linux/kernel/printk/printk.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/printk.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 * Modified to make sys_syslog() more flexible: added commands to
   7 * return the last 4k of kernel messages, regardless of whether
   8 * they've been read or not.  Added option to suppress kernel printk's
   9 * to the console.  Added hook for sending the console messages
  10 * elsewhere, in preparation for a serial line console (someday).
  11 * Ted Ts'o, 2/11/93.
  12 * Modified for sysctl support, 1/8/97, Chris Horn.
  13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  14 *     manfred@colorfullife.com
  15 * Rewrote bits to get rid of console_lock
  16 *      01Mar01 Andrew Morton
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/tty.h>
  22#include <linux/tty_driver.h>
  23#include <linux/console.h>
  24#include <linux/init.h>
  25#include <linux/jiffies.h>
  26#include <linux/nmi.h>
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/delay.h>
  30#include <linux/smp.h>
  31#include <linux/security.h>
  32#include <linux/bootmem.h>
  33#include <linux/memblock.h>
  34#include <linux/syscalls.h>
  35#include <linux/kexec.h>
  36#include <linux/kdb.h>
  37#include <linux/ratelimit.h>
  38#include <linux/kmsg_dump.h>
  39#include <linux/syslog.h>
  40#include <linux/cpu.h>
  41#include <linux/notifier.h>
  42#include <linux/rculist.h>
  43#include <linux/poll.h>
  44#include <linux/irq_work.h>
  45#include <linux/utsname.h>
  46#include <linux/ctype.h>
  47#include <linux/uio.h>
  48
  49#include <asm/uaccess.h>
  50#include <asm/sections.h>
  51
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/printk.h>
  54
  55#include "console_cmdline.h"
  56#include "braille.h"
  57#include "internal.h"
  58
  59int console_printk[4] = {
  60        CONSOLE_LOGLEVEL_DEFAULT,       /* console_loglevel */
  61        MESSAGE_LOGLEVEL_DEFAULT,       /* default_message_loglevel */
  62        CONSOLE_LOGLEVEL_MIN,           /* minimum_console_loglevel */
  63        CONSOLE_LOGLEVEL_DEFAULT,       /* default_console_loglevel */
  64};
  65
  66/*
  67 * Low level drivers may need that to know if they can schedule in
  68 * their unblank() callback or not. So let's export it.
  69 */
  70int oops_in_progress;
  71EXPORT_SYMBOL(oops_in_progress);
  72
  73/*
  74 * console_sem protects the console_drivers list, and also
  75 * provides serialisation for access to the entire console
  76 * driver system.
  77 */
  78static DEFINE_SEMAPHORE(console_sem);
  79struct console *console_drivers;
  80EXPORT_SYMBOL_GPL(console_drivers);
  81
  82#ifdef CONFIG_LOCKDEP
  83static struct lockdep_map console_lock_dep_map = {
  84        .name = "console_lock"
  85};
  86#endif
  87
  88enum devkmsg_log_bits {
  89        __DEVKMSG_LOG_BIT_ON = 0,
  90        __DEVKMSG_LOG_BIT_OFF,
  91        __DEVKMSG_LOG_BIT_LOCK,
  92};
  93
  94enum devkmsg_log_masks {
  95        DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
  96        DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
  97        DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
  98};
  99
 100/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
 101#define DEVKMSG_LOG_MASK_DEFAULT        0
 102
 103static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 104
 105static int __control_devkmsg(char *str)
 106{
 107        if (!str)
 108                return -EINVAL;
 109
 110        if (!strncmp(str, "on", 2)) {
 111                devkmsg_log = DEVKMSG_LOG_MASK_ON;
 112                return 2;
 113        } else if (!strncmp(str, "off", 3)) {
 114                devkmsg_log = DEVKMSG_LOG_MASK_OFF;
 115                return 3;
 116        } else if (!strncmp(str, "ratelimit", 9)) {
 117                devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 118                return 9;
 119        }
 120        return -EINVAL;
 121}
 122
 123static int __init control_devkmsg(char *str)
 124{
 125        if (__control_devkmsg(str) < 0)
 126                return 1;
 127
 128        /*
 129         * Set sysctl string accordingly:
 130         */
 131        if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
 132                memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
 133                strncpy(devkmsg_log_str, "on", 2);
 134        } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
 135                memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
 136                strncpy(devkmsg_log_str, "off", 3);
 137        }
 138        /* else "ratelimit" which is set by default. */
 139
 140        /*
 141         * Sysctl cannot change it anymore. The kernel command line setting of
 142         * this parameter is to force the setting to be permanent throughout the
 143         * runtime of the system. This is a precation measure against userspace
 144         * trying to be a smarta** and attempting to change it up on us.
 145         */
 146        devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
 147
 148        return 0;
 149}
 150__setup("printk.devkmsg=", control_devkmsg);
 151
 152char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
 153
 154int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
 155                              void __user *buffer, size_t *lenp, loff_t *ppos)
 156{
 157        char old_str[DEVKMSG_STR_MAX_SIZE];
 158        unsigned int old;
 159        int err;
 160
 161        if (write) {
 162                if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
 163                        return -EINVAL;
 164
 165                old = devkmsg_log;
 166                strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
 167        }
 168
 169        err = proc_dostring(table, write, buffer, lenp, ppos);
 170        if (err)
 171                return err;
 172
 173        if (write) {
 174                err = __control_devkmsg(devkmsg_log_str);
 175
 176                /*
 177                 * Do not accept an unknown string OR a known string with
 178                 * trailing crap...
 179                 */
 180                if (err < 0 || (err + 1 != *lenp)) {
 181
 182                        /* ... and restore old setting. */
 183                        devkmsg_log = old;
 184                        strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
 185
 186                        return -EINVAL;
 187                }
 188        }
 189
 190        return 0;
 191}
 192
 193/*
 194 * Number of registered extended console drivers.
 195 *
 196 * If extended consoles are present, in-kernel cont reassembly is disabled
 197 * and each fragment is stored as a separate log entry with proper
 198 * continuation flag so that every emitted message has full metadata.  This
 199 * doesn't change the result for regular consoles or /proc/kmsg.  For
 200 * /dev/kmsg, as long as the reader concatenates messages according to
 201 * consecutive continuation flags, the end result should be the same too.
 202 */
 203static int nr_ext_console_drivers;
 204
 205/*
 206 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 207 * macros instead of functions so that _RET_IP_ contains useful information.
 208 */
 209#define down_console_sem() do { \
 210        down(&console_sem);\
 211        mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 212} while (0)
 213
 214static int __down_trylock_console_sem(unsigned long ip)
 215{
 216        if (down_trylock(&console_sem))
 217                return 1;
 218        mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 219        return 0;
 220}
 221#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 222
 223#define up_console_sem() do { \
 224        mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
 225        up(&console_sem);\
 226} while (0)
 227
 228/*
 229 * This is used for debugging the mess that is the VT code by
 230 * keeping track if we have the console semaphore held. It's
 231 * definitely not the perfect debug tool (we don't know if _WE_
 232 * hold it and are racing, but it helps tracking those weird code
 233 * paths in the console code where we end up in places I want
 234 * locked without the console sempahore held).
 235 */
 236static int console_locked, console_suspended;
 237
 238/*
 239 * If exclusive_console is non-NULL then only this console is to be printed to.
 240 */
 241static struct console *exclusive_console;
 242
 243/*
 244 *      Array of consoles built from command line options (console=)
 245 */
 246
 247#define MAX_CMDLINECONSOLES 8
 248
 249static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 250
 251static int selected_console = -1;
 252static int preferred_console = -1;
 253int console_set_on_cmdline;
 254EXPORT_SYMBOL(console_set_on_cmdline);
 255
 256/* Flag: console code may call schedule() */
 257static int console_may_schedule;
 258
 259/*
 260 * The printk log buffer consists of a chain of concatenated variable
 261 * length records. Every record starts with a record header, containing
 262 * the overall length of the record.
 263 *
 264 * The heads to the first and last entry in the buffer, as well as the
 265 * sequence numbers of these entries are maintained when messages are
 266 * stored.
 267 *
 268 * If the heads indicate available messages, the length in the header
 269 * tells the start next message. A length == 0 for the next message
 270 * indicates a wrap-around to the beginning of the buffer.
 271 *
 272 * Every record carries the monotonic timestamp in microseconds, as well as
 273 * the standard userspace syslog level and syslog facility. The usual
 274 * kernel messages use LOG_KERN; userspace-injected messages always carry
 275 * a matching syslog facility, by default LOG_USER. The origin of every
 276 * message can be reliably determined that way.
 277 *
 278 * The human readable log message directly follows the message header. The
 279 * length of the message text is stored in the header, the stored message
 280 * is not terminated.
 281 *
 282 * Optionally, a message can carry a dictionary of properties (key/value pairs),
 283 * to provide userspace with a machine-readable message context.
 284 *
 285 * Examples for well-defined, commonly used property names are:
 286 *   DEVICE=b12:8               device identifier
 287 *                                b12:8         block dev_t
 288 *                                c127:3        char dev_t
 289 *                                n8            netdev ifindex
 290 *                                +sound:card0  subsystem:devname
 291 *   SUBSYSTEM=pci              driver-core subsystem name
 292 *
 293 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
 294 * follows directly after a '=' character. Every property is terminated by
 295 * a '\0' character. The last property is not terminated.
 296 *
 297 * Example of a message structure:
 298 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
 299 *   0008  34 00                        record is 52 bytes long
 300 *   000a        0b 00                  text is 11 bytes long
 301 *   000c              1f 00            dictionary is 23 bytes long
 302 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
 303 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
 304 *         69 6e 65                     "ine"
 305 *   001b           44 45 56 49 43      "DEVIC"
 306 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
 307 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
 308 *         67                           "g"
 309 *   0032     00 00 00                  padding to next message header
 310 *
 311 * The 'struct printk_log' buffer header must never be directly exported to
 312 * userspace, it is a kernel-private implementation detail that might
 313 * need to be changed in the future, when the requirements change.
 314 *
 315 * /dev/kmsg exports the structured data in the following line format:
 316 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 317 *
 318 * Users of the export format should ignore possible additional values
 319 * separated by ',', and find the message after the ';' character.
 320 *
 321 * The optional key/value pairs are attached as continuation lines starting
 322 * with a space character and terminated by a newline. All possible
 323 * non-prinatable characters are escaped in the "\xff" notation.
 324 */
 325
 326enum log_flags {
 327        LOG_NOCONS      = 1,    /* already flushed, do not print to console */
 328        LOG_NEWLINE     = 2,    /* text ended with a newline */
 329        LOG_PREFIX      = 4,    /* text started with a prefix */
 330        LOG_CONT        = 8,    /* text is a fragment of a continuation line */
 331};
 332
 333struct printk_log {
 334        u64 ts_nsec;            /* timestamp in nanoseconds */
 335        u16 len;                /* length of entire record */
 336        u16 text_len;           /* length of text buffer */
 337        u16 dict_len;           /* length of dictionary buffer */
 338        u8 facility;            /* syslog facility */
 339        u8 flags:5;             /* internal record flags */
 340        u8 level:3;             /* syslog level */
 341}
 342#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 343__packed __aligned(4)
 344#endif
 345;
 346
 347/*
 348 * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
 349 * within the scheduler's rq lock. It must be released before calling
 350 * console_unlock() or anything else that might wake up a process.
 351 */
 352DEFINE_RAW_SPINLOCK(logbuf_lock);
 353
 354#ifdef CONFIG_PRINTK
 355DECLARE_WAIT_QUEUE_HEAD(log_wait);
 356/* the next printk record to read by syslog(READ) or /proc/kmsg */
 357static u64 syslog_seq;
 358static u32 syslog_idx;
 359static enum log_flags syslog_prev;
 360static size_t syslog_partial;
 361
 362/* index and sequence number of the first record stored in the buffer */
 363static u64 log_first_seq;
 364static u32 log_first_idx;
 365
 366/* index and sequence number of the next record to store in the buffer */
 367static u64 log_next_seq;
 368static u32 log_next_idx;
 369
 370/* the next printk record to write to the console */
 371static u64 console_seq;
 372static u32 console_idx;
 373static enum log_flags console_prev;
 374
 375/* the next printk record to read after the last 'clear' command */
 376static u64 clear_seq;
 377static u32 clear_idx;
 378
 379#define PREFIX_MAX              32
 380#define LOG_LINE_MAX            (1024 - PREFIX_MAX)
 381
 382#define LOG_LEVEL(v)            ((v) & 0x07)
 383#define LOG_FACILITY(v)         ((v) >> 3 & 0xff)
 384
 385/* record buffer */
 386#define LOG_ALIGN __alignof__(struct printk_log)
 387#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 388static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 389static char *log_buf = __log_buf;
 390static u32 log_buf_len = __LOG_BUF_LEN;
 391
 392/* Return log buffer address */
 393char *log_buf_addr_get(void)
 394{
 395        return log_buf;
 396}
 397
 398/* Return log buffer size */
 399u32 log_buf_len_get(void)
 400{
 401        return log_buf_len;
 402}
 403
 404/* human readable text of the record */
 405static char *log_text(const struct printk_log *msg)
 406{
 407        return (char *)msg + sizeof(struct printk_log);
 408}
 409
 410/* optional key/value pair dictionary attached to the record */
 411static char *log_dict(const struct printk_log *msg)
 412{
 413        return (char *)msg + sizeof(struct printk_log) + msg->text_len;
 414}
 415
 416/* get record by index; idx must point to valid msg */
 417static struct printk_log *log_from_idx(u32 idx)
 418{
 419        struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 420
 421        /*
 422         * A length == 0 record is the end of buffer marker. Wrap around and
 423         * read the message at the start of the buffer.
