linux/kernel/rcu/update.c
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2001
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *          Manfred Spraul <manfred@colorfullife.com>
  22 *
  23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  25 * Papers:
  26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  28 *
  29 * For detailed explanation of Read-Copy Update mechanism see -
  30 *              http://lse.sourceforge.net/locking/rcupdate.html
  31 *
  32 */
  33#include <linux/types.h>
  34#include <linux/kernel.h>
  35#include <linux/init.h>
  36#include <linux/spinlock.h>
  37#include <linux/smp.h>
  38#include <linux/interrupt.h>
  39#include <linux/sched.h>
  40#include <linux/atomic.h>
  41#include <linux/bitops.h>
  42#include <linux/percpu.h>
  43#include <linux/notifier.h>
  44#include <linux/cpu.h>
  45#include <linux/mutex.h>
  46#include <linux/export.h>
  47#include <linux/hardirq.h>
  48#include <linux/delay.h>
  49#include <linux/module.h>
  50#include <linux/kthread.h>
  51#include <linux/tick.h>
  52
  53#define CREATE_TRACE_POINTS
  54
  55#include "rcu.h"
  56
  57MODULE_ALIAS("rcupdate");
  58#ifdef MODULE_PARAM_PREFIX
  59#undef MODULE_PARAM_PREFIX
  60#endif
  61#define MODULE_PARAM_PREFIX "rcupdate."
  62
  63#ifndef CONFIG_TINY_RCU
  64module_param(rcu_expedited, int, 0);
  65module_param(rcu_normal, int, 0);
  66static int rcu_normal_after_boot;
  67module_param(rcu_normal_after_boot, int, 0);
  68#endif /* #ifndef CONFIG_TINY_RCU */
  69
  70#ifdef CONFIG_DEBUG_LOCK_ALLOC
  71/**
  72 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
  73 *
  74 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
  75 * RCU-sched read-side critical section.  In absence of
  76 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
  77 * critical section unless it can prove otherwise.  Note that disabling
  78 * of preemption (including disabling irqs) counts as an RCU-sched
  79 * read-side critical section.  This is useful for debug checks in functions
  80 * that required that they be called within an RCU-sched read-side
  81 * critical section.
  82 *
  83 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
  84 * and while lockdep is disabled.
  85 *
  86 * Note that if the CPU is in the idle loop from an RCU point of
  87 * view (ie: that we are in the section between rcu_idle_enter() and
  88 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
  89 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
  90 * that are in such a section, considering these as in extended quiescent
  91 * state, so such a CPU is effectively never in an RCU read-side critical
  92 * section regardless of what RCU primitives it invokes.  This state of
  93 * affairs is required --- we need to keep an RCU-free window in idle
  94 * where the CPU may possibly enter into low power mode. This way we can
  95 * notice an extended quiescent state to other CPUs that started a grace
  96 * period. Otherwise we would delay any grace period as long as we run in
  97 * the idle task.
  98 *
  99 * Similarly, we avoid claiming an SRCU read lock held if the current
 100 * CPU is offline.
 101 */
 102int rcu_read_lock_sched_held(void)
 103{
 104        int lockdep_opinion = 0;
 105
 106        if (!debug_lockdep_rcu_enabled())
 107                return 1;
 108        if (!rcu_is_watching())
 109                return 0;
 110        if (!rcu_lockdep_current_cpu_online())
 111                return 0;
 112        if (debug_locks)
 113                lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
 114        return lockdep_opinion || !preemptible();
 115}
 116EXPORT_SYMBOL(rcu_read_lock_sched_held);
 117#endif
 118
 119#ifndef CONFIG_TINY_RCU
 120
 121/*
 122 * Should expedited grace-period primitives always fall back to their
 123 * non-expedited counterparts?  Intended for use within RCU.  Note
 124 * that if the user specifies both rcu_expedited and rcu_normal, then
 125 * rcu_normal wins.
 126 */
 127bool rcu_gp_is_normal(void)
 128{
 129        return READ_ONCE(rcu_normal);
 130}
 131EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
 132
 133static atomic_t rcu_expedited_nesting =
 134        ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0);
 135
 136/*
 137 * Should normal grace-period primitives be expedited?  Intended for
 138 * use within RCU.  Note that this function takes the rcu_expedited
 139 * sysfs/boot variable into account as well as the rcu_expedite_gp()
 140 * nesting.  So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited()
 141 * returns false is a -really- bad idea.
