linux/kernel/relay.c
<<
>>
Prefs
   1/*
   2 * Public API and common code for kernel->userspace relay file support.
   3 *
   4 * See Documentation/filesystems/relay.txt for an overview.
   5 *
   6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
   7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
   8 *
   9 * Moved to kernel/relay.c by Paul Mundt, 2006.
  10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
  11 *      (mathieu.desnoyers@polymtl.ca)
  12 *
  13 * This file is released under the GPL.
  14 */
  15#include <linux/errno.h>
  16#include <linux/stddef.h>
  17#include <linux/slab.h>
  18#include <linux/export.h>
  19#include <linux/string.h>
  20#include <linux/relay.h>
  21#include <linux/vmalloc.h>
  22#include <linux/mm.h>
  23#include <linux/cpu.h>
  24#include <linux/splice.h>
  25
  26/* list of open channels, for cpu hotplug */
  27static DEFINE_MUTEX(relay_channels_mutex);
  28static LIST_HEAD(relay_channels);
  29
  30/*
  31 * close() vm_op implementation for relay file mapping.
  32 */
  33static void relay_file_mmap_close(struct vm_area_struct *vma)
  34{
  35        struct rchan_buf *buf = vma->vm_private_data;
  36        buf->chan->cb->buf_unmapped(buf, vma->vm_file);
  37}
  38
  39/*
  40 * fault() vm_op implementation for relay file mapping.
  41 */
  42static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  43{
  44        struct page *page;
  45        struct rchan_buf *buf = vma->vm_private_data;
  46        pgoff_t pgoff = vmf->pgoff;
  47
  48        if (!buf)
  49                return VM_FAULT_OOM;
  50
  51        page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
  52        if (!page)
  53                return VM_FAULT_SIGBUS;
  54        get_page(page);
  55        vmf->page = page;
  56
  57        return 0;
  58}
  59
  60/*
  61 * vm_ops for relay file mappings.
  62 */
  63static const struct vm_operations_struct relay_file_mmap_ops = {
  64        .fault = relay_buf_fault,
  65        .close = relay_file_mmap_close,
  66};
  67
  68/*
  69 * allocate an array of pointers of struct page
  70 */
  71static struct page **relay_alloc_page_array(unsigned int n_pages)
  72{
  73        const size_t pa_size = n_pages * sizeof(struct page *);
  74        if (pa_size > PAGE_SIZE)
  75                return vzalloc(pa_size);
  76        return kzalloc(pa_size, GFP_KERNEL);
  77}
  78
  79/*
  80 * free an array of pointers of struct page
  81 */
  82static void relay_free_page_array(struct page **array)
  83{
  84        kvfree(array);
  85}
  86
  87/**
  88 *      relay_mmap_buf: - mmap channel buffer to process address space
  89 *      @buf: relay channel buffer
  90 *      @vma: vm_area_struct describing memory to be mapped
  91 *
  92 *      Returns 0 if ok, negative on error
  93 *
  94 *      Caller should already have grabbed mmap_sem.
  95 */
  96static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
  97{
  98        unsigned long length = vma->vm_end - vma->vm_start;
  99        struct file *filp = vma->vm_file;
 100
 101        if (!buf)
 102                return -EBADF;
 103
 104        if (length != (unsigned long)buf->chan->alloc_size)
 105                return -EINVAL;
 106
 107        vma->vm_ops = &relay_file_mmap_ops;
 108        vma->vm_flags |= VM_DONTEXPAND;
 109        vma->vm_private_data = buf;
 110        buf->chan->cb->buf_mapped(buf, filp);
 111
 112        return 0;
 113}
 114
 115/**
 116 *      relay_alloc_buf - allocate a channel buffer
 117 *      @buf: the buffer struct
 118 *      @size: total size of the buffer
 119 *
 120 *      Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
 121 *      passed in size will get page aligned, if it isn't already.
 122 */
 123static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
 124{
 125        void *mem;
 126        unsigned int i, j, n_pages;
 127
 128        *size = PAGE_ALIGN(*size);
 129        n_pages = *size >> PAGE_SHIFT;
 130
 131        buf->page_array = relay_alloc_page_array(n_pages);
 132        if (!buf->page_array)
 133                return NULL;
 134
 135        for (i = 0; i < n_pages; i++) {
 136                buf->page_array[i] = alloc_page(GFP_KERNEL);
 137                if (unlikely(!buf->page_array[i]))
 138                        goto depopulate;
 139                set_page_private(buf->page_array[i], (unsigned long)buf);
 140        }
 141        mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
 142        if (!mem)
 143                goto depopulate;
 144
 145        memset(mem, 0, *size);
 146        buf->page_count = n_pages;
 147        return mem;
 148
 149depopulate:
 150        for (j = 0; j < i; j++)
 151                __free_page(buf->page_array[j]);
 152        relay_free_page_array(buf->page_array);
 153        return NULL;
 154}
 155
 156/**
 157 *      relay_create_buf - allocate and initialize a channel buffer
 158 *      @chan: the relay channel
 159 *
 160 *      Returns channel buffer if successful, %NULL otherwise.
 161 */
 162static struct rchan_buf *relay_create_buf(struct rchan *chan)
 163{
 164        struct rchan_buf *buf;
 165
 166        if (chan->n_subbufs > UINT_MAX / sizeof(size_t *))
 167                return NULL;
 168
 169        buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
 170        if (!buf)
 171                return NULL;
 172        buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
 173        if (!buf->padding)
 174                goto free_buf;
 175
 176        buf->start = relay_alloc_buf(buf, &chan->alloc_size);
 177        if (!buf->start)
 178                goto free_buf;
 179
 180        buf->chan = chan;
 181        kref_get(&buf->chan->kref);
 182        return buf;
 183
 184free_buf:
 185        kfree(buf->padding);
 186        kfree(buf);
 187        return NULL;
 188}
 189
 190/**
 191 *      relay_destroy_channel - free the channel struct
 192 *      @kref: target kernel reference that contains the relay channel
 193 *
 194 *      Should only be called from kref_put().
