args);
1382        va_end(args);
1383
1384        r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1385
1386        memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1387
1388        vmcoreinfo_size += r;
1389}
1390
1391/*
1392 * provide an empty default implementation here -- architecture
1393 * code may override this
1394 */
1395void __weak arch_crash_save_vmcoreinfo(void)
1396{}
1397
1398phys_addr_t __weak paddr_vmcoreinfo_note(void)
1399{
1400        return __pa((unsigned long)(char *)&vmcoreinfo_note);
1401}
1402
1403static int __init crash_save_vmcoreinfo_init(void)
1404{
1405        VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1406        VMCOREINFO_PAGESIZE(PAGE_SIZE);
1407
1408        VMCOREINFO_SYMBOL(init_uts_ns);
1409        VMCOREINFO_SYMBOL(node_online_map);
1410#ifdef CONFIG_MMU
1411        VMCOREINFO_SYMBOL(swapper_pg_dir);
1412#endif
1413        VMCOREINFO_SYMBOL(_stext);
1414        VMCOREINFO_SYMBOL(vmap_area_list);
1415
1416#ifndef CONFIG_NEED_MULTIPLE_NODES
1417        VMCOREINFO_SYMBOL(mem_map);
1418        VMCOREINFO_SYMBOL(contig_page_data);
1419#endif
1420#ifdef CONFIG_SPARSEMEM
1421        VMCOREINFO_SYMBOL(mem_section);
1422        VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1423        VMCOREINFO_STRUCT_SIZE(mem_section);
1424        VMCOREINFO_OFFSET(mem_section, section_mem_map);
1425#endif
1426        VMCOREINFO_STRUCT_SIZE(page);
1427        VMCOREINFO_STRUCT_SIZE(pglist_data);
1428        VMCOREINFO_STRUCT_SIZE(zone);
1429        VMCOREINFO_STRUCT_SIZE(free_area);
1430        VMCOREINFO_STRUCT_SIZE(list_head);
1431        VMCOREINFO_SIZE(nodemask_t);
1432        VMCOREINFO_OFFSET(page, flags);
1433        VMCOREINFO_OFFSET(page, _refcount);
1434        VMCOREINFO_OFFSET(page, mapping);
1435        VMCOREINFO_OFFSET(page, lru);
1436        VMCOREINFO_OFFSET(page, _mapcount);
1437        VMCOREINFO_OFFSET(page, private);
1438        VMCOREINFO_OFFSET(page, compound_dtor);
1439        VMCOREINFO_OFFSET(page, compound_order);
1440        VMCOREINFO_OFFSET(page, compound_head);
1441        VMCOREINFO_OFFSET(pglist_data, node_zones);
1442        VMCOREINFO_OFFSET(pglist_data, nr_zones);
1443#ifdef CONFIG_FLAT_NODE_MEM_MAP
1444        VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1445#endif
1446        VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1447        VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1448        VMCOREINFO_OFFSET(pglist_data, node_id);
1449        VMCOREINFO_OFFSET(zone, free_area);
1450        VMCOREINFO_OFFSET(zone, vm_stat);
1451        VMCOREINFO_OFFSET(zone, spanned_pages);
1452        VMCOREINFO_OFFSET(free_area, free_list);
1453        VMCOREINFO_OFFSET(list_head, next);
1454        VMCOREINFO_OFFSET(list_head, prev);
1455        VMCOREINFO_OFFSET(vmap_area, va_start);
1456        VMCOREINFO_OFFSET(vmap_area, list);
1457        VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1458        log_buf_kexec_setup();
1459        VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1460        VMCOREINFO_NUMBER(NR_FREE_PAGES);
1461        VMCOREINFO_NUMBER(PG_lru);
1462        VMCOREINFO_NUMBER(PG_private);
1463        VMCOREINFO_NUMBER(PG_swapcache);
1464        VMCOREINFO_NUMBER(PG_slab);
1465#ifdef CONFIG_MEMORY_FAILURE
1466        VMCOREINFO_NUMBER(PG_hwpoison);
1467#endif
1468        VMCOREINFO_NUMBER(PG_head_mask);
1469        VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1470#ifdef CONFIG_X86
1471        VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
1472#endif
1473#ifdef CONFIG_HUGETLB_PAGE
1474        VMCOREINFO_NUMBER(HUGETLB_PAGE_DTOR);
1475#endif
1476
1477        arch_crash_save_vmcoreinfo();
1478        update_vmcoreinfo_note();
1479
1480        return 0;
1481}
1482
1483subsys_initcall(crash_save_vmcoreinfo_init);
1484
1485/*
1486 * Move into place and start executing a preloaded standalone
1487 * executable.  If nothing was preloaded return an error.
