linux/kernel/locking/mutex.c
<<
>>
Prefs
   1/*
   2 * kernel/locking/mutex.c
   3 *
   4 * Mutexes: blocking mutual exclusion locks
   5 *
   6 * Started by Ingo Molnar:
   7 *
   8 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   9 *
  10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  11 * David Howells for suggestions and improvements.
  12 *
  13 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  14 *    from the -rt tree, where it was originally implemented for rtmutexes
  15 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  16 *    and Sven Dietrich.
  17 *
  18 * Also see Documentation/locking/mutex-design.txt.
  19 */
  20#include <linux/mutex.h>
  21#include <linux/ww_mutex.h>
  22#include <linux/sched.h>
  23#include <linux/sched/rt.h>
  24#include <linux/export.h>
  25#include <linux/spinlock.h>
  26#include <linux/interrupt.h>
  27#include <linux/debug_locks.h>
  28#include <linux/osq_lock.h>
  29
  30/*
  31 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
  32 * which forces all calls into the slowpath:
  33 */
  34#ifdef CONFIG_DEBUG_MUTEXES
  35# include "mutex-debug.h"
  36# include <asm-generic/mutex-null.h>
  37/*
  38 * Must be 0 for the debug case so we do not do the unlock outside of the
  39 * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
  40 * case.
  41 */
  42# undef __mutex_slowpath_needs_to_unlock
  43# define  __mutex_slowpath_needs_to_unlock()    0
  44#else
  45# include "mutex.h"
  46# include <asm/mutex.h>
  47#endif
  48
  49void
  50__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  51{
  52        atomic_set(&lock->count, 1);
  53        spin_lock_init(&lock->wait_lock);
  54        INIT_LIST_HEAD(&lock->wait_list);
  55        mutex_clear_owner(lock);
  56#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  57        osq_lock_init(&lock->osq);
  58#endif
  59
  60        debug_mutex_init(lock, name, key);
  61}
  62
  63EXPORT_SYMBOL(__mutex_init);
  64
  65#ifndef CONFIG_DEBUG_LOCK_ALLOC
  66/*
  67 * We split the mutex lock/unlock logic into separate fastpath and
  68 * slowpath functions, to reduce the register pressure on the fastpath.
  69 * We also put the fastpath first in the kernel image, to make sure the
  70 * branch is predicted by the CPU as default-untaken.
  71 */
  72__visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
  73
  74/**
  75 * mutex_lock - acquire the mutex
  76 * @lock: the mutex to be acquired
  77 *
  78 * Lock the mutex exclusively for this task. If the mutex is not
  79 * available right now, it will sleep until it can get it.
  80 *
  81 * The mutex must later on be released by the same task that
  82 * acquired it. Recursive locking is not allowed. The task
  83 * may not exit without first unlocking the mutex. Also, kernel
  84 * memory where the mutex resides must not be freed with
  85 * the mutex still locked. The mutex must first be initialized
  86 * (or statically defined) before it can be locked. memset()-ing
  87 * the mutex to 0 is not allowed.
  88 *
  89 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
  90 *   checks that will enforce the restrictions and will also do
  91 *   deadlock debugging. )
  92 *
  93 * This function is similar to (but not equivalent to) down().
  94 */
  95void __sched mutex_lock(struct mutex *lock)
  96{
  97        might_sleep();
  98        /*
  99         * The locking fastpath is the 1->0 transition from
 100         * 'unlocked' into 'locked' state.
 101         */
 102        __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
 103        mutex_set_owner(lock);
 104}
 105
 106EXPORT_SYMBOL(mutex_lock);
 107#endif
 108
 109static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
 110                                                   struct ww_acquire_ctx *ww_ctx)
 111{
 112#ifdef CONFIG_DEBUG_MUTEXES
 113        /*
 114         * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
 115         * but released with a normal mutex_unlock in this call.
 116         *
 117         * This should never happen, always use ww_mutex_unlock.