 195 */
 196static void relay_destroy_channel(struct kref *kref)
 197{
 198        struct rchan *chan = container_of(kref, struct rchan, kref);
 199        kfree(chan);
 200}
 201
 202/**
 203 *      relay_destroy_buf - destroy an rchan_buf struct and associated buffer
 204 *      @buf: the buffer struct
 205 */
 206static void relay_destroy_buf(struct rchan_buf *buf)
 207{
 208        struct rchan *chan = buf->chan;
 209        unsigned int i;
 210
 211        if (likely(buf->start)) {
 212                vunmap(buf->start);
 213                for (i = 0; i < buf->page_count; i++)
 214                        __free_page(buf->page_array[i]);
 215                relay_free_page_array(buf->page_array);
 216        }
 217        chan->buf[buf->cpu] = NULL;
 218        kfree(buf->padding);
 219        kfree(buf);
 220        kref_put(&chan->kref, relay_destroy_channel);
 221}
 222
 223/**
 224 *      relay_remove_buf - remove a channel buffer
 225 *      @kref: target kernel reference that contains the relay buffer
 226 *
 227 *      Removes the file from the filesystem, which also frees the
 228 *      rchan_buf_struct and the channel buffer.  Should only be called from
 229 *      kref_put().
 230 */
 231static void relay_remove_buf(struct kref *kref)
 232{
 233        struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
 234        relay_destroy_buf(buf);
 235}
 236
 237/**
 238 *      relay_buf_empty - boolean, is the channel buffer empty?
 239 *      @buf: channel buffer
 240 *
 241 *      Returns 1 if the buffer is empty, 0 otherwise.
 242 */
 243static int relay_buf_empty(struct rchan_buf *buf)
 244{
 245        return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
 246}
 247
 248/**
 249 *      relay_buf_full - boolean, is the channel buffer full?
 250 *      @buf: channel buffer
 251 *
 252 *      Returns 1 if the buffer is full, 0 otherwise.
 253 */
 254int relay_buf_full(struct rchan_buf *buf)
 255{
 256        size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
 257        return (ready >= buf->chan->n_subbufs) ? 1 : 0;
 258}
 259EXPORT_SYMBOL_GPL(relay_buf_full);
 260
 261/*
 262 * High-level relay kernel API and associated functions.
 263 */
 264
 265/*
 266 * rchan_callback implementations defining default channel behavior.  Used
 267 * in place of corresponding NULL values in client callback struct.
 268 */
 269
 270/*
 271 * subbuf_start() default callback.  Does nothing.
 272 */
 273static int subbuf_start_default_callback (struct rchan_buf *buf,
 274                                          void *subbuf,
 275                                          void *prev_subbuf,
 276                                          size_t prev_padding)
 277{
 278        if (relay_buf_full(buf))
 279                return 0;
 280
 281        return 1;
 282}
 283
 284/*
 285 * buf_mapped() default callback.  Does nothing.
 286 */
 287static void buf_mapped_default_callback(struct rchan_buf *buf,
 288                                        struct file *filp)
 289{
 290}
 291
 292/*
 293 * buf_unmapped() default callback.  Does nothing.
 294 */
 295static void buf_unmapped_default_callback(struct rchan_buf *buf,
 296                                          struct file *filp)
 297{
 298}
 299
 300/*
 301 * create_buf_file_create() default callback.  Does nothing.
 302 */
 303static struct dentry *create_buf_file_default_callback(const char *filename,
 304                                                       struct dentry *parent,
 305                                                       umode_t mode,
 306                                                       struct rchan_buf *buf,
 307                                                       int *is_global)
 308{
 309        return NULL;
 310}
 311
 312/*
 313 * remove_buf_file() default callback.  Does nothing.
 314 */
 315static int remove_buf_file_default_callback(struct dentry *dentry)
 316{
 317        return -EINVAL;
 318}
 319
 320/* relay channel default callbacks */
 321static struct rchan_callbacks default_channel_callbacks = {
 322        .subbuf_start = subbuf_start_default_callback,
 323        .buf_mapped = buf_mapped_default_callback,
 324        .buf_unmapped = buf_unmapped_default_callback,
 325        .create_buf_file = create_buf_file_default_callback,
 326        .remove_buf_file = remove_buf_file_default_callback,
 327};
 328
 329/**
 330 *      wakeup_readers - wake up readers waiting on a channel
 331 *      @data: contains the channel buffer
 332 *
 333 *      This is the timer function used to defer reader waking.
 334 */
 335static void wakeup_readers(unsigned long data)
 336{
 337        struct rchan_buf *buf = (struct rchan_buf *)data;
 338        wake_up_interruptible(&buf->read_wait);
 339}
 340
 341/**
 342 *      __relay_reset - reset a channel buffer
 343 *      @buf: the channel buffer
 344 *      @init: 1 if this is a first-time initialization
 345 *
 346 *      See relay_reset() for description of effect.