 424         */
 425        if (!msg->len)
 426                return (struct printk_log *)log_buf;
 427        return msg;
 428}
 429
 430/* get next record; idx must point to valid msg */
 431static u32 log_next(u32 idx)
 432{
 433        struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 434
 435        /* length == 0 indicates the end of the buffer; wrap */
 436        /*
 437         * A length == 0 record is the end of buffer marker. Wrap around and
 438         * read the message at the start of the buffer as *this* one, and
 439         * return the one after that.
 440         */
 441        if (!msg->len) {
 442                msg = (struct printk_log *)log_buf;
 443                return msg->len;
 444        }
 445        return idx + msg->len;
 446}
 447
 448/*
 449 * Check whether there is enough free space for the given message.
 450 *
 451 * The same values of first_idx and next_idx mean that the buffer
 452 * is either empty or full.
 453 *
 454 * If the buffer is empty, we must respect the position of the indexes.
 455 * They cannot be reset to the beginning of the buffer.
 456 */
 457static int logbuf_has_space(u32 msg_size, bool empty)
 458{
 459        u32 free;
 460
 461        if (log_next_idx > log_first_idx || empty)
 462                free = max(log_buf_len - log_next_idx, log_first_idx);
 463        else
 464                free = log_first_idx - log_next_idx;
 465
 466        /*
 467         * We need space also for an empty header that signalizes wrapping
 468         * of the buffer.
 469         */
 470        return free >= msg_size + sizeof(struct printk_log);
 471}
 472
 473static int log_make_free_space(u32 msg_size)
 474{
 475        while (log_first_seq < log_next_seq &&
 476               !logbuf_has_space(msg_size, false)) {
 477                /* drop old messages until we have enough contiguous space */
 478                log_first_idx = log_next(log_first_idx);
 479                log_first_seq++;
 480        }
 481
 482        if (clear_seq < log_first_seq) {
 483                clear_seq = log_first_seq;
 484                clear_idx = log_first_idx;
 485        }
 486
 487        /* sequence numbers are equal, so the log buffer is empty */
 488        if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
 489                return 0;
 490
 491        return -ENOMEM;
 492}
 493
 494/* compute the message size including the padding bytes */
 495static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
 496{
 497        u32 size;
 498
 499        size = sizeof(struct printk_log) + text_len + dict_len;
 500        *pad_len = (-size) & (LOG_ALIGN - 1);
 501        size += *pad_len;
 502
 503        return size;
 504}
 505
 506/*
 507 * Define how much of the log buffer we could take at maximum. The value
 508 * must be greater than two. Note that only half of the buffer is available
 509 * when the index points to the middle.
 510 */
 511#define MAX_LOG_TAKE_PART 4
 512static const char trunc_msg[] = "<truncated>";
 513
 514static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
 515                        u16 *dict_len, u32 *pad_len)
 516{
 517        /*
 518         * The message should not take the whole buffer. Otherwise, it might
 519         * get removed too soon.
 520         */
 521        u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 522        if (*text_len > max_text_len)
 523                *text_len = max_text_len;
 524        /* enable the warning message */
 525        *trunc_msg_len = strlen(trunc_msg);
 526        /* disable the "dict" completely */
 527        *dict_len = 0;
 528        /* compute the size again, count also the warning message */
 529        return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
 530}
 531
 532/* insert record into the buffer, discard old ones, update heads */
 533static int log_store(int facility, int level,
 534                     enum log_flags flags, u64 ts_nsec,
 535                     const char *dict, u16 dict_len,
 536                     const char *text, u16 text_len)
 537{
 538        struct printk_log *msg;
 539        u32 size, pad_len;
 540        u16 trunc_msg_len = 0;
 541
 542        /* number of '\0' padding bytes to next message */
 543        size = msg_used_size(text_len, dict_len, &pad_len);
 544
 545        if (log_make_free_space(size)) {
 546                /* truncate the message if it is too long for empty buffer */
 547                size = truncate_msg(&text_len, &trunc_msg_len,
 548                                    &dict_len, &pad_len);
 549                /* survive when the log buffer is too small for trunc_msg */
 550                if (log_make_free_space(size))
 551                        return 0;
 552        }
 553
 554        if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
 555                /*
 556                 * This message + an additional empty header does not fit
 557                 * at the end of the buffer. Add an empty header with len == 0
 558                 * to signify a wrap around.
 559                 */
 560                memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
 561                log_next_idx = 0;
 562        }
 563
 564        /* fill message */
 565        msg = (struct printk_log *)(log_buf + log_next_idx);
 566        memcpy(log_text(msg), text, text_len);
 567        msg->text_len = text_len;
 568        if (trunc_msg_len) {
 569                memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
 570                msg->text_len += trunc_msg_len;
 571        }
 572        memcpy(log_dict(msg), dict, dict_len);
 573        msg->dict_len = dict_len;
 574        msg->facility = facility;
 575        msg->level = level & 7;
 576        msg->flags = flags & 0x1f;
 577        if (ts_nsec > 0)
 578                msg->ts_nsec = ts_nsec;
 579        else
 580                msg->ts_nsec = local_clock();
 581        memset(log_dict(msg) + dict_len, 0, pad_len);
 582        msg->len = size;
 583
 584        /* insert message */
 585        log_next_idx += msg->len;
 586        log_next_seq++;
 587
 588        return msg->text_len;
 589}
 590
 591int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 592
 593static int syslog_action_restricted(int type)
 594{
 595        if (dmesg_restrict)
 596                return 1;
 597        /*
 598         * Unless restricted, we allow "read all" and "get buffer size"
 599         * for everybody.
 600         */
 601        return type != SYSLOG_ACTION_READ_ALL &&
 602               type != SYSLOG_ACTION_SIZE_BUFFER;
 603}
 604
 605int check_syslog_permissions(int type, int source)
 606{
 607        /*
 608         * If this is from /proc/kmsg and we've already opened it, then we've
 609         * already done the capabilities checks at open time.
 610         */
 611        if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 612                goto ok;
 613
 614        if (syslog_action_restricted(type)) {
 615                if (capable(CAP_SYSLOG))
 616                        goto ok;
 617                /*
 618                 * For historical reasons, accept CAP_SYS_ADMIN too, with
 619                 * a warning.
 620                 */
 621                if (capable(CAP_SYS_ADMIN)) {
 622                        pr_warn_once("%s (%d): Attempt to access syslog with "
 623                                     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 624                                     "(deprecated).\n",
 625                                 current->comm, task_pid_nr(current));
 626                        goto ok;
 627                }
 628                return -EPERM;
 629        }
 630ok:
 631        return security_syslog(type);
 632}
 633EXPORT_SYMBOL_GPL(check_syslog_permissions);
 634
 635static void append_char(char **pp, char *e, char c)
 636{
 637        if (*pp < e)
 638                *(*pp)++ = c;
 639}
 640
 641static ssize_t msg_print_ext_header(char *buf, size_t size,
 642                                    struct printk_log *msg, u64 seq,
 643                                    enum log_flags prev_flags)
 644{
 645        u64 ts_usec = msg->ts_nsec;
 646        char cont = '-';
 647
 648        do_div(ts_usec, 1000);
 649
 650        /*
 651         * If we couldn't merge continuation line fragments during the print,
 652         * export the stored flags to allow an optional external merge of the
 653         * records. Merging the records isn't always neccessarily correct, like
 654         * when we hit a race during printing. In most cases though, it produces
 655         * better readable output. 'c' in the record flags mark the first
 656         * fragment of a line, '+' the following.
 657         */
 658        if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
 659                cont = 'c';
 660        else if ((msg->flags & LOG_CONT) ||
 661                 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
 662                cont = '+';
 663
 664        return scnprintf(buf, size, "%u,%llu,%llu,%c;",
 665                       (msg->facility << 3) | msg->level, seq, ts_usec, cont);
 666}
 667
 668static ssize_t msg_print_ext_body(char *buf, size_t size,
 669                                  char *dict, size_t dict_len,
 670                                  char *text, size_t text_len)
 671{
 672        char *p = buf, *e = buf + size;
 673        size_t i;
 674
 675        /* escape non-printable characters */
 676        for (i = 0; i < text_len; i++) {
 677                unsigned char c = text[i];
 678
 679                if (c < ' ' || c >= 127 || c == '\\')
 680                        p += scnprintf(p, e - p, "\\x%02x", c);
 681                else
 682                        append_char(&p, e, c);
 683        }
 684        append_char(&p, e, '\n');
 685
 686        if (dict_len) {
 687                bool line = true;
 688
 689                for (i = 0; i < dict_len; i++) {
 690                        unsigned char c = dict[i];
 691
 692                        if (line) {
 693                                append_char(&p, e, ' ');
 694                                line = false;
 695                        }
 696
 697                        if (c == '\0') {
 698                                append_char(&p, e, '\n');
 699                                line = true;
 700                                continue;
 701                        }
 702
 703                        if (c < ' ' || c >= 127 || c == '\\') {
 704                                p += scnprintf(p, e - p, "\\x%02x", c);
 705                                continue;
 706                        }
 707
 708                        append_char(&p, e, c);
 709                }
 710                append_char(&p, e, '\n');
 711        }
 712
 713        return p - buf;
 714}
 715
 716/* /dev/kmsg - userspace message inject/listen interface */
 717struct devkmsg_user {
 718        u64 seq;
 719        u32 idx;
 720        enum log_flags prev;
 721        struct ratelimit_state rs;
 722        struct mutex lock;
 723        char buf[CONSOLE_EXT_LOG_MAX];
 724};
 725
 726static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 727{
 728        char *buf, *line;
 729        int level = default_message_loglevel;
 730        int facility = 1;       /* LOG_USER */
 731        struct file *file = iocb->ki_filp;
 732        struct devkmsg_user *user = file->private_data;
 733        size_t len = iov_iter_count(from);
 734        ssize_t ret = len;
 735
 736        if (!user || len > LOG_LINE_MAX)
 737                return -EINVAL;
 738
 739        /* Ignore when user logging is disabled. */
 740        if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 741                return len;
 742
 743        /* Ratelimit when not explicitly enabled. */
 744        if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
 745                if (!___ratelimit(&user->rs, current->comm))
 746                        return ret;
 747        }
 748
 749        buf = kmalloc(len+1, GFP_KERNEL);
 750        if (buf == NULL)
 751                return -ENOMEM;
 752
 753        buf[len] = '\0';
 754        if (copy_from_iter(buf, len, from) != len) {
 755                kfree(buf);
 756                return -EFAULT;
 757        }
 758
 759        /*
 760         * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 761         * the decimal value represents 32bit, the lower 3 bit are the log
 762         * level, the rest are the log facility.
 763         *
 764         * If no prefix or no userspace facility is specified, we
 765         * enforce LOG_USER, to be able to reliably distinguish
 766         * kernel-generated messages from userspace-injected ones.