 118         */
 119        DEBUG_LOCKS_WARN_ON(ww->ctx);
 120
 121        /*
 122         * Not quite done after calling ww_acquire_done() ?
 123         */
 124        DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
 125
 126        if (ww_ctx->contending_lock) {
 127                /*
 128                 * After -EDEADLK you tried to
 129                 * acquire a different ww_mutex? Bad!
 130                 */
 131                DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
 132
 133                /*
 134                 * You called ww_mutex_lock after receiving -EDEADLK,
 135                 * but 'forgot' to unlock everything else first?
 136                 */
 137                DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
 138                ww_ctx->contending_lock = NULL;
 139        }
 140
 141        /*
 142         * Naughty, using a different class will lead to undefined behavior!
 143         */
 144        DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
 145#endif
 146        ww_ctx->acquired++;
 147}
 148
 149/*
 150 * After acquiring lock with fastpath or when we lost out in contested
 151 * slowpath, set ctx and wake up any waiters so they can recheck.
 152 *
 153 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
 154 * as the fastpath and opportunistic spinning are disabled in that case.
 155 */
 156static __always_inline void
 157ww_mutex_set_context_fastpath(struct ww_mutex *lock,
 158                               struct ww_acquire_ctx *ctx)
 159{
 160        unsigned long flags;
 161        struct mutex_waiter *cur;
 162
 163        ww_mutex_lock_acquired(lock, ctx);
 164
 165        lock->ctx = ctx;
 166
 167        /*
 168         * The lock->ctx update should be visible on all cores before
 169         * the atomic read is done, otherwise contended waiters might be
 170         * missed. The contended waiters will either see ww_ctx == NULL
 171         * and keep spinning, or it will acquire wait_lock, add itself
 172         * to waiter list and sleep.
 173         */
 174        smp_mb(); /* ^^^ */
 175
 176        /*
 177         * Check if lock is contended, if not there is nobody to wake up
 178         */
 179        if (likely(atomic_read(&lock->base.count) == 0))
 180                return;
 181
 182        /*
 183         * Uh oh, we raced in fastpath, wake up everyone in this case,
 184         * so they can see the new lock->ctx.
 185         */
 186        spin_lock_mutex(&lock->base.wait_lock, flags);
 187        list_for_each_entry(cur, &lock->base.wait_list, list) {
 188                debug_mutex_wake_waiter(&lock->base, cur);
 189                wake_up_process(cur->task);
 190        }
 191        spin_unlock_mutex(&lock->base.wait_lock, flags);
 192}
 193
 194/*
 195 * After acquiring lock in the slowpath set ctx and wake up any
 196 * waiters so they can recheck.
 197 *
 198 * Callers must hold the mutex wait_lock.
 199 */
 200static __always_inline void
 201ww_mutex_set_context_slowpath(struct ww_mutex *lock,
 202                              struct ww_acquire_ctx *ctx)
 203{
 204        struct mutex_waiter *cur;
 205
 206        ww_mutex_lock_acquired(lock, ctx);
 207        lock->ctx = ctx;
 208
 209        /*
 210         * Give any possible sleeping processes the chance to wake up,
 211         * so they can recheck if they have to back off.
 212         */
 213        list_for_each_entry(cur, &lock->base.wait_list, list) {
 214                debug_mutex_wake_waiter(&lock->base, cur);
 215                wake_up_process(cur->task);
 216        }
 217}
 218
 219#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 220/*
 221 * Look out! "owner" is an entirely speculative pointer
 222 * access and not reliable.
 223 */
 224static noinline
 225bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
 226{
 227        bool ret = true;
 228
 229        rcu_read_lock();
 230        while (lock->owner == owner) {
 231                /*
 232                 * Ensure we emit the owner->on_cpu, dereference _after_
 233                 * checking lock->owner still matches owner. If that fails,
 234                 * owner might point to freed memory. If it still matches,
 235                 * the rcu_read_lock() ensures the memory stays valid.
