linux/kernel/kprobes.c
<<
>>
Prefs
   1/*
   2 *  Kernel Probes (KProbes)
   3 *  kernel/kprobes.c
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18 *
  19 * Copyright (C) IBM Corporation, 2002, 2004
  20 *
  21 * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  22 *              Probes initial implementation (includes suggestions from
  23 *              Rusty Russell).
  24 * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  25 *              hlists and exceptions notifier as suggested by Andi Kleen.
  26 * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  27 *              interface to access function arguments.
  28 * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  29 *              exceptions notifier to be first on the priority list.
  30 * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  31 *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  32 *              <prasanna@in.ibm.com> added function-return probes.
  33 */
  34#include <linux/kprobes.h>
  35#include <linux/hash.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/stddef.h>
  39#include <linux/export.h>
  40#include <linux/moduleloader.h>
  41#include <linux/kallsyms.h>
  42#include <linux/freezer.h>
  43#include <linux/seq_file.h>
  44#include <linux/debugfs.h>
  45#include <linux/sysctl.h>
  46#include <linux/kdebug.h>
  47#include <linux/memory.h>
  48#include <linux/ftrace.h>
  49#include <linux/cpu.h>
  50#include <linux/jump_label.h>
  51
  52#include <asm-generic/sections.h>
  53#include <asm/cacheflush.h>
  54#include <asm/errno.h>
  55#include <asm/uaccess.h>
  56
  57#define KPROBE_HASH_BITS 6
  58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  59
  60
  61/*
  62 * Some oddball architectures like 64bit powerpc have function descriptors
  63 * so this must be overridable.
  64 */
  65#ifndef kprobe_lookup_name
  66#define kprobe_lookup_name(name, addr) \
  67        addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
  68#endif
  69
  70static int kprobes_initialized;
  71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
  73
  74/* NOTE: change this value only with kprobe_mutex held */
  75static bool kprobes_all_disarmed;
  76
  77/* This protects kprobe_table and optimizing_list */
  78static DEFINE_MUTEX(kprobe_mutex);
  79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
  80static struct {
  81        raw_spinlock_t lock ____cacheline_aligned_in_smp;
  82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
  83
  84static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
  85{
  86        return &(kretprobe_table_locks[hash].lock);
  87}
  88
  89/* Blacklist -- list of struct kprobe_blacklist_entry */
  90static LIST_HEAD(kprobe_blacklist);
  91
  92#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  93/*
  94 * kprobe->ainsn.insn points to the copy of the instruction to be
  95 * single-stepped. x86_64, POWER4 and above have no-exec support and
  96 * stepping on the instruction on a vmalloced/kmalloced/data page
  97 * is a recipe for disaster
  98 */
  99struct kprobe_insn_page {
 100        struct list_head list;
 101        kprobe_opcode_t *insns;         /* Page of instruction slots */
 102        struct kprobe_insn_cache *cache;
 103        int nused;
 104        int ngarbage;
 105        char slot_used[];
 106};
 107
 108#define KPROBE_INSN_PAGE_SIZE(slots)                    \
 109        (offsetof(struct kprobe_insn_page, slot_used) + \
 110         (sizeof(char) * (slots)))
 111
 112static int slots_per_page(struct kprobe_insn_cache *c)
 113{
 114        return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
 115}
 116
 117enum kprobe_slot_state {
 118        SLOT_CLEAN = 0,
 119        SLOT_DIRTY = 1,
 120        SLOT_USED = 2,
 121};
 122
 123static void *alloc_insn_page(void)
 124{
 125        return module_alloc(PAGE_SIZE);
 126}
 127
 128static void free_insn_page(void *page)
 129{
 130        module_memfree(page);
 131}
 132
 133struct kprobe_insn_cache kprobe_insn_slots = {
 134        .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 135        .alloc = alloc_insn_page,
 136        .free = free_insn_page,
 137        .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 138        .insn_size = MAX_INSN_SIZE,
 139        .nr_garbage = 0,
 140};
 141static int collect_garbage_slots(struct kprobe_insn_cache *c);
 142
 143/**
 144 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 145 * We allocate an executable page if there's no room on existing ones.
 146 */
 147kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 148{
 149        struct kprobe_insn_page *kip;
 150        kprobe_opcode_t *slot = NULL;
 151
 152        mutex_lock(&c->mutex);
 153 retry:
 154        list_for_each_entry(kip, &c->pages, list) {
 155                if (kip->nused < slots_per_page(c)) {
 156                        int i;
 157                        for (i = 0; i < slots_per_page(c); i++) {
 158                                if (kip->slot_used[i] == SLOT_CLEAN) {
 159                                        kip->slot_used[i] = SLOT_USED;
 160                                        kip->nused++;
 161                                        slot = kip->insns + (i * c->insn_size);
 162                                        goto out;
 163                                }
 164                        }
 165                        /* kip->nused is broken. Fix it. */
 166                        kip->nused = slots_per_page(c);
 167                        WARN_ON(1);
 168                }
 169        }
 170
 171        /* If there are any garbage slots, collect it and try again. */
 172        if (c->nr_garbage && collect_garbage_slots(c) == 0)
 173                goto retry;
 174
 175        /* All out of space.  Need to allocate a new page. */
 176        kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 177        if (!kip)
 178                goto out;
 179
 180        /*
 181         * Use module_alloc so this page is within +/- 2GB of where the
 182         * kernel image and loaded module images reside. This is required
 183         * so x86_64 can correctly handle the %rip-relative fixups.
 184         */
 185        kip->insns = c->alloc();
 186        if (!kip->insns) {
 187                kfree(kip);
 188                goto out;
 189        }
 190        INIT_LIST_HEAD(&kip->list);
 191        memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 192        kip->slot_used[0] = SLOT_USED;
 193        kip->nused = 1;
 194        kip->ngarbage = 0;
 195        kip->cache = c;
 196        list_add(&kip->list, &c->pages);
 197        slot = kip->insns;
 198out:
 199        mutex_unlock(&c->mutex);
 200        return slot;
 201}
 202
 203/* Return 1 if all garbages are collected, otherwise 0. */
 204static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
 205{
 206        kip->slot_used[idx] = SLOT_CLEAN;
 207        kip->nused--;
 208        if (kip->nused == 0) {
 209                /*
 210                 * Page is no longer in use.  Free it unless
 211                 * it's the last one.  We keep the last one
 212                 * so as not to have to set it up again the
 213                 * next time somebody inserts a probe.
 214                 */
 215                if (!list_is_singular(&kip->list)) {
 216                        list_del(&kip->list);
 217                        kip->cache->free(kip->insns);
 218                        kfree(kip);
 219                }
 220                return 1;
 221        }
 222        return 0;
 223}
 224
 225static int collect_garbage_slots(struct kprobe_insn_cache *c)
 226{
 227        struct kprobe_insn_page *kip, *next;
 228
 229        /* Ensure no-one is interrupted on the garbages */
 230        synchronize_sched();
 231
 232        list_for_each_entry_safe(kip, next, &c->pages, list) {
 233                int i;
 234                if (kip->ngarbage == 0)
 235                        continue;
 236                kip->ngarbage = 0;      /* we will collect all garbages */
 237                for (i = 0; i < slots_per_page(c); i++) {
 238                        if (kip->slot_used[i] == SLOT_DIRTY &&
 239                            collect_one_slot(kip, i))
 240                                break;
 241                }
 242        }
 243        c->nr_garbage = 0;
 244        return 0;
 245}
 246
 247void __free_insn_slot(struct kprobe_insn_cache *c,
 248                      kprobe_opcode_t *slot, int dirty)
 249{
 250        struct kprobe_insn_page *kip;
 251
 252        mutex_lock(&c->mutex);
 253        list_for_each_entry(kip, &c->pages, list) {
 254                long idx = ((long)slot - (long)kip->insns) /
 255                                (c->insn_size * sizeof(kprobe_opcode_t));
 256                if (idx >= 0 && idx < slots_per_page(c)) {
 257                        WARN_ON(kip->slot_used[idx] != SLOT_USED);
 258                        if (dirty) {
 259                                kip->slot_used[idx] = SLOT_DIRTY;
 260                                kip->ngarbage++;
 261                                if (++c->nr_garbage > slots_per_page(c))
 262                                        collect_garbage_slots(c);
 263                        } else
 264                                collect_one_slot(kip, idx);
 265                        goto out;
 266                }
 267        }
 268        /* Could not free this slot. */
 269        WARN_ON(1);
 270out:
 271        mutex_unlock(&c->mutex);
 272}
 273
 274#ifdef CONFIG_OPTPROBES
 275/* For optimized_kprobe buffer */
 276struct kprobe_insn_cache kprobe_optinsn_slots = {
 277        .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 278        .alloc = alloc_insn_page,
 279        .free = free_insn_page,
 280        .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 281        /* .insn_size is initialized later */
 282        .nr_garbage = 0,
 283};
 284#endif
 285#endif
 286
 287/* We have preemption disabled.. so it is safe to use __ versions */
 288static inline void set_kprobe_instance(struct kprobe *kp)
 289{
 290        __this_cpu_write(kprobe_instance, kp);
 291}
 292
 293static inline void reset_kprobe_instance(void)
 294{
 295        __this_cpu_write(kprobe_instance, NULL);
 296}
 297
 298/*
 299 * This routine is called either:
 300 *      - under the kprobe_mutex - during kprobe_[un]register()
 301 *                              OR
 302 *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
 303 */
 304struct kprobe *get_kprobe(void *addr)
 305{
 306        struct hlist_head *head;
 307        struct kprobe *p;
 308
 309        head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 310        hlist_for_each_entry_rcu(p, head, hlist) {
 311                if (p->addr == addr)
 312                        return p;
 313        }
 314
 315        return NULL;
 316}
 317NOKPROBE_SYMBOL(get_kprobe);
 318
 319static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 320
 321/* Return true if the kprobe is an aggregator */
 322static inline int kprobe_aggrprobe(struct kprobe *p)
 323{
 324        return p->pre_handler == aggr_pre_handler;
 325}
 326
 327/* Return true(!0) if the kprobe is unused */
 328static inline int kprobe_unused(struct kprobe *p)
 329{
 330        return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 331               list_empty(&p->list);
 332}
 333
 334/*
 335 * Keep all fields in the kprobe consistent
 336 */
 337static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 338{
 339        memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 340        memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 341}
 342
 343#ifdef CONFIG_OPTPROBES
 344/* NOTE: change this value only with kprobe_mutex held */
 345static bool kprobes_allow_optimization;
 346
 347/*
 348 * Call all pre_handler on the list, but ignores its return value.