 767         */
 768        line = buf;
 769        if (line[0] == '<') {
 770                char *endp = NULL;
 771                unsigned int u;
 772
 773                u = simple_strtoul(line + 1, &endp, 10);
 774                if (endp && endp[0] == '>') {
 775                        level = LOG_LEVEL(u);
 776                        if (LOG_FACILITY(u) != 0)
 777                                facility = LOG_FACILITY(u);
 778                        endp++;
 779                        len -= endp - line;
 780                        line = endp;
 781                }
 782        }
 783
 784        printk_emit(facility, level, NULL, 0, "%s", line);
 785        kfree(buf);
 786        return ret;
 787}
 788
 789static ssize_t devkmsg_read(struct file *file, char __user *buf,
 790                            size_t count, loff_t *ppos)
 791{
 792        struct devkmsg_user *user = file->private_data;
 793        struct printk_log *msg;
 794        size_t len;
 795        ssize_t ret;
 796
 797        if (!user)
 798                return -EBADF;
 799
 800        ret = mutex_lock_interruptible(&user->lock);
 801        if (ret)
 802                return ret;
 803        raw_spin_lock_irq(&logbuf_lock);
 804        while (user->seq == log_next_seq) {
 805                if (file->f_flags & O_NONBLOCK) {
 806                        ret = -EAGAIN;
 807                        raw_spin_unlock_irq(&logbuf_lock);
 808                        goto out;
 809                }
 810
 811                raw_spin_unlock_irq(&logbuf_lock);
 812                ret = wait_event_interruptible(log_wait,
 813                                               user->seq != log_next_seq);
 814                if (ret)
 815                        goto out;
 816                raw_spin_lock_irq(&logbuf_lock);
 817        }
 818
 819        if (user->seq < log_first_seq) {
 820                /* our last seen message is gone, return error and reset */
 821                user->idx = log_first_idx;
 822                user->seq = log_first_seq;
 823                ret = -EPIPE;
 824                raw_spin_unlock_irq(&logbuf_lock);
 825                goto out;
 826        }
 827
 828        msg = log_from_idx(user->idx);
 829        len = msg_print_ext_header(user->buf, sizeof(user->buf),
 830                                   msg, user->seq, user->prev);
 831        len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
 832                                  log_dict(msg), msg->dict_len,
 833                                  log_text(msg), msg->text_len);
 834
 835        user->prev = msg->flags;
 836        user->idx = log_next(user->idx);
 837        user->seq++;
 838        raw_spin_unlock_irq(&logbuf_lock);
 839
 840        if (len > count) {
 841                ret = -EINVAL;
 842                goto out;
 843        }
 844
 845        if (copy_to_user(buf, user->buf, len)) {
 846                ret = -EFAULT;
 847                goto out;
 848        }
 849        ret = len;
 850out:
 851        mutex_unlock(&user->lock);
 852        return ret;
 853}
 854
 855static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 856{
 857        struct devkmsg_user *user = file->private_data;
 858        loff_t ret = 0;
 859
 860        if (!user)
 861                return -EBADF;
 862        if (offset)
 863                return -ESPIPE;
 864
 865        raw_spin_lock_irq(&logbuf_lock);
 866        switch (whence) {
 867        case SEEK_SET:
 868                /* the first record */
 869                user->idx = log_first_idx;
 870                user->seq = log_first_seq;
 871                break;
 872        case SEEK_DATA:
 873                /*
 874                 * The first record after the last SYSLOG_ACTION_CLEAR,
 875                 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 876                 * changes no global state, and does not clear anything.
 877                 */
 878                user->idx = clear_idx;
 879                user->seq = clear_seq;
 880                break;
 881        case SEEK_END:
 882                /* after the last record */
 883                user->idx = log_next_idx;
 884                user->seq = log_next_seq;
 885                break;
 886        default:
 887                ret = -EINVAL;
 888        }
 889        raw_spin_unlock_irq(&logbuf_lock);
 890        return ret;
 891}
 892
 893static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
 894{
 895        struct devkmsg_user *user = file->private_data;
 896        int ret = 0;
 897
 898        if (!user)
 899                return POLLERR|POLLNVAL;
 900
 901        poll_wait(file, &log_wait, wait);
 902
 903        raw_spin_lock_irq(&logbuf_lock);
 904        if (user->seq < log_next_seq) {
 905                /* return error when data has vanished underneath us */
 906                if (user->seq < log_first_seq)
 907                        ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
 908                else
 909                        ret = POLLIN|POLLRDNORM;
 910        }
 911        raw_spin_unlock_irq(&logbuf_lock);
 912
 913        return ret;
 914}
 915
 916static int devkmsg_open(struct inode *inode, struct file *file)
 917{
 918        struct devkmsg_user *user;
 919        int err;
 920
 921        if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 922                return -EPERM;
 923
 924        /* write-only does not need any file context */
 925        if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
 926                err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 927                                               SYSLOG_FROM_READER);
 928                if (err)
 929                        return err;
 930        }
 931
 932        user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 933        if (!user)
 934                return -ENOMEM;
 935
 936        ratelimit_default_init(&user->rs);
 937        ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
 938
 939        mutex_init(&user->lock);
 940
 941        raw_spin_lock_irq(&logbuf_lock);
 942        user->idx = log_first_idx;
 943        user->seq = log_first_seq;
 944        raw_spin_unlock_irq(&logbuf_lock);
 945
 946        file->private_data = user;
 947        return 0;
 948}
 949
 950static int devkmsg_release(struct inode *inode, struct file *file)
 951{
 952        struct devkmsg_user *user = file->private_data;
 953
 954        if (!user)
 955                return 0;
 956
 957        ratelimit_state_exit(&user->rs);
 958
 959        mutex_destroy(&user->lock);
 960        kfree(user);
 961        return 0;
 962}
 963
 964const struct file_operations kmsg_fops = {
 965        .open = devkmsg_open,
 966        .read = devkmsg_read,
 967        .write_iter = devkmsg_write,
 968        .llseek = devkmsg_llseek,
 969        .poll = devkmsg_poll,
 970        .release = devkmsg_release,
 971};
 972
 973#ifdef CONFIG_KEXEC_CORE
 974/*
 975 * This appends the listed symbols to /proc/vmcore
 976 *
 977 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 978 * obtain access to symbols that are otherwise very difficult to locate.  These
 979 * symbols are specifically used so that utilities can access and extract the
 980 * dmesg log from a vmcore file after a crash.
 981 */
 982void log_buf_kexec_setup(void)
 983{
 984        VMCOREINFO_SYMBOL(log_buf);
 985        VMCOREINFO_SYMBOL(log_buf_len);
 986        VMCOREINFO_SYMBOL(log_first_idx);
 987        VMCOREINFO_SYMBOL(clear_idx);
 988        VMCOREINFO_SYMBOL(log_next_idx);
 989        /*
 990         * Export struct printk_log size and field offsets. User space tools can
 991         * parse it and detect any changes to structure down the line.
 992         */
 993        VMCOREINFO_STRUCT_SIZE(printk_log);
 994        VMCOREINFO_OFFSET(printk_log, ts_nsec);
 995        VMCOREINFO_OFFSET(printk_log, len);
 996        VMCOREINFO_OFFSET(printk_log, text_len);
 997        VMCOREINFO_OFFSET(printk_log, dict_len);
 998}
 999#endif
1000
1001/* requested log_buf_len from kernel cmdline */
1002static unsigned long __initdata new_log_buf_len;
1003
1004/* we practice scaling the ring buffer by powers of 2 */
1005static void __init log_buf_len_update(unsigned size)
1006{
1007        if (size)
1008                size = roundup_pow_of_two(size);
1009        if (size > log_buf_len)
1010                new_log_buf_len = size;
1011}
1012
1013/* save requested log_buf_len since it's too early to process it */
1014static int __init log_buf_len_setup(char *str)
1015{
1016        unsigned size = memparse(str, &str);
1017
1018        log_buf_len_update(size);
1019
1020        return 0;
1021}
1022early_param("log_buf_len", log_buf_len_setup);
1023
1024#ifdef CONFIG_SMP
1025#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1026
1027static void __init log_buf_add_cpu(void)
1028{
1029        unsigned int cpu_extra;
1030
1031        /*
1032         * archs should set up cpu_possible_bits properly with
1033         * set_cpu_possible() after setup_arch() but just in
1034         * case lets ensure this is valid.
1035         */
1036        if (num_possible_cpus() == 1)
1037                return;
1038
1039        cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1040
1041        /* by default this will only continue through for large > 64 CPUs */
1042        if (cpu_extra <= __LOG_BUF_LEN / 2)
1043                return;
1044
1045        pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1046                __LOG_CPU_MAX_BUF_LEN);
1047        pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1048                cpu_extra);
1049        pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1050
1051        log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1052}
1053#else /* !CONFIG_SMP */
1054static inline void log_buf_add_cpu(void) {}
1055#endif /* CONFIG_SMP */
1056
1057void __init setup_log_buf(int early)
1058{
1059        unsigned long flags;
1060        char *new_log_buf;
1061        int free;
1062
1063        if (log_buf != __log_buf)
1064                return;
1065
1066        if (!early && !new_log_buf_len)
1067                log_buf_add_cpu();
1068
1069        if (!new_log_buf_len)
1070                return;
1071
1072        if (early) {
1073                new_log_buf =
1074                        memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1075        } else {
1076                new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1077                                                          LOG_ALIGN);
1078        }
1079
1080        if (unlikely(!new_log_buf)) {
1081                pr_err("log_buf_len: %ld bytes not available\n",
1082                        new_log_buf_len);
1083                return;
1084        }
1085
1086        raw_spin_lock_irqsave(&logbuf_lock, flags);
1087        log_buf_len = new_log_buf_len;
1088        log_buf = new_log_buf;
1089        new_log_buf_len = 0;
1090        free = __LOG_BUF_LEN - log_next_idx;
1091        memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1092        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1093
1094        pr_info("log_buf_len: %d bytes\n", log_buf_len);
1095        pr_info("early log buf free: %d(%d%%)\n",
1096                free, (free * 100) / __LOG_BUF_LEN);
1097}
1098
1099static bool __read_mostly ignore_loglevel;
1100
1101static int __init ignore_loglevel_setup(char *str)
1102{
1103        ignore_loglevel = true;
1104        pr_info("debug: ignoring loglevel setting.\n");
1105
1106        return 0;
1107}
1108
1109early_param("ignore_loglevel", ignore_loglevel_setup);
1110module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1111MODULE_PARM_DESC(ignore_loglevel,
1112                 "ignore loglevel setting (prints all kernel messages to the console)");
1113
1114static bool suppress_message_printing(int level)
1115{
1116        return (level >= console_loglevel && !ignore_loglevel);
1117}
1118
1119#ifdef CONFIG_BOOT_PRINTK_DELAY
1120
1121static int boot_delay; /* msecs delay after each printk during bootup */
1122static unsigned long long loops_per_msec;       /* based on boot_delay */
1123
1124static int __init boot_delay_setup(char *str)
1125{
1126        unsigned long lpj;
1127
1128        lpj = preset_lpj ? preset_lpj : 1000000;        /* some guess */
1129        loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1130
1131        get_option(&str, &boot_delay);
1132        if (boot_delay > 10 * 1000)
1133                boot_delay = 0;
1134
1135        pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1136                "HZ: %d, loops_per_msec: %llu\n",
1137                boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1138        return 0;
1139}
1140early_param("boot_delay", boot_delay_setup);
1141
1142static void boot_delay_msec(int level)
1143{
1144        unsigned long long k;
1145        unsigned long timeout;
1146
1147        if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1148                || suppress_message_printing(level)) {
1149                return;
1150        }
1151
1152        k = (unsigned long long)loops_per_msec * boot_delay;
1153
1154        timeout = jiffies + msecs_to_jiffies(boot_delay);
1155        while (k) {
1156                k--;
1157                cpu_relax();
1158                /*
1159                 * use (volatile) jiffies to prevent
1160                 * compiler reduction; loop termination via jiffies
1161                 * is secondary and may or may not happen.