 236                 */
 237                barrier();
 238
 239                if (!owner->on_cpu || need_resched()) {
 240                        ret = false;
 241                        break;
 242                }
 243
 244                cpu_relax_lowlatency();
 245        }
 246        rcu_read_unlock();
 247
 248        return ret;
 249}
 250
 251/*
 252 * Initial check for entering the mutex spinning loop
 253 */
 254static inline int mutex_can_spin_on_owner(struct mutex *lock)
 255{
 256        struct task_struct *owner;
 257        int retval = 1;
 258
 259        if (need_resched())
 260                return 0;
 261
 262        rcu_read_lock();
 263        owner = READ_ONCE(lock->owner);
 264        if (owner)
 265                retval = owner->on_cpu;
 266        rcu_read_unlock();
 267        /*
 268         * if lock->owner is not set, the mutex owner may have just acquired
 269         * it and not set the owner yet or the mutex has been released.
 270         */
 271        return retval;
 272}
 273
 274/*
 275 * Atomically try to take the lock when it is available
 276 */
 277static inline bool mutex_try_to_acquire(struct mutex *lock)
 278{
 279        return !mutex_is_locked(lock) &&
 280                (atomic_cmpxchg_acquire(&lock->count, 1, 0) == 1);
 281}
 282
 283/*
 284 * Optimistic spinning.
 285 *
 286 * We try to spin for acquisition when we find that the lock owner
 287 * is currently running on a (different) CPU and while we don't
 288 * need to reschedule. The rationale is that if the lock owner is
 289 * running, it is likely to release the lock soon.
 290 *
 291 * Since this needs the lock owner, and this mutex implementation
 292 * doesn't track the owner atomically in the lock field, we need to
 293 * track it non-atomically.
 294 *
 295 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
 296 * to serialize everything.
 297 *
 298 * The mutex spinners are queued up using MCS lock so that only one
 299 * spinner can compete for the mutex. However, if mutex spinning isn't
 300 * going to happen, there is no point in going through the lock/unlock
 301 * overhead.
 302 *
 303 * Returns true when the lock was taken, otherwise false, indicating
 304 * that we need to jump to the slowpath and sleep.
 305 */
 306static bool mutex_optimistic_spin(struct mutex *lock,
 307                                  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
 308{
 309        struct task_struct *task = current;
 310
 311        if (!mutex_can_spin_on_owner(lock))
 312                goto done;
 313
 314        /*
 315         * In order to avoid a stampede of mutex spinners trying to
 316         * acquire the mutex all at once, the spinners need to take a
 317         * MCS (queued) lock first before spinning on the owner field.
 318         */
 319        if (!osq_lock(&lock->osq))
 320                goto done;
 321
 322        while (true) {
 323                struct task_struct *owner;
 324
 325                if (use_ww_ctx && ww_ctx->acquired > 0) {
 326                        struct ww_mutex *ww;
 327
 328                        ww = container_of(lock, struct ww_mutex, base);
 329                        /*
 330                         * If ww->ctx is set the contents are undefined, only
 331                         * by acquiring wait_lock there is a guarantee that
 332                         * they are not invalid when reading.
 333                         *
 334                         * As such, when deadlock detection needs to be
 335                         * performed the optimistic spinning cannot be done.
 336                         */
 337                        if (READ_ONCE(ww->ctx))
 338                                break;
 339                }
 340
 341                /*
 342                 * If there's an owner, wait for it to either
 343                 * release the lock or go to sleep.