 142 */
 143bool rcu_gp_is_expedited(void)
 144{
 145        return rcu_expedited || atomic_read(&rcu_expedited_nesting);
 146}
 147EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
 148
 149/**
 150 * rcu_expedite_gp - Expedite future RCU grace periods
 151 *
 152 * After a call to this function, future calls to synchronize_rcu() and
 153 * friends act as the corresponding synchronize_rcu_expedited() function
 154 * had instead been called.
 155 */
 156void rcu_expedite_gp(void)
 157{
 158        atomic_inc(&rcu_expedited_nesting);
 159}
 160EXPORT_SYMBOL_GPL(rcu_expedite_gp);
 161
 162/**
 163 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
 164 *
 165 * Undo a prior call to rcu_expedite_gp().  If all prior calls to
 166 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
 167 * and if the rcu_expedited sysfs/boot parameter is not set, then all
 168 * subsequent calls to synchronize_rcu() and friends will return to
 169 * their normal non-expedited behavior.
 170 */
 171void rcu_unexpedite_gp(void)
 172{
 173        atomic_dec(&rcu_expedited_nesting);
 174}
 175EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
 176
 177/*
 178 * Inform RCU of the end of the in-kernel boot sequence.
 179 */
 180void rcu_end_inkernel_boot(void)
 181{
 182        if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT))
 183                rcu_unexpedite_gp();
 184        if (rcu_normal_after_boot)
 185                WRITE_ONCE(rcu_normal, 1);
 186}
 187
 188#endif /* #ifndef CONFIG_TINY_RCU */
 189
 190#ifdef CONFIG_PREEMPT_RCU
 191
 192/*
 193 * Preemptible RCU implementation for rcu_read_lock().
 194 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 195 * if we block.
 196 */
 197void __rcu_read_lock(void)
 198{
 199        current->rcu_read_lock_nesting++;
 200        barrier();  /* critical section after entry code. */
 201}
 202EXPORT_SYMBOL_GPL(__rcu_read_lock);
 203
 204/*
 205 * Preemptible RCU implementation for rcu_read_unlock().
 206 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 207 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 208 * invoke rcu_read_unlock_special() to clean up after a context switch
 209 * in an RCU read-side critical section and other special cases.
 210 */
 211void __rcu_read_unlock(void)
 212{
 213        struct task_struct *t = current;
 214
 215        if (t->rcu_read_lock_nesting != 1) {
 216                --t->rcu_read_lock_nesting;
 217        } else {
 218                barrier();  /* critical section before exit code. */
 219                t->rcu_read_lock_nesting = INT_MIN;
 220                barrier();  /* assign before ->rcu_read_unlock_special load */
 221                if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
 222                        rcu_read_unlock_special(t);
 223                barrier();  /* ->rcu_read_unlock_special load before assign */
 224                t->rcu_read_lock_nesting = 0;
 225        }
 226#ifdef CONFIG_PROVE_LOCKING
 227        {
 228                int rrln = READ_ONCE(t->rcu_read_lock_nesting);
 229
 230                WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
 231        }
 232#endif /* #ifdef CONFIG_PROVE_LOCKING */
 233}
 234EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 235
 236#endif /* #ifdef CONFIG_PREEMPT_RCU */
 237
 238#ifdef CONFIG_DEBUG_LOCK_ALLOC
 239static struct lock_class_key rcu_lock_key;
 240struct lockdep_map rcu_lock_map =
 241        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
 242EXPORT_SYMBOL_GPL(rcu_lock_map);
 243
 244static struct lock_class_key rcu_bh_lock_key;
 245struct lockdep_map rcu_bh_lock_map =
 246        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
 247EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
 248
 249static struct lock_class_key rcu_sched_lock_key;
 250struct lockdep_map rcu_sched_lock_map =
 251        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
 252EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
 253
 254static struct lock_class_key rcu_callback_key;
 255struct lockdep_map rcu_callback_map =
 256        STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
 257EXPORT_SYMBOL_GPL(rcu_callback_map);
 258
 259int notrace debug_lockdep_rcu_enabled(void)
 260{
 261        return rcu_scheduler_active && debug_locks &&
 262               current->lockdep_recursion == 0;
 263}
 264EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
 265
 266/**
 267 * rcu_read_lock_held() - might we be in RCU read-side critical section?