1162                 */
1163                if (time_after(jiffies, timeout))
1164                        break;
1165                touch_nmi_watchdog();
1166        }
1167}
1168#else
1169static inline void boot_delay_msec(int level)
1170{
1171}
1172#endif
1173
1174static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1175module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1176
1177static size_t print_time(u64 ts, char *buf)
1178{
1179        unsigned long rem_nsec;
1180
1181        if (!printk_time)
1182                return 0;
1183
1184        rem_nsec = do_div(ts, 1000000000);
1185
1186        if (!buf)
1187                return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1188
1189        return sprintf(buf, "[%5lu.%06lu] ",
1190                       (unsigned long)ts, rem_nsec / 1000);
1191}
1192
1193static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1194{
1195        size_t len = 0;
1196        unsigned int prefix = (msg->facility << 3) | msg->level;
1197
1198        if (syslog) {
1199                if (buf) {
1200                        len += sprintf(buf, "<%u>", prefix);
1201                } else {
1202                        len += 3;
1203                        if (prefix > 999)
1204                                len += 3;
1205                        else if (prefix > 99)
1206                                len += 2;
1207                        else if (prefix > 9)
1208                                len++;
1209                }
1210        }
1211
1212        len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1213        return len;
1214}
1215
1216static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1217                             bool syslog, char *buf, size_t size)
1218{
1219        const char *text = log_text(msg);
1220        size_t text_size = msg->text_len;
1221        bool prefix = true;
1222        bool newline = true;
1223        size_t len = 0;
1224
1225        if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1226                prefix = false;
1227
1228        if (msg->flags & LOG_CONT) {
1229                if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1230                        prefix = false;
1231
1232                if (!(msg->flags & LOG_NEWLINE))
1233                        newline = false;
1234        }
1235
1236        do {
1237                const char *next = memchr(text, '\n', text_size);
1238                size_t text_len;
1239
1240                if (next) {
1241                        text_len = next - text;
1242                        next++;
1243                        text_size -= next - text;
1244                } else {
1245                        text_len = text_size;
1246                }
1247
1248                if (buf) {
1249                        if (print_prefix(msg, syslog, NULL) +
1250                            text_len + 1 >= size - len)
1251                                break;
1252
1253                        if (prefix)
1254                                len += print_prefix(msg, syslog, buf + len);
1255                        memcpy(buf + len, text, text_len);
1256                        len += text_len;
1257                        if (next || newline)
1258                                buf[len++] = '\n';
1259                } else {
1260                        /* SYSLOG_ACTION_* buffer size only calculation */
1261                        if (prefix)
1262                                len += print_prefix(msg, syslog, NULL);
1263                        len += text_len;
1264                        if (next || newline)
1265                                len++;
1266                }
1267
1268                prefix = true;
1269                text = next;
1270        } while (text);
1271
1272        return len;
1273}
1274
1275static int syslog_print(char __user *buf, int size)
1276{
1277        char *text;
1278        struct printk_log *msg;
1279        int len = 0;
1280
1281        text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1282        if (!text)
1283                return -ENOMEM;
1284
1285        while (size > 0) {
1286                size_t n;
1287                size_t skip;
1288
1289                raw_spin_lock_irq(&logbuf_lock);
1290                if (syslog_seq < log_first_seq) {
1291                        /* messages are gone, move to first one */
1292                        syslog_seq = log_first_seq;
1293                        syslog_idx = log_first_idx;
1294                        syslog_prev = 0;
1295                        syslog_partial = 0;
1296                }
1297                if (syslog_seq == log_next_seq) {
1298                        raw_spin_unlock_irq(&logbuf_lock);
1299                        break;
1300                }
1301
1302                skip = syslog_partial;
1303                msg = log_from_idx(syslog_idx);
1304                n = msg_print_text(msg, syslog_prev, true, text,
1305                                   LOG_LINE_MAX + PREFIX_MAX);
1306                if (n - syslog_partial <= size) {
1307                        /* message fits into buffer, move forward */
1308                        syslog_idx = log_next(syslog_idx);
1309                        syslog_seq++;
1310                        syslog_prev = msg->flags;
1311                        n -= syslog_partial;
1312                        syslog_partial = 0;
1313                } else if (!len){
1314                        /* partial read(), remember position */
1315                        n = size;
1316                        syslog_partial += n;
1317                } else
1318                        n = 0;
1319                raw_spin_unlock_irq(&logbuf_lock);
1320
1321                if (!n)
1322                        break;
1323
1324                if (copy_to_user(buf, text + skip, n)) {
1325                        if (!len)
1326                                len = -EFAULT;
1327                        break;
1328                }
1329
1330                len += n;
1331                size -= n;
1332                buf += n;
1333        }
1334
1335        kfree(text);
1336        return len;
1337}
1338
1339static int syslog_print_all(char __user *buf, int size, bool clear)
1340{
1341        char *text;
1342        int len = 0;
1343
1344        text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1345        if (!text)
1346                return -ENOMEM;
1347
1348        raw_spin_lock_irq(&logbuf_lock);
1349        if (buf) {
1350                u64 next_seq;
1351                u64 seq;
1352                u32 idx;
1353                enum log_flags prev;
1354
1355                /*
1356                 * Find first record that fits, including all following records,
1357                 * into the user-provided buffer for this dump.
1358                 */
1359                seq = clear_seq;
1360                idx = clear_idx;
1361                prev = 0;
1362                while (seq < log_next_seq) {
1363                        struct printk_log *msg = log_from_idx(idx);
1364
1365                        len += msg_print_text(msg, prev, true, NULL, 0);
1366                        prev = msg->flags;
1367                        idx = log_next(idx);
1368                        seq++;
1369                }
1370
1371                /* move first record forward until length fits into the buffer */
1372                seq = clear_seq;
1373                idx = clear_idx;
1374                prev = 0;
1375                while (len > size && seq < log_next_seq) {
1376                        struct printk_log *msg = log_from_idx(idx);
1377
1378                        len -= msg_print_text(msg, prev, true, NULL, 0);
1379                        prev = msg->flags;
1380                        idx = log_next(idx);
1381                        seq++;
1382                }
1383
1384                /* last message fitting into this dump */
1385                next_seq = log_next_seq;
1386
1387                len = 0;
1388                while (len >= 0 && seq < next_seq) {
1389                        struct printk_log *msg = log_from_idx(idx);
1390                        int textlen;
1391
1392                        textlen = msg_print_text(msg, prev, true, text,
1393                                                 LOG_LINE_MAX + PREFIX_MAX);
1394                        if (textlen < 0) {
1395                                len = textlen;
1396                                break;
1397                        }
1398                        idx = log_next(idx);
1399                        seq++;
1400                        prev = msg->flags;
1401
1402                        raw_spin_unlock_irq(&logbuf_lock);
1403                        if (copy_to_user(buf + len, text, textlen))
1404                                len = -EFAULT;
1405                        else
1406                                len += textlen;
1407                        raw_spin_lock_irq(&logbuf_lock);
1408
1409                        if (seq < log_first_seq) {
1410                                /* messages are gone, move to next one */
1411                                seq = log_first_seq;
1412                                idx = log_first_idx;
1413                                prev = 0;
1414                        }
1415                }
1416        }
1417
1418        if (clear) {
1419                clear_seq = log_next_seq;
1420                clear_idx = log_next_idx;
1421        }
1422        raw_spin_unlock_irq(&logbuf_lock);
1423
1424        kfree(text);
1425        return len;
1426}
1427
1428int do_syslog(int type, char __user *buf, int len, int source)
1429{
1430        bool clear = false;
1431        static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1432        int error;
1433
1434        error = check_syslog_permissions(type, source);
1435        if (error)
1436                goto out;
1437
1438        switch (type) {
1439        case SYSLOG_ACTION_CLOSE:       /* Close log */
1440                break;
1441        case SYSLOG_ACTION_OPEN:        /* Open log */
1442                break;
1443        case SYSLOG_ACTION_READ:        /* Read from log */
1444                error = -EINVAL;
1445                if (!buf || len < 0)
1446                        goto out;
1447                error = 0;
1448                if (!len)
1449                        goto out;
1450                if (!access_ok(VERIFY_WRITE, buf, len)) {
1451                        error = -EFAULT;
1452                        goto out;
1453                }
1454                error = wait_event_interruptible(log_wait,
1455                                                 syslog_seq != log_next_seq);
1456                if (error)
1457                        goto out;
1458                error = syslog_print(buf, len);
1459                break;
1460        /* Read/clear last kernel messages */
1461        case SYSLOG_ACTION_READ_CLEAR:
1462                clear = true;
1463                /* FALL THRU */
1464        /* Read last kernel messages */
1465        case SYSLOG_ACTION_READ_ALL:
1466                error = -EINVAL;
1467                if (!buf || len < 0)
1468                        goto out;
1469                error = 0;
1470                if (!len)
1471                        goto out;
1472                if (!access_ok(VERIFY_WRITE, buf, len)) {
1473                        error = -EFAULT;
1474                        goto out;
1475                }
1476                error = syslog_print_all(buf, len, clear);
1477                break;
1478        /* Clear ring buffer */
1479        case SYSLOG_ACTION_CLEAR:
1480                syslog_print_all(NULL, 0, true);
1481                break;
1482        /* Disable logging to console */
1483        case SYSLOG_ACTION_CONSOLE_OFF:
1484                if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1485                        saved_console_loglevel = console_loglevel;
1486                console_loglevel = minimum_console_loglevel;
1487                break;
1488        /* Enable logging to console */
1489        case SYSLOG_ACTION_CONSOLE_ON:
1490                if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1491                        console_loglevel = saved_console_loglevel;
1492                        saved_console_loglevel = LOGLEVEL_DEFAULT;
1493                }
1494                break;
1495        /* Set level of messages printed to console */
1496        case SYSLOG_ACTION_CONSOLE_LEVEL:
1497                error = -EINVAL;
1498                if (len < 1 || len > 8)
1499                        goto out;
1500                if (len < minimum_console_loglevel)
1501                        len = minimum_console_loglevel;
1502                console_loglevel = len;
1503                /* Implicitly re-enable logging to console */
1504                saved_console_loglevel = LOGLEVEL_DEFAULT;
1505                error = 0;
1506                break;
1507        /* Number of chars in the log buffer */
1508        case SYSLOG_ACTION_SIZE_UNREAD:
1509                raw_spin_lock_irq(&logbuf_lock);
1510                if (syslog_seq < log_first_seq) {
1511                        /* messages are gone, move to first one */
1512                        syslog_seq = log_first_seq;
1513                        syslog_idx = log_first_idx;
1514                        syslog_prev = 0;
1515                        syslog_partial = 0;
1516                }
1517                if (source == SYSLOG_FROM_PROC) {
1518                        /*
1519                         * Short-cut for poll(/"proc/kmsg") which simply checks
1520                         * for pending data, not the size; return the count of
1521                         * records, not the length.
1522                         */
1523                        error = log_next_seq - syslog_seq;
1524                } else {
1525                        u64 seq = syslog_seq;
1526                        u32 idx = syslog_idx;
1527                        enum log_flags prev = syslog_prev;
1528
1529                        error = 0;
1530                        while (seq < log_next_seq) {
1531                                struct printk_log *msg = log_from_idx(idx);
1532
1533                                error += msg_print_text(msg, prev, true, NULL, 0);
1534                                idx = log_next(idx);
1535                                seq++;
1536                                prev = msg->flags;
1537                        }
1538                        error -= syslog_partial;
1539                }
1540                raw_spin_unlock_irq(&logbuf_lock);
1541                break;
1542        /* Size of the log buffer */
1543        case SYSLOG_ACTION_SIZE_BUFFER:
1544                error = log_buf_len;
1545                break;
1546        default:
1547                error = -EINVAL;
1548                break;
1549        }
1550out:
1551        return error;
1552}
1553
1554SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1555{
1556        return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1557}
1558
1559/*
1560 * Call the console drivers, asking them to write out
1561 * log_buf[start] to log_buf[end - 1].
1562 * The console_lock must be held.
1563 */
1564static void call_console_drivers(int level,
1565                                 const char *ext_text, size_t ext_len,
1566                                 const char *text, size_t len)
1567{
1568        struct console *con;
1569
1570        trace_console(text, len);
1571
1572        if (!console_drivers)
1573                return;
1574
1575        for_each_console(con) {
1576                if (exclusive_console && con != exclusive_console)
1577                        continue;
1578                if (!(con->flags & CON_ENABLED))
1579                        continue;
1580                if (!con->write)
1581                        continue;
1582                if (!cpu_online(smp_processor_id()) &&
1583                    !(con->flags & CON_ANYTIME))
1584                        continue;
1585                if (con->flags & CON_EXTENDED)
1586                        con->write(con, ext_text, ext_len);
1587                else
1588                        con->write(con, text, len);
1589        }
1590}
1591
1592/*
1593 * Zap console related locks when oopsing.
1594 * To leave time for slow consoles to print a full oops,
1595 * only zap at most once every 30 seconds.
1596 */
1597static void zap_locks(void)
1598{
1599        static unsigned long oops_timestamp;
1600
1601        if (time_after_eq(jiffies, oops_timestamp) &&
1602            !time_after(jiffies, oops_timestamp + 30 * HZ))
1603                return;
1604
1605        oops_timestamp = jiffies;
1606
1607        debug_locks_off();
1608        /* If a crash is occurring, make sure we can't deadlock */
1609        raw_spin_lock_init(&logbuf_lock);
1610        /* And make sure that we print immediately */
1611        sema_init(&console_sem, 1);
1612}
1613
1614int printk_delay_msec __read_mostly;
1615
1616static inline void printk_delay(void)
1617{
1618        if (unlikely(printk_delay_msec)) {
1619                int m = printk_delay_msec;
1620
1621                while (m--) {
1622                        mdelay(1);
1623                        touch_nmi_watchdog();
1624                }
1625        }
1626}
1627
1628/*
1629 * Continuation lines are buffered, and not committed to the record buffer
1630 * until the line is complete, or a race forces it. The line fragments
1631 * though, are printed immediately to the consoles to ensure everything has
1632 * reached the console in case of a kernel crash.
1633 */
1634static struct cont {
1635        char buf[LOG_LINE_MAX];
1636        size_t len;                     /* length == 0 means unused buffer */
1637        size_t cons;                    /* bytes written to console */
1638        struct task_struct *owner;      /* task of first print*/
1639        u64 ts_nsec;                    /* time of first print */
1640        u8 level;                       /* log level of first message */
1641        u8 facility;                    /* log facility of first message */
1642        enum log_flags flags;           /* prefix, newline flags */
1643        bool flushed:1;                 /* buffer sealed and committed */
1644} cont;
1645
1646static void cont_flush(enum log_flags flags)
1647{
1648        if (cont.flushed)
1649                return;
1650        if (cont.len == 0)
1651                return;
1652
1653        if (cont.cons) {
1654                /*
1655                 * If a fragment of this line was directly flushed to the
1656                 * console; wait for the console to pick up the rest of the
1657                 * line. LOG_NOCONS suppresses a duplicated output.
1658                 */
1659                log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1660                          cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1661                cont.flags = flags;
1662                cont.flushed = true;
1663        } else {
1664                /*
1665                 * If no fragment of this line ever reached the console,
1666                 * just submit it to the store and free the buffer.