 344                 */
 345                owner = READ_ONCE(lock->owner);
 346                if (owner && !mutex_spin_on_owner(lock, owner))
 347                        break;
 348
 349                /* Try to acquire the mutex if it is unlocked. */
 350                if (mutex_try_to_acquire(lock)) {
 351                        lock_acquired(&lock->dep_map, ip);
 352
 353                        if (use_ww_ctx) {
 354                                struct ww_mutex *ww;
 355                                ww = container_of(lock, struct ww_mutex, base);
 356
 357                                ww_mutex_set_context_fastpath(ww, ww_ctx);
 358                        }
 359
 360                        mutex_set_owner(lock);
 361                        osq_unlock(&lock->osq);
 362                        return true;
 363                }
 364
 365                /*
 366                 * When there's no owner, we might have preempted between the
 367                 * owner acquiring the lock and setting the owner field. If
 368                 * we're an RT task that will live-lock because we won't let
 369                 * the owner complete.
 370                 */
 371                if (!owner && (need_resched() || rt_task(task)))
 372                        break;
 373
 374                /*
 375                 * The cpu_relax() call is a compiler barrier which forces
 376                 * everything in this loop to be re-loaded. We don't need
 377                 * memory barriers as we'll eventually observe the right
 378                 * values at the cost of a few extra spins.
 379                 */
 380                cpu_relax_lowlatency();
 381        }
 382
 383        osq_unlock(&lock->osq);
 384done:
 385        /*
 386         * If we fell out of the spin path because of need_resched(),
 387         * reschedule now, before we try-lock the mutex. This avoids getting
 388         * scheduled out right after we obtained the mutex.
 389         */
 390        if (need_resched()) {
 391                /*
 392                 * We _should_ have TASK_RUNNING here, but just in case
 393                 * we do not, make it so, otherwise we might get stuck.
 394                 */
 395                __set_current_state(TASK_RUNNING);
 396                schedule_preempt_disabled();
 397        }
 398
 399        return false;
 400}
 401#else
 402static bool mutex_optimistic_spin(struct mutex *lock,
 403                                  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
 404{
 405        return false;
 406}
 407#endif
 408
 409__visible __used noinline
 410void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
 411
 412/**
 413 * mutex_unlock - release the mutex
 414 * @lock: the mutex to be released
 415 *
 416 * Unlock a mutex that has been locked by this task previously.
 417 *
 418 * This function must not be used in interrupt context. Unlocking
 419 * of a not locked mutex is not allowed.
 420 *
 421 * This function is similar to (but not equivalent to) up().
 422 */
 423void __sched mutex_unlock(struct mutex *lock)
 424{
 425        /*
 426         * The unlocking fastpath is the 0->1 transition from 'locked'
 427         * into 'unlocked' state:
 428         */
 429#ifndef CONFIG_DEBUG_MUTEXES
 430        /*
 431         * When debugging is enabled we must not clear the owner before time,
 432         * the slow path will always be taken, and that clears the owner field
 433         * after verifying that it was indeed current.
 434         */
 435        mutex_clear_owner(lock);
 436#endif
 437        __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
 438}
 439
 440EXPORT_SYMBOL(mutex_unlock);
 441
 442/**
 443 * ww_mutex_unlock - release the w/w mutex
 444 * @lock: the mutex to be released
 445 *
 446 * Unlock a mutex that has been locked by this task previously with any of the
 447 * ww_mutex_lock* functions (with or without an acquire context). It is
 448 * forbidden to release the locks after releasing the acquire context.
 449 *
 450 * This function must not be used in interrupt context. Unlocking
 451 * of a unlocked mutex is not allowed.
 452 */
 453void __sched ww_mutex_unlock(struct ww_mutex *lock)
 454{
 455        /*
 456         * The unlocking fastpath is the 0->1 transition from 'locked'
 457         * into 'unlocked' state:
 458         */
 459        if (lock->ctx) {
 460#ifdef CONFIG_DEBUG_MUTEXES
 461                DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
 462#endif
 463                if (lock->ctx->acquired > 0)
 464                        lock->ctx->acquired--;
 465                lock->ctx = NULL;
 466        }
 467
 468#ifndef CONFIG_DEBUG_MUTEXES
 469        /*
 470         * When debugging is enabled we must not clear the owner before time,
 471         * the slow path will always be taken, and that clears the owner field
 472         * after verifying that it was indeed current.
