linux/kernel/sched/deadline.c
<<
>>
Prefs
   1/*
   2 * Deadline Scheduling Class (SCHED_DEADLINE)
   3 *
   4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   5 *
   6 * Tasks that periodically executes their instances for less than their
   7 * runtime won't miss any of their deadlines.
   8 * Tasks that are not periodic or sporadic or that tries to execute more
   9 * than their reserved bandwidth will be slowed down (and may potentially
  10 * miss some of their deadlines), and won't affect any other task.
  11 *
  12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  13 *                    Juri Lelli <juri.lelli@gmail.com>,
  14 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  15 *                    Fabio Checconi <fchecconi@gmail.com>
  16 */
  17#include "sched.h"
  18
  19#include <linux/slab.h>
  20
  21struct dl_bandwidth def_dl_bandwidth;
  22
  23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  24{
  25        return container_of(dl_se, struct task_struct, dl);
  26}
  27
  28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  29{
  30        return container_of(dl_rq, struct rq, dl);
  31}
  32
  33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  34{
  35        struct task_struct *p = dl_task_of(dl_se);
  36        struct rq *rq = task_rq(p);
  37
  38        return &rq->dl;
  39}
  40
  41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  42{
  43        return !RB_EMPTY_NODE(&dl_se->rb_node);
  44}
  45
  46static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
  47{
  48        struct sched_dl_entity *dl_se = &p->dl;
  49
  50        return dl_rq->rb_leftmost == &dl_se->rb_node;
  51}
  52
  53void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
  54{
  55        raw_spin_lock_init(&dl_b->dl_runtime_lock);
  56        dl_b->dl_period = period;
  57        dl_b->dl_runtime = runtime;
  58}
  59
  60void init_dl_bw(struct dl_bw *dl_b)
  61{
  62        raw_spin_lock_init(&dl_b->lock);
  63        raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
  64        if (global_rt_runtime() == RUNTIME_INF)
  65                dl_b->bw = -1;
  66        else
  67                dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
  68        raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
  69        dl_b->total_bw = 0;
  70}
  71
  72void init_dl_rq(struct dl_rq *dl_rq)
  73{
  74        dl_rq->rb_root = RB_ROOT;
  75
  76#ifdef CONFIG_SMP
  77        /* zero means no -deadline tasks */
  78        dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
  79
  80        dl_rq->dl_nr_migratory = 0;
  81        dl_rq->overloaded = 0;
  82        dl_rq->pushable_dl_tasks_root = RB_ROOT;
  83#else
  84        init_dl_bw(&dl_rq->dl_bw);
  85#endif
  86}
  87
  88#ifdef CONFIG_SMP
  89
  90static inline int dl_overloaded(struct rq *rq)
  91{
  92        return atomic_read(&rq->rd->dlo_count);
  93}
  94
  95static inline void dl_set_overload(struct rq *rq)
  96{
  97        if (!rq->online)
  98                return;
  99
 100        cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 101        /*
 102         * Must be visible before the overload count is
 103         * set (as in sched_rt.c).
 104         *
 105         * Matched by the barrier in pull_dl_task().
 106         */
 107        smp_wmb();
 108        atomic_inc(&rq->rd->dlo_count);
 109}
 110
 111static inline void dl_clear_overload(struct rq *rq)
 112{
 113        if (!rq->online)
 114                return;
 115
 116        atomic_dec(&rq->rd->dlo_count);
 117        cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 118}
 119
 120static void update_dl_migration(struct dl_rq *dl_rq)
 121{
 122        if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
 123                if (!dl_rq->overloaded) {
 124                        dl_set_overload(rq_of_dl_rq(dl_rq));
 125                        dl_rq->overloaded = 1;
 126                }
 127        } else if (dl_rq->overloaded) {
 128                dl_clear_overload(rq_of_dl_rq(dl_rq));
 129                dl_rq->overloaded = 0;
 130        }
 131}
 132
 133static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 134{
 135        struct task_struct *p = dl_task_of(dl_se);
 136
 137        if (tsk_nr_cpus_allowed(p) > 1)
 138                dl_rq->dl_nr_migratory++;
 139
 140        update_dl_migration(dl_rq);
 141}
 142
 143static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 144{
 145        struct task_struct *p = dl_task_of(dl_se);
 146
 147        if (tsk_nr_cpus_allowed(p) > 1)
 148                dl_rq->dl_nr_migratory--;
 149
 150        update_dl_migration(dl_rq);
 151}
 152
 153/*
 154 * The list of pushable -deadline task is not a plist, like in
 155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 156 */
 157static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 158{
 159        struct dl_rq *dl_rq = &rq->dl;
 160        struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
 161        struct rb_node *parent = NULL;
 162        struct task_struct *entry;
 163        int leftmost = 1;
 164
 165        BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 166
 167        while (*link) {
 168                parent = *link;
 169                entry = rb_entry(parent, struct task_struct,
 170                                 pushable_dl_tasks);