 347 */
 348static void __relay_reset(struct rchan_buf *buf, unsigned int init)
 349{
 350        size_t i;
 351
 352        if (init) {
 353                init_waitqueue_head(&buf->read_wait);
 354                kref_init(&buf->kref);
 355                setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
 356        } else
 357                del_timer_sync(&buf->timer);
 358
 359        buf->subbufs_produced = 0;
 360        buf->subbufs_consumed = 0;
 361        buf->bytes_consumed = 0;
 362        buf->finalized = 0;
 363        buf->data = buf->start;
 364        buf->offset = 0;
 365
 366        for (i = 0; i < buf->chan->n_subbufs; i++)
 367                buf->padding[i] = 0;
 368
 369        buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
 370}
 371
 372/**
 373 *      relay_reset - reset the channel
 374 *      @chan: the channel
 375 *
 376 *      This has the effect of erasing all data from all channel buffers
 377 *      and restarting the channel in its initial state.  The buffers
 378 *      are not freed, so any mappings are still in effect.
 379 *
 380 *      NOTE. Care should be taken that the channel isn't actually
 381 *      being used by anything when this call is made.
 382 */
 383void relay_reset(struct rchan *chan)
 384{
 385        unsigned int i;
 386
 387        if (!chan)
 388                return;
 389
 390        if (chan->is_global && chan->buf[0]) {
 391                __relay_reset(chan->buf[0], 0);
 392                return;
 393        }
 394
 395        mutex_lock(&relay_channels_mutex);
 396        for_each_possible_cpu(i)
 397                if (chan->buf[i])
 398                        __relay_reset(chan->buf[i], 0);
 399        mutex_unlock(&relay_channels_mutex);
 400}
 401EXPORT_SYMBOL_GPL(relay_reset);
 402
 403static inline void relay_set_buf_dentry(struct rchan_buf *buf,
 404                                        struct dentry *dentry)
 405{
 406        buf->dentry = dentry;
 407        d_inode(buf->dentry)->i_size = buf->early_bytes;
 408}
 409
 410static struct dentry *relay_create_buf_file(struct rchan *chan,
 411                                            struct rchan_buf *buf,
 412                                            unsigned int cpu)
 413{
 414        struct dentry *dentry;
 415        char *tmpname;
 416
 417        tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
 418        if (!tmpname)
 419                return NULL;
 420        snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
 421
 422        /* Create file in fs */
 423        dentry = chan->cb->create_buf_file(tmpname, chan->parent,
 424                                           S_IRUSR, buf,
 425                                           &chan->is_global);
 426
 427        kfree(tmpname);
 428
 429        return dentry;
 430}
 431
 432/*
 433 *      relay_open_buf - create a new relay channel buffer
 434 *
 435 *      used by relay_open() and CPU hotplug.
 436 */
 437static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
 438{
 439        struct rchan_buf *buf = NULL;
 440        struct dentry *dentry;
 441
 442        if (chan->is_global)
 443                return chan->buf[0];
 444
 445        buf = relay_create_buf(chan);
 446        if (!buf)
 447                return NULL;
 448
 449        if (chan->has_base_filename) {
 450                dentry = relay_create_buf_file(chan, buf, cpu);
 451                if (!dentry)
 452                        goto free_buf;
 453                relay_set_buf_dentry(buf, dentry);
 454        } else {
 455                /* Only retrieve global info, nothing more, nothing less */
 456                dentry = chan->cb->create_buf_file(NULL, NULL,
 457                                                   S_IRUSR, buf,
 458                                                   &chan->is_global);
 459                if (WARN_ON(dentry))
 460                        goto free_buf;
 461        }
 462
 463        buf->cpu = cpu;
 464        __relay_reset(buf, 1);
 465
 466        if(chan->is_global) {
 467                chan->buf[0] = buf;
 468                buf->cpu = 0;
 469        }
 470
 471        return buf;
 472
 473free_buf:
 474        relay_destroy_buf(buf);
 475        return NULL;
 476}
 477
 478/**
 479 *      relay_close_buf - close a channel buffer
 480 *      @buf: channel buffer
 481 *
 482 *      Marks the buffer finalized and restores the default callbacks.
 483 *      The channel buffer and channel buffer data structure are then freed
 484 *      automatically when the last reference is given up.
 485 */
 486static void relay_close_buf(struct rchan_buf *buf)
 487{
 488        buf->finalized = 1;
 489        del_timer_sync(&buf->timer);
 490        buf->chan->cb->remove_buf_file(buf->dentry);
 491        kref_put(&buf->kref, relay_remove_buf);
 492}
 493
 494static void setup_callbacks(struct rchan *chan,
 495                                   struct rchan_callbacks *cb)
 496{
 497        if (!cb) {
 498                chan->cb = &default_channel_callbacks;
 499                return;
 500        }
 501
 502        if (!cb->subbuf_start)
 503                cb->subbuf_start = subbuf_start_default_callback;
 504        if (!cb->buf_mapped)
 505                cb->buf_mapped = buf_mapped_default_callback;
 506        if (!cb->buf_unmapped)
 507                cb->buf_unmapped = buf_unmapped_default_callback;
 508        if (!cb->create_buf_file)
 509                cb->create_buf_file = create_buf_file_default_callback;
 510        if (!cb->remove_buf_file)
 511                cb->remove_buf_file = remove_buf_file_default_callback;
 512        chan->cb = cb;
 513}
 514
 515/**
 516 *      relay_hotcpu_callback - CPU hotplug callback
 517 *      @nb: notifier block
 518 *      @action: hotplug action to take
 519 *      @hcpu: CPU number
 520 *
 521 *      Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
 522 */
 523static int relay_hotcpu_callback(struct notifier_block *nb,
 524                                unsigned long action,
 525                                void *hcpu)
 526{
 527        unsigned int hotcpu = (unsigned long)hcpu;
 528        struct rchan *chan;
 529
 530        switch(action) {
 531        case CPU_UP_PREPARE:
 532        case CPU_UP_PREPARE_FROZEN:
 533                mutex_lock(&relay_channels_mutex);
 534                list_for_each_entry(chan, &relay_channels, list) {
 535                        if (chan->buf[hotcpu])
 536                                continue;
 537                        chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
 538                        if(!chan->buf[hotcpu]) {
 539                                printk(KERN_ERR
 540                                        "relay_hotcpu_callback: cpu %d buffer "
 541                                        "creation failed\n", hotcpu);
 542                                mutex_unlock(&relay_channels_mutex);
 543                                return notifier_from_errno(-ENOMEM);
 544                        }
 545                }
 546                mutex_unlock(&relay_channels_mutex);
 547                break;
 548        case CPU_DEAD:
 549        case CPU_DEAD_FROZEN:
 550                /* No need to flush the cpu : will be flushed upon
 551                 * final relay_flush() call. */
 552                break;
 553        }
 554        return NOTIFY_OK;
 555}
 556
 557/**
 558 *      relay_open - create a new relay channel
 559 *      @base_filename: base name of files to create, %NULL for buffering only
 560 *      @parent: dentry of parent directory, %NULL for root directory or buffer
 561 *      @subbuf_size: size of sub-buffers
 562 *      @n_subbufs: number of sub-buffers
 563 *      @cb: client callback functions
 564 *      @private_data: user-defined data
 565 *
 566 *      Returns channel pointer if successful, %NULL otherwise.