 473         */
 474        mutex_clear_owner(&lock->base);
 475#endif
 476        __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
 477}
 478EXPORT_SYMBOL(ww_mutex_unlock);
 479
 480static inline int __sched
 481__ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
 482{
 483        struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
 484        struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
 485
 486        if (!hold_ctx)
 487                return 0;
 488
 489        if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
 490            (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
 491#ifdef CONFIG_DEBUG_MUTEXES
 492                DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
 493                ctx->contending_lock = ww;
 494#endif
 495                return -EDEADLK;
 496        }
 497
 498        return 0;
 499}
 500
 501/*
 502 * Lock a mutex (possibly interruptible), slowpath:
 503 */
 504static __always_inline int __sched
 505__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
 506                    struct lockdep_map *nest_lock, unsigned long ip,
 507                    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
 508{
 509        struct task_struct *task = current;
 510        struct mutex_waiter waiter;
 511        unsigned long flags;
 512        int ret;
 513
 514        if (use_ww_ctx) {
 515                struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
 516                if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
 517                        return -EALREADY;
 518        }
 519
 520        preempt_disable();
 521        mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
 522
 523        if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
 524                /* got the lock, yay! */
 525                preempt_enable();
 526                return 0;
 527        }
 528
 529        spin_lock_mutex(&lock->wait_lock, flags);
 530
 531        /*
 532         * Once more, try to acquire the lock. Only try-lock the mutex if
 533         * it is unlocked to reduce unnecessary xchg() operations.
 534         */
 535        if (!mutex_is_locked(lock) &&
 536            (atomic_xchg_acquire(&lock->count, 0) == 1))
 537                goto skip_wait;
 538
 539        debug_mutex_lock_common(lock, &waiter);
 540        debug_mutex_add_waiter(lock, &waiter, task);
 541
 542        /* add waiting tasks to the end of the waitqueue (FIFO): */
 543        list_add_tail(&waiter.list, &lock->wait_list);
 544        waiter.task = task;
 545
 546        lock_contended(&lock->dep_map, ip);
 547
 548        for (;;) {
 549                /*
 550                 * Lets try to take the lock again - this is needed even if
 551                 * we get here for the first time (shortly after failing to
 552                 * acquire the lock), to make sure that we get a wakeup once
 553                 * it's unlocked. Later on, if we sleep, this is the
 554                 * operation that gives us the lock. We xchg it to -1, so
 555                 * that when we release the lock, we properly wake up the
 556                 * other waiters. We only attempt the xchg if the count is
 557                 * non-negative in order to avoid unnecessary xchg operations:
 558                 */
 559                if (atomic_read(&lock->count) >= 0 &&
 560                    (atomic_xchg_acquire(&lock->count, -1) == 1))
 561                        break;
 562
 563                /*
 564                 * got a signal? (This code gets eliminated in the
 565                 * TASK_UNINTERRUPTIBLE case.)