 268 *
 269 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
 270 * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
 271 * this assumes we are in an RCU read-side critical section unless it can
 272 * prove otherwise.  This is useful for debug checks in functions that
 273 * require that they be called within an RCU read-side critical section.
 274 *
 275 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
 276 * and while lockdep is disabled.
 277 *
 278 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
 279 * occur in the same context, for example, it is illegal to invoke
 280 * rcu_read_unlock() in process context if the matching rcu_read_lock()
 281 * was invoked from within an irq handler.
 282 *
 283 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 284 * offline from an RCU perspective, so check for those as well.
 285 */
 286int rcu_read_lock_held(void)
 287{
 288        if (!debug_lockdep_rcu_enabled())
 289                return 1;
 290        if (!rcu_is_watching())
 291                return 0;
 292        if (!rcu_lockdep_current_cpu_online())
 293                return 0;
 294        return lock_is_held(&rcu_lock_map);
 295}
 296EXPORT_SYMBOL_GPL(rcu_read_lock_held);
 297
 298/**
 299 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
 300 *
 301 * Check for bottom half being disabled, which covers both the
 302 * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
 303 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
 304 * will show the situation.  This is useful for debug checks in functions
 305 * that require that they be called within an RCU read-side critical
 306 * section.
 307 *
 308 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
 309 *
 310 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 311 * offline from an RCU perspective, so check for those as well.
 312 */
 313int rcu_read_lock_bh_held(void)
 314{
 315        if (!debug_lockdep_rcu_enabled())
 316                return 1;
 317        if (!rcu_is_watching())
 318                return 0;
 319        if (!rcu_lockdep_current_cpu_online())
 320                return 0;
 321        return in_softirq() || irqs_disabled();
 322}
 323EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
 324
 325#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 326
 327/**
 328 * wakeme_after_rcu() - Callback function to awaken a task after grace period
 329 * @head: Pointer to rcu_head member within rcu_synchronize structure
 330 *
 331 * Awaken the corresponding task now that a grace period has elapsed.
 332 */
 333void wakeme_after_rcu(struct rcu_head *head)
 334{
 335        struct rcu_synchronize *rcu;
 336
 337        rcu = container_of(head, struct rcu_synchronize, head);
 338        complete(&rcu->completion);
 339}
 340EXPORT_SYMBOL_GPL(wakeme_after_rcu);
 341
 342void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
 343                   struct rcu_synchronize *rs_array)
 344{
 345        int i;
 346
 347        /* Initialize and register callbacks for each flavor specified. */
 348        for (i = 0; i < n; i++) {
 349                if (checktiny &&
 350                    (crcu_array[i] == call_rcu ||
 351                     crcu_array[i] == call_rcu_bh)) {
 352                        might_sleep();
 353                        continue;
 354                }
 355                init_rcu_head_on_stack(&rs_array[i].head);
 356                init_completion(&rs_array[i].completion);
 357                (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
 358        }
 359
 360        /* Wait for all callbacks to be invoked. */
 361        for (i = 0; i < n; i++) {
 362                if (checktiny &&
 363                    (crcu_array[i] == call_rcu ||
 364                     crcu_array[i] == call_rcu_bh))
 365                        continue;
 366                wait_for_completion(&rs_array[i].completion);
 367                destroy_rcu_head_on_stack(&rs_array[i].head);
 368        }
 369}
 370EXPORT_SYMBOL_GPL(__wait_rcu_gp);
 371
 372#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 373void init_rcu_head(struct rcu_head *head)
 374{
 375        debug_object_init(head, &rcuhead_debug_descr);
 376}
 377
 378void destroy_rcu_head(struct rcu_head *head)
 379{
 380        debug_object_free(head, &rcuhead_debug_descr);
 381}
 382
 383static bool rcuhead_is_static_object(void *addr)
 384{
 385        return true;
 386}
 387
 388/**
 389 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
 390 * @head: pointer to rcu_head structure to be initialized
 391 *
 392 * This function informs debugobjects of a new rcu_head structure that
 393 * has been allocated as an auto variable on the stack.  This function
 394 * is not required for rcu_head structures that are statically defined or
 395 * that are dynamically allocated on the heap.  This function has no
 396 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 397 */
 398void init_rcu_head_on_stack(struct rcu_head *head)
 399{