 349 * This must be called from arch-dep optimized caller.
 350 */
 351void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 352{
 353        struct kprobe *kp;
 354
 355        list_for_each_entry_rcu(kp, &p->list, list) {
 356                if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 357                        set_kprobe_instance(kp);
 358                        kp->pre_handler(kp, regs);
 359                }
 360                reset_kprobe_instance();
 361        }
 362}
 363NOKPROBE_SYMBOL(opt_pre_handler);
 364
 365/* Free optimized instructions and optimized_kprobe */
 366static void free_aggr_kprobe(struct kprobe *p)
 367{
 368        struct optimized_kprobe *op;
 369
 370        op = container_of(p, struct optimized_kprobe, kp);
 371        arch_remove_optimized_kprobe(op);
 372        arch_remove_kprobe(p);
 373        kfree(op);
 374}
 375
 376/* Return true(!0) if the kprobe is ready for optimization. */
 377static inline int kprobe_optready(struct kprobe *p)
 378{
 379        struct optimized_kprobe *op;
 380
 381        if (kprobe_aggrprobe(p)) {
 382                op = container_of(p, struct optimized_kprobe, kp);
 383                return arch_prepared_optinsn(&op->optinsn);
 384        }
 385
 386        return 0;
 387}
 388
 389/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 390static inline int kprobe_disarmed(struct kprobe *p)
 391{
 392        struct optimized_kprobe *op;
 393
 394        /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 395        if (!kprobe_aggrprobe(p))
 396                return kprobe_disabled(p);
 397
 398        op = container_of(p, struct optimized_kprobe, kp);
 399
 400        return kprobe_disabled(p) && list_empty(&op->list);
 401}
 402
 403/* Return true(!0) if the probe is queued on (un)optimizing lists */
 404static int kprobe_queued(struct kprobe *p)
 405{
 406        struct optimized_kprobe *op;
 407
 408        if (kprobe_aggrprobe(p)) {
 409                op = container_of(p, struct optimized_kprobe, kp);
 410                if (!list_empty(&op->list))
 411                        return 1;
 412        }
 413        return 0;
 414}
 415
 416/*
 417 * Return an optimized kprobe whose optimizing code replaces
 418 * instructions including addr (exclude breakpoint).
 419 */
 420static struct kprobe *get_optimized_kprobe(unsigned long addr)
 421{
 422        int i;
 423        struct kprobe *p = NULL;
 424        struct optimized_kprobe *op;
 425
 426        /* Don't check i == 0, since that is a breakpoint case. */
 427        for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 428                p = get_kprobe((void *)(addr - i));
 429
 430        if (p && kprobe_optready(p)) {
 431                op = container_of(p, struct optimized_kprobe, kp);
 432                if (arch_within_optimized_kprobe(op, addr))
 433                        return p;
 434        }
 435
 436        return NULL;
 437}
 438
 439/* Optimization staging list, protected by kprobe_mutex */
 440static LIST_HEAD(optimizing_list);
 441static LIST_HEAD(unoptimizing_list);
 442static LIST_HEAD(freeing_list);
 443
 444static void kprobe_optimizer(struct work_struct *work);
 445static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 446#define OPTIMIZE_DELAY 5
 447
 448/*
 449 * Optimize (replace a breakpoint with a jump) kprobes listed on
 450 * optimizing_list.
 451 */
 452static void do_optimize_kprobes(void)
 453{
 454        /* Optimization never be done when disarmed */
 455        if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 456            list_empty(&optimizing_list))
 457                return;
 458
 459        /*
 460         * The optimization/unoptimization refers online_cpus via
 461         * stop_machine() and cpu-hotplug modifies online_cpus.
 462         * And same time, text_mutex will be held in cpu-hotplug and here.
 463         * This combination can cause a deadlock (cpu-hotplug try to lock
 464         * text_mutex but stop_machine can not be done because online_cpus
 465         * has been changed)
 466         * To avoid this deadlock, we need to call get_online_cpus()
 467         * for preventing cpu-hotplug outside of text_mutex locking.
 468         */
 469        get_online_cpus();
 470        mutex_lock(&text_mutex);
 471        arch_optimize_kprobes(&optimizing_list);
 472        mutex_unlock(&text_mutex);
 473        put_online_cpus();
 474}
 475
 476/*
 477 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 478 * if need) kprobes listed on unoptimizing_list.
 479 */
 480static void do_unoptimize_kprobes(void)
 481{
 482        struct optimized_kprobe *op, *tmp;
 483
 484        /* Unoptimization must be done anytime */
 485        if (list_empty(&unoptimizing_list))
 486                return;
 487
 488        /* Ditto to do_optimize_kprobes */
 489        get_online_cpus();
 490        mutex_lock(&text_mutex);
 491        arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 492        /* Loop free_list for disarming */
 493        list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 494                /* Disarm probes if marked disabled */
 495                if (kprobe_disabled(&op->kp))
 496                        arch_disarm_kprobe(&op->kp);
 497                if (kprobe_unused(&op->kp)) {
 498                        /*
 499                         * Remove unused probes from hash list. After waiting
 500                         * for synchronization, these probes are reclaimed.
 501                         * (reclaiming is done by do_free_cleaned_kprobes.)
 502                         */
 503                        hlist_del_rcu(&op->kp.hlist);
 504                } else
 505                        list_del_init(&op->list);
 506        }
 507        mutex_unlock(&text_mutex);
 508        put_online_cpus();
 509}
 510
 511/* Reclaim all kprobes on the free_list */
 512static void do_free_cleaned_kprobes(void)
 513{
 514        struct optimized_kprobe *op, *tmp;
 515
 516        list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 517                BUG_ON(!kprobe_unused(&op->kp));
 518                list_del_init(&op->list);
 519                free_aggr_kprobe(&op->kp);
 520        }
 521}
 522
 523/* Start optimizer after OPTIMIZE_DELAY passed */
 524static void kick_kprobe_optimizer(void)
 525{
 526        schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 527}
 528
 529/* Kprobe jump optimizer */
 530static void kprobe_optimizer(struct work_struct *work)
 531{
 532        mutex_lock(&kprobe_mutex);
 533        /* Lock modules while optimizing kprobes */
 534        mutex_lock(&module_mutex);
 535
 536        /*
 537         * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 538         * kprobes before waiting for quiesence period.
 539         */
 540        do_unoptimize_kprobes();
 541
 542        /*
 543         * Step 2: Wait for quiesence period to ensure all running interrupts
 544         * are done. Because optprobe may modify multiple instructions
 545         * there is a chance that Nth instruction is interrupted. In that
 546         * case, running interrupt can return to 2nd-Nth byte of jump
 547         * instruction. This wait is for avoiding it.
 548         */
 549        synchronize_sched();
 550
 551        /* Step 3: Optimize kprobes after quiesence period */
 552        do_optimize_kprobes();
 553
 554        /* Step 4: Free cleaned kprobes after quiesence period */
 555        do_free_cleaned_kprobes();
 556
 557        mutex_unlock(&module_mutex);
 558        mutex_unlock(&kprobe_mutex);
 559
 560        /* Step 5: Kick optimizer again if needed */
 561        if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 562                kick_kprobe_optimizer();
 563}
 564
 565/* Wait for completing optimization and unoptimization */
 566static void wait_for_kprobe_optimizer(void)
 567{
 568        mutex_lock(&kprobe_mutex);
 569
 570        while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 571                mutex_unlock(&kprobe_mutex);
 572
 573                /* this will also make optimizing_work execute immmediately */
 574                flush_delayed_work(&optimizing_work);
 575                /* @optimizing_work might not have been queued yet, relax */
 576                cpu_relax();
 577
 578                mutex_lock(&kprobe_mutex);
 579        }
 580
 581        mutex_unlock(&kprobe_mutex);
 582}
 583
 584/* Optimize kprobe if p is ready to be optimized */
 585static void optimize_kprobe(struct kprobe *p)
 586{
 587        struct optimized_kprobe *op;
 588
 589        /* Check if the kprobe is disabled or not ready for optimization. */
 590        if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 591            (kprobe_disabled(p) || kprobes_all_disarmed))
 592                return;
 593
 594        /* Both of break_handler and post_handler are not supported. */
 595        if (p->break_handler || p->post_handler)
 596                return;
 597
 598        op = container_of(p, struct optimized_kprobe, kp);
 599
 600        /* Check there is no other kprobes at the optimized instructions */
 601        if (arch_check_optimized_kprobe(op) < 0)
 602                return;
 603
 604        /* Check if it is already optimized. */
 605        if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
 606                return;
 607        op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 608
 609        if (!list_empty(&op->list))
 610                /* This is under unoptimizing. Just dequeue the probe */
 611                list_del_init(&op->list);
 612        else {
 613                list_add(&op->list, &optimizing_list);
 614                kick_kprobe_optimizer();
 615        }
 616}
 617
 618/* Short cut to direct unoptimizing */
 619static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 620{
 621        get_online_cpus();
 622        arch_unoptimize_kprobe(op);
 623        put_online_cpus();
 624        if (kprobe_disabled(&op->kp))
 625                arch_disarm_kprobe(&op->kp);
 626}
 627
 628/* Unoptimize a kprobe if p is optimized */
 629static void unoptimize_kprobe(struct kprobe *p, bool force)
 630{
 631        struct optimized_kprobe *op;
 632
 633        if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 634                return; /* This is not an optprobe nor optimized */
 635
 636        op = container_of(p, struct optimized_kprobe, kp);
 637        if (!kprobe_optimized(p)) {
 638                /* Unoptimized or unoptimizing case */
 639                if (force && !list_empty(&op->list)) {
 640                        /*
 641                         * Only if this is unoptimizing kprobe and forced,
 642                         * forcibly unoptimize it. (No need to unoptimize
 643                         * unoptimized kprobe again :)
 644                         */
 645                        list_del_init(&op->list);
 646                        force_unoptimize_kprobe(op);
 647                }
 648                return;
 649        }
 650
 651        op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 652        if (!list_empty(&op->list)) {
 653                /* Dequeue from the optimization queue */
 654                list_del_init(&op->list);
 655                return;
 656        }
 657        /* Optimized kprobe case */
 658        if (force)
 659                /* Forcibly update the code: this is a special case */
 660                force_unoptimize_kprobe(op);
 661        else {
 662                list_add(&op->list, &unoptimizing_list);
 663                kick_kprobe_optimizer();
 664        }
 665}
 666
 667/* Cancel unoptimizing for reusing */
 668static void reuse_unused_kprobe(struct kprobe *ap)
 669{
 670        struct optimized_kprobe *op;
 671
 672        BUG_ON(!kprobe_unused(ap));
 673        /*
 674         * Unused kprobe MUST be on the way of delayed unoptimizing (means
 675         * there is still a relative jump) and disabled.