 566                 */
 567                if (unlikely(signal_pending_state(state, task))) {
 568                        ret = -EINTR;
 569                        goto err;
 570                }
 571
 572                if (use_ww_ctx && ww_ctx->acquired > 0) {
 573                        ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
 574                        if (ret)
 575                                goto err;
 576                }
 577
 578                __set_task_state(task, state);
 579
 580                /* didn't get the lock, go to sleep: */
 581                spin_unlock_mutex(&lock->wait_lock, flags);
 582                schedule_preempt_disabled();
 583                spin_lock_mutex(&lock->wait_lock, flags);
 584        }
 585        __set_task_state(task, TASK_RUNNING);
 586
 587        mutex_remove_waiter(lock, &waiter, task);
 588        /* set it to 0 if there are no waiters left: */
 589        if (likely(list_empty(&lock->wait_list)))
 590                atomic_set(&lock->count, 0);
 591        debug_mutex_free_waiter(&waiter);
 592
 593skip_wait:
 594        /* got the lock - cleanup and rejoice! */
 595        lock_acquired(&lock->dep_map, ip);
 596        mutex_set_owner(lock);
 597
 598        if (use_ww_ctx) {
 599                struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
 600                ww_mutex_set_context_slowpath(ww, ww_ctx);
 601        }
 602
 603        spin_unlock_mutex(&lock->wait_lock, flags);
 604        preempt_enable();
 605        return 0;
 606
 607err:
 608        mutex_remove_waiter(lock, &waiter, task);
 609        spin_unlock_mutex(&lock->wait_lock, flags);
 610        debug_mutex_free_waiter(&waiter);
 611        mutex_release(&lock->dep_map, 1, ip);
 612        preempt_enable();
 613        return ret;
 614}
 615
 616#ifdef CONFIG_DEBUG_LOCK_ALLOC
 617void __sched
 618mutex_lock_nested(struct mutex *lock, unsigned int subclass)
 619{
 620        might_sleep();
 621        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
 622                            subclass, NULL, _RET_IP_, NULL, 0);
 623}
 624
 625EXPORT_SYMBOL_GPL(mutex_lock_nested);
 626
 627void __sched
 628_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
 629{
 630        might_sleep();
 631        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
 632                            0, nest, _RET_IP_, NULL, 0);
 633}
 634
 635EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
 636
 637int __sched
 638mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
 639{
 640        might_sleep();
 641        return __mutex_lock_common(lock, TASK_KILLABLE,
 642                                   subclass, NULL, _RET_IP_, NULL, 0);
 643}
 644EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
 645
 646int __sched
 647mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
 648{
 649        might_sleep();
 650        return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
 651                                   subclass, NULL, _RET_IP_, NULL, 0);
 652}
 653
 654EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
 655
 656static inline int
 657ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 658{
 659#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
 660        unsigned tmp;
 661
 662        if (ctx->deadlock_inject_countdown-- == 0) {
 663                tmp = ctx->deadlock_inject_interval;
 664                if (tmp > UINT_MAX/4)
 665                        tmp = UINT_MAX;
 666                else
 667                        tmp = tmp*2 + tmp + tmp/2;
 668
 669                ctx->deadlock_inject_interval = tmp;
 670                ctx->deadlock_inject_countdown = tmp;
 671                ctx->contending_lock = lock;
 672
 673                ww_mutex_unlock(lock);
 674
 675                return -EDEADLK;
 676        }
 677#endif
 678
 679        return 0;
 680}
 681
 682int __sched
 683__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 684{
 685        int ret;
 686
 687        might_sleep();
 688        ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
 689                                   0, &ctx->dep_map, _RET_IP_, ctx, 1);
 690        if (!ret && ctx->acquired > 1)
 691                return ww_mutex_deadlock_injection(lock, ctx);
 692
 693        return ret;
 694}
 695EXPORT_SYMBOL_GPL(__ww_mutex_lock);
 696
 697int __sched
 698__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 699{
 700        int ret;
 701
 702        might_sleep();
 703        ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
 704                                  0, &ctx->dep_map, _RET_IP_, ctx, 1);
 705
 706        if (!ret && ctx->acquired > 1)
 707                return ww_mutex_deadlock_injection(lock, ctx);
 708
 709        return ret;
 710}
 711EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
 712
 713#endif
 714
 715/*
 716 * Release the lock, slowpath:
 717 */
 718static inline void
 719__mutex_unlock_common_slowpath(struct mutex *lock, int nested)
 720{
 721        unsigned long flags;
 722        WAKE_Q(wake_q);
 723
 724        /*
 725         * As a performance measurement, release the lock before doing other
 726         * wakeup related duties to follow. This allows other tasks to acquire
 727         * the lock sooner, while still handling cleanups in past unlock calls.
 728         * This can be done as we do not enforce strict equivalence between the
 729         * mutex counter and wait_list.