1667                 */
1668                log_store(cont.facility, cont.level, flags, 0,
1669                          NULL, 0, cont.buf, cont.len);
1670                cont.len = 0;
1671        }
1672}
1673
1674static bool cont_add(int facility, int level, const char *text, size_t len)
1675{
1676        if (cont.len && cont.flushed)
1677                return false;
1678
1679        /*
1680         * If ext consoles are present, flush and skip in-kernel
1681         * continuation.  See nr_ext_console_drivers definition.  Also, if
1682         * the line gets too long, split it up in separate records.
1683         */
1684        if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1685                cont_flush(LOG_CONT);
1686                return false;
1687        }
1688
1689        if (!cont.len) {
1690                cont.facility = facility;
1691                cont.level = level;
1692                cont.owner = current;
1693                cont.ts_nsec = local_clock();
1694                cont.flags = 0;
1695                cont.cons = 0;
1696                cont.flushed = false;
1697        }
1698
1699        memcpy(cont.buf + cont.len, text, len);
1700        cont.len += len;
1701
1702        if (cont.len > (sizeof(cont.buf) * 80) / 100)
1703                cont_flush(LOG_CONT);
1704
1705        return true;
1706}
1707
1708static size_t cont_print_text(char *text, size_t size)
1709{
1710        size_t textlen = 0;
1711        size_t len;
1712
1713        if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1714                textlen += print_time(cont.ts_nsec, text);
1715                size -= textlen;
1716        }
1717
1718        len = cont.len - cont.cons;
1719        if (len > 0) {
1720                if (len+1 > size)
1721                        len = size-1;
1722                memcpy(text + textlen, cont.buf + cont.cons, len);
1723                textlen += len;
1724                cont.cons = cont.len;
1725        }
1726
1727        if (cont.flushed) {
1728                if (cont.flags & LOG_NEWLINE)
1729                        text[textlen++] = '\n';
1730                /* got everything, release buffer */
1731                cont.len = 0;
1732        }
1733        return textlen;
1734}
1735
1736asmlinkage int vprintk_emit(int facility, int level,
1737                            const char *dict, size_t dictlen,
1738                            const char *fmt, va_list args)
1739{
1740        static bool recursion_bug;
1741        static char textbuf[LOG_LINE_MAX];
1742        char *text = textbuf;
1743        size_t text_len = 0;
1744        enum log_flags lflags = 0;
1745        unsigned long flags;
1746        int this_cpu;
1747        int printed_len = 0;
1748        int nmi_message_lost;
1749        bool in_sched = false;
1750        /* cpu currently holding logbuf_lock in this function */
1751        static unsigned int logbuf_cpu = UINT_MAX;
1752
1753        if (level == LOGLEVEL_SCHED) {
1754                level = LOGLEVEL_DEFAULT;
1755                in_sched = true;
1756        }
1757
1758        boot_delay_msec(level);
1759        printk_delay();
1760
1761        local_irq_save(flags);
1762        this_cpu = smp_processor_id();
1763
1764        /*
1765         * Ouch, printk recursed into itself!
1766         */
1767        if (unlikely(logbuf_cpu == this_cpu)) {
1768                /*
1769                 * If a crash is occurring during printk() on this CPU,
1770                 * then try to get the crash message out but make sure
1771                 * we can't deadlock. Otherwise just return to avoid the
1772                 * recursion and return - but flag the recursion so that
1773                 * it can be printed at the next appropriate moment:
1774                 */
1775                if (!oops_in_progress && !lockdep_recursing(current)) {
1776                        recursion_bug = true;
1777                        local_irq_restore(flags);
1778                        return 0;
1779                }
1780                zap_locks();
1781        }
1782
1783        lockdep_off();
1784        /* This stops the holder of console_sem just where we want him */
1785        raw_spin_lock(&logbuf_lock);
1786        logbuf_cpu = this_cpu;
1787
1788        if (unlikely(recursion_bug)) {
1789                static const char recursion_msg[] =
1790                        "BUG: recent printk recursion!";
1791
1792                recursion_bug = false;
1793                /* emit KERN_CRIT message */
1794                printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1795                                         NULL, 0, recursion_msg,
1796                                         strlen(recursion_msg));
1797        }
1798
1799        nmi_message_lost = get_nmi_message_lost();
1800        if (unlikely(nmi_message_lost)) {
1801                text_len = scnprintf(textbuf, sizeof(textbuf),
1802                                     "BAD LUCK: lost %d message(s) from NMI context!",
1803                                     nmi_message_lost);
1804                printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1805                                         NULL, 0, textbuf, text_len);
1806        }
1807
1808        /*
1809         * The printf needs to come first; we need the syslog
1810         * prefix which might be passed-in as a parameter.
1811         */
1812        text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1813
1814        /* mark and strip a trailing newline */
1815        if (text_len && text[text_len-1] == '\n') {
1816                text_len--;
1817                lflags |= LOG_NEWLINE;
1818        }
1819
1820        /* strip kernel syslog prefix and extract log level or control flags */
1821        if (facility == 0) {
1822                int kern_level = printk_get_level(text);
1823
1824                if (kern_level) {
1825                        const char *end_of_header = printk_skip_level(text);
1826                        switch (kern_level) {
1827                        case '0' ... '7':
1828                                if (level == LOGLEVEL_DEFAULT)
1829                                        level = kern_level - '0';
1830                                /* fallthrough */
1831                        case 'd':       /* KERN_DEFAULT */
1832                                lflags |= LOG_PREFIX;
1833                        }
1834                        /*
1835                         * No need to check length here because vscnprintf
1836                         * put '\0' at the end of the string. Only valid and
1837                         * newly printed level is detected.
1838                         */
1839                        text_len -= end_of_header - text;
1840                        text = (char *)end_of_header;
1841                }
1842        }
1843
1844        if (level == LOGLEVEL_DEFAULT)
1845                level = default_message_loglevel;
1846
1847        if (dict)
1848                lflags |= LOG_PREFIX|LOG_NEWLINE;
1849
1850        if (!(lflags & LOG_NEWLINE)) {
1851                /*
1852                 * Flush the conflicting buffer. An earlier newline was missing,
1853                 * or another task also prints continuation lines.
1854                 */
1855                if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1856                        cont_flush(LOG_NEWLINE);
1857
1858                /* buffer line if possible, otherwise store it right away */
1859                if (cont_add(facility, level, text, text_len))
1860                        printed_len += text_len;
1861                else
1862                        printed_len += log_store(facility, level,
1863                                                 lflags | LOG_CONT, 0,
1864                                                 dict, dictlen, text, text_len);
1865        } else {
1866                bool stored = false;
1867
1868                /*
1869                 * If an earlier newline was missing and it was the same task,
1870                 * either merge it with the current buffer and flush, or if
1871                 * there was a race with interrupts (prefix == true) then just
1872                 * flush it out and store this line separately.
1873                 * If the preceding printk was from a different task and missed
1874                 * a newline, flush and append the newline.
1875                 */
1876                if (cont.len) {
1877                        if (cont.owner == current && !(lflags & LOG_PREFIX))
1878                                stored = cont_add(facility, level, text,
1879                                                  text_len);
1880                        cont_flush(LOG_NEWLINE);
1881                }
1882
1883                if (stored)
1884                        printed_len += text_len;
1885                else
1886                        printed_len += log_store(facility, level, lflags, 0,
1887                                                 dict, dictlen, text, text_len);
1888        }
1889
1890        logbuf_cpu = UINT_MAX;
1891        raw_spin_unlock(&logbuf_lock);
1892        lockdep_on();
1893        local_irq_restore(flags);
1894
1895        /* If called from the scheduler, we can not call up(). */
1896        if (!in_sched) {
1897                lockdep_off();
1898                /*
1899                 * Try to acquire and then immediately release the console
1900                 * semaphore.  The release will print out buffers and wake up
1901                 * /dev/kmsg and syslog() users.
1902                 */
1903                if (console_trylock())
1904                        console_unlock();
1905                lockdep_on();
1906        }
1907
1908        return printed_len;
1909}
1910EXPORT_SYMBOL(vprintk_emit);
1911
1912asmlinkage int vprintk(const char *fmt, va_list args)
1913{
1914        return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1915}
1916EXPORT_SYMBOL(vprintk);
1917
1918asmlinkage int printk_emit(int facility, int level,
1919                           const char *dict, size_t dictlen,
1920                           const char *fmt, ...)
1921{
1922        va_list args;
1923        int r;
1924
1925        va_start(args, fmt);
1926        r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1927        va_end(args);
1928
1929        return r;
1930}
1931EXPORT_SYMBOL(printk_emit);
1932
1933int vprintk_default(const char *fmt, va_list args)
1934{
1935        int r;
1936
1937#ifdef CONFIG_KGDB_KDB
1938        if (unlikely(kdb_trap_printk)) {
1939                r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1940                return r;
1941        }
1942#endif
1943        r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1944
1945        return r;
1946}
1947EXPORT_SYMBOL_GPL(vprintk_default);
1948
1949/**
1950 * printk - print a kernel message
1951 * @fmt: format string
1952 *
1953 * This is printk(). It can be called from any context. We want it to work.
1954 *
1955 * We try to grab the console_lock. If we succeed, it's easy - we log the
1956 * output and call the console drivers.  If we fail to get the semaphore, we
1957 * place the output into the log buffer and return. The current holder of
1958 * the console_sem will notice the new output in console_unlock(); and will
1959 * send it to the consoles before releasing the lock.
1960 *
1961 * One effect of this deferred printing is that code which calls printk() and
1962 * then changes console_loglevel may break. This is because console_loglevel
1963 * is inspected when the actual printing occurs.
1964 *
1965 * See also:
1966 * printf(3)
1967 *
1968 * See the vsnprintf() documentation for format string extensions over C99.
1969 */
1970asmlinkage __visible int printk(const char *fmt, ...)
1971{
1972        va_list args;
1973        int r;
1974
1975        va_start(args, fmt);
1976        r = vprintk_func(fmt, args);
1977        va_end(args);
1978
1979        return r;
1980}
1981EXPORT_SYMBOL(printk);
1982
1983#else /* CONFIG_PRINTK */
1984
1985#define LOG_LINE_MAX            0
1986#define PREFIX_MAX              0
1987
1988static u64 syslog_seq;
1989static u32 syslog_idx;
1990static u64 console_seq;
1991static u32 console_idx;
1992static enum log_flags syslog_prev;
1993static u64 log_first_seq;
1994static u32 log_first_idx;
1995static u64 log_next_seq;
1996static enum log_flags console_prev;
1997static struct cont {
1998        size_t len;
1999        size_t cons;
2000        u8 level;
2001        bool flushed:1;
2002} cont;
2003static char *log_text(const struct printk_log *msg) { return NULL; }
2004static char *log_dict(const struct printk_log *msg) { return NULL; }
2005static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2006static u32 log_next(u32 idx) { return 0; }
2007static ssize_t msg_print_ext_header(char *buf, size_t size,
2008                                    struct printk_log *msg, u64 seq,
2009                                    enum log_flags prev_flags) { return 0; }
2010static ssize_t msg_print_ext_body(char *buf, size_t size,
2011                                  char *dict, size_t dict_len,
2012                                  char *text, size_t text_len) { return 0; }
2013static void call_console_drivers(int level,
2014                                 const char *ext_text, size_t ext_len,
2015                                 const char *text, size_t len) {}
2016static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
2017                             bool syslog, char *buf, size_t size) { return 0; }
2018static size_t cont_print_text(char *text, size_t size) { return 0; }
2019static bool suppress_message_printing(int level) { return false; }
2020
2021/* Still needs to be defined for users */
2022DEFINE_PER_CPU(printk_func_t, printk_func);
2023
2024#endif /* CONFIG_PRINTK */
2025
2026#ifdef CONFIG_EARLY_PRINTK
2027struct console *early_console;
2028
2029asmlinkage __visible void early_printk(const char *fmt, ...)
2030{
2031        va_list ap;
2032        char buf[512];
2033        int n;
2034
2035        if (!early_console)
2036                return;
2037
2038        va_start(ap, fmt);
2039        n = vscnprintf(buf, sizeof(buf), fmt, ap);
2040        va_end(ap);
2041
2042        early_console->write(early_console, buf, n);
2043}
2044#endif
2045
2046static int __add_preferred_console(char *name, int idx, char *options,
2047                                   char *brl_options)
2048{
2049        struct console_cmdline *c;
2050        int i;
2051
2052        /*
2053         *      See if this tty is not yet registered, and
2054         *      if we have a slot free.
2055         */
2056        for (i = 0, c = console_cmdline;
2057             i < MAX_CMDLINECONSOLES && c->name[0];
2058             i++, c++) {
2059                if (strcmp(c->name, name) == 0 && c->index == idx) {
2060                        if (!brl_options)
2061                                selected_console = i;
2062                        return 0;
2063                }
2064        }
2065        if (i == MAX_CMDLINECONSOLES)
2066                return -E2BIG;
2067        if (!brl_options)
2068                selected_console = i;
2069        strlcpy(c->name, name, sizeof(c->name));
2070        c->options = options;
2071        braille_set_options(c, brl_options);
2072
2073        c->index = idx;
2074        return 0;
2075}
2076/*
2077 * Set up a console.  Called via do_early_param() in init/main.c
2078 * for each "console=" parameter in the boot command line.