 400        debug_object_init_on_stack(head, &rcuhead_debug_descr);
 401}
 402EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
 403
 404/**
 405 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
 406 * @head: pointer to rcu_head structure to be initialized
 407 *
 408 * This function informs debugobjects that an on-stack rcu_head structure
 409 * is about to go out of scope.  As with init_rcu_head_on_stack(), this
 410 * function is not required for rcu_head structures that are statically
 411 * defined or that are dynamically allocated on the heap.  Also as with
 412 * init_rcu_head_on_stack(), this function has no effect for
 413 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 414 */
 415void destroy_rcu_head_on_stack(struct rcu_head *head)
 416{
 417        debug_object_free(head, &rcuhead_debug_descr);
 418}
 419EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
 420
 421struct debug_obj_descr rcuhead_debug_descr = {
 422        .name = "rcu_head",
 423        .is_static_object = rcuhead_is_static_object,
 424};
 425EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
 426#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 427
 428#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
 429void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
 430                               unsigned long secs,
 431                               unsigned long c_old, unsigned long c)
 432{
 433        trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
 434}
 435EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
 436#else
 437#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
 438        do { } while (0)
 439#endif
 440
 441#ifdef CONFIG_RCU_STALL_COMMON
 442
 443#ifdef CONFIG_PROVE_RCU
 444#define RCU_STALL_DELAY_DELTA          (5 * HZ)
 445#else
 446#define RCU_STALL_DELAY_DELTA          0
 447#endif
 448
 449int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
 450static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
 451
 452module_param(rcu_cpu_stall_suppress, int, 0644);
 453module_param(rcu_cpu_stall_timeout, int, 0644);
 454
 455int rcu_jiffies_till_stall_check(void)
 456{
 457        int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
 458
 459        /*
 460         * Limit check must be consistent with the Kconfig limits
 461         * for CONFIG_RCU_CPU_STALL_TIMEOUT.
 462         */
 463        if (till_stall_check < 3) {
 464                WRITE_ONCE(rcu_cpu_stall_timeout, 3);
 465                till_stall_check = 3;
 466        } else if (till_stall_check > 300) {
 467                WRITE_ONCE(rcu_cpu_stall_timeout, 300);
 468                till_stall_check = 300;
 469        }
 470        return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
 471}
 472
 473void rcu_sysrq_start(void)
 474{
 475        if (!rcu_cpu_stall_suppress)
 476                rcu_cpu_stall_suppress = 2;
 477}
 478
 479void rcu_sysrq_end(void)
 480{
 481        if (rcu_cpu_stall_suppress == 2)
 482                rcu_cpu_stall_suppress = 0;
 483}
 484
 485static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
 486{
 487        rcu_cpu_stall_suppress = 1;
 488        return NOTIFY_DONE;
 489}
 490
 491static struct notifier_block rcu_panic_block = {
 492        .notifier_call = rcu_panic,
 493};
 494
 495static int __init check_cpu_stall_init(void)
 496{
 497        atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
 498        return 0;
 499}
 500early_initcall(check_cpu_stall_init);
 501
 502#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
 503
 504#ifdef CONFIG_TASKS_RCU
 505
 506/*
 507 * Simple variant of RCU whose quiescent states are voluntary context switch,
 508 * user-space execution, and idle.  As such, grace periods can take one good
 509 * long time.  There are no read-side primitives similar to rcu_read_lock()
 510 * and rcu_read_unlock() because this implementation is intended to get
 511 * the system into a safe state for some of the manipulations involved in
 512 * tracing and the like.  Finally, this implementation does not support
 513 * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
 514 * per-CPU callback lists will be needed.
 515 */
 516
 517/* Global list of callbacks and associated lock. */
 518static struct rcu_head *rcu_tasks_cbs_head;
 519static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 520static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
 521static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
 522
 523/* Track exiting tasks in order to allow them to be waited for. */
 524DEFINE_SRCU(tasks_rcu_exit_srcu);
 525
 526/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
 527static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
 528module_param(rcu_task_stall_timeout, int, 0644);
 529
 530static void rcu_spawn_tasks_kthread(void);
 531static struct task_struct *rcu_tasks_kthread_ptr;
 532
 533/*
 534 * Post an RCU-tasks callback.  First call must be from process context
 535 * after the scheduler if fully operational.