 171                if (dl_entity_preempt(&p->dl, &entry->dl))
 172                        link = &parent->rb_left;
 173                else {
 174                        link = &parent->rb_right;
 175                        leftmost = 0;
 176                }
 177        }
 178
 179        if (leftmost) {
 180                dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
 181                dl_rq->earliest_dl.next = p->dl.deadline;
 182        }
 183
 184        rb_link_node(&p->pushable_dl_tasks, parent, link);
 185        rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 186}
 187
 188static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 189{
 190        struct dl_rq *dl_rq = &rq->dl;
 191
 192        if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 193                return;
 194
 195        if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
 196                struct rb_node *next_node;
 197
 198                next_node = rb_next(&p->pushable_dl_tasks);
 199                dl_rq->pushable_dl_tasks_leftmost = next_node;
 200                if (next_node) {
 201                        dl_rq->earliest_dl.next = rb_entry(next_node,
 202                                struct task_struct, pushable_dl_tasks)->dl.deadline;
 203                }
 204        }
 205
 206        rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 207        RB_CLEAR_NODE(&p->pushable_dl_tasks);
 208}
 209
 210static inline int has_pushable_dl_tasks(struct rq *rq)
 211{
 212        return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
 213}
 214
 215static int push_dl_task(struct rq *rq);
 216
 217static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 218{
 219        return dl_task(prev);
 220}
 221
 222static DEFINE_PER_CPU(struct callback_head, dl_push_head);
 223static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
 224
 225static void push_dl_tasks(struct rq *);
 226static void pull_dl_task(struct rq *);
 227
 228static inline void queue_push_tasks(struct rq *rq)
 229{
 230        if (!has_pushable_dl_tasks(rq))
 231                return;
 232
 233        queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 234}
 235
 236static inline void queue_pull_task(struct rq *rq)
 237{
 238        queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 239}
 240
 241static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 242
 243static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 244{
 245        struct rq *later_rq = NULL;
 246        bool fallback = false;
 247
 248        later_rq = find_lock_later_rq(p, rq);
 249
 250        if (!later_rq) {
 251                int cpu;
 252
 253                /*
 254                 * If we cannot preempt any rq, fall back to pick any
 255                 * online cpu.
 256                 */
 257                fallback = true;
 258                cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
 259                if (cpu >= nr_cpu_ids) {
 260                        /*
 261                         * Fail to find any suitable cpu.
 262                         * The task will never come back!
 263                         */
 264                        BUG_ON(dl_bandwidth_enabled());
 265
 266                        /*
 267                         * If admission control is disabled we
 268                         * try a little harder to let the task
 269                         * run.
 270                         */
 271                        cpu = cpumask_any(cpu_active_mask);
 272                }
 273                later_rq = cpu_rq(cpu);
 274                double_lock_balance(rq, later_rq);
 275        }
 276
 277        /*
 278         * By now the task is replenished and enqueued; migrate it.
 279         */
 280        deactivate_task(rq, p, 0);
 281        set_task_cpu(p, later_rq->cpu);
 282        activate_task(later_rq, p, 0);
 283
 284        if (!fallback)
 285                resched_curr(later_rq);
 286
 287        double_unlock_balance(later_rq, rq);
 288
 289        return later_rq;
 290}
 291
 292#else
 293
 294static inline
 295void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 296{
 297}
 298
 299static inline
 300void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 301{
 302}
 303
 304static inline
 305void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 306{
 307}
 308
 309static inline
 310void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 311{
 312}
 313
 314static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 315{
 316        return false;
 317}
 318
 319static inline void pull_dl_task(struct rq *rq)
 320{
 321}
 322
 323static inline void queue_push_tasks(struct rq *rq)
 324{
 325}
 326
 327static inline void queue_pull_task(struct rq *rq)
 328{
 329}
 330#endif /* CONFIG_SMP */
 331
 332static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 333static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 334static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
 335                                  int flags);
 336
 337/*
 338 * We are being explicitly informed that a new instance is starting,
 339 * and this means that:
 340 *  - the absolute deadline of the entity has to be placed at
 341 *    current time + relative deadline;
 342 *  - the runtime of the entity has to be set to the maximum value.