 676         */
 677        op = container_of(ap, struct optimized_kprobe, kp);
 678        if (unlikely(list_empty(&op->list)))
 679                printk(KERN_WARNING "Warning: found a stray unused "
 680                        "aggrprobe@%p\n", ap->addr);
 681        /* Enable the probe again */
 682        ap->flags &= ~KPROBE_FLAG_DISABLED;
 683        /* Optimize it again (remove from op->list) */
 684        BUG_ON(!kprobe_optready(ap));
 685        optimize_kprobe(ap);
 686}
 687
 688/* Remove optimized instructions */
 689static void kill_optimized_kprobe(struct kprobe *p)
 690{
 691        struct optimized_kprobe *op;
 692
 693        op = container_of(p, struct optimized_kprobe, kp);
 694        if (!list_empty(&op->list))
 695                /* Dequeue from the (un)optimization queue */
 696                list_del_init(&op->list);
 697        op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 698
 699        if (kprobe_unused(p)) {
 700                /* Enqueue if it is unused */
 701                list_add(&op->list, &freeing_list);
 702                /*
 703                 * Remove unused probes from the hash list. After waiting
 704                 * for synchronization, this probe is reclaimed.
 705                 * (reclaiming is done by do_free_cleaned_kprobes().)
 706                 */
 707                hlist_del_rcu(&op->kp.hlist);
 708        }
 709
 710        /* Don't touch the code, because it is already freed. */
 711        arch_remove_optimized_kprobe(op);
 712}
 713
 714/* Try to prepare optimized instructions */
 715static void prepare_optimized_kprobe(struct kprobe *p)
 716{
 717        struct optimized_kprobe *op;
 718
 719        op = container_of(p, struct optimized_kprobe, kp);
 720        arch_prepare_optimized_kprobe(op, p);
 721}
 722
 723/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 724static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 725{
 726        struct optimized_kprobe *op;
 727
 728        op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 729        if (!op)
 730                return NULL;
 731
 732        INIT_LIST_HEAD(&op->list);
 733        op->kp.addr = p->addr;
 734        arch_prepare_optimized_kprobe(op, p);
 735
 736        return &op->kp;
 737}
 738
 739static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 740
 741/*
 742 * Prepare an optimized_kprobe and optimize it
 743 * NOTE: p must be a normal registered kprobe
 744 */
 745static void try_to_optimize_kprobe(struct kprobe *p)
 746{
 747        struct kprobe *ap;
 748        struct optimized_kprobe *op;
 749
 750        /* Impossible to optimize ftrace-based kprobe */
 751        if (kprobe_ftrace(p))
 752                return;
 753
 754        /* For preparing optimization, jump_label_text_reserved() is called */
 755        jump_label_lock();
 756        mutex_lock(&text_mutex);
 757
 758        ap = alloc_aggr_kprobe(p);
 759        if (!ap)
 760                goto out;
 761
 762        op = container_of(ap, struct optimized_kprobe, kp);
 763        if (!arch_prepared_optinsn(&op->optinsn)) {
 764                /* If failed to setup optimizing, fallback to kprobe */
 765                arch_remove_optimized_kprobe(op);
 766                kfree(op);
 767                goto out;
 768        }
 769
 770        init_aggr_kprobe(ap, p);
 771        optimize_kprobe(ap);    /* This just kicks optimizer thread */
 772
 773out:
 774        mutex_unlock(&text_mutex);
 775        jump_label_unlock();
 776}
 777
 778#ifdef CONFIG_SYSCTL
 779static void optimize_all_kprobes(void)
 780{
 781        struct hlist_head *head;
 782        struct kprobe *p;
 783        unsigned int i;
 784
 785        mutex_lock(&kprobe_mutex);
 786        /* If optimization is already allowed, just return */
 787        if (kprobes_allow_optimization)
 788                goto out;
 789
 790        kprobes_allow_optimization = true;
 791        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 792                head = &kprobe_table[i];
 793                hlist_for_each_entry_rcu(p, head, hlist)
 794                        if (!kprobe_disabled(p))
 795                                optimize_kprobe(p);
 796        }
 797        printk(KERN_INFO "Kprobes globally optimized\n");
 798out:
 799        mutex_unlock(&kprobe_mutex);
 800}
 801
 802static void unoptimize_all_kprobes(void)
 803{
 804        struct hlist_head *head;
 805        struct kprobe *p;
 806        unsigned int i;
 807
 808        mutex_lock(&kprobe_mutex);
 809        /* If optimization is already prohibited, just return */
 810        if (!kprobes_allow_optimization) {
 811                mutex_unlock(&kprobe_mutex);
 812                return;
 813        }
 814
 815        kprobes_allow_optimization = false;
 816        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 817                head = &kprobe_table[i];
 818                hlist_for_each_entry_rcu(p, head, hlist) {
 819                        if (!kprobe_disabled(p))
 820                                unoptimize_kprobe(p, false);
 821                }
 822        }
 823        mutex_unlock(&kprobe_mutex);
 824
 825        /* Wait for unoptimizing completion */
 826        wait_for_kprobe_optimizer();
 827        printk(KERN_INFO "Kprobes globally unoptimized\n");
 828}
 829
 830static DEFINE_MUTEX(kprobe_sysctl_mutex);
 831int sysctl_kprobes_optimization;
 832int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 833                                      void __user *buffer, size_t *length,
 834                                      loff_t *ppos)
 835{
 836        int ret;
 837
 838        mutex_lock(&kprobe_sysctl_mutex);
 839        sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 840        ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 841
 842        if (sysctl_kprobes_optimization)
 843                optimize_all_kprobes();
 844        else
 845                unoptimize_all_kprobes();
 846        mutex_unlock(&kprobe_sysctl_mutex);
 847
 848        return ret;
 849}
 850#endif /* CONFIG_SYSCTL */
 851
 852/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 853static void __arm_kprobe(struct kprobe *p)
 854{
 855        struct kprobe *_p;
 856
 857        /* Check collision with other optimized kprobes */
 858        _p = get_optimized_kprobe((unsigned long)p->addr);
 859        if (unlikely(_p))
 860                /* Fallback to unoptimized kprobe */
 861                unoptimize_kprobe(_p, true);
 862
 863        arch_arm_kprobe(p);
 864        optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
 865}
 866
 867/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 868static void __disarm_kprobe(struct kprobe *p, bool reopt)
 869{
 870        struct kprobe *_p;
 871
 872        /* Try to unoptimize */
 873        unoptimize_kprobe(p, kprobes_all_disarmed);
 874
 875        if (!kprobe_queued(p)) {
 876                arch_disarm_kprobe(p);
 877                /* If another kprobe was blocked, optimize it. */
 878                _p = get_optimized_kprobe((unsigned long)p->addr);
 879                if (unlikely(_p) && reopt)
 880                        optimize_kprobe(_p);
 881        }
 882        /* TODO: reoptimize others after unoptimized this probe */
 883}
 884
 885#else /* !CONFIG_OPTPROBES */
 886
 887#define optimize_kprobe(p)                      do {} while (0)
 888#define unoptimize_kprobe(p, f)                 do {} while (0)
 889#define kill_optimized_kprobe(p)                do {} while (0)
 890#define prepare_optimized_kprobe(p)             do {} while (0)
 891#define try_to_optimize_kprobe(p)               do {} while (0)
 892#define __arm_kprobe(p)                         arch_arm_kprobe(p)
 893#define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
 894#define kprobe_disarmed(p)                      kprobe_disabled(p)
 895#define wait_for_kprobe_optimizer()             do {} while (0)
 896
 897/* There should be no unused kprobes can be reused without optimization */
 898static void reuse_unused_kprobe(struct kprobe *ap)
 899{
 900        printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
 901        BUG_ON(kprobe_unused(ap));
 902}
 903
 904static void free_aggr_kprobe(struct kprobe *p)
 905{
 906        arch_remove_kprobe(p);
 907        kfree(p);
 908}
 909
 910static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 911{
 912        return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
 913}
 914#endif /* CONFIG_OPTPROBES */
 915
 916#ifdef CONFIG_KPROBES_ON_FTRACE
 917static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
 918        .func = kprobe_ftrace_handler,
 919        .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
 920};
 921static int kprobe_ftrace_enabled;
 922
 923/* Must ensure p->addr is really on ftrace */
 924static int prepare_kprobe(struct kprobe *p)
 925{
 926        if (!kprobe_ftrace(p))
 927                return arch_prepare_kprobe(p);
 928
 929        return arch_prepare_kprobe_ftrace(p);
 930}
 931
 932/* Caller must lock kprobe_mutex */
 933static void arm_kprobe_ftrace(struct kprobe *p)
 934{
 935        int ret;
 936
 937        ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
 938                                   (unsigned long)p->addr, 0, 0);
 939        WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
 940        kprobe_ftrace_enabled++;
 941        if (kprobe_ftrace_enabled == 1) {
 942                ret = register_ftrace_function(&kprobe_ftrace_ops);
 943                WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
 944        }
 945}
 946
 947/* Caller must lock kprobe_mutex */
 948static void disarm_kprobe_ftrace(struct kprobe *p)
 949{
 950        int ret;
 951
 952        kprobe_ftrace_enabled--;
 953        if (kprobe_ftrace_enabled == 0) {
 954                ret = unregister_ftrace_function(&kprobe_ftrace_ops);
 955                WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
 956        }
 957        ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
 958                           (unsigned long)p->addr, 1, 0);
 959        WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
 960}
 961#else   /* !CONFIG_KPROBES_ON_FTRACE */
 962#define prepare_kprobe(p)       arch_prepare_kprobe(p)
 963#define arm_kprobe_ftrace(p)    do {} while (0)
 964#define disarm_kprobe_ftrace(p) do {} while (0)
 965#endif
 966
 967/* Arm a kprobe with text_mutex */
 968static void arm_kprobe(struct kprobe *kp)
 969{
 970        if (unlikely(kprobe_ftrace(kp))) {
 971                arm_kprobe_ftrace(kp);
 972                return;
 973        }
 974        /*
 975         * Here, since __arm_kprobe() doesn't use stop_machine(),
 976         * this doesn't cause deadlock on text_mutex. So, we don't
 977         * need get_online_cpus().