 536 */
 537void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
 538{
 539        unsigned long flags;
 540        bool needwake;
 541        bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
 542
 543        rhp->next = NULL;
 544        rhp->func = func;
 545        raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 546        needwake = !rcu_tasks_cbs_head;
 547        *rcu_tasks_cbs_tail = rhp;
 548        rcu_tasks_cbs_tail = &rhp->next;
 549        raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 550        /* We can't create the thread unless interrupts are enabled. */
 551        if ((needwake && havetask) ||
 552            (!havetask && !irqs_disabled_flags(flags))) {
 553                rcu_spawn_tasks_kthread();
 554                wake_up(&rcu_tasks_cbs_wq);
 555        }
 556}
 557EXPORT_SYMBOL_GPL(call_rcu_tasks);
 558
 559/**
 560 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
 561 *
 562 * Control will return to the caller some time after a full rcu-tasks
 563 * grace period has elapsed, in other words after all currently
 564 * executing rcu-tasks read-side critical sections have elapsed.  These
 565 * read-side critical sections are delimited by calls to schedule(),
 566 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
 567 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
 568 *
 569 * This is a very specialized primitive, intended only for a few uses in
 570 * tracing and other situations requiring manipulation of function
 571 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
 572 * is not (yet) intended for heavy use from multiple CPUs.
 573 *
 574 * Note that this guarantee implies further memory-ordering guarantees.
 575 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
 576 * each CPU is guaranteed to have executed a full memory barrier since the
 577 * end of its last RCU-tasks read-side critical section whose beginning
 578 * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
 579 * having an RCU-tasks read-side critical section that extends beyond
 580 * the return from synchronize_rcu_tasks() is guaranteed to have executed
 581 * a full memory barrier after the beginning of synchronize_rcu_tasks()
 582 * and before the beginning of that RCU-tasks read-side critical section.
 583 * Note that these guarantees include CPUs that are offline, idle, or
 584 * executing in user mode, as well as CPUs that are executing in the kernel.
 585 *
 586 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
 587 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 588 * to have executed a full memory barrier during the execution of
 589 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
 590 * (but again only if the system has more than one CPU).
 591 */
 592void synchronize_rcu_tasks(void)
 593{
 594        /* Complain if the scheduler has not started.  */
 595        RCU_LOCKDEP_WARN(!rcu_scheduler_active,
 596                         "synchronize_rcu_tasks called too soon");
 597
 598        /* Wait for the grace period. */
 599        wait_rcu_gp(call_rcu_tasks);
 600}
 601EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
 602
 603/**
 604 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
 605 *
 606 * Although the current implementation is guaranteed to wait, it is not
 607 * obligated to, for example, if there are no pending callbacks.
 608 */
 609void rcu_barrier_tasks(void)
 610{
 611        /* There is only one callback queue, so this is easy.  ;-) */
 612        synchronize_rcu_tasks();
 613}
 614EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
 615
 616/* See if tasks are still holding out, complain if so. */
 617static void check_holdout_task(struct task_struct *t,
 618                               bool needreport, bool *firstreport)
 619{
 620        int cpu;
 621
 622        if (!READ_ONCE(t->rcu_tasks_holdout) ||
 623            t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
 624            !READ_ONCE(t->on_rq) ||
 625            (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
 626             !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
 627                WRITE_ONCE(t->rcu_tasks_holdout, false);
 628                list_del_init(&t->rcu_tasks_holdout_list);
 629                put_task_struct(t);
 630                return;
 631        }
 632        if (!needreport)
 633                return;
 634        if (*firstreport) {
 635                pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
 636                *firstreport = false;
 637        }
 638        cpu = task_cpu(t);
 639        pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
 640                 t, ".I"[is_idle_task(t)],
 641                 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
 642                 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
 643                 t->rcu_tasks_idle_cpu, cpu);
 644        sched_show_task(t);
 645}
 646
 647/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
 648static int __noreturn rcu_tasks_kthread(void *arg)
 649{
 650        unsigned long flags;
 651        struct task_struct *g, *t;
 652        unsigned long lastreport;
 653        struct rcu_head *list;
 654        struct rcu_head *next;
 655        LIST_HEAD(rcu_tasks_holdouts);
 656
 657        /* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
 658        housekeeping_affine(current);
 659
 660        /*
 661         * Each pass through the following loop makes one check for
 662         * newly arrived callbacks, and, if there are some, waits for
 663         * one RCU-tasks grace period and then invokes the callbacks.