 343 *
 344 * The capability of specifying such event is useful whenever a -deadline
 345 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 346 * one, and to (try to!) reconcile itself with its own scheduling
 347 * parameters.
 348 */
 349static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
 350                                       struct sched_dl_entity *pi_se)
 351{
 352        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 353        struct rq *rq = rq_of_dl_rq(dl_rq);
 354
 355        WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 356
 357        /*
 358         * We are racing with the deadline timer. So, do nothing because
 359         * the deadline timer handler will take care of properly recharging
 360         * the runtime and postponing the deadline
 361         */
 362        if (dl_se->dl_throttled)
 363                return;
 364
 365        /*
 366         * We use the regular wall clock time to set deadlines in the
 367         * future; in fact, we must consider execution overheads (time
 368         * spent on hardirq context, etc.).
 369         */
 370        dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 371        dl_se->runtime = pi_se->dl_runtime;
 372}
 373
 374/*
 375 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 376 * possibility of a entity lasting more than what it declared, and thus
 377 * exhausting its runtime.
 378 *
 379 * Here we are interested in making runtime overrun possible, but we do
 380 * not want a entity which is misbehaving to affect the scheduling of all
 381 * other entities.
 382 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 383 * is used, in order to confine each entity within its own bandwidth.
 384 *
 385 * This function deals exactly with that, and ensures that when the runtime
 386 * of a entity is replenished, its deadline is also postponed. That ensures
 387 * the overrunning entity can't interfere with other entity in the system and
 388 * can't make them miss their deadlines. Reasons why this kind of overruns
 389 * could happen are, typically, a entity voluntarily trying to overcome its
 390 * runtime, or it just underestimated it during sched_setattr().
 391 */
 392static void replenish_dl_entity(struct sched_dl_entity *dl_se,
 393                                struct sched_dl_entity *pi_se)
 394{
 395        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 396        struct rq *rq = rq_of_dl_rq(dl_rq);
 397
 398        BUG_ON(pi_se->dl_runtime <= 0);
 399
 400        /*
 401         * This could be the case for a !-dl task that is boosted.
 402         * Just go with full inherited parameters.
 403         */
 404        if (dl_se->dl_deadline == 0) {
 405                dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 406                dl_se->runtime = pi_se->dl_runtime;
 407        }
 408
 409        if (dl_se->dl_yielded && dl_se->runtime > 0)
 410                dl_se->runtime = 0;
 411
 412        /*
 413         * We keep moving the deadline away until we get some
 414         * available runtime for the entity. This ensures correct
 415         * handling of situations where the runtime overrun is
 416         * arbitrary large.
 417         */
 418        while (dl_se->runtime <= 0) {
 419                dl_se->deadline += pi_se->dl_period;
 420                dl_se->runtime += pi_se->dl_runtime;
 421        }
 422
 423        /*
 424         * At this point, the deadline really should be "in
 425         * the future" with respect to rq->clock. If it's
 426         * not, we are, for some reason, lagging too much!
 427         * Anyway, after having warn userspace abut that,
 428         * we still try to keep the things running by
 429         * resetting the deadline and the budget of the
 430         * entity.
 431         */
 432        if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 433                printk_deferred_once("sched: DL replenish lagged too much\n");
 434                dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 435                dl_se->runtime = pi_se->dl_runtime;
 436        }
 437
 438        if (dl_se->dl_yielded)
 439                dl_se->dl_yielded = 0;
 440        if (dl_se->dl_throttled)
 441                dl_se->dl_throttled = 0;
 442}
 443
 444/*
 445 * Here we check if --at time t-- an entity (which is probably being
 446 * [re]activated or, in general, enqueued) can use its remaining runtime
 447 * and its current deadline _without_ exceeding the bandwidth it is
 448 * assigned (function returns true if it can't). We are in fact applying
 449 * one of the CBS rules: when a task wakes up, if the residual runtime
 450 * over residual deadline fits within the allocated bandwidth, then we
 451 * can keep the current (absolute) deadline and residual budget without
 452 * disrupting the schedulability of the system. Otherwise, we should
 453 * refill the runtime and set the deadline a period in the future,
 454 * because keeping the current (absolute) deadline of the task would
 455 * result in breaking guarantees promised to other tasks (refer to
 456 * Documentation/scheduler/sched-deadline.txt for more informations).