 978         */
 979        mutex_lock(&text_mutex);
 980        __arm_kprobe(kp);
 981        mutex_unlock(&text_mutex);
 982}
 983
 984/* Disarm a kprobe with text_mutex */
 985static void disarm_kprobe(struct kprobe *kp, bool reopt)
 986{
 987        if (unlikely(kprobe_ftrace(kp))) {
 988                disarm_kprobe_ftrace(kp);
 989                return;
 990        }
 991        /* Ditto */
 992        mutex_lock(&text_mutex);
 993        __disarm_kprobe(kp, reopt);
 994        mutex_unlock(&text_mutex);
 995}
 996
 997/*
 998 * Aggregate handlers for multiple kprobes support - these handlers
 999 * take care of invoking the individual kprobe handlers on p->list
1000 */
1001static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1002{
1003        struct kprobe *kp;
1004
1005        list_for_each_entry_rcu(kp, &p->list, list) {
1006                if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1007                        set_kprobe_instance(kp);
1008                        if (kp->pre_handler(kp, regs))
1009                                return 1;
1010                }
1011                reset_kprobe_instance();
1012        }
1013        return 0;
1014}
1015NOKPROBE_SYMBOL(aggr_pre_handler);
1016
1017static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1018                              unsigned long flags)
1019{
1020        struct kprobe *kp;
1021
1022        list_for_each_entry_rcu(kp, &p->list, list) {
1023                if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1024                        set_kprobe_instance(kp);
1025                        kp->post_handler(kp, regs, flags);
1026                        reset_kprobe_instance();
1027                }
1028        }
1029}
1030NOKPROBE_SYMBOL(aggr_post_handler);
1031
1032static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1033                              int trapnr)
1034{
1035        struct kprobe *cur = __this_cpu_read(kprobe_instance);
1036
1037        /*
1038         * if we faulted "during" the execution of a user specified
1039         * probe handler, invoke just that probe's fault handler
1040         */
1041        if (cur && cur->fault_handler) {
1042                if (cur->fault_handler(cur, regs, trapnr))
1043                        return 1;
1044        }
1045        return 0;
1046}
1047NOKPROBE_SYMBOL(aggr_fault_handler);
1048
1049static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1050{
1051        struct kprobe *cur = __this_cpu_read(kprobe_instance);
1052        int ret = 0;
1053
1054        if (cur && cur->break_handler) {
1055                if (cur->break_handler(cur, regs))
1056                        ret = 1;
1057        }
1058        reset_kprobe_instance();
1059        return ret;
1060}
1061NOKPROBE_SYMBOL(aggr_break_handler);
1062
1063/* Walks the list and increments nmissed count for multiprobe case */
1064void kprobes_inc_nmissed_count(struct kprobe *p)
1065{
1066        struct kprobe *kp;
1067        if (!kprobe_aggrprobe(p)) {
1068                p->nmissed++;
1069        } else {
1070                list_for_each_entry_rcu(kp, &p->list, list)
1071                        kp->nmissed++;
1072        }
1073        return;
1074}
1075NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1076
1077void recycle_rp_inst(struct kretprobe_instance *ri,
1078                     struct hlist_head *head)
1079{
1080        struct kretprobe *rp = ri->rp;
1081
1082        /* remove rp inst off the rprobe_inst_table */
1083        hlist_del(&ri->hlist);
1084        INIT_HLIST_NODE(&ri->hlist);
1085        if (likely(rp)) {
1086                raw_spin_lock(&rp->lock);
1087                hlist_add_head(&ri->hlist, &rp->free_instances);
1088                raw_spin_unlock(&rp->lock);
1089        } else
1090                /* Unregistering */
1091                hlist_add_head(&ri->hlist, head);
1092}
1093NOKPROBE_SYMBOL(recycle_rp_inst);
1094
1095void kretprobe_hash_lock(struct task_struct *tsk,
1096                         struct hlist_head **head, unsigned long *flags)
1097__acquires(hlist_lock)
1098{
1099        unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1100        raw_spinlock_t *hlist_lock;
1101
1102        *head = &kretprobe_inst_table[hash];
1103        hlist_lock = kretprobe_table_lock_ptr(hash);
1104        raw_spin_lock_irqsave(hlist_lock, *flags);
1105}
1106NOKPROBE_SYMBOL(kretprobe_hash_lock);
1107
1108static void kretprobe_table_lock(unsigned long hash,
1109                                 unsigned long *flags)
1110__acquires(hlist_lock)
1111{
1112        raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1113        raw_spin_lock_irqsave(hlist_lock, *flags);
1114}
1115NOKPROBE_SYMBOL(kretprobe_table_lock);
1116
1117void kretprobe_hash_unlock(struct task_struct *tsk,
1118                           unsigned long *flags)
1119__releases(hlist_lock)
1120{
1121        unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1122        raw_spinlock_t *hlist_lock;
1123
1124        hlist_lock = kretprobe_table_lock_ptr(hash);
1125        raw_spin_unlock_irqrestore(hlist_lock, *flags);
1126}
1127NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1128
1129static void kretprobe_table_unlock(unsigned long hash,
1130                                   unsigned long *flags)
1131__releases(hlist_lock)
1132{
1133        raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1134        raw_spin_unlock_irqrestore(hlist_lock, *flags);
1135}
1136NOKPROBE_SYMBOL(kretprobe_table_unlock);
1137
1138/*
1139 * This function is called from finish_task_switch when task tk becomes dead,
1140 * so that we can recycle any function-return probe instances associated
1141 * with this task. These left over instances represent probed functions
1142 * that have been called but will never return.
1143 */
1144void kprobe_flush_task(struct task_struct *tk)
1145{
1146        struct kretprobe_instance *ri;
1147        struct hlist_head *head, empty_rp;
1148        struct hlist_node *tmp;
1149        unsigned long hash, flags = 0;
1150
1151        if (unlikely(!kprobes_initialized))
1152                /* Early boot.  kretprobe_table_locks not yet initialized. */
1153                return;
1154
1155        INIT_HLIST_HEAD(&empty_rp);
1156        hash = hash_ptr(tk, KPROBE_HASH_BITS);
1157        head = &kretprobe_inst_table[hash];
1158        kretprobe_table_lock(hash, &flags);
1159        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1160                if (ri->task == tk)
1161                        recycle_rp_inst(ri, &empty_rp);
1162        }
1163        kretprobe_table_unlock(hash, &flags);
1164        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1165                hlist_del(&ri->hlist);
1166                kfree(ri);
1167        }
1168}
1169NOKPROBE_SYMBOL(kprobe_flush_task);
1170
1171static inline void free_rp_inst(struct kretprobe *rp)
1172{
1173        struct kretprobe_instance *ri;
1174        struct hlist_node *next;
1175
1176        hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1177                hlist_del(&ri->hlist);
1178                kfree(ri);
1179        }
1180}
1181
1182static void cleanup_rp_inst(struct kretprobe *rp)
1183{
1184        unsigned long flags, hash;
1185        struct kretprobe_instance *ri;
1186        struct hlist_node *next;
1187        struct hlist_head *head;
1188
1189        /* No race here */
1190        for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1191                kretprobe_table_lock(hash, &flags);
1192                head = &kretprobe_inst_table[hash];
1193                hlist_for_each_entry_safe(ri, next, head, hlist) {
1194                        if (ri->rp == rp)
1195                                ri->rp = NULL;
1196                }
1197                kretprobe_table_unlock(hash, &flags);
1198        }
1199        free_rp_inst(rp);
1200}
1201NOKPROBE_SYMBOL(cleanup_rp_inst);
1202
1203/*
1204* Add the new probe to ap->list. Fail if this is the
1205* second jprobe at the address - two jprobes can't coexist
1206*/
1207static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1208{
1209        BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1210
1211        if (p->break_handler || p->post_handler)
1212                unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1213
1214        if (p->break_handler) {
1215                if (ap->break_handler)
1216                        return -EEXIST;
1217                list_add_tail_rcu(&p->list, &ap->list);
1218                ap->break_handler = aggr_break_handler;
1219        } else
1220                list_add_rcu(&p->list, &ap->list);
1221        if (p->post_handler && !ap->post_handler)
1222                ap->post_handler = aggr_post_handler;
1223
1224        return 0;
1225}
1226
1227/*
1228 * Fill in the required fields of the "manager kprobe". Replace the
1229 * earlier kprobe in the hlist with the manager kprobe
1230 */
1231static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1232{
1233        /* Copy p's insn slot to ap */
1234        copy_kprobe(p, ap);
1235        flush_insn_slot(ap);
1236        ap->addr = p->addr;
1237        ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1238        ap->pre_handler = aggr_pre_handler;
1239        ap->fault_handler = aggr_fault_handler;
1240        /* We don't care the kprobe which has gone. */
1241        if (p->post_handler && !kprobe_gone(p))
1242                ap->post_handler = aggr_post_handler;
1243        if (p->break_handler && !kprobe_gone(p))
1244                ap->break_handler = aggr_break_handler;
1245
1246        INIT_LIST_HEAD(&ap->list);
1247        INIT_HLIST_NODE(&ap->hlist);
1248
1249        list_add_rcu(&p->list, &ap->list);
1250        hlist_replace_rcu(&p->hlist, &ap->hlist);
1251}
1252
1253/*
1254 * This is the second or subsequent kprobe at the address - handle
1255 * the intricacies
1256 */
1257static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1258{
1259        int ret = 0;
1260        struct kprobe *ap = orig_p;
1261
1262        /* For preparing optimization, jump_label_text_reserved() is called */
1263        jump_label_lock();
1264        /*
1265         * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1266         * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1267         */
1268        get_online_cpus();
1269        mutex_lock(&text_mutex);
1270
1271        if (!kprobe_aggrprobe(orig_p)) {
1272                /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1273                ap = alloc_aggr_kprobe(orig_p);
1274                if (!ap) {
1275                        ret = -ENOMEM;
1276                        goto out;
1277                }
1278                init_aggr_kprobe(ap, orig_p);
1279        } else if (kprobe_unused(ap))
1280                /* This probe is going to die. Rescue it */
1281                reuse_unused_kprobe(ap);
1282
1283        if (kprobe_gone(ap)) {
1284                /*
1285                 * Attempting to insert new probe at the same location that
1286                 * had a probe in the module vaddr area which already
1287                 * freed. So, the instruction slot has already been
1288                 * released. We need a new slot for the new probe.