 664         * This loop is terminated by the system going down.  ;-)
 665         */
 666        for (;;) {
 667
 668                /* Pick up any new callbacks. */
 669                raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 670                list = rcu_tasks_cbs_head;
 671                rcu_tasks_cbs_head = NULL;
 672                rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 673                raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 674
 675                /* If there were none, wait a bit and start over. */
 676                if (!list) {
 677                        wait_event_interruptible(rcu_tasks_cbs_wq,
 678                                                 rcu_tasks_cbs_head);
 679                        if (!rcu_tasks_cbs_head) {
 680                                WARN_ON(signal_pending(current));
 681                                schedule_timeout_interruptible(HZ/10);
 682                        }
 683                        continue;
 684                }
 685
 686                /*
 687                 * Wait for all pre-existing t->on_rq and t->nvcsw
 688                 * transitions to complete.  Invoking synchronize_sched()
 689                 * suffices because all these transitions occur with
 690                 * interrupts disabled.  Without this synchronize_sched(),
 691                 * a read-side critical section that started before the
 692                 * grace period might be incorrectly seen as having started
 693                 * after the grace period.
 694                 *
 695                 * This synchronize_sched() also dispenses with the
 696                 * need for a memory barrier on the first store to
 697                 * ->rcu_tasks_holdout, as it forces the store to happen
 698                 * after the beginning of the grace period.
 699                 */
 700                synchronize_sched();
 701
 702                /*
 703                 * There were callbacks, so we need to wait for an
 704                 * RCU-tasks grace period.  Start off by scanning
 705                 * the task list for tasks that are not already
 706                 * voluntarily blocked.  Mark these tasks and make
 707                 * a list of them in rcu_tasks_holdouts.
 708                 */
 709                rcu_read_lock();
 710                for_each_process_thread(g, t) {
 711                        if (t != current && READ_ONCE(t->on_rq) &&
 712                            !is_idle_task(t)) {
 713                                get_task_struct(t);
 714                                t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
 715                                WRITE_ONCE(t->rcu_tasks_holdout, true);
 716                                list_add(&t->rcu_tasks_holdout_list,
 717                                         &rcu_tasks_holdouts);
 718                        }
 719                }
 720                rcu_read_unlock();
 721
 722                /*
 723                 * Wait for tasks that are in the process of exiting.
 724                 * This does only part of the job, ensuring that all
 725                 * tasks that were previously exiting reach the point
 726                 * where they have disabled preemption, allowing the
 727                 * later synchronize_sched() to finish the job.
 728                 */
 729                synchronize_srcu(&tasks_rcu_exit_srcu);
 730
 731                /*
 732                 * Each pass through the following loop scans the list
 733                 * of holdout tasks, removing any that are no longer
 734                 * holdouts.  When the list is empty, we are done.
 735                 */
 736                lastreport = jiffies;
 737                while (!list_empty(&rcu_tasks_holdouts)) {
 738                        bool firstreport;
 739                        bool needreport;
 740                        int rtst;
 741                        struct task_struct *t1;
 742
 743                        schedule_timeout_interruptible(HZ);
 744                        rtst = READ_ONCE(rcu_task_stall_timeout);
 745                        needreport = rtst > 0 &&
 746                                     time_after(jiffies, lastreport + rtst);
 747                        if (needreport)
 748                                lastreport = jiffies;
 749                        firstreport = true;
 750                        WARN_ON(signal_pending(current));
 751                        list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
 752                                                rcu_tasks_holdout_list) {
 753                                check_holdout_task(t, needreport, &firstreport);
 754                                cond_resched();
 755                        }
 756                }
 757
 758                /*
 759                 * Because ->on_rq and ->nvcsw are not guaranteed
 760                 * to have a full memory barriers prior to them in the
 761                 * schedule() path, memory reordering on other CPUs could
 762                 * cause their RCU-tasks read-side critical sections to
 763                 * extend past the end of the grace period.  However,
 764                 * because these ->nvcsw updates are carried out with
 765                 * interrupts disabled, we can use synchronize_sched()
 766                 * to force the needed ordering on all such CPUs.