 457 *
 458 * This function returns true if:
 459 *
 460 *   runtime / (deadline - t) > dl_runtime / dl_period ,
 461 *
 462 * IOW we can't recycle current parameters.
 463 *
 464 * Notice that the bandwidth check is done against the period. For
 465 * task with deadline equal to period this is the same of using
 466 * dl_deadline instead of dl_period in the equation above.
 467 */
 468static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
 469                               struct sched_dl_entity *pi_se, u64 t)
 470{
 471        u64 left, right;
 472
 473        /*
 474         * left and right are the two sides of the equation above,
 475         * after a bit of shuffling to use multiplications instead
 476         * of divisions.
 477         *
 478         * Note that none of the time values involved in the two
 479         * multiplications are absolute: dl_deadline and dl_runtime
 480         * are the relative deadline and the maximum runtime of each
 481         * instance, runtime is the runtime left for the last instance
 482         * and (deadline - t), since t is rq->clock, is the time left
 483         * to the (absolute) deadline. Even if overflowing the u64 type
 484         * is very unlikely to occur in both cases, here we scale down
 485         * as we want to avoid that risk at all. Scaling down by 10
 486         * means that we reduce granularity to 1us. We are fine with it,
 487         * since this is only a true/false check and, anyway, thinking
 488         * of anything below microseconds resolution is actually fiction
 489         * (but still we want to give the user that illusion >;).
 490         */
 491        left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 492        right = ((dl_se->deadline - t) >> DL_SCALE) *
 493                (pi_se->dl_runtime >> DL_SCALE);
 494
 495        return dl_time_before(right, left);
 496}
 497
 498/*
 499 * When a -deadline entity is queued back on the runqueue, its runtime and
 500 * deadline might need updating.
 501 *
 502 * The policy here is that we update the deadline of the entity only if:
 503 *  - the current deadline is in the past,
 504 *  - using the remaining runtime with the current deadline would make
 505 *    the entity exceed its bandwidth.
 506 */
 507static void update_dl_entity(struct sched_dl_entity *dl_se,
 508                             struct sched_dl_entity *pi_se)
 509{
 510        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 511        struct rq *rq = rq_of_dl_rq(dl_rq);
 512
 513        if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
 514            dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
 515                dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 516                dl_se->runtime = pi_se->dl_runtime;
 517        }
 518}
 519
 520/*
 521 * If the entity depleted all its runtime, and if we want it to sleep
 522 * while waiting for some new execution time to become available, we
 523 * set the bandwidth enforcement timer to the replenishment instant
 524 * and try to activate it.
 525 *
 526 * Notice that it is important for the caller to know if the timer
 527 * actually started or not (i.e., the replenishment instant is in
 528 * the future or in the past).
 529 */
 530static int start_dl_timer(struct task_struct *p)
 531{
 532        struct sched_dl_entity *dl_se = &p->dl;
 533        struct hrtimer *timer = &dl_se->dl_timer;
 534        struct rq *rq = task_rq(p);
 535        ktime_t now, act;
 536        s64 delta;
 537
 538        lockdep_assert_held(&rq->lock);
 539
 540        /*
 541         * We want the timer to fire at the deadline, but considering
 542         * that it is actually coming from rq->clock and not from
 543         * hrtimer's time base reading.
 544         */
 545        act = ns_to_ktime(dl_se->deadline);
 546        now = hrtimer_cb_get_time(timer);
 547        delta = ktime_to_ns(now) - rq_clock(rq);
 548        act = ktime_add_ns(act, delta);
 549
 550        /*
 551         * If the expiry time already passed, e.g., because the value
 552         * chosen as the deadline is too small, don't even try to
 553         * start the timer in the past!
 554         */
 555        if (ktime_us_delta(act, now) < 0)
 556                return 0;
 557
 558        /*
 559         * !enqueued will guarantee another callback; even if one is already in
 560         * progress. This ensures a balanced {get,put}_task_struct().
 561         *
 562         * The race against __run_timer() clearing the enqueued state is
 563         * harmless because we're holding task_rq()->lock, therefore the timer
 564         * expiring after we've done the check will wait on its task_rq_lock()
 565         * and observe our state.
 566         */
 567        if (!hrtimer_is_queued(timer)) {
 568                get_task_struct(p);
 569                hrtimer_start(timer, act, HRTIMER_MODE_ABS);
 570        }
 571
 572        return 1;
 573}
 574
 575/*
 576 * This is the bandwidth enforcement timer callback. If here, we know
 577 * a task is not on its dl_rq, since the fact that the timer was running
 578 * means the task is throttled and needs a runtime replenishment.