1488 */
1489int kernel_kexec(void)
1490{
1491        int error = 0;
1492
1493        if (!mutex_trylock(&kexec_mutex))
1494                return -EBUSY;
1495        if (!kexec_image) {
1496                error = -EINVAL;
1497                goto Unlock;
1498        }
1499
1500#ifdef CONFIG_KEXEC_JUMP
1501        if (kexec_image->preserve_context) {
1502                lock_system_sleep();
1503                pm_prepare_console();
1504                error = freeze_processes();
1505                if (error) {
1506                        error = -EBUSY;
1507                        goto Restore_console;
1508                }
1509                suspend_console();
1510                error = dpm_suspend_start(PMSG_FREEZE);
1511                if (error)
1512                        goto Resume_console;
1513                /* At this point, dpm_suspend_start() has been called,
1514                 * but *not* dpm_suspend_end(). We *must* call
1515                 * dpm_suspend_end() now.  Otherwise, drivers for
1516                 * some devices (e.g. interrupt controllers) become
1517                 * desynchronized with the actual state of the
1518                 * hardware at resume time, and evil weirdness ensues.
1519                 */
1520                error = dpm_suspend_end(PMSG_FREEZE);
1521                if (error)
1522                        goto Resume_devices;
1523                error = disable_nonboot_cpus();
1524                if (error)
1525                        goto Enable_cpus;
1526                local_irq_disable();
1527                error = syscore_suspend();
1528                if (error)
1529                        goto Enable_irqs;
1530        } else
1531#endif
1532        {
1533                kexec_in_progress = true;
1534                kernel_restart_prepare(NULL);
1535                migrate_to_reboot_cpu();
1536
1537                /*
1538                 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1539                 * no further code needs to use CPU hotplug (which is true in
1540                 * the reboot case). However, the kexec path depends on using
1541                 * CPU hotplug again; so re-enable it here.
1542                 */
1543                cpu_hotplug_enable();
1544                pr_emerg("Starting new kernel\n");
1545                machine_shutdown();
1546        }
1547
1548        machine_kexec(kexec_image);
1549
1550#ifdef CONFIG_KEXEC_JUMP
1551        if (kexec_image->preserve_context) {
1552                syscore_resume();
1553 Enable_irqs:
1554                local_irq_enable();
1555 Enable_cpus:
1556                enable_nonboot_cpus();
1557                dpm_resume_start(PMSG_RESTORE);
1558 Resume_devices:
1559                dpm_resume_end(PMSG_RESTORE);
1560 Resume_console:
1561                resume_console();
1562                thaw_processes();
1563 Restore_console:
1564                pm_restore_console();
1565                unlock_system_sleep();
1566        }
1567#endif
1568
1569 Unlock:
1570        mutex_unlock(&kexec_mutex);
1571        return error;
1572}
1573
1574/*
1575 * Protection mechanism for crashkernel reserved memory after
1576 * the kdump kernel is loaded.
1577 *
1578 * Provide an empty default implementation here -- architecture
1579 * code may override this
1580 */
1581void __weak arch_kexec_protect_crashkres(void)
1582{}
1583
1584void __weak arch_kexec_unprotect_crashkres(void)
1585{}
1586