 730         *
 731         *
 732         * Some architectures leave the lock unlocked in the fastpath failure
 733         * case, others need to leave it locked. In the later case we have to
 734         * unlock it here - as the lock counter is currently 0 or negative.
 735         */
 736        if (__mutex_slowpath_needs_to_unlock())
 737                atomic_set(&lock->count, 1);
 738
 739        spin_lock_mutex(&lock->wait_lock, flags);
 740        mutex_release(&lock->dep_map, nested, _RET_IP_);
 741        debug_mutex_unlock(lock);
 742
 743        if (!list_empty(&lock->wait_list)) {
 744                /* get the first entry from the wait-list: */
 745                struct mutex_waiter *waiter =
 746                                list_entry(lock->wait_list.next,
 747                                           struct mutex_waiter, list);
 748
 749                debug_mutex_wake_waiter(lock, waiter);
 750                wake_q_add(&wake_q, waiter->task);
 751        }
 752
 753        spin_unlock_mutex(&lock->wait_lock, flags);
 754        wake_up_q(&wake_q);
 755}
 756
 757/*
 758 * Release the lock, slowpath:
 759 */
 760__visible void
 761__mutex_unlock_slowpath(atomic_t *lock_count)
 762{
 763        struct mutex *lock = container_of(lock_count, struct mutex, count);
 764
 765        __mutex_unlock_common_slowpath(lock, 1);
 766}
 767
 768#ifndef CONFIG_DEBUG_LOCK_ALLOC
 769/*
 770 * Here come the less common (and hence less performance-critical) APIs:
 771 * mutex_lock_interruptible() and mutex_trylock().
 772 */
 773static noinline int __sched
 774__mutex_lock_killable_slowpath(struct mutex *lock);
 775
 776static noinline int __sched
 777__mutex_lock_interruptible_slowpath(struct mutex *lock);
 778
 779/**
 780 * mutex_lock_interruptible - acquire the mutex, interruptible
 781 * @lock: the mutex to be acquired
 782 *
 783 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
 784 * been acquired or sleep until the mutex becomes available. If a
 785 * signal arrives while waiting for the lock then this function
 786 * returns -EINTR.
 787 *
 788 * This function is similar to (but not equivalent to) down_interruptible().
 789 */
 790int __sched mutex_lock_interruptible(struct mutex *lock)
 791{
 792        int ret;
 793
 794        might_sleep();
 795        ret =  __mutex_fastpath_lock_retval(&lock->count);
 796        if (likely(!ret)) {
 797                mutex_set_owner(lock);
 798                return 0;
 799        } else
 800                return __mutex_lock_interruptible_slowpath(lock);
 801}
 802
 803EXPORT_SYMBOL(mutex_lock_interruptible);
 804
 805int __sched mutex_lock_killable(struct mutex *lock)
 806{
 807        int ret;
 808
 809        might_sleep();
 810        ret = __mutex_fastpath_lock_retval(&lock->count);
 811        if (likely(!ret)) {
 812                mutex_set_owner(lock);
 813                return 0;
 814        } else
 815                return __mutex_lock_killable_slowpath(lock);
 816}
 817EXPORT_SYMBOL(mutex_lock_killable);
 818
 819__visible void __sched
 820__mutex_lock_slowpath(atomic_t *lock_count)
 821{
 822        struct mutex *lock = container_of(lock_count, struct mutex, count);
 823
 824        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
 825                            NULL, _RET_IP_, NULL, 0);
 826}
 827
 828static noinline int __sched
 829__mutex_lock_killable_slowpath(struct mutex *lock)
 830{
 831        return __mutex_lock_common(lock, TASK_KILLABLE, 0,
 832                                   NULL, _RET_IP_, NULL, 0);
 833}
 834
 835static noinline int __sched
 836__mutex_lock_interruptible_slowpath(struct mutex *lock)
 837{
 838        return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
 839                                   NULL, _RET_IP_, NULL, 0);
 840}
 841
 842static noinline int __sched
 843__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 844{
 845        return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
 846                                   NULL, _RET_IP_, ctx, 1);
 847}
 848
 849static noinline int __sched
 850__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