 579 *
 580 * However, what we actually do depends on the fact the task is active,
 581 * (it is on its rq) or has been removed from there by a call to
 582 * dequeue_task_dl(). In the former case we must issue the runtime
 583 * replenishment and add the task back to the dl_rq; in the latter, we just
 584 * do nothing but clearing dl_throttled, so that runtime and deadline
 585 * updating (and the queueing back to dl_rq) will be done by the
 586 * next call to enqueue_task_dl().
 587 */
 588static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
 589{
 590        struct sched_dl_entity *dl_se = container_of(timer,
 591                                                     struct sched_dl_entity,
 592                                                     dl_timer);
 593        struct task_struct *p = dl_task_of(dl_se);
 594        struct rq_flags rf;
 595        struct rq *rq;
 596
 597        rq = task_rq_lock(p, &rf);
 598
 599        /*
 600         * The task might have changed its scheduling policy to something
 601         * different than SCHED_DEADLINE (through switched_fromd_dl()).
 602         */
 603        if (!dl_task(p)) {
 604                __dl_clear_params(p);
 605                goto unlock;
 606        }
 607
 608        /*
 609         * The task might have been boosted by someone else and might be in the
 610         * boosting/deboosting path, its not throttled.
 611         */
 612        if (dl_se->dl_boosted)
 613                goto unlock;
 614
 615        /*
 616         * Spurious timer due to start_dl_timer() race; or we already received
 617         * a replenishment from rt_mutex_setprio().
 618         */
 619        if (!dl_se->dl_throttled)
 620                goto unlock;
 621
 622        sched_clock_tick();
 623        update_rq_clock(rq);
 624
 625        /*
 626         * If the throttle happened during sched-out; like:
 627         *
 628         *   schedule()
 629         *     deactivate_task()
 630         *       dequeue_task_dl()
 631         *         update_curr_dl()
 632         *           start_dl_timer()
 633         *         __dequeue_task_dl()
 634         *     prev->on_rq = 0;
 635         *
 636         * We can be both throttled and !queued. Replenish the counter
 637         * but do not enqueue -- wait for our wakeup to do that.
 638         */
 639        if (!task_on_rq_queued(p)) {
 640                replenish_dl_entity(dl_se, dl_se);
 641                goto unlock;
 642        }
 643
 644        enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
 645        if (dl_task(rq->curr))
 646                check_preempt_curr_dl(rq, p, 0);
 647        else
 648                resched_curr(rq);
 649
 650#ifdef CONFIG_SMP
 651        /*
 652         * Perform balancing operations here; after the replenishments.  We
 653         * cannot drop rq->lock before this, otherwise the assertion in
 654         * start_dl_timer() about not missing updates is not true.
 655         *
 656         * If we find that the rq the task was on is no longer available, we
 657         * need to select a new rq.
 658         *
 659         * XXX figure out if select_task_rq_dl() deals with offline cpus.
 660         */
 661        if (unlikely(!rq->online)) {
 662                lockdep_unpin_lock(&rq->lock, rf.cookie);
 663                rq = dl_task_offline_migration(rq, p);
 664                rf.cookie = lockdep_pin_lock(&rq->lock);
 665        }
 666
 667        /*
 668         * Queueing this task back might have overloaded rq, check if we need
 669         * to kick someone away.
 670         */
 671        if (has_pushable_dl_tasks(rq)) {
 672                /*
 673                 * Nothing relies on rq->lock after this, so its safe to drop
 674                 * rq->lock.
 675                 */
 676                lockdep_unpin_lock(&rq->lock, rf.cookie);
 677                push_dl_task(rq);
 678                lockdep_repin_lock(&rq->lock, rf.cookie);
 679        }
 680#endif
 681
 682unlock:
 683        task_rq_unlock(rq, p, &rf);
 684
 685        /*
 686         * This can free the task_struct, including this hrtimer, do not touch
 687         * anything related to that after this.
 688         */
 689        put_task_struct(p);
 690
 691        return HRTIMER_NORESTART;
 692}
 693
 694void init_dl_task_timer(struct sched_dl_entity *dl_se)
 695{
 696        struct hrtimer *timer = &dl_se->dl_timer;
 697
 698        hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 699        timer->function = dl_task_timer;
 700}
 701
 702static
 703int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
 704{
 705        return (dl_se->runtime <= 0);
 706}
 707
 708extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
 709
 710/*
 711 * Update the current task's runtime statistics (provided it is still
 712 * a -deadline task and has not been removed from the dl_rq).