2079 */
2080static int __init console_setup(char *str)
2081{
2082        char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2083        char *s, *options, *brl_options = NULL;
2084        int idx;
2085
2086        if (_braille_console_setup(&str, &brl_options))
2087                return 1;
2088
2089        /*
2090         * Decode str into name, index, options.
2091         */
2092        if (str[0] >= '0' && str[0] <= '9') {
2093                strcpy(buf, "ttyS");
2094                strncpy(buf + 4, str, sizeof(buf) - 5);
2095        } else {
2096                strncpy(buf, str, sizeof(buf) - 1);
2097        }
2098        buf[sizeof(buf) - 1] = 0;
2099        options = strchr(str, ',');
2100        if (options)
2101                *(options++) = 0;
2102#ifdef __sparc__
2103        if (!strcmp(str, "ttya"))
2104                strcpy(buf, "ttyS0");
2105        if (!strcmp(str, "ttyb"))
2106                strcpy(buf, "ttyS1");
2107#endif
2108        for (s = buf; *s; s++)
2109                if (isdigit(*s) || *s == ',')
2110                        break;
2111        idx = simple_strtoul(s, NULL, 10);
2112        *s = 0;
2113
2114        __add_preferred_console(buf, idx, options, brl_options);
2115        console_set_on_cmdline = 1;
2116        return 1;
2117}
2118__setup("console=", console_setup);
2119
2120/**
2121 * add_preferred_console - add a device to the list of preferred consoles.
2122 * @name: device name
2123 * @idx: device index
2124 * @options: options for this console
2125 *
2126 * The last preferred console added will be used for kernel messages
2127 * and stdin/out/err for init.  Normally this is used by console_setup
2128 * above to handle user-supplied console arguments; however it can also
2129 * be used by arch-specific code either to override the user or more
2130 * commonly to provide a default console (ie from PROM variables) when
2131 * the user has not supplied one.
2132 */
2133int add_preferred_console(char *name, int idx, char *options)
2134{
2135        return __add_preferred_console(name, idx, options, NULL);
2136}
2137
2138bool console_suspend_enabled = true;
2139EXPORT_SYMBOL(console_suspend_enabled);
2140
2141static int __init console_suspend_disable(char *str)
2142{
2143        console_suspend_enabled = false;
2144        return 1;
2145}
2146__setup("no_console_suspend", console_suspend_disable);
2147module_param_named(console_suspend, console_suspend_enabled,
2148                bool, S_IRUGO | S_IWUSR);
2149MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2150        " and hibernate operations");
2151
2152/**
2153 * suspend_console - suspend the console subsystem
2154 *
2155 * This disables printk() while we go into suspend states
2156 */
2157void suspend_console(void)
2158{
2159        if (!console_suspend_enabled)
2160                return;
2161        printk("Suspending console(s) (use no_console_suspend to debug)\n");
2162        console_lock();
2163        console_suspended = 1;
2164        up_console_sem();
2165}
2166
2167void resume_console(void)
2168{
2169        if (!console_suspend_enabled)
2170                return;
2171        down_console_sem();
2172        console_suspended = 0;
2173        console_unlock();
2174}
2175
2176/**
2177 * console_cpu_notify - print deferred console messages after CPU hotplug
2178 * @self: notifier struct
2179 * @action: CPU hotplug event
2180 * @hcpu: unused
2181 *
2182 * If printk() is called from a CPU that is not online yet, the messages
2183 * will be spooled but will not show up on the console.  This function is
2184 * called when a new CPU comes online (or fails to come up), and ensures
2185 * that any such output gets printed.
2186 */
2187static int console_cpu_notify(struct notifier_block *self,
2188        unsigned long action, void *hcpu)
2189{
2190        switch (action) {
2191        case CPU_ONLINE:
2192        case CPU_DEAD:
2193        case CPU_DOWN_FAILED:
2194        case CPU_UP_CANCELED:
2195                console_lock();
2196                console_unlock();
2197        }
2198        return NOTIFY_OK;
2199}
2200
2201/**
2202 * console_lock - lock the console system for exclusive use.
2203 *
2204 * Acquires a lock which guarantees that the caller has
2205 * exclusive access to the console system and the console_drivers list.
2206 *
2207 * Can sleep, returns nothing.
2208 */
2209void console_lock(void)
2210{
2211        might_sleep();
2212
2213        down_console_sem();
2214        if (console_suspended)
2215                return;
2216        console_locked = 1;
2217        console_may_schedule = 1;
2218}
2219EXPORT_SYMBOL(console_lock);
2220
2221/**
2222 * console_trylock - try to lock the console system for exclusive use.
2223 *
2224 * Try to acquire a lock which guarantees that the caller has exclusive
2225 * access to the console system and the console_drivers list.
2226 *
2227 * returns 1 on success, and 0 on failure to acquire the lock.
2228 */
2229int console_trylock(void)
2230{
2231        if (down_trylock_console_sem())
2232                return 0;
2233        if (console_suspended) {
2234                up_console_sem();
2235                return 0;
2236        }
2237        console_locked = 1;
2238        /*
2239         * When PREEMPT_COUNT disabled we can't reliably detect if it's
2240         * safe to schedule (e.g. calling printk while holding a spin_lock),
2241         * because preempt_disable()/preempt_enable() are just barriers there
2242         * and preempt_count() is always 0.
2243         *
2244         * RCU read sections have a separate preemption counter when
2245         * PREEMPT_RCU enabled thus we must take extra care and check
2246         * rcu_preempt_depth(), otherwise RCU read sections modify
2247         * preempt_count().
2248         */
2249        console_may_schedule = !oops_in_progress &&
2250                        preemptible() &&
2251                        !rcu_preempt_depth();
2252        return 1;
2253}
2254EXPORT_SYMBOL(console_trylock);
2255
2256int is_console_locked(void)
2257{
2258        return console_locked;
2259}
2260
2261/*
2262 * Check if we have any console that is capable of printing while cpu is
2263 * booting or shutting down. Requires console_sem.
2264 */
2265static int have_callable_console(void)
2266{
2267        struct console *con;
2268
2269        for_each_console(con)
2270                if ((con->flags & CON_ENABLED) &&
2271                                (con->flags & CON_ANYTIME))
2272                        return 1;
2273
2274        return 0;
2275}
2276
2277/*
2278 * Can we actually use the console at this time on this cpu?
2279 *
2280 * Console drivers may assume that per-cpu resources have been allocated. So
2281 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2282 * call them until this CPU is officially up.
2283 */
2284static inline int can_use_console(void)
2285{
2286        return cpu_online(raw_smp_processor_id()) || have_callable_console();
2287}
2288
2289static void console_cont_flush(char *text, size_t size)
2290{
2291        unsigned long flags;
2292        size_t len;
2293
2294        raw_spin_lock_irqsave(&logbuf_lock, flags);
2295
2296        if (!cont.len)
2297                goto out;
2298
2299        if (suppress_message_printing(cont.level)) {
2300                cont.cons = cont.len;
2301                if (cont.flushed)
2302                        cont.len = 0;
2303                goto out;
2304        }
2305
2306        /*
2307         * We still queue earlier records, likely because the console was
2308         * busy. The earlier ones need to be printed before this one, we
2309         * did not flush any fragment so far, so just let it queue up.
2310         */
2311        if (console_seq < log_next_seq && !cont.cons)
2312                goto out;
2313
2314        len = cont_print_text(text, size);
2315        raw_spin_unlock(&logbuf_lock);
2316        stop_critical_timings();
2317        call_console_drivers(cont.level, NULL, 0, text, len);
2318        start_critical_timings();
2319        local_irq_restore(flags);
2320        return;
2321out:
2322        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2323}
2324
2325/**
2326 * console_unlock - unlock the console system
2327 *
2328 * Releases the console_lock which the caller holds on the console system
2329 * and the console driver list.
2330 *
2331 * While the console_lock was held, console output may have been buffered
2332 * by printk().  If this is the case, console_unlock(); emits
2333 * the output prior to releasing the lock.
2334 *
2335 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2336 *
2337 * console_unlock(); may be called from any context.
2338 */
2339void console_unlock(void)
2340{
2341        static char ext_text[CONSOLE_EXT_LOG_MAX];
2342        static char text[LOG_LINE_MAX + PREFIX_MAX];
2343        static u64 seen_seq;
2344        unsigned long flags;
2345        bool wake_klogd = false;
2346        bool do_cond_resched, retry;
2347
2348        if (console_suspended) {
2349                up_console_sem();
2350                return;
2351        }
2352
2353        /*
2354         * Console drivers are called under logbuf_lock, so
2355         * @console_may_schedule should be cleared before; however, we may
2356         * end up dumping a lot of lines, for example, if called from
2357         * console registration path, and should invoke cond_resched()
2358         * between lines if allowable.  Not doing so can cause a very long
2359         * scheduling stall on a slow console leading to RCU stall and
2360         * softlockup warnings which exacerbate the issue with more
2361         * messages practically incapacitating the system.
2362         */
2363        do_cond_resched = console_may_schedule;
2364        console_may_schedule = 0;
2365
2366again:
2367        /*
2368         * We released the console_sem lock, so we need to recheck if
2369         * cpu is online and (if not) is there at least one CON_ANYTIME
2370         * console.
2371         */
2372        if (!can_use_console()) {
2373                console_locked = 0;
2374                up_console_sem();
2375                return;
2376        }
2377
2378        /* flush buffered message fragment immediately to console */
2379        console_cont_flush(text, sizeof(text));
2380
2381        for (;;) {
2382                struct printk_log *msg;
2383                size_t ext_len = 0;
2384                size_t len;
2385                int level;
2386
2387                raw_spin_lock_irqsave(&logbuf_lock, flags);
2388                if (seen_seq != log_next_seq) {
2389                        wake_klogd = true;
2390                        seen_seq = log_next_seq;
2391                }
2392
2393                if (console_seq < log_first_seq) {
2394                        len = sprintf(text, "** %u printk messages dropped ** ",
2395                                      (unsigned)(log_first_seq - console_seq));
2396
2397                        /* messages are gone, move to first one */
2398                        console_seq = log_first_seq;
2399                        console_idx = log_first_idx;
2400                        console_prev = 0;
2401                } else {
2402                        len = 0;
2403                }
2404skip:
2405                if (console_seq == log_next_seq)
2406                        break;
2407
2408                msg = log_from_idx(console_idx);
2409                level = msg->level;
2410                if ((msg->flags & LOG_NOCONS) ||
2411                                suppress_message_printing(level)) {
2412                        /*
2413                         * Skip record we have buffered and already printed
2414                         * directly to the console when we received it, and
2415                         * record that has level above the console loglevel.
2416                         */
2417                        console_idx = log_next(console_idx);
2418                        console_seq++;
2419                        /*
2420                         * We will get here again when we register a new
2421                         * CON_PRINTBUFFER console. Clear the flag so we
2422                         * will properly dump everything later.
2423                         */
2424                        msg->flags &= ~LOG_NOCONS;
2425                        console_prev = msg->flags;
2426                        goto skip;
2427                }
2428
2429                len += msg_print_text(msg, console_prev, false,
2430                                      text + len, sizeof(text) - len);
2431                if (nr_ext_console_drivers) {
2432                        ext_len = msg_print_ext_header(ext_text,
2433                                                sizeof(ext_text),
2434                                                msg, console_seq, console_prev);
2435                        ext_len += msg_print_ext_body(ext_text + ext_len,
2436                                                sizeof(ext_text) - ext_len,
2437                                                log_dict(msg), msg->dict_len,
2438                                                log_text(msg), msg->text_len);
2439                }
2440                console_idx = log_next(console_idx);
2441                console_seq++;
2442                console_prev = msg->flags;
2443                raw_spin_unlock(&logbuf_lock);
2444
2445                stop_critical_timings();        /* don't trace print latency */
2446                call_console_drivers(level, ext_text, ext_len, text, len);
2447                start_critical_timings();
2448                local_irq_restore(flags);
2449
2450                if (do_cond_resched)
2451                        cond_resched();
2452        }
2453        console_locked = 0;
2454
2455        /* Release the exclusive_console once it is used */
2456        if (unlikely(exclusive_console))
2457                exclusive_console = NULL;
2458
2459        raw_spin_unlock(&logbuf_lock);
2460
2461        up_console_sem();
2462
2463        /*
2464         * Someone could have filled up the buffer again, so re-check if there's
2465         * something to flush. In case we cannot trylock the console_sem again,
2466         * there's a new owner and the console_unlock() from them will do the
2467         * flush, no worries.