 851                                            struct ww_acquire_ctx *ctx)
 852{
 853        return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
 854                                   NULL, _RET_IP_, ctx, 1);
 855}
 856
 857#endif
 858
 859/*
 860 * Spinlock based trylock, we take the spinlock and check whether we
 861 * can get the lock:
 862 */
 863static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
 864{
 865        struct mutex *lock = container_of(lock_count, struct mutex, count);
 866        unsigned long flags;
 867        int prev;
 868
 869        /* No need to trylock if the mutex is locked. */
 870        if (mutex_is_locked(lock))
 871                return 0;
 872
 873        spin_lock_mutex(&lock->wait_lock, flags);
 874
 875        prev = atomic_xchg_acquire(&lock->count, -1);
 876        if (likely(prev == 1)) {
 877                mutex_set_owner(lock);
 878                mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
 879        }
 880
 881        /* Set it back to 0 if there are no waiters: */
 882        if (likely(list_empty(&lock->wait_list)))
 883                atomic_set(&lock->count, 0);
 884
 885        spin_unlock_mutex(&lock->wait_lock, flags);
 886
 887        return prev == 1;
 888}
 889
 890/**
 891 * mutex_trylock - try to acquire the mutex, without waiting
 892 * @lock: the mutex to be acquired
 893 *
 894 * Try to acquire the mutex atomically. Returns 1 if the mutex
 895 * has been acquired successfully, and 0 on contention.
 896 *
 897 * NOTE: this function follows the spin_trylock() convention, so
 898 * it is negated from the down_trylock() return values! Be careful
 899 * about this when converting semaphore users to mutexes.
 900 *
 901 * This function must not be used in interrupt context. The
 902 * mutex must be released by the same task that acquired it.
 903 */
 904int __sched mutex_trylock(struct mutex *lock)
 905{
 906        int ret;
 907
 908        ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
 909        if (ret)
 910                mutex_set_owner(lock);
 911
 912        return ret;
 913}
 914EXPORT_SYMBOL(mutex_trylock);
 915
 916#ifndef CONFIG_DEBUG_LOCK_ALLOC
 917int __sched
 918__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 919{
 920        int ret;
 921
 922        might_sleep();
 923
 924        ret = __mutex_fastpath_lock_retval(&lock->base.count);
 925
 926        if (likely(!ret)) {
 927                ww_mutex_set_context_fastpath(lock, ctx);
 928                mutex_set_owner(&lock->base);
 929        } else
 930                ret = __ww_mutex_lock_slowpath(lock, ctx);
 931        return ret;
 932}
 933EXPORT_SYMBOL(__ww_mutex_lock);
 934
 935int __sched
 936__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 937{
 938        int ret;
 939
 940        might_sleep();
 941
 942        ret = __mutex_fastpath_lock_retval(&lock->base.count);
 943
 944        if (likely(!ret)) {
 945                ww_mutex_set_context_fastpath(lock, ctx);
 946                mutex_set_owner(&lock->base);
 947        } else
 948                ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
 949        return ret;
 950}
 951EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
 952
 953#endif
 954
 955/**
 956 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
 957 * @cnt: the atomic which we are to dec
 958 * @lock: the mutex to return holding if we dec to 0
 959 *
 960 * return true and hold lock if we dec to 0, return false otherwise
 961 */
 962int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
 963{
 964        /* dec if we can't possibly hit 0 */
 965        if (atomic_add_unless(cnt, -1, 1))
 966                return 0;
 967        /* we might hit 0, so take the lock */
 968        mutex_lock(lock);
 969        if (!atomic_dec_and_test(cnt)) {
 970                /* when we actually did the dec, we didn't hit 0 */
 971                mutex_unlock(lock);
 972                return 0;
 973        }
 974        /* we hit 0, and we hold the lock */
 975        return 1;
 976}
 977EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
 978