1289                 */
1290                ret = arch_prepare_kprobe(ap);
1291                if (ret)
1292                        /*
1293                         * Even if fail to allocate new slot, don't need to
1294                         * free aggr_probe. It will be used next time, or
1295                         * freed by unregister_kprobe.
1296                         */
1297                        goto out;
1298
1299                /* Prepare optimized instructions if possible. */
1300                prepare_optimized_kprobe(ap);
1301
1302                /*
1303                 * Clear gone flag to prevent allocating new slot again, and
1304                 * set disabled flag because it is not armed yet.
1305                 */
1306                ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1307                            | KPROBE_FLAG_DISABLED;
1308        }
1309
1310        /* Copy ap's insn slot to p */
1311        copy_kprobe(ap, p);
1312        ret = add_new_kprobe(ap, p);
1313
1314out:
1315        mutex_unlock(&text_mutex);
1316        put_online_cpus();
1317        jump_label_unlock();
1318
1319        if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1320                ap->flags &= ~KPROBE_FLAG_DISABLED;
1321                if (!kprobes_all_disarmed)
1322                        /* Arm the breakpoint again. */
1323                        arm_kprobe(ap);
1324        }
1325        return ret;
1326}
1327
1328bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1329{
1330        /* The __kprobes marked functions and entry code must not be probed */
1331        return addr >= (unsigned long)__kprobes_text_start &&
1332               addr < (unsigned long)__kprobes_text_end;
1333}
1334
1335bool within_kprobe_blacklist(unsigned long addr)
1336{
1337        struct kprobe_blacklist_entry *ent;
1338
1339        if (arch_within_kprobe_blacklist(addr))
1340                return true;
1341        /*
1342         * If there exists a kprobe_blacklist, verify and
1343         * fail any probe registration in the prohibited area
1344         */
1345        list_for_each_entry(ent, &kprobe_blacklist, list) {
1346                if (addr >= ent->start_addr && addr < ent->end_addr)
1347                        return true;
1348        }
1349
1350        return false;
1351}
1352
1353/*
1354 * If we have a symbol_name argument, look it up and add the offset field
1355 * to it. This way, we can specify a relative address to a symbol.
1356 * This returns encoded errors if it fails to look up symbol or invalid
1357 * combination of parameters.
1358 */
1359static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1360{
1361        kprobe_opcode_t *addr = p->addr;
1362
1363        if ((p->symbol_name && p->addr) ||
1364            (!p->symbol_name && !p->addr))
1365                goto invalid;
1366
1367        if (p->symbol_name) {
1368                kprobe_lookup_name(p->symbol_name, addr);
1369                if (!addr)
1370                        return ERR_PTR(-ENOENT);
1371        }
1372
1373        addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1374        if (addr)
1375                return addr;
1376
1377invalid:
1378        return ERR_PTR(-EINVAL);
1379}
1380
1381/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1382static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1383{
1384        struct kprobe *ap, *list_p;
1385
1386        ap = get_kprobe(p->addr);
1387        if (unlikely(!ap))
1388                return NULL;
1389
1390        if (p != ap) {
1391                list_for_each_entry_rcu(list_p, &ap->list, list)
1392                        if (list_p == p)
1393                        /* kprobe p is a valid probe */
1394                                goto valid;
1395                return NULL;
1396        }
1397valid:
1398        return ap;
1399}
1400
1401/* Return error if the kprobe is being re-registered */
1402static inline int check_kprobe_rereg(struct kprobe *p)
1403{
1404        int ret = 0;
1405
1406        mutex_lock(&kprobe_mutex);
1407        if (__get_valid_kprobe(p))
1408                ret = -EINVAL;
1409        mutex_unlock(&kprobe_mutex);
1410
1411        return ret;
1412}
1413
1414int __weak arch_check_ftrace_location(struct kprobe *p)
1415{
1416        unsigned long ftrace_addr;
1417
1418        ftrace_addr = ftrace_location((unsigned long)p->addr);
1419        if (ftrace_addr) {
1420#ifdef CONFIG_KPROBES_ON_FTRACE
1421                /* Given address is not on the instruction boundary */
1422                if ((unsigned long)p->addr != ftrace_addr)
1423                        return -EILSEQ;
1424                p->flags |= KPROBE_FLAG_FTRACE;
1425#else   /* !CONFIG_KPROBES_ON_FTRACE */
1426                return -EINVAL;
1427#endif
1428        }
1429        return 0;
1430}
1431
1432static int check_kprobe_address_safe(struct kprobe *p,
1433                                     struct module **probed_mod)
1434{
1435        int ret;
1436
1437        ret = arch_check_ftrace_location(p);
1438        if (ret)
1439                return ret;
1440        jump_label_lock();
1441        preempt_disable();
1442
1443        /* Ensure it is not in reserved area nor out of text */
1444        if (!kernel_text_address((unsigned long) p->addr) ||
1445            within_kprobe_blacklist((unsigned long) p->addr) ||
1446            jump_label_text_reserved(p->addr, p->addr)) {
1447                ret = -EINVAL;
1448                goto out;
1449        }
1450
1451        /* Check if are we probing a module */
1452        *probed_mod = __module_text_address((unsigned long) p->addr);
1453        if (*probed_mod) {
1454                /*
1455                 * We must hold a refcount of the probed module while updating
1456                 * its code to prohibit unexpected unloading.
1457                 */
1458                if (unlikely(!try_module_get(*probed_mod))) {
1459                        ret = -ENOENT;
1460                        goto out;
1461                }
1462
1463                /*
1464                 * If the module freed .init.text, we couldn't insert
1465                 * kprobes in there.
1466                 */
1467                if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1468                    (*probed_mod)->state != MODULE_STATE_COMING) {
1469                        module_put(*probed_mod);
1470                        *probed_mod = NULL;
1471                        ret = -ENOENT;
1472                }
1473        }
1474out:
1475        preempt_enable();
1476        jump_label_unlock();
1477
1478        return ret;
1479}
1480
1481int register_kprobe(struct kprobe *p)
1482{
1483        int ret;
1484        struct kprobe *old_p;
1485        struct module *probed_mod;
1486        kprobe_opcode_t *addr;
1487
1488        /* Adjust probe address from symbol */
1489        addr = kprobe_addr(p);
1490        if (IS_ERR(addr))
1491                return PTR_ERR(addr);
1492        p->addr = addr;
1493
1494        ret = check_kprobe_rereg(p);
1495        if (ret)
1496                return ret;
1497
1498        /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1499        p->flags &= KPROBE_FLAG_DISABLED;
1500        p->nmissed = 0;
1501        INIT_LIST_HEAD(&p->list);
1502
1503        ret = check_kprobe_address_safe(p, &probed_mod);
1504        if (ret)
1505                return ret;
1506
1507        mutex_lock(&kprobe_mutex);
1508
1509        old_p = get_kprobe(p->addr);
1510        if (old_p) {
1511                /* Since this may unoptimize old_p, locking text_mutex. */
1512                ret = register_aggr_kprobe(old_p, p);
1513                goto out;
1514        }
1515
1516        mutex_lock(&text_mutex);        /* Avoiding text modification */
1517        ret = prepare_kprobe(p);
1518        mutex_unlock(&text_mutex);
1519        if (ret)
1520                goto out;
1521
1522        INIT_HLIST_NODE(&p->hlist);
1523        hlist_add_head_rcu(&p->hlist,
1524                       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1525
1526        if (!kprobes_all_disarmed && !kprobe_disabled(p))
1527                arm_kprobe(p);
1528
1529        /* Try to optimize kprobe */
1530        try_to_optimize_kprobe(p);
1531
1532out:
1533        mutex_unlock(&kprobe_mutex);
1534
1535        if (probed_mod)
1536                module_put(probed_mod);
1537
1538        return ret;
1539}
1540EXPORT_SYMBOL_GPL(register_kprobe);
1541
1542/* Check if all probes on the aggrprobe are disabled */
1543static int aggr_kprobe_disabled(struct kprobe *ap)
1544{
1545        struct kprobe *kp;
1546
1547        list_for_each_entry_rcu(kp, &ap->list, list)
1548                if (!kprobe_disabled(kp))
1549                        /*
1550                         * There is an active probe on the list.