 567 *
 568 *      Creates a channel buffer for each cpu using the sizes and
 569 *      attributes specified.  The created channel buffer files
 570 *      will be named base_filename0...base_filenameN-1.  File
 571 *      permissions will be %S_IRUSR.
 572 *
 573 *      If opening a buffer (@parent = NULL) that you later wish to register
 574 *      in a filesystem, call relay_late_setup_files() once the @parent dentry
 575 *      is available.
 576 */
 577struct rchan *relay_open(const char *base_filename,
 578                         struct dentry *parent,
 579                         size_t subbuf_size,
 580                         size_t n_subbufs,
 581                         struct rchan_callbacks *cb,
 582                         void *private_data)
 583{
 584        unsigned int i;
 585        struct rchan *chan;
 586
 587        if (!(subbuf_size && n_subbufs))
 588                return NULL;
 589        if (subbuf_size > UINT_MAX / n_subbufs)
 590                return NULL;
 591
 592        chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
 593        if (!chan)
 594                return NULL;
 595
 596        chan->version = RELAYFS_CHANNEL_VERSION;
 597        chan->n_subbufs = n_subbufs;
 598        chan->subbuf_size = subbuf_size;
 599        chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
 600        chan->parent = parent;
 601        chan->private_data = private_data;
 602        if (base_filename) {
 603                chan->has_base_filename = 1;
 604                strlcpy(chan->base_filename, base_filename, NAME_MAX);
 605        }
 606        setup_callbacks(chan, cb);
 607        kref_init(&chan->kref);
 608
 609        mutex_lock(&relay_channels_mutex);
 610        for_each_online_cpu(i) {
 611                chan->buf[i] = relay_open_buf(chan, i);
 612                if (!chan->buf[i])
 613                        goto free_bufs;
 614        }
 615        list_add(&chan->list, &relay_channels);
 616        mutex_unlock(&relay_channels_mutex);
 617
 618        return chan;
 619
 620free_bufs:
 621        for_each_possible_cpu(i) {
 622                if (chan->buf[i])
 623                        relay_close_buf(chan->buf[i]);
 624        }
 625
 626        kref_put(&chan->kref, relay_destroy_channel);
 627        mutex_unlock(&relay_channels_mutex);
 628        kfree(chan);
 629        return NULL;
 630}
 631EXPORT_SYMBOL_GPL(relay_open);
 632
 633struct rchan_percpu_buf_dispatcher {
 634        struct rchan_buf *buf;
 635        struct dentry *dentry;
 636};
 637
 638/* Called in atomic context. */
 639static void __relay_set_buf_dentry(void *info)
 640{
 641        struct rchan_percpu_buf_dispatcher *p = info;
 642
 643        relay_set_buf_dentry(p->buf, p->dentry);
 644}
 645
 646/**
 647 *      relay_late_setup_files - triggers file creation
 648 *      @chan: channel to operate on
 649 *      @base_filename: base name of files to create
 650 *      @parent: dentry of parent directory, %NULL for root directory
 651 *
 652 *      Returns 0 if successful, non-zero otherwise.
 653 *
 654 *      Use to setup files for a previously buffer-only channel created
 655 *      by relay_open() with a NULL parent dentry.
 656 *
 657 *      For example, this is useful for perfomring early tracing in kernel,
 658 *      before VFS is up and then exposing the early results once the dentry
 659 *      is available.
 660 */
 661int relay_late_setup_files(struct rchan *chan,
 662                           const char *base_filename,
 663                           struct dentry *parent)
 664{
 665        int err = 0;
 666        unsigned int i, curr_cpu;
 667        unsigned long flags;
 668        struct dentry *dentry;
 669        struct rchan_percpu_buf_dispatcher disp;
 670
 671        if (!chan || !base_filename)
 672                return -EINVAL;
 673
 674        strlcpy(chan->base_filename, base_filename, NAME_MAX);
 675
 676        mutex_lock(&relay_channels_mutex);
 677        /* Is chan already set up? */
 678        if (unlikely(chan->has_base_filename)) {
 679                mutex_unlock(&relay_channels_mutex);
 680                return -EEXIST;
 681        }
 682        chan->has_base_filename = 1;
 683        chan->parent = parent;
 684
 685        if (chan->is_global) {
 686                err = -EINVAL;
 687                if (!WARN_ON_ONCE(!chan->buf[0])) {
 688                        dentry = relay_create_buf_file(chan, chan->buf[0], 0);
 689                        if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
 690                                relay_set_buf_dentry(chan->buf[0], dentry);
 691                                err = 0;
 692                        }
 693                }
 694                mutex_unlock(&relay_channels_mutex);
 695                return err;
 696        }
 697
 698        curr_cpu = get_cpu();
 699        /*
 700         * The CPU hotplug notifier ran before us and created buffers with
 701         * no files associated. So it's safe to call relay_setup_buf_file()
 702         * on all currently online CPUs.