2468         */
2469        raw_spin_lock(&logbuf_lock);
2470        retry = console_seq != log_next_seq;
2471        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2472
2473        if (retry && console_trylock())
2474                goto again;
2475
2476        if (wake_klogd)
2477                wake_up_klogd();
2478}
2479EXPORT_SYMBOL(console_unlock);
2480
2481/**
2482 * console_conditional_schedule - yield the CPU if required
2483 *
2484 * If the console code is currently allowed to sleep, and
2485 * if this CPU should yield the CPU to another task, do
2486 * so here.
2487 *
2488 * Must be called within console_lock();.
2489 */
2490void __sched console_conditional_schedule(void)
2491{
2492        if (console_may_schedule)
2493                cond_resched();
2494}
2495EXPORT_SYMBOL(console_conditional_schedule);
2496
2497void console_unblank(void)
2498{
2499        struct console *c;
2500
2501        /*
2502         * console_unblank can no longer be called in interrupt context unless
2503         * oops_in_progress is set to 1..
2504         */
2505        if (oops_in_progress) {
2506                if (down_trylock_console_sem() != 0)
2507                        return;
2508        } else
2509                console_lock();
2510
2511        console_locked = 1;
2512        console_may_schedule = 0;
2513        for_each_console(c)
2514                if ((c->flags & CON_ENABLED) && c->unblank)
2515                        c->unblank();
2516        console_unlock();
2517}
2518
2519/**
2520 * console_flush_on_panic - flush console content on panic
2521 *
2522 * Immediately output all pending messages no matter what.
2523 */
2524void console_flush_on_panic(void)
2525{
2526        /*
2527         * If someone else is holding the console lock, trylock will fail
2528         * and may_schedule may be set.  Ignore and proceed to unlock so
2529         * that messages are flushed out.  As this can be called from any
2530         * context and we don't want to get preempted while flushing,
2531         * ensure may_schedule is cleared.
2532         */
2533        console_trylock();
2534        console_may_schedule = 0;
2535        console_unlock();
2536}
2537
2538/*
2539 * Return the console tty driver structure and its associated index
2540 */
2541struct tty_driver *console_device(int *index)
2542{
2543        struct console *c;
2544        struct tty_driver *driver = NULL;
2545
2546        console_lock();
2547        for_each_console(c) {
2548                if (!c->device)
2549                        continue;
2550                driver = c->device(c, index);
2551                if (driver)
2552                        break;
2553        }
2554        console_unlock();
2555        return driver;
2556}
2557
2558/*
2559 * Prevent further output on the passed console device so that (for example)
2560 * serial drivers can disable console output before suspending a port, and can
2561 * re-enable output afterwards.
2562 */
2563void console_stop(struct console *console)
2564{
2565        console_lock();
2566        console->flags &= ~CON_ENABLED;
2567        console_unlock();
2568}
2569EXPORT_SYMBOL(console_stop);
2570
2571void console_start(struct console *console)
2572{
2573        console_lock();
2574        console->flags |= CON_ENABLED;
2575        console_unlock();
2576}
2577EXPORT_SYMBOL(console_start);
2578
2579static int __read_mostly keep_bootcon;
2580
2581static int __init keep_bootcon_setup(char *str)
2582{
2583        keep_bootcon = 1;
2584        pr_info("debug: skip boot console de-registration.\n");
2585
2586        return 0;
2587}
2588
2589early_param("keep_bootcon", keep_bootcon_setup);
2590
2591/*
2592 * The console driver calls this routine during kernel initialization
2593 * to register the console printing procedure with printk() and to
2594 * print any messages that were printed by the kernel before the
2595 * console driver was initialized.
2596 *
2597 * This can happen pretty early during the boot process (because of
2598 * early_printk) - sometimes before setup_arch() completes - be careful
2599 * of what kernel features are used - they may not be initialised yet.
2600 *
2601 * There are two types of consoles - bootconsoles (early_printk) and
2602 * "real" consoles (everything which is not a bootconsole) which are
2603 * handled differently.
2604 *  - Any number of bootconsoles can be registered at any time.
2605 *  - As soon as a "real" console is registered, all bootconsoles
2606 *    will be unregistered automatically.
2607 *  - Once a "real" console is registered, any attempt to register a
2608 *    bootconsoles will be rejected
2609 */
2610void register_console(struct console *newcon)
2611{
2612        int i;
2613        unsigned long flags;
2614        struct console *bcon = NULL;
2615        struct console_cmdline *c;
2616
2617        if (console_drivers)
2618                for_each_console(bcon)
2619                        if (WARN(bcon == newcon,
2620                                        "console '%s%d' already registered\n",
2621                                        bcon->name, bcon->index))
2622                                return;
2623
2624        /*
2625         * before we register a new CON_BOOT console, make sure we don't
2626         * already have a valid console
2627         */
2628        if (console_drivers && newcon->flags & CON_BOOT) {
2629                /* find the last or real console */
2630                for_each_console(bcon) {
2631                        if (!(bcon->flags & CON_BOOT)) {
2632                                pr_info("Too late to register bootconsole %s%d\n",
2633                                        newcon->name, newcon->index);
2634                                return;
2635                        }
2636                }
2637        }
2638
2639        if (console_drivers && console_drivers->flags & CON_BOOT)
2640                bcon = console_drivers;
2641
2642        if (preferred_console < 0 || bcon || !console_drivers)
2643                preferred_console = selected_console;
2644
2645        /*
2646         *      See if we want to use this console driver. If we
2647         *      didn't select a console we take the first one
2648         *      that registers here.
2649         */
2650        if (preferred_console < 0) {
2651                if (newcon->index < 0)
2652                        newcon->index = 0;
2653                if (newcon->setup == NULL ||
2654                    newcon->setup(newcon, NULL) == 0) {
2655                        newcon->flags |= CON_ENABLED;
2656                        if (newcon->device) {
2657                                newcon->flags |= CON_CONSDEV;
2658                                preferred_console = 0;
2659                        }
2660                }
2661        }
2662
2663        /*
2664         *      See if this console matches one we selected on
2665         *      the command line.
2666         */
2667        for (i = 0, c = console_cmdline;
2668             i < MAX_CMDLINECONSOLES && c->name[0];
2669             i++, c++) {
2670                if (!newcon->match ||
2671                    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2672                        /* default matching */
2673                        BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2674                        if (strcmp(c->name, newcon->name) != 0)
2675                                continue;
2676                        if (newcon->index >= 0 &&
2677                            newcon->index != c->index)
2678                                continue;
2679                        if (newcon->index < 0)
2680                                newcon->index = c->index;
2681
2682                        if (_braille_register_console(newcon, c))
2683                                return;
2684
2685                        if (newcon->setup &&
2686                            newcon->setup(newcon, c->options) != 0)
2687                                break;
2688                }
2689
2690                newcon->flags |= CON_ENABLED;
2691                if (i == selected_console) {
2692                        newcon->flags |= CON_CONSDEV;
2693                        preferred_console = selected_console;
2694                }
2695                break;
2696        }
2697
2698        if (!(newcon->flags & CON_ENABLED))
2699                return;
2700
2701        /*
2702         * If we have a bootconsole, and are switching to a real console,
2703         * don't print everything out again, since when the boot console, and
2704         * the real console are the same physical device, it's annoying to
2705         * see the beginning boot messages twice
2706         */
2707        if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2708                newcon->flags &= ~CON_PRINTBUFFER;
2709
2710        /*
2711         *      Put this console in the list - keep the
2712         *      preferred driver at the head of the list.
2713         */
2714        console_lock();
2715        if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2716                newcon->next = console_drivers;
2717                console_drivers = newcon;
2718                if (newcon->next)
2719                        newcon->next->flags &= ~CON_CONSDEV;
2720        } else {
2721                newcon->next = console_drivers->next;
2722                console_drivers->next = newcon;
2723        }
2724
2725        if (newcon->flags & CON_EXTENDED)
2726                if (!nr_ext_console_drivers++)
2727                        pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2728
2729        if (newcon->flags & CON_PRINTBUFFER) {
2730                /*
2731                 * console_unlock(); will print out the buffered messages
2732                 * for us.
2733                 */
2734                raw_spin_lock_irqsave(&logbuf_lock, flags);
2735                console_seq = syslog_seq;
2736                console_idx = syslog_idx;
2737                console_prev = syslog_prev;
2738                raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2739                /*
2740                 * We're about to replay the log buffer.  Only do this to the
2741                 * just-registered console to avoid excessive message spam to
2742                 * the already-registered consoles.
2743                 */
2744                exclusive_console = newcon;
2745        }
2746        console_unlock();
2747        console_sysfs_notify();
2748
2749        /*
2750         * By unregistering the bootconsoles after we enable the real console
2751         * we get the "console xxx enabled" message on all the consoles -
2752         * boot consoles, real consoles, etc - this is to ensure that end
2753         * users know there might be something in the kernel's log buffer that
2754         * went to the bootconsole (that they do not see on the real console)
2755         */
2756        pr_info("%sconsole [%s%d] enabled\n",
2757                (newcon->flags & CON_BOOT) ? "boot" : "" ,
2758                newcon->name, newcon->index);
2759        if (bcon &&
2760            ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2761            !keep_bootcon) {
2762                /* We need to iterate through all boot consoles, to make
2763                 * sure we print everything out, before we unregister them.
2764                 */
2765                for_each_console(bcon)
2766                        if (bcon->flags & CON_BOOT)
2767                                unregister_console(bcon);
2768        }
2769}
2770EXPORT_SYMBOL(register_console);
2771
2772int unregister_console(struct console *console)
2773{
2774        struct console *a, *b;
2775        int res;
2776
2777        pr_info("%sconsole [%s%d] disabled\n",
2778                (console->flags & CON_BOOT) ? "boot" : "" ,
2779                console->name, console->index);
2780
2781        res = _braille_unregister_console(console);
2782        if (res)
2783                return res;
2784
2785        res = 1;
2786        console_lock();
2787        if (console_drivers == console) {
2788                console_drivers=console->next;
2789                res = 0;
2790        } else if (console_drivers) {
2791                for (a=console_drivers->next, b=console_drivers ;
2792                     a; b=a, a=b->next) {
2793                        if (a == console) {
2794                                b->next = a->next;
2795                                res = 0;
2796                                break;
2797                        }
2798                }
2799        }
2800
2801        if (!res && (console->flags & CON_EXTENDED))
2802                nr_ext_console_drivers--;
2803
2804        /*
2805         * If this isn't the last console and it has CON_CONSDEV set, we
2806         * need to set it on the next preferred console.
2807         */
2808        if (console_drivers != NULL && console->flags & CON_CONSDEV)
2809                console_drivers->flags |= CON_CONSDEV;
2810
2811        console->flags &= ~CON_ENABLED;
2812        console_unlock();
2813        console_sysfs_notify();
2814        return res;
2815}
2816EXPORT_SYMBOL(unregister_console);
2817
2818/*
2819 * Some boot consoles access data that is in the init section and which will
2820 * be discarded after the initcalls have been run. To make sure that no code
2821 * will access this data, unregister the boot consoles in a late initcall.
2822 *
2823 * If for some reason, such as deferred probe or the driver being a loadable
2824 * module, the real console hasn't registered yet at this point, there will
2825 * be a brief interval in which no messages are logged to the console, which
2826 * makes it difficult to diagnose problems that occur during this time.
2827 *
2828 * To mitigate this problem somewhat, only unregister consoles whose memory
2829 * intersects with the init section. Note that code exists elsewhere to get
2830 * rid of the boot console as soon as the proper console shows up, so there
2831 * won't be side-effects from postponing the removal.
2832 */
2833static int __init printk_late_init(void)
2834{
2835        struct console *con;
2836
2837        for_each_console(con) {
2838                if (!keep_bootcon && con->flags & CON_BOOT) {
2839                        /*
2840                         * Make sure to unregister boot consoles whose data
2841                         * resides in the init section before the init section
2842                         * is discarded. Boot consoles whose data will stick
2843                         * around will automatically be unregistered when the
2844                         * proper console replaces them.
2845                         */
2846                        if (init_section_intersects(con, sizeof(*con)))
2847                                unregister_console(con);
2848                }
2849        }
2850        hotcpu_notifier(console_cpu_notify, 0);
2851        return 0;
2852}
2853late_initcall(printk_late_init);
2854
2855#if defined CONFIG_PRINTK
2856/*
2857 * Delayed printk version, for scheduler-internal messages:
2858 */
2859#define PRINTK_PENDING_WAKEUP   0x01
2860#define PRINTK_PENDING_OUTPUT   0x02
2861
2862static DEFINE_PER_CPU(int, printk_pending);
2863
2864static void wake_up_klogd_work_func(struct irq_work *irq_work)
2865{
2866        int pending = __this_cpu_xchg(printk_pending, 0);
2867
2868        if (pending & PRINTK_PENDING_OUTPUT) {
2869                /* If trylock fails, someone else is doing the printing */
2870                if (console_trylock())
2871                        console_unlock();
2872        }
2873
2874        if (pending & PRINTK_PENDING_WAKEUP)
2875                wake_up_interruptible(&log_wait);
2876}
2877
2878static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2879        .func = wake_up_klogd_work_func,
2880        .flags = IRQ_WORK_LAZY,
2881};
2882
2883void wake_up_klogd(void)
2884{
2885        preempt_disable();
2886        if (waitqueue_active(&log_wait)) {
2887                this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2888                irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2889        }
2890        preempt_enable();
2891}
2892
2893int printk_deferred(const char *fmt, ...)