1551                         * We can't disable this ap.
1552                         */
1553                        return 0;
1554
1555        return 1;
1556}
1557
1558/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1559static struct kprobe *__disable_kprobe(struct kprobe *p)
1560{
1561        struct kprobe *orig_p;
1562
1563        /* Get an original kprobe for return */
1564        orig_p = __get_valid_kprobe(p);
1565        if (unlikely(orig_p == NULL))
1566                return NULL;
1567
1568        if (!kprobe_disabled(p)) {
1569                /* Disable probe if it is a child probe */
1570                if (p != orig_p)
1571                        p->flags |= KPROBE_FLAG_DISABLED;
1572
1573                /* Try to disarm and disable this/parent probe */
1574                if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1575                        /*
1576                         * If kprobes_all_disarmed is set, orig_p
1577                         * should have already been disarmed, so
1578                         * skip unneed disarming process.
1579                         */
1580                        if (!kprobes_all_disarmed)
1581                                disarm_kprobe(orig_p, true);
1582                        orig_p->flags |= KPROBE_FLAG_DISABLED;
1583                }
1584        }
1585
1586        return orig_p;
1587}
1588
1589/*
1590 * Unregister a kprobe without a scheduler synchronization.
1591 */
1592static int __unregister_kprobe_top(struct kprobe *p)
1593{
1594        struct kprobe *ap, *list_p;
1595
1596        /* Disable kprobe. This will disarm it if needed. */
1597        ap = __disable_kprobe(p);
1598        if (ap == NULL)
1599                return -EINVAL;
1600
1601        if (ap == p)
1602                /*
1603                 * This probe is an independent(and non-optimized) kprobe
1604                 * (not an aggrprobe). Remove from the hash list.
1605                 */
1606                goto disarmed;
1607
1608        /* Following process expects this probe is an aggrprobe */
1609        WARN_ON(!kprobe_aggrprobe(ap));
1610
1611        if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1612                /*
1613                 * !disarmed could be happen if the probe is under delayed
1614                 * unoptimizing.
1615                 */
1616                goto disarmed;
1617        else {
1618                /* If disabling probe has special handlers, update aggrprobe */
1619                if (p->break_handler && !kprobe_gone(p))
1620                        ap->break_handler = NULL;
1621                if (p->post_handler && !kprobe_gone(p)) {
1622                        list_for_each_entry_rcu(list_p, &ap->list, list) {
1623                                if ((list_p != p) && (list_p->post_handler))
1624                                        goto noclean;
1625                        }
1626                        ap->post_handler = NULL;
1627                }
1628noclean:
1629                /*
1630                 * Remove from the aggrprobe: this path will do nothing in
1631                 * __unregister_kprobe_bottom().
1632                 */
1633                list_del_rcu(&p->list);
1634                if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1635                        /*
1636                         * Try to optimize this probe again, because post
1637                         * handler may have been changed.
1638                         */
1639                        optimize_kprobe(ap);
1640        }
1641        return 0;
1642
1643disarmed:
1644        BUG_ON(!kprobe_disarmed(ap));
1645        hlist_del_rcu(&ap->hlist);
1646        return 0;
1647}
1648
1649static void __unregister_kprobe_bottom(struct kprobe *p)
1650{
1651        struct kprobe *ap;
1652
1653        if (list_empty(&p->list))
1654                /* This is an independent kprobe */
1655                arch_remove_kprobe(p);
1656        else if (list_is_singular(&p->list)) {
1657                /* This is the last child of an aggrprobe */
1658                ap = list_entry(p->list.next, struct kprobe, list);
1659                list_del(&p->list);
1660                free_aggr_kprobe(ap);
1661        }
1662        /* Otherwise, do nothing. */
1663}
1664
1665int register_kprobes(struct kprobe **kps, int num)
1666{
1667        int i, ret = 0;
1668
1669        if (num <= 0)
1670                return -EINVAL;
1671        for (i = 0; i < num; i++) {
1672                ret = register_kprobe(kps[i]);
1673                if (ret < 0) {
1674                        if (i > 0)
1675                                unregister_kprobes(kps, i);
1676                        break;
1677                }
1678        }
1679        return ret;
1680}
1681EXPORT_SYMBOL_GPL(register_kprobes);
1682
1683void unregister_kprobe(struct kprobe *p)
1684{
1685        unregister_kprobes(&p, 1);
1686}
1687EXPORT_SYMBOL_GPL(unregister_kprobe);
1688
1689void unregister_kprobes(struct kprobe **kps, int num)
1690{
1691        int i;
1692
1693        if (num <= 0)
1694                return;
1695        mutex_lock(&kprobe_mutex);
1696        for (i = 0; i < num; i++)
1697                if (__unregister_kprobe_top(kps[i]) < 0)
1698                        kps[i]->addr = NULL;
1699        mutex_unlock(&kprobe_mutex);
1700
1701        synchronize_sched();
1702        for (i = 0; i < num; i++)
1703                if (kps[i]->addr)
1704                        __unregister_kprobe_bottom(kps[i]);
1705}
1706EXPORT_SYMBOL_GPL(unregister_kprobes);
1707
1708static struct notifier_block kprobe_exceptions_nb = {
1709        .notifier_call = kprobe_exceptions_notify,
1710        .priority = 0x7fffffff /* we need to be notified first */
1711};
1712
1713unsigned long __weak arch_deref_entry_point(void *entry)
1714{
1715        return (unsigned long)entry;
1716}
1717
1718int register_jprobes(struct jprobe **jps, int num)
1719{
1720        struct jprobe *jp;
1721        int ret = 0, i;
1722
1723        if (num <= 0)
1724                return -EINVAL;
1725        for (i = 0; i < num; i++) {
1726                unsigned long addr, offset;
1727                jp = jps[i];
1728                addr = arch_deref_entry_point(jp->entry);
1729
1730                /* Verify probepoint is a function entry point */
1731                if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1732                    offset == 0) {
1733                        jp->kp.pre_handler = setjmp_pre_handler;
1734                        jp->kp.break_handler = longjmp_break_handler;
1735                        ret = register_kprobe(&jp->kp);
1736                } else
1737                        ret = -EINVAL;
1738
1739                if (ret < 0) {
1740                        if (i > 0)
1741                                unregister_jprobes(jps, i);
1742                        break;
1743                }
1744        }
1745        return ret;
1746}
1747EXPORT_SYMBOL_GPL(register_jprobes);
1748
1749int register_jprobe(struct jprobe *jp)
1750{
1751        return register_jprobes(&jp, 1);
1752}
1753EXPORT_SYMBOL_GPL(register_jprobe);
1754
1755void unregister_jprobe(struct jprobe *jp)
1756{
1757        unregister_jprobes(&jp, 1);
1758}
1759EXPORT_SYMBOL_GPL(unregister_jprobe);
1760
1761void unregister_jprobes(struct jprobe **jps, int num)
1762{
1763        int i;
1764
1765        if (num <= 0)
1766                return;
1767        mutex_lock(&kprobe_mutex);
1768        for (i = 0; i < num; i++)
1769                if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1770                        jps[i]->kp.addr = NULL;
1771        mutex_unlock(&kprobe_mutex);
1772
1773        synchronize_sched();
1774        for (i = 0; i < num; i++) {
1775                if (jps[i]->kp.addr)
1776                        __unregister_kprobe_bottom(&jps[i]->kp);
1777        }
1778}
1779EXPORT_SYMBOL_GPL(unregister_jprobes);
1780
1781#ifdef CONFIG_KRETPROBES
1782/*
1783 * This kprobe pre_handler is registered with every kretprobe. When probe
1784 * hits it will set up the return probe.