 703         */
 704        for_each_online_cpu(i) {
 705                if (unlikely(!chan->buf[i])) {
 706                        WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
 707                        err = -EINVAL;
 708                        break;
 709                }
 710
 711                dentry = relay_create_buf_file(chan, chan->buf[i], i);
 712                if (unlikely(!dentry)) {
 713                        err = -EINVAL;
 714                        break;
 715                }
 716
 717                if (curr_cpu == i) {
 718                        local_irq_save(flags);
 719                        relay_set_buf_dentry(chan->buf[i], dentry);
 720                        local_irq_restore(flags);
 721                } else {
 722                        disp.buf = chan->buf[i];
 723                        disp.dentry = dentry;
 724                        smp_mb();
 725                        /* relay_channels_mutex must be held, so wait. */
 726                        err = smp_call_function_single(i,
 727                                                       __relay_set_buf_dentry,
 728                                                       &disp, 1);
 729                }
 730                if (unlikely(err))
 731                        break;
 732        }
 733        put_cpu();
 734        mutex_unlock(&relay_channels_mutex);
 735
 736        return err;
 737}
 738EXPORT_SYMBOL_GPL(relay_late_setup_files);
 739
 740/**
 741 *      relay_switch_subbuf - switch to a new sub-buffer
 742 *      @buf: channel buffer
 743 *      @length: size of current event
 744 *
 745 *      Returns either the length passed in or 0 if full.
 746 *
 747 *      Performs sub-buffer-switch tasks such as invoking callbacks,
 748 *      updating padding counts, waking up readers, etc.
 749 */
 750size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
 751{
 752        void *old, *new;
 753        size_t old_subbuf, new_subbuf;
 754
 755        if (unlikely(length > buf->chan->subbuf_size))
 756                goto toobig;
 757
 758        if (buf->offset != buf->chan->subbuf_size + 1) {
 759                buf->prev_padding = buf->chan->subbuf_size - buf->offset;
 760                old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 761                buf->padding[old_subbuf] = buf->prev_padding;
 762                buf->subbufs_produced++;
 763                if (buf->dentry)
 764                        d_inode(buf->dentry)->i_size +=
 765                                buf->chan->subbuf_size -
 766                                buf->padding[old_subbuf];
 767                else
 768                        buf->early_bytes += buf->chan->subbuf_size -
 769                                            buf->padding[old_subbuf];
 770                smp_mb();
 771                if (waitqueue_active(&buf->read_wait))
 772                        /*
 773                         * Calling wake_up_interruptible() from here
 774                         * will deadlock if we happen to be logging
 775                         * from the scheduler (trying to re-grab
 776                         * rq->lock), so defer it.
 777                         */
 778                        mod_timer(&buf->timer, jiffies + 1);
 779        }
 780
 781        old = buf->data;
 782        new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 783        new = buf->start + new_subbuf * buf->chan->subbuf_size;
 784        buf->offset = 0;
 785        if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
 786                buf->offset = buf->chan->subbuf_size + 1;
 787                return 0;
 788        }
 789        buf->data = new;
 790        buf->padding[new_subbuf] = 0;
 791
 792        if (unlikely(length + buf->offset > buf->chan->subbuf_size))
 793                goto toobig;
 794
 795        return length;
 796
 797toobig:
 798        buf->chan->last_toobig = length;
 799        return 0;
 800}
 801EXPORT_SYMBOL_GPL(relay_switch_subbuf);
 802
 803/**
 804 *      relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
 805 *      @chan: the channel
 806 *      @cpu: the cpu associated with the channel buffer to update
 807 *      @subbufs_consumed: number of sub-buffers to add to current buf's count
 808 *
 809 *      Adds to the channel buffer's consumed sub-buffer count.
 810 *      subbufs_consumed should be the number of sub-buffers newly consumed,
 811 *      not the total consumed.
 812 *
 813 *      NOTE. Kernel clients don't need to call this function if the channel
 814 *      mode is 'overwrite'.
 815 */
 816void relay_subbufs_consumed(struct rchan *chan,
 817                            unsigned int cpu,
 818                            size_t subbufs_consumed)
 819{
 820        struct rchan_buf *buf;
 821
 822        if (!chan)
 823                return;
 824
 825        if (cpu >= NR_CPUS || !chan->buf[cpu] ||
 826                                        subbufs_consumed > chan->n_subbufs)
 827                return;
 828
 829        buf = chan->buf[cpu];
 830        if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
 831                buf->subbufs_consumed = buf->subbufs_produced;
 832        else
 833                buf->subbufs_consumed += subbufs_consumed;
 834}
 835EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
 836
 837/**
 838 *      relay_close - close the channel
 839 *      @chan: the channel
 840 *
 841 *      Closes all channel buffers and frees the channel.