2894{
2895        va_list args;
2896        int r;
2897
2898        preempt_disable();
2899        va_start(args, fmt);
2900        r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2901        va_end(args);
2902
2903        __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2904        irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2905        preempt_enable();
2906
2907        return r;
2908}
2909
2910/*
2911 * printk rate limiting, lifted from the networking subsystem.
2912 *
2913 * This enforces a rate limit: not more than 10 kernel messages
2914 * every 5s to make a denial-of-service attack impossible.
2915 */
2916DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2917
2918int __printk_ratelimit(const char *func)
2919{
2920        return ___ratelimit(&printk_ratelimit_state, func);
2921}
2922EXPORT_SYMBOL(__printk_ratelimit);
2923
2924/**
2925 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2926 * @caller_jiffies: pointer to caller's state
2927 * @interval_msecs: minimum interval between prints
2928 *
2929 * printk_timed_ratelimit() returns true if more than @interval_msecs
2930 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2931 * returned true.
2932 */
2933bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2934                        unsigned int interval_msecs)
2935{
2936        unsigned long elapsed = jiffies - *caller_jiffies;
2937
2938        if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2939                return false;
2940
2941        *caller_jiffies = jiffies;
2942        return true;
2943}
2944EXPORT_SYMBOL(printk_timed_ratelimit);
2945
2946static DEFINE_SPINLOCK(dump_list_lock);
2947static LIST_HEAD(dump_list);
2948
2949/**
2950 * kmsg_dump_register - register a kernel log dumper.
2951 * @dumper: pointer to the kmsg_dumper structure
2952 *
2953 * Adds a kernel log dumper to the system. The dump callback in the
2954 * structure will be called when the kernel oopses or panics and must be
2955 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2956 */
2957int kmsg_dump_register(struct kmsg_dumper *dumper)
2958{
2959        unsigned long flags;
2960        int err = -EBUSY;
2961
2962        /* The dump callback needs to be set */
2963        if (!dumper->dump)
2964                return -EINVAL;
2965
2966        spin_lock_irqsave(&dump_list_lock, flags);
2967        /* Don't allow registering multiple times */
2968        if (!dumper->registered) {
2969                dumper->registered = 1;
2970                list_add_tail_rcu(&dumper->list, &dump_list);
2971                err = 0;
2972        }
2973        spin_unlock_irqrestore(&dump_list_lock, flags);
2974
2975        return err;
2976}
2977EXPORT_SYMBOL_GPL(kmsg_dump_register);
2978
2979/**
2980 * kmsg_dump_unregister - unregister a kmsg dumper.
2981 * @dumper: pointer to the kmsg_dumper structure
2982 *
2983 * Removes a dump device from the system. Returns zero on success and
2984 * %-EINVAL otherwise.
2985 */
2986int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2987{
2988        unsigned long flags;
2989        int err = -EINVAL;
2990
2991        spin_lock_irqsave(&dump_list_lock, flags);
2992        if (dumper->registered) {
2993                dumper->registered = 0;
2994                list_del_rcu(&dumper->list);
2995                err = 0;
2996        }
2997        spin_unlock_irqrestore(&dump_list_lock, flags);
2998        synchronize_rcu();
2999
3000        return err;
3001}
3002EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3003
3004static bool always_kmsg_dump;
3005module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3006
3007/**
3008 * kmsg_dump - dump kernel log to kernel message dumpers.
3009 * @reason: the reason (oops, panic etc) for dumping
3010 *
3011 * Call each of the registered dumper's dump() callback, which can
3012 * retrieve the kmsg records with kmsg_dump_get_line() or
3013 * kmsg_dump_get_buffer().
3014 */
3015void kmsg_dump(enum kmsg_dump_reason reason)
3016{
3017        struct kmsg_dumper *dumper;
3018        unsigned long flags;
3019
3020        if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3021                return;
3022
3023        rcu_read_lock();
3024        list_for_each_entry_rcu(dumper, &dump_list, list) {
3025                if (dumper->max_reason && reason > dumper->max_reason)
3026                        continue;
3027
3028                /* initialize iterator with data about the stored records */
3029                dumper->active = true;
3030
3031                raw_spin_lock_irqsave(&logbuf_lock, flags);
3032                dumper->cur_seq = clear_seq;
3033                dumper->cur_idx = clear_idx;
3034                dumper->next_seq = log_next_seq;
3035                dumper->next_idx = log_next_idx;
3036                raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3037
3038                /* invoke dumper which will iterate over records */
3039                dumper->dump(dumper, reason);
3040
3041                /* reset iterator */
3042                dumper->active = false;
3043        }
3044        rcu_read_unlock();
3045}
3046
3047/**
3048 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3049 * @dumper: registered kmsg dumper
3050 * @syslog: include the "<4>" prefixes
3051 * @line: buffer to copy the line to
3052 * @size: maximum size of the buffer
3053 * @len: length of line placed into buffer
3054 *
3055 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3056 * record, and copy one record into the provided buffer.
3057 *
3058 * Consecutive calls will return the next available record moving
3059 * towards the end of the buffer with the youngest messages.
3060 *
3061 * A return value of FALSE indicates that there are no more records to
3062 * read.
3063 *
3064 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3065 */
3066bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3067                               char *line, size_t size, size_t *len)
3068{
3069        struct printk_log *msg;
3070        size_t l = 0;
3071        bool ret = false;
3072
3073        if (!dumper->active)
3074                goto out;
3075
3076        if (dumper->cur_seq < log_first_seq) {
3077                /* messages are gone, move to first available one */
3078                dumper->cur_seq = log_first_seq;
3079                dumper->cur_idx = log_first_idx;
3080        }
3081
3082        /* last entry */
3083        if (dumper->cur_seq >= log_next_seq)
3084                goto out;
3085
3086        msg = log_from_idx(dumper->cur_idx);
3087        l = msg_print_text(msg, 0, syslog, line, size);
3088
3089        dumper->cur_idx = log_next(dumper->cur_idx);
3090        dumper->cur_seq++;
3091        ret = true;
3092out:
3093        if (len)
3094                *len = l;
3095        return ret;
3096}
3097
3098/**
3099 * kmsg_dump_get_line - retrieve one kmsg log line
3100 * @dumper: registered kmsg dumper
3101 * @syslog: include the "<4>" prefixes
3102 * @line: buffer to copy the line to
3103 * @size: maximum size of the buffer
3104 * @len: length of line placed into buffer
3105 *
3106 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3107 * record, and copy one record into the provided buffer.
3108 *
3109 * Consecutive calls will return the next available record moving
3110 * towards the end of the buffer with the youngest messages.
3111 *
3112 * A return value of FALSE indicates that there are no more records to
3113 * read.
3114 */
3115bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3116                        char *line, size_t size, size_t *len)
3117{
3118        unsigned long flags;
3119        bool ret;
3120
3121        raw_spin_lock_irqsave(&logbuf_lock, flags);
3122        ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3123        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3124
3125        return ret;
3126}
3127EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3128
3129/**
3130 * kmsg_dump_get_buffer - copy kmsg log lines
3131 * @dumper: registered kmsg dumper
3132 * @syslog: include the "<4>" prefixes
3133 * @buf: buffer to copy the line to
3134 * @size: maximum size of the buffer
3135 * @len: length of line placed into buffer
3136 *
3137 * Start at the end of the kmsg buffer and fill the provided buffer
3138 * with as many of the the *youngest* kmsg records that fit into it.
3139 * If the buffer is large enough, all available kmsg records will be
3140 * copied with a single call.
3141 *
3142 * Consecutive calls will fill the buffer with the next block of
3143 * available older records, not including the earlier retrieved ones.
3144 *
3145 * A return value of FALSE indicates that there are no more records to
3146 * read.
3147 */
3148bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3149                          char *buf, size_t size, size_t *len)
3150{
3151        unsigned long flags;
3152        u64 seq;
3153        u32 idx;
3154        u64 next_seq;
3155        u32 next_idx;
3156        enum log_flags prev;
3157        size_t l = 0;
3158        bool ret = false;
3159
3160        if (!dumper->active)
3161                goto out;
3162
3163        raw_spin_lock_irqsave(&logbuf_lock, flags);
3164        if (dumper->cur_seq < log_first_seq) {
3165                /* messages are gone, move to first available one */
3166                dumper->cur_seq = log_first_seq;
3167                dumper->cur_idx = log_first_idx;
3168        }
3169
3170        /* last entry */
3171        if (dumper->cur_seq >= dumper->next_seq) {
3172                raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3173                goto out;
3174        }
3175
3176        /* calculate length of entire buffer */
3177        seq = dumper->cur_seq;
3178        idx = dumper->cur_idx;
3179        prev = 0;
3180        while (seq < dumper->next_seq) {
3181                struct printk_log *msg = log_from_idx(idx);
3182
3183                l += msg_print_text(msg, prev, true, NULL, 0);
3184                idx = log_next(idx);
3185                seq++;
3186                prev = msg->flags;
3187        }
3188
3189        /* move first record forward until length fits into the buffer */
3190        seq = dumper->cur_seq;
3191        idx = dumper->cur_idx;
3192        prev = 0;
3193        while (l > size && seq < dumper->next_seq) {
3194                struct printk_log *msg = log_from_idx(idx);
3195
3196                l -= msg_print_text(msg, prev, true, NULL, 0);
3197                idx = log_next(idx);
3198                seq++;
3199                prev = msg->flags;
3200        }
3201
3202        /* last message in next interation */
3203        next_seq = seq;
3204        next_idx = idx;
3205
3206        l = 0;
3207        while (seq < dumper->next_seq) {
3208                struct printk_log *msg = log_from_idx(idx);
3209
3210                l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3211                idx = log_next(idx);
3212                seq++;
3213                prev = msg->flags;
3214        }
3215
3216        dumper->next_seq = next_seq;
3217        dumper->next_idx = next_idx;
3218        ret = true;
3219        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3220out:
3221        if (len)
3222                *len = l;
3223        return ret;
3224}
3225EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3226
3227/**
3228 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3229 * @dumper: registered kmsg dumper
3230 *
3231 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3232 * kmsg_dump_get_buffer() can be called again and used multiple
3233 * times within the same dumper.dump() callback.
3234 *
3235 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3236 */
3237void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3238{
3239        dumper->cur_seq = clear_seq;
3240        dumper->cur_idx = clear_idx;
3241        dumper->next_seq = log_next_seq;
3242        dumper->next_idx = log_next_idx;
3243}
3244
3245/**
3246 * kmsg_dump_rewind - reset the interator
3247 * @dumper: registered kmsg dumper
3248 *
3249 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3250 * kmsg_dump_get_buffer() can be called again and used multiple
3251 * times within the same dumper.dump() callback.
3252 */
3253void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3254{
3255        unsigned long flags;
3256
3257        raw_spin_lock_irqsave(&logbuf_lock, flags);
3258        kmsg_dump_rewind_nolock(dumper);
3259        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3260}
3261EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3262
3263static char dump_stack_arch_desc_str[128];
3264
3265/**
3266 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3267 * @fmt: printf-style format string
3268 * @...: arguments for the format string
3269 *
3270 * The configured string will be printed right after utsname during task
3271 * dumps.  Usually used to add arch-specific system identifiers.  If an
3272 * arch wants to make use of such an ID string, it should initialize this
3273 * as soon as possible during boot.
3274 */
3275void __init dump_stack_set_arch_desc(const char *fmt, ...)
3276{
3277        va_list args;
3278
3279        va_start(args, fmt);
3280        vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3281                  fmt, args);
3282        va_end(args);
3283}
3284
3285/**
3286 * dump_stack_print_info - print generic debug info for dump_stack()
3287 * @log_lvl: log level
3288 *
3289 * Arch-specific dump_stack() implementations can use this function to
3290 * print out the same debug information as the generic dump_stack().
3291 */
3292void dump_stack_print_info(const char *log_lvl)
3293{
3294        printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3295               log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3296               print_tainted(), init_utsname()->release,
3297               (int)strcspn(init_utsname()->version, " "),
3298               init_utsname()->version);
3299
3300        if (dump_stack_arch_desc_str[0] != '\0')
3301                printk("%sHardware name: %s\n",
3302                       log_lvl, dump_stack_arch_desc_str);
3303
3304        print_worker_info(log_lvl, current);
3305}
3306
3307/**
3308 * show_regs_print_info - print generic debug info for show_regs()
3309 * @log_lvl: log level
3310 *
3311 * show_regs() implementations can use this function to print out generic
3312 * debug information.
3313 */
3314void show_regs_print_info(const char *log_lvl)
3315{
3316        dump_stack_print_info(log_lvl);
3317
3318        printk("%stask: %p task.stack: %p\n",
3319               log_lvl, current, task_stack_page(current));
3320}
3321
3322#endif
3323