1785 */
1786static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1787{
1788        struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1789        unsigned long hash, flags = 0;
1790        struct kretprobe_instance *ri;
1791
1792        /*
1793         * To avoid deadlocks, prohibit return probing in NMI contexts,
1794         * just skip the probe and increase the (inexact) 'nmissed'
1795         * statistical counter, so that the user is informed that
1796         * something happened:
1797         */
1798        if (unlikely(in_nmi())) {
1799                rp->nmissed++;
1800                return 0;
1801        }
1802
1803        /* TODO: consider to only swap the RA after the last pre_handler fired */
1804        hash = hash_ptr(current, KPROBE_HASH_BITS);
1805        raw_spin_lock_irqsave(&rp->lock, flags);
1806        if (!hlist_empty(&rp->free_instances)) {
1807                ri = hlist_entry(rp->free_instances.first,
1808                                struct kretprobe_instance, hlist);
1809                hlist_del(&ri->hlist);
1810                raw_spin_unlock_irqrestore(&rp->lock, flags);
1811
1812                ri->rp = rp;
1813                ri->task = current;
1814
1815                if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1816                        raw_spin_lock_irqsave(&rp->lock, flags);
1817                        hlist_add_head(&ri->hlist, &rp->free_instances);
1818                        raw_spin_unlock_irqrestore(&rp->lock, flags);
1819                        return 0;
1820                }
1821
1822                arch_prepare_kretprobe(ri, regs);
1823
1824                /* XXX(hch): why is there no hlist_move_head? */
1825                INIT_HLIST_NODE(&ri->hlist);
1826                kretprobe_table_lock(hash, &flags);
1827                hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1828                kretprobe_table_unlock(hash, &flags);
1829        } else {
1830                rp->nmissed++;
1831                raw_spin_unlock_irqrestore(&rp->lock, flags);
1832        }
1833        return 0;
1834}
1835NOKPROBE_SYMBOL(pre_handler_kretprobe);
1836
1837int register_kretprobe(struct kretprobe *rp)
1838{
1839        int ret = 0;
1840        struct kretprobe_instance *inst;
1841        int i;
1842        void *addr;
1843
1844        if (kretprobe_blacklist_size) {
1845                addr = kprobe_addr(&rp->kp);
1846                if (IS_ERR(addr))
1847                        return PTR_ERR(addr);
1848
1849                for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1850                        if (kretprobe_blacklist[i].addr == addr)
1851                                return -EINVAL;
1852                }
1853        }
1854
1855        rp->kp.pre_handler = pre_handler_kretprobe;
1856        rp->kp.post_handler = NULL;
1857        rp->kp.fault_handler = NULL;
1858        rp->kp.break_handler = NULL;
1859
1860        /* Pre-allocate memory for max kretprobe instances */
1861        if (rp->maxactive <= 0) {
1862#ifdef CONFIG_PREEMPT
1863                rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1864#else
1865                rp->maxactive = num_possible_cpus();
1866#endif
1867        }
1868        raw_spin_lock_init(&rp->lock);
1869        INIT_HLIST_HEAD(&rp->free_instances);
1870        for (i = 0; i < rp->maxactive; i++) {
1871                inst = kmalloc(sizeof(struct kretprobe_instance) +
1872                               rp->data_size, GFP_KERNEL);
1873                if (inst == NULL) {
1874                        free_rp_inst(rp);
1875                        return -ENOMEM;
1876                }
1877                INIT_HLIST_NODE(&inst->hlist);
1878                hlist_add_head(&inst->hlist, &rp->free_instances);
1879        }
1880
1881        rp->nmissed = 0;
1882        /* Establish function entry probe point */
1883        ret = register_kprobe(&rp->kp);
1884        if (ret != 0)
1885                free_rp_inst(rp);
1886        return ret;
1887}
1888EXPORT_SYMBOL_GPL(register_kretprobe);
1889
1890int register_kretprobes(struct kretprobe **rps, int num)
1891{
1892        int ret = 0, i;
1893
1894        if (num <= 0)
1895                return -EINVAL;
1896        for (i = 0; i < num; i++) {
1897                ret = register_kretprobe(rps[i]);
1898                if (ret < 0) {
1899                        if (i > 0)
1900                                unregister_kretprobes(rps, i);
1901                        break;
1902                }
1903        }
1904        return ret;
1905}
1906EXPORT_SYMBOL_GPL(register_kretprobes);
1907
1908void unregister_kretprobe(struct kretprobe *rp)
1909{
1910        unregister_kretprobes(&rp, 1);
1911}
1912EXPORT_SYMBOL_GPL(unregister_kretprobe);
1913
1914void unregister_kretprobes(struct kretprobe **rps, int num)
1915{
1916        int i;
1917
1918        if (num <= 0)
1919                return;
1920        mutex_lock(&kprobe_mutex);
1921        for (i = 0; i < num; i++)
1922                if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1923                        rps[i]->kp.addr = NULL;
1924        mutex_unlock(&kprobe_mutex);
1925
1926        synchronize_sched();
1927        for (i = 0; i < num; i++) {
1928                if (rps[i]->kp.addr) {
1929                        __unregister_kprobe_bottom(&rps[i]->kp);
1930                        cleanup_rp_inst(rps[i]);
1931                }
1932        }
1933}
1934EXPORT_SYMBOL_GPL(unregister_kretprobes);
1935
1936#else /* CONFIG_KRETPROBES */
1937int register_kretprobe(struct kretprobe *rp)
1938{
1939        return -ENOSYS;
1940}
1941EXPORT_SYMBOL_GPL(register_kretprobe);
1942
1943int register_kretprobes(struct kretprobe **rps, int num)
1944{
1945        return -ENOSYS;
1946}
1947EXPORT_SYMBOL_GPL(register_kretprobes);
1948
1949void unregister_kretprobe(struct kretprobe *rp)
1950{
1951}
1952EXPORT_SYMBOL_GPL(unregister_kretprobe);
1953
1954void unregister_kretprobes(struct kretprobe **rps, int num)
1955{
1956}
1957EXPORT_SYMBOL_GPL(unregister_kretprobes);
1958
1959static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1960{
1961        return 0;
1962}
1963NOKPROBE_SYMBOL(pre_handler_kretprobe);
1964
1965#endif /* CONFIG_KRETPROBES */
1966
1967/* Set the kprobe gone and remove its instruction buffer. */
1968static void kill_kprobe(struct kprobe *p)
1969{
1970        struct kprobe *kp;
1971
1972        p->flags |= KPROBE_FLAG_GONE;
1973        if (kprobe_aggrprobe(p)) {
1974                /*
1975                 * If this is an aggr_kprobe, we have to list all the
1976                 * chained probes and mark them GONE.
1977                 */
1978                list_for_each_entry_rcu(kp, &p->list, list)
1979                        kp->flags |= KPROBE_FLAG_GONE;
1980                p->post_handler = NULL;
1981                p->break_handler = NULL;
1982                kill_optimized_kprobe(p);
1983        }
1984        /*
1985         * Here, we can remove insn_slot safely, because no thread calls
1986         * the original probed function (which will be freed soon) any more.
1987         */
1988        arch_remove_kprobe(p);
1989}
1990
1991/* Disable one kprobe */
1992int disable_kprobe(struct kprobe *kp)
1993{
1994        int ret = 0;
1995
1996        mutex_lock(&kprobe_mutex);
1997
1998        /* Disable this kprobe */
1999        if (__disable_kprobe(kp) == NULL)
2000                ret = -EINVAL;
2001
2002        mutex_unlock(&kprobe_mutex);
2003        return ret;
2004}
2005EXPORT_SYMBOL_GPL(disable_kprobe);
2006
2007/* Enable one kprobe */
2008int enable_kprobe(struct kprobe *kp)
2009{
2010        int ret = 0;
2011        struct kprobe *p;
2012
2013        mutex_lock(&kprobe_mutex);
2014
2015        /* Check whether specified probe is valid. */
2016        p = __get_valid_kprobe(kp);
2017        if (unlikely(p == NULL)) {
2018                ret = -EINVAL;
2019                goto out;
2020        }
2021
2022        if (kprobe_gone(kp)) {
2023                /* This kprobe has gone, we couldn't enable it. */
2024                ret = -EINVAL;
2025                goto out;
2026        }
2027
2028        if (p != kp)
2029                kp->flags &= ~KPROBE_FLAG_DISABLED;
2030
2031        if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2032                p->flags &= ~KPROBE_FLAG_DISABLED;
2033                arm_kprobe(p);
2034        }
2035out:
2036        mutex_unlock(&kprobe_mutex);
2037        return ret;
2038}
2039EXPORT_SYMBOL_GPL(enable_kprobe);
2040
2041void dump_kprobe(struct kprobe *kp)
2042{
2043        printk(KERN_WARNING "Dumping kprobe:\n");
2044        printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2045               kp->symbol_name, kp->addr, kp->offset);
2046}
2047NOKPROBE_SYMBOL(dump_kprobe);
2048
2049/*
2050 * Lookup and populate the kprobe_blacklist.
2051 *
2052 * Unlike the kretprobe blacklist, we'll need to determine
2053 * the range of addresses that belong to the said functions,
2054 * since a kprobe need not necessarily be at the beginning
2055 * of a function.
2056 */
2057static int __init populate_kprobe_blacklist(unsigned long *start,
2058                                             unsigned long *end)
2059{
2060        unsigned long *iter;
2061        struct kprobe_blacklist_entry *ent;
2062        unsigned long entry, offset = 0, size = 0;
2063
2064        for (iter = start; iter < end; iter++) {
2065                entry = arch_deref_entry_point((void *)*iter);
2066
2067                if (!kernel_text_address(entry) ||
2068                    !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2069                        pr_err("Failed to find blacklist at %p\n",
2070                                (void *)entry);
2071                        continue;
2072                }
2073
2074                ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2075                if (!ent)
2076                        return -ENOMEM;
2077                ent->start_addr = entry;
2078                ent->end_addr = entry + size;
2079                INIT_LIST_HEAD(&ent->list);
2080                list_add_tail(&ent->list, &kprobe_blacklist);
2081        }
2082        return 0;
2083}
2084
2085/* Module notifier call back, checking kprobes on the module */
2086static int kprobes_module_callback(struct notifier_block *nb,
2087                                   unsigned long val, void *data)
2088{
2089        struct module *mod = data;
2090        struct hlist_head *head;
2091        struct kprobe *p;
2092        unsigned int i;
2093        int checkcore = (val == MODULE_STATE_GOING);
2094
2095        if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2096                return NOTIFY_DONE;
2097
2098        /*
2099         * When MODULE_STATE_GOING was notified, both of module .text and
2100         * .init.text sections would be freed. When MODULE_STATE_LIVE was
2101         * notified, only .init.text section would be freed. We need to
2102         * disable kprobes which have been inserted in the sections.
2103         */
2104        mutex_lock(&kprobe_mutex);
2105        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2106                head = &kprobe_table[i];
2107                hlist_for_each_entry_rcu(p, head, hlist)
2108                        if (within_module_init((unsigned long)p->addr, mod) ||
2109                            (checkcore &&
2110                             within_module_core((unsigned long)p->addr, mod))) {
2111                                /*
2112                                 * The vaddr this probe is installed will soon
2113                                 * be vfreed buy not synced to disk. Hence,
2114                                 * disarming the breakpoint isn't needed.