 842 */
 843void relay_close(struct rchan *chan)
 844{
 845        unsigned int i;
 846
 847        if (!chan)
 848                return;
 849
 850        mutex_lock(&relay_channels_mutex);
 851        if (chan->is_global && chan->buf[0])
 852                relay_close_buf(chan->buf[0]);
 853        else
 854                for_each_possible_cpu(i)
 855                        if (chan->buf[i])
 856                                relay_close_buf(chan->buf[i]);
 857
 858        if (chan->last_toobig)
 859                printk(KERN_WARNING "relay: one or more items not logged "
 860                       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
 861                       chan->last_toobig, chan->subbuf_size);
 862
 863        list_del(&chan->list);
 864        kref_put(&chan->kref, relay_destroy_channel);
 865        mutex_unlock(&relay_channels_mutex);
 866}
 867EXPORT_SYMBOL_GPL(relay_close);
 868
 869/**
 870 *      relay_flush - close the channel
 871 *      @chan: the channel
 872 *
 873 *      Flushes all channel buffers, i.e. forces buffer switch.
 874 */
 875void relay_flush(struct rchan *chan)
 876{
 877        unsigned int i;
 878
 879        if (!chan)
 880                return;
 881
 882        if (chan->is_global && chan->buf[0]) {
 883                relay_switch_subbuf(chan->buf[0], 0);
 884                return;
 885        }
 886
 887        mutex_lock(&relay_channels_mutex);
 888        for_each_possible_cpu(i)
 889                if (chan->buf[i])
 890                        relay_switch_subbuf(chan->buf[i], 0);
 891        mutex_unlock(&relay_channels_mutex);
 892}
 893EXPORT_SYMBOL_GPL(relay_flush);
 894
 895/**
 896 *      relay_file_open - open file op for relay files
 897 *      @inode: the inode
 898 *      @filp: the file
 899 *
 900 *      Increments the channel buffer refcount.
 901 */
 902static int relay_file_open(struct inode *inode, struct file *filp)
 903{
 904        struct rchan_buf *buf = inode->i_private;
 905        kref_get(&buf->kref);
 906        filp->private_data = buf;
 907
 908        return nonseekable_open(inode, filp);
 909}
 910
 911/**
 912 *      relay_file_mmap - mmap file op for relay files
 913 *      @filp: the file
 914 *      @vma: the vma describing what to map
 915 *
 916 *      Calls upon relay_mmap_buf() to map the file into user space.
 917 */
 918static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
 919{
 920        struct rchan_buf *buf = filp->private_data;
 921        return relay_mmap_buf(buf, vma);
 922}
 923
 924/**
 925 *      relay_file_poll - poll file op for relay files
 926 *      @filp: the file
 927 *      @wait: poll table
 928 *
 929 *      Poll implemention.
 930 */
 931static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
 932{
 933        unsigned int mask = 0;
 934        struct rchan_buf *buf = filp->private_data;
 935
 936        if (buf->finalized)
 937                return POLLERR;
 938
 939        if (filp->f_mode & FMODE_READ) {
 940                poll_wait(filp, &buf->read_wait, wait);
 941                if (!relay_buf_empty(buf))
 942                        mask |= POLLIN | POLLRDNORM;
 943        }
 944
 945        return mask;
 946}
 947
 948/**
 949 *      relay_file_release - release file op for relay files
 950 *      @inode: the inode
 951 *      @filp: the file
 952 *
 953 *      Decrements the channel refcount, as the filesystem is
 954 *      no longer using it.
 955 */
 956static int relay_file_release(struct inode *inode, struct file *filp)
 957{
 958        struct rchan_buf *buf = filp->private_data;
 959        kref_put(&buf->kref, relay_remove_buf);
 960
 961        return 0;
 962}
 963
 964/*
 965 *      relay_file_read_consume - update the consumed count for the buffer
 966 */
 967static void relay_file_read_consume(struct rchan_buf *buf,
 968                                    size_t read_pos,
 969                                    size_t bytes_consumed)
 970{
 971        size_t subbuf_size = buf->chan->subbuf_size;
 972        size_t n_subbufs = buf->chan->n_subbufs;
 973        size_t read_subbuf;
 974
 975        if (buf->subbufs_produced == buf->subbufs_consumed &&
 976            buf->offset == buf->bytes_consumed)
 977                return;
 978
 979        if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
 980                relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 981                buf->bytes_consumed = 0;
 982        }
 983
 984        buf->bytes_consumed += bytes_consumed;
 985        if (!read_pos)
 986                read_subbuf = buf->subbufs_consumed % n_subbufs;
 987        else
 988                read_subbuf = read_pos / buf->chan->subbuf_size;
 989        if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
 990                if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
 991                    (buf->offset == subbuf_size))
 992                        return;
 993                relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 994                buf->bytes_consumed = 0;
 995        }
 996}
 997
 998/*
 999 *      relay_file_read_avail - boolean, are there unconsumed bytes available?