 767                 *
 768                 * This synchronize_sched() also confines all
 769                 * ->rcu_tasks_holdout accesses to be within the grace
 770                 * period, avoiding the need for memory barriers for
 771                 * ->rcu_tasks_holdout accesses.
 772                 *
 773                 * In addition, this synchronize_sched() waits for exiting
 774                 * tasks to complete their final preempt_disable() region
 775                 * of execution, cleaning up after the synchronize_srcu()
 776                 * above.
 777                 */
 778                synchronize_sched();
 779
 780                /* Invoke the callbacks. */
 781                while (list) {
 782                        next = list->next;
 783                        local_bh_disable();
 784                        list->func(list);
 785                        local_bh_enable();
 786                        list = next;
 787                        cond_resched();
 788                }
 789                schedule_timeout_uninterruptible(HZ/10);
 790        }
 791}
 792
 793/* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
 794static void rcu_spawn_tasks_kthread(void)
 795{
 796        static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
 797        struct task_struct *t;
 798
 799        if (READ_ONCE(rcu_tasks_kthread_ptr)) {
 800                smp_mb(); /* Ensure caller sees full kthread. */
 801                return;
 802        }
 803        mutex_lock(&rcu_tasks_kthread_mutex);
 804        if (rcu_tasks_kthread_ptr) {
 805                mutex_unlock(&rcu_tasks_kthread_mutex);
 806                return;
 807        }
 808        t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
 809        BUG_ON(IS_ERR(t));
 810        smp_mb(); /* Ensure others see full kthread. */
 811        WRITE_ONCE(rcu_tasks_kthread_ptr, t);
 812        mutex_unlock(&rcu_tasks_kthread_mutex);
 813}
 814
 815#endif /* #ifdef CONFIG_TASKS_RCU */
 816
 817#ifdef CONFIG_PROVE_RCU
 818
 819/*
 820 * Early boot self test parameters, one for each flavor
 821 */
 822static bool rcu_self_test;
 823static bool rcu_self_test_bh;
 824static bool rcu_self_test_sched;
 825
 826module_param(rcu_self_test, bool, 0444);
 827module_param(rcu_self_test_bh, bool, 0444);
 828module_param(rcu_self_test_sched, bool, 0444);
 829
 830static int rcu_self_test_counter;
 831
 832static void test_callback(struct rcu_head *r)
 833{
 834        rcu_self_test_counter++;
 835        pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
 836}
 837
 838static void early_boot_test_call_rcu(void)
 839{
 840        static struct rcu_head head;
 841
 842        call_rcu(&head, test_callback);
 843}
 844
 845static void early_boot_test_call_rcu_bh(void)
 846{
 847        static struct rcu_head head;
 848
 849        call_rcu_bh(&head, test_callback);
 850}
 851
 852static void early_boot_test_call_rcu_sched(void)
 853{
 854        static struct rcu_head head;
 855
 856        call_rcu_sched(&head, test_callback);
 857}
 858
 859void rcu_early_boot_tests(void)
 860{
 861        pr_info("Running RCU self tests\n");
 862
 863        if (rcu_self_test)
 864                early_boot_test_call_rcu();
 865        if (rcu_self_test_bh)
 866                early_boot_test_call_rcu_bh();
 867        if (rcu_self_test_sched)
 868                early_boot_test_call_rcu_sched();
 869}
 870
 871static int rcu_verify_early_boot_tests(void)
 872{
 873        int ret = 0;
 874        int early_boot_test_counter = 0;
 875
 876        if (rcu_self_test) {
 877                early_boot_test_counter++;
 878                rcu_barrier();
 879        }
 880        if (rcu_self_test_bh) {
 881                early_boot_test_counter++;
 882                rcu_barrier_bh();
 883        }
 884        if (rcu_self_test_sched) {
 885                early_boot_test_counter++;
 886                rcu_barrier_sched();
 887        }
 888
 889        if (rcu_self_test_counter != early_boot_test_counter) {
 890                WARN_ON(1);
 891                ret = -1;
 892        }
 893
 894        return ret;
 895}
 896late_initcall(rcu_verify_early_boot_tests);
 897#else
 898void rcu_early_boot_tests(void) {}
 899#endif /* CONFIG_PROVE_RCU */
 900