2115                                 */
2116                                kill_kprobe(p);
2117                        }
2118        }
2119        mutex_unlock(&kprobe_mutex);
2120        return NOTIFY_DONE;
2121}
2122
2123static struct notifier_block kprobe_module_nb = {
2124        .notifier_call = kprobes_module_callback,
2125        .priority = 0
2126};
2127
2128/* Markers of _kprobe_blacklist section */
2129extern unsigned long __start_kprobe_blacklist[];
2130extern unsigned long __stop_kprobe_blacklist[];
2131
2132static int __init init_kprobes(void)
2133{
2134        int i, err = 0;
2135
2136        /* FIXME allocate the probe table, currently defined statically */
2137        /* initialize all list heads */
2138        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2139                INIT_HLIST_HEAD(&kprobe_table[i]);
2140                INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2141                raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2142        }
2143
2144        err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2145                                        __stop_kprobe_blacklist);
2146        if (err) {
2147                pr_err("kprobes: failed to populate blacklist: %d\n", err);
2148                pr_err("Please take care of using kprobes.\n");
2149        }
2150
2151        if (kretprobe_blacklist_size) {
2152                /* lookup the function address from its name */
2153                for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2154                        kprobe_lookup_name(kretprobe_blacklist[i].name,
2155                                           kretprobe_blacklist[i].addr);
2156                        if (!kretprobe_blacklist[i].addr)
2157                                printk("kretprobe: lookup failed: %s\n",
2158                                       kretprobe_blacklist[i].name);
2159                }
2160        }
2161
2162#if defined(CONFIG_OPTPROBES)
2163#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2164        /* Init kprobe_optinsn_slots */
2165        kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2166#endif
2167        /* By default, kprobes can be optimized */
2168        kprobes_allow_optimization = true;
2169#endif
2170
2171        /* By default, kprobes are armed */
2172        kprobes_all_disarmed = false;
2173
2174        err = arch_init_kprobes();
2175        if (!err)
2176                err = register_die_notifier(&kprobe_exceptions_nb);
2177        if (!err)
2178                err = register_module_notifier(&kprobe_module_nb);
2179
2180        kprobes_initialized = (err == 0);
2181
2182        if (!err)
2183                init_test_probes();
2184        return err;
2185}
2186
2187#ifdef CONFIG_DEBUG_FS
2188static void report_probe(struct seq_file *pi, struct kprobe *p,
2189                const char *sym, int offset, char *modname, struct kprobe *pp)
2190{
2191        char *kprobe_type;
2192
2193        if (p->pre_handler == pre_handler_kretprobe)
2194                kprobe_type = "r";
2195        else if (p->pre_handler == setjmp_pre_handler)
2196                kprobe_type = "j";
2197        else
2198                kprobe_type = "k";
2199
2200        if (sym)
2201                seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2202                        p->addr, kprobe_type, sym, offset,
2203                        (modname ? modname : " "));
2204        else
2205                seq_printf(pi, "%p  %s  %p ",
2206                        p->addr, kprobe_type, p->addr);
2207
2208        if (!pp)
2209                pp = p;
2210        seq_printf(pi, "%s%s%s%s\n",
2211                (kprobe_gone(p) ? "[GONE]" : ""),
2212                ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2213                (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2214                (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2215}
2216
2217static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2218{
2219        return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2220}
2221
2222static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2223{
2224        (*pos)++;
2225        if (*pos >= KPROBE_TABLE_SIZE)
2226                return NULL;
2227        return pos;
2228}
2229
2230static void kprobe_seq_stop(struct seq_file *f, void *v)
2231{
2232        /* Nothing to do */
2233}
2234
2235static int show_kprobe_addr(struct seq_file *pi, void *v)
2236{
2237        struct hlist_head *head;
2238        struct kprobe *p, *kp;
2239        const char *sym = NULL;
2240        unsigned int i = *(loff_t *) v;
2241        unsigned long offset = 0;
2242        char *modname, namebuf[KSYM_NAME_LEN];
2243
2244        head = &kprobe_table[i];
2245        preempt_disable();
2246        hlist_for_each_entry_rcu(p, head, hlist) {
2247                sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2248                                        &offset, &modname, namebuf);
2249                if (kprobe_aggrprobe(p)) {
2250                        list_for_each_entry_rcu(kp, &p->list, list)
2251                                report_probe(pi, kp, sym, offset, modname, p);
2252                } else
2253                        report_probe(pi, p, sym, offset, modname, NULL);
2254        }
2255        preempt_enable();
2256        return 0;
2257}
2258
2259static const struct seq_operations kprobes_seq_ops = {
2260        .start = kprobe_seq_start,
2261        .next  = kprobe_seq_next,
2262        .stop  = kprobe_seq_stop,
2263        .show  = show_kprobe_addr
2264};
2265
2266static int kprobes_open(struct inode *inode, struct file *filp)
2267{
2268        return seq_open(filp, &kprobes_seq_ops);
2269}
2270
2271static const struct file_operations debugfs_kprobes_operations = {
2272        .open           = kprobes_open,
2273        .read           = seq_read,
2274        .llseek         = seq_lseek,
2275        .release        = seq_release,
2276};
2277
2278/* kprobes/blacklist -- shows which functions can not be probed */
2279static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2280{
2281        return seq_list_start(&kprobe_blacklist, *pos);
2282}
2283
2284static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2285{
2286        return seq_list_next(v, &kprobe_blacklist, pos);
2287}
2288
2289static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2290{
2291        struct kprobe_blacklist_entry *ent =
2292                list_entry(v, struct kprobe_blacklist_entry, list);
2293
2294        seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2295                   (void *)ent->end_addr, (void *)ent->start_addr);
2296        return 0;
2297}
2298
2299static const struct seq_operations kprobe_blacklist_seq_ops = {
2300        .start = kprobe_blacklist_seq_start,
2301        .next  = kprobe_blacklist_seq_next,
2302        .stop  = kprobe_seq_stop,       /* Reuse void function */
2303        .show  = kprobe_blacklist_seq_show,
2304};
2305
2306static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2307{
2308        return seq_open(filp, &kprobe_blacklist_seq_ops);
2309}
2310
2311static const struct file_operations debugfs_kprobe_blacklist_ops = {
2312        .open           = kprobe_blacklist_open,
2313        .read           = seq_read,
2314        .llseek         = seq_lseek,
2315        .release        = seq_release,
2316};
2317
2318static void arm_all_kprobes(void)
2319{
2320        struct hlist_head *head;
2321        struct kprobe *p;
2322        unsigned int i;
2323
2324        mutex_lock(&kprobe_mutex);
2325
2326        /* If kprobes are armed, just return */
2327        if (!kprobes_all_disarmed)
2328                goto already_enabled;
2329
2330        /*
2331         * optimize_kprobe() called by arm_kprobe() checks
2332         * kprobes_all_disarmed, so set kprobes_all_disarmed before
2333         * arm_kprobe.
2334         */
2335        kprobes_all_disarmed = false;
2336        /* Arming kprobes doesn't optimize kprobe itself */
2337        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2338                head = &kprobe_table[i];
2339                hlist_for_each_entry_rcu(p, head, hlist)
2340                        if (!kprobe_disabled(p))
2341                                arm_kprobe(p);
2342        }
2343
2344        printk(KERN_INFO "Kprobes globally enabled\n");
2345
2346already_enabled:
2347        mutex_unlock(&kprobe_mutex);
2348        return;
2349}
2350
2351static void disarm_all_kprobes(void)
2352{
2353        struct hlist_head *head;
2354        struct kprobe *p;
2355        unsigned int i;
2356
2357        mutex_lock(&kprobe_mutex);
2358
2359        /* If kprobes are already disarmed, just return */
2360        if (kprobes_all_disarmed) {
2361                mutex_unlock(&kprobe_mutex);
2362                return;
2363        }
2364
2365        kprobes_all_disarmed = true;
2366        printk(KERN_INFO "Kprobes globally disabled\n");
2367
2368        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2369                head = &kprobe_table[i];
2370                hlist_for_each_entry_rcu(p, head, hlist) {
2371                        if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2372                                disarm_kprobe(p, false);
2373                }
2374        }
2375        mutex_unlock(&kprobe_mutex);
2376
2377        /* Wait for disarming all kprobes by optimizer */
2378        wait_for_kprobe_optimizer();
2379}
2380
2381/*
2382 * XXX: The debugfs bool file interface doesn't allow for callbacks
2383 * when the bool state is switched. We can reuse that facility when
2384 * available
2385 */
2386static ssize_t read_enabled_file_bool(struct file *file,
2387               char __user *user_buf, size_t count, loff_t *ppos)
2388{
2389        char buf[3];
2390
2391        if (!kprobes_all_disarmed)
2392                buf[0] = '1';
2393        else
2394                buf[0] = '0';
2395        buf[1] = '\n';
2396        buf[2] = 0x00;
2397        return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2398}
2399
2400static ssize_t write_enabled_file_bool(struct file *file,
2401               const char __user *user_buf, size_t count, loff_t *ppos)
2402{
2403        char buf[32];
2404        size_t buf_size;
2405
2406        buf_size = min(count, (sizeof(buf)-1));
2407        if (copy_from_user(buf, user_buf, buf_size))
2408                return -EFAULT;
2409
2410        buf[buf_size] = '\0';
2411        switch (buf[0]) {
2412        case 'y':
2413        case 'Y':
2414        case '1':
2415                arm_all_kprobes();
2416                break;
2417        case 'n':
2418        case 'N':
2419        case '0':
2420                disarm_all_kprobes();
2421                break;
2422        default:
2423                return -EINVAL;
2424        }
2425
2426        return count;
2427}
2428
2429static const struct file_operations fops_kp = {
2430        .read =         read_enabled_file_bool,
2431        .write =        write_enabled_file_bool,
2432        .llseek =       default_llseek,
2433};
2434
2435static int __init debugfs_kprobe_init(void)
2436{
2437        struct dentry *dir, *file;
2438        unsigned int value = 1;
2439
2440        dir = debugfs_create_dir("kprobes", NULL);
2441        if (!dir)
2442                return -ENOMEM;
2443
2444        file = debugfs_create_file("list", 0444, dir, NULL,
2445                                &debugfs_kprobes_operations);
2446        if (!file)
2447                goto error;
2448
2449        file = debugfs_create_file("enabled", 0600, dir,
2450                                        &value, &fops_kp);
2451        if (!file)
2452                goto error;
2453
2454        file = debugfs_create_file("blacklist", 0444, dir, NULL,
2455                                &debugfs_kprobe_blacklist_ops);
2456        if (!file)
2457                goto error;
2458
2459        return 0;
2460
2461error:
2462        debugfs_remove(dir);
2463        return -ENOMEM;
2464}
2465
2466late_initcall(debugfs_kprobe_init);
2467#endif /* CONFIG_DEBUG_FS */
2468
2469module_init(init_kprobes);
2470
2471/* defined in arch/.../kernel/kprobes.c */
2472EXPORT_SYMBOL_GPL(jprobe_return);
2473