1000 */
1001static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
1002{
1003        size_t subbuf_size = buf->chan->subbuf_size;
1004        size_t n_subbufs = buf->chan->n_subbufs;
1005        size_t produced = buf->subbufs_produced;
1006        size_t consumed = buf->subbufs_consumed;
1007
1008        relay_file_read_consume(buf, read_pos, 0);
1009
1010        consumed = buf->subbufs_consumed;
1011
1012        if (unlikely(buf->offset > subbuf_size)) {
1013                if (produced == consumed)
1014                        return 0;
1015                return 1;
1016        }
1017
1018        if (unlikely(produced - consumed >= n_subbufs)) {
1019                consumed = produced - n_subbufs + 1;
1020                buf->subbufs_consumed = consumed;
1021                buf->bytes_consumed = 0;
1022        }
1023
1024        produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1025        consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1026
1027        if (consumed > produced)
1028                produced += n_subbufs * subbuf_size;
1029
1030        if (consumed == produced) {
1031                if (buf->offset == subbuf_size &&
1032                    buf->subbufs_produced > buf->subbufs_consumed)
1033                        return 1;
1034                return 0;
1035        }
1036
1037        return 1;
1038}
1039
1040/**
1041 *      relay_file_read_subbuf_avail - return bytes available in sub-buffer
1042 *      @read_pos: file read position
1043 *      @buf: relay channel buffer
1044 */
1045static size_t relay_file_read_subbuf_avail(size_t read_pos,
1046                                           struct rchan_buf *buf)
1047{
1048        size_t padding, avail = 0;
1049        size_t read_subbuf, read_offset, write_subbuf, write_offset;
1050        size_t subbuf_size = buf->chan->subbuf_size;
1051
1052        write_subbuf = (buf->data - buf->start) / subbuf_size;
1053        write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1054        read_subbuf = read_pos / subbuf_size;
1055        read_offset = read_pos % subbuf_size;
1056        padding = buf->padding[read_subbuf];
1057
1058        if (read_subbuf == write_subbuf) {
1059                if (read_offset + padding < write_offset)
1060                        avail = write_offset - (read_offset + padding);
1061        } else
1062                avail = (subbuf_size - padding) - read_offset;
1063
1064        return avail;
1065}
1066
1067/**
1068 *      relay_file_read_start_pos - find the first available byte to read
1069 *      @read_pos: file read position
1070 *      @buf: relay channel buffer
1071 *
1072 *      If the @read_pos is in the middle of padding, return the
1073 *      position of the first actually available byte, otherwise
1074 *      return the original value.
1075 */
1076static size_t relay_file_read_start_pos(size_t read_pos,
1077                                        struct rchan_buf *buf)
1078{
1079        size_t read_subbuf, padding, padding_start, padding_end;
1080        size_t subbuf_size = buf->chan->subbuf_size;
1081        size_t n_subbufs = buf->chan->n_subbufs;
1082        size_t consumed = buf->subbufs_consumed % n_subbufs;
1083
1084        if (!read_pos)
1085                read_pos = consumed * subbuf_size + buf->bytes_consumed;
1086        read_subbuf = read_pos / subbuf_size;
1087        padding = buf->padding[read_subbuf];
1088        padding_start = (read_subbuf + 1) * subbuf_size - padding;
1089        padding_end = (read_subbuf + 1) * subbuf_size;
1090        if (read_pos >= padding_start && read_pos < padding_end) {
1091                read_subbuf = (read_subbuf + 1) % n_subbufs;
1092                read_pos = read_subbuf * subbuf_size;
1093        }
1094
1095        return read_pos;
1096}
1097
1098/**
1099 *      relay_file_read_end_pos - return the new read position
1100 *      @read_pos: file read position
1101 *      @buf: relay channel buffer
1102 *      @count: number of bytes to be read
1103 */
1104static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1105                                      size_t read_pos,
1106                                      size_t count)
1107{
1108        size_t read_subbuf, padding, end_pos;
1109        size_t subbuf_size = buf->chan->subbuf_size;
1110        size_t n_subbufs = buf->chan->n_subbufs;
1111
1112        read_subbuf = read_pos / subbuf_size;
1113        padding = buf->padding[read_subbuf];
1114        if (read_pos % subbuf_size + count + padding == subbuf_size)
1115                end_pos = (read_subbuf + 1) * subbuf_size;
1116        else
1117                end_pos = read_pos + count;
1118        if (end_pos >= subbuf_size * n_subbufs)
1119                end_pos = 0;
1120
1121        return end_pos;
1122}
1123
1124/*
1125 *      subbuf_read_actor - read up to one subbuf's worth of data
1126 */
1127static int subbuf_read_actor(size_t read_start,
1128                             struct rchan_buf *buf,
1129                             size_t avail,
1130                             read_descriptor_t *desc)
1131{
1132        void *from;
1133        int ret = 0;
1134
1135        from = buf->start + read_start;
1136        ret = avail;
1137        if (copy_to_user(desc->arg.buf, from, avail)) {
1138                desc->error = -EFAULT;
1139                ret = 0;
1140        }
1141        desc->arg.data += ret;
1142        desc->written += ret;
1143        desc->count -= ret;
1144
1145        return ret;
1146}
1147
1148typedef int (*subbuf_actor_t) (size_t read_start,
1149                               struct rchan_buf *buf,
1150                               size_t avail,
1151                               read_descriptor_t *desc);
1152
1153/*
1154 *      relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1155 */
1156static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1157                                        subbuf_actor_t subbuf_actor,
1158                                        read_descriptor_t *desc)
1159{
1160        struct rchan_buf *buf = filp->private_data;
1161        size_t read_start, avail;
1162        int ret;
1163
1164        if (!desc->count)
1165                return 0;
1166
1167        inode_lock(file_inode(filp));
1168        do {
1169                if (!relay_file_read_avail(buf, *ppos))
1170                        break;
1171
1172                read_start = relay_file_read_start_pos(*ppos, buf);
1173                avail = relay_file_read_subbuf_avail(read_start, buf);
1174                if (!avail)
1175                        break;
1176
1177                avail = min(desc->count, avail);
1178                ret = subbuf_actor(read_start, buf, avail, desc);
1179                if (desc->error < 0)
1180                        break;
1181
1182                if (ret) {
1183                        relay_file_read_consume(buf, read_start, ret);
1184                        *ppos = relay_file_read_end_pos(buf, read_start, ret);
1185                }
1186        } while (desc->count && ret);
1187        inode_unlock(file_inode(filp));
1188
1189        return desc->written;
1190}
1191
1192static ssize_t relay_file_read(struct file *filp,
1193                               char __user *buffer,
1194                               size_t count,
1195                               loff_t *ppos)
1196{
1197        read_descriptor_t desc;
1198        desc.written = 0;
1199        desc.count = count;
1200        desc.arg.buf = buffer;
1201        desc.error = 0;
1202        return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, &desc);
1203}
1204
1205static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1206{
1207        rbuf->bytes_consumed += bytes_consumed;
1208
1209        if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1210                relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1211                rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1212        }
1213}
1214
1215static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1216                                   struct pipe_buffer *buf)
1217{
1218        struct rchan_buf *rbuf;
1219
1220        rbuf = (struct rchan_buf *)page_private(buf->page);
1221        relay_consume_bytes(rbuf, buf->private);
1222}
1223
1224static const struct pipe_buf_operations relay_pipe_buf_ops = {
1225        .can_merge = 0,
1226        .confirm = generic_pipe_buf_confirm,
1227        .release = relay_pipe_buf_release,
1228        .steal = generic_pipe_buf_steal,
1229        .get = generic_pipe_buf_get,
1230};
1231
1232static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1233{
1234}
1235
1236/*
1237 *      subbuf_splice_actor - splice up to one subbuf's worth of data
1238 */
1239static ssize_t subbuf_splice_actor(struct file *in,
1240                               loff_t *ppos,
1241                               struct pipe_inode_info *pipe,
1242                               size_t len,
1243                               unsigned int flags,
1244                               int *nonpad_ret)
1245{
1246        unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1247        struct rchan_buf *rbuf = in->private_data;
1248        unsigned int subbuf_size = rbuf->chan->subbuf_size;
1249        uint64_t pos = (uint64_t) *ppos;
1250        uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1251        size_t read_start = (size_t) do_div(pos, alloc_size);
1252        size_t read_subbuf = read_start / subbuf_size;
1253        size_t padding = rbuf->padding[read_subbuf];
1254        size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1255        struct page *pages[PIPE_DEF_BUFFERS];
1256        struct partial_page partial[PIPE_DEF_BUFFERS];
1257        struct splice_pipe_desc spd = {
1258                .pages = pages,
1259                .nr_pages = 0,
1260                .nr_pages_max = PIPE_DEF_BUFFERS,
1261                .partial = partial,
1262                .flags = flags,
1263                .ops = &relay_pipe_buf_ops,
1264                .spd_release = relay_page_release,
1265        };
1266        ssize_t ret;
1267
1268        if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1269                return 0;
1270        if (splice_grow_spd(pipe, &spd))
1271                return -ENOMEM;
1272
1273        /*
1274         * Adjust read len, if longer than what is available
1275         */
1276        if (len > (subbuf_size - read_start % subbuf_size))
1277                len = subbuf_size - read_start % subbuf_size;
1278
1279        subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1280        pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1281        poff = read_start & ~PAGE_MASK;
1282        nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1283
1284        for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1285                unsigned int this_len, this_end, private;
1286                unsigned int cur_pos = read_start + total_len;
1287
1288                if (!len)
1289                        break;
1290
1291                this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1292                private = this_len;
1293
1294                spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1295                spd.partial[spd.nr_pages].offset = poff;
1296
1297                this_end = cur_pos + this_len;
1298                if (this_end >= nonpad_end) {
1299                        this_len = nonpad_end - cur_pos;
1300                        private = this_len + padding;
1301                }
1302                spd.partial[spd.nr_pages].len = this_len;
1303                spd.partial[spd.nr_pages].private = private;
1304
1305                len -= this_len;
1306                total_len += this_len;
1307                poff = 0;
1308                pidx = (pidx + 1) % subbuf_pages;
1309
1310                if (this_end >= nonpad_end) {
1311                        spd.nr_pages++;
1312                        break;
1313                }
1314        }
1315
1316        ret = 0;
1317        if (!spd.nr_pages)
1318                goto out;
1319
1320        ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1321        if (ret < 0 || ret < total_len)
1322                goto out;
1323
1324        if (read_start + ret == nonpad_end)
1325                ret += padding;
1326
1327out:
1328        splice_shrink_spd(&spd);
1329        return ret;
1330}
1331
1332static ssize_t relay_file_splice_read(struct file *in,
1333                                      loff_t *ppos,
1334                                      struct pipe_inode_info *pipe,
1335                                      size_t len,
1336                                      unsigned int flags)
1337{
1338        ssize_t spliced;
1339        int ret;
1340        int nonpad_ret = 0;
1341
1342        ret = 0;
1343        spliced = 0;
1344
1345        while (len && !spliced) {
1346                ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1347                if (ret < 0)
1348                        break;
1349                else if (!ret) {
1350                        if (flags & SPLICE_F_NONBLOCK)
1351                                ret = -EAGAIN;
1352                        break;
1353                }
1354
1355                *ppos += ret;
1356                if (ret > len)
1357                        len = 0;
1358                else
1359                        len -= ret;
1360                spliced += nonpad_ret;
1361                nonpad_ret = 0;
1362        }
1363
1364        if (spliced)
1365                return spliced;
1366
1367        return ret;
1368}
1369
1370const struct file_operations relay_file_operations = {
1371        .open           = relay_file_open,
1372        .poll           = relay_file_poll,
1373        .mmap           = relay_file_mmap,
1374        .read           = relay_file_read,
1375        .llseek         = no_llseek,
1376        .release        = relay_file_release,
1377        .splice_read    = relay_file_splice_read,
1378};
1379EXPORT_SYMBOL_GPL(relay_file_operations);
1380
1381static __init int relay_init(void)
1382{
1383
1384        hotcpu_notifier(relay_hotcpu_callback, 0);
1385        return 0;
1386}
1387
1388early_initcall(relay_init);
1389