 713 */
 714static void update_curr_dl(struct rq *rq)
 715{
 716        struct task_struct *curr = rq->curr;
 717        struct sched_dl_entity *dl_se = &curr->dl;
 718        u64 delta_exec;
 719
 720        if (!dl_task(curr) || !on_dl_rq(dl_se))
 721                return;
 722
 723        /*
 724         * Consumed budget is computed considering the time as
 725         * observed by schedulable tasks (excluding time spent
 726         * in hardirq context, etc.). Deadlines are instead
 727         * computed using hard walltime. This seems to be the more
 728         * natural solution, but the full ramifications of this
 729         * approach need further study.
 730         */
 731        delta_exec = rq_clock_task(rq) - curr->se.exec_start;
 732        if (unlikely((s64)delta_exec <= 0)) {
 733                if (unlikely(dl_se->dl_yielded))
 734                        goto throttle;
 735                return;
 736        }
 737
 738        /* kick cpufreq (see the comment in linux/cpufreq.h). */
 739        if (cpu_of(rq) == smp_processor_id())
 740                cpufreq_trigger_update(rq_clock(rq));
 741
 742        schedstat_set(curr->se.statistics.exec_max,
 743                      max(curr->se.statistics.exec_max, delta_exec));
 744
 745        curr->se.sum_exec_runtime += delta_exec;
 746        account_group_exec_runtime(curr, delta_exec);
 747
 748        curr->se.exec_start = rq_clock_task(rq);
 749        cpuacct_charge(curr, delta_exec);
 750
 751        sched_rt_avg_update(rq, delta_exec);
 752
 753        dl_se->runtime -= delta_exec;
 754
 755throttle:
 756        if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
 757                dl_se->dl_throttled = 1;
 758                __dequeue_task_dl(rq, curr, 0);
 759                if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
 760                        enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
 761
 762                if (!is_leftmost(curr, &rq->dl))
 763                        resched_curr(rq);
 764        }
 765
 766        /*
 767         * Because -- for now -- we share the rt bandwidth, we need to
 768         * account our runtime there too, otherwise actual rt tasks
 769         * would be able to exceed the shared quota.
 770         *
 771         * Account to the root rt group for now.
 772         *
 773         * The solution we're working towards is having the RT groups scheduled
 774         * using deadline servers -- however there's a few nasties to figure
 775         * out before that can happen.
 776         */
 777        if (rt_bandwidth_enabled()) {
 778                struct rt_rq *rt_rq = &rq->rt;
 779
 780                raw_spin_lock(&rt_rq->rt_runtime_lock);
 781                /*
 782                 * We'll let actual RT tasks worry about the overflow here, we
 783                 * have our own CBS to keep us inline; only account when RT
 784                 * bandwidth is relevant.
 785                 */
 786                if (sched_rt_bandwidth_account(rt_rq))
 787                        rt_rq->rt_time += delta_exec;
 788                raw_spin_unlock(&rt_rq->rt_runtime_lock);
 789        }
 790}
 791
 792#ifdef CONFIG_SMP
 793
 794static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
 795{
 796        struct rq *rq = rq_of_dl_rq(dl_rq);
 797
 798        if (dl_rq->earliest_dl.curr == 0 ||
 799            dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
 800                dl_rq->earliest_dl.curr = deadline;
 801                cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
 802        }
 803}
 804
 805static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
 806{
 807        struct rq *rq = rq_of_dl_rq(dl_rq);
 808
 809        /*
 810         * Since we may have removed our earliest (and/or next earliest)
 811         * task we must recompute them.
 812         */
 813        if (!dl_rq->dl_nr_running) {
 814                dl_rq->earliest_dl.curr = 0;
 815                dl_rq->earliest_dl.next = 0;
 816                cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
 817        } else {
 818                struct rb_node *leftmost = dl_rq->rb_leftmost;
 819                struct sched_dl_entity *entry;
 820
 821                entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
 822                dl_rq->earliest_dl.curr = entry->deadline;
 823                cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
 824        }
 825}
 826
 827#else
 828
 829static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
 830static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
 831
 832#endif /* CONFIG_SMP */
 833
 834static inline
 835void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 836{
 837        int prio = dl_task_of(dl_se)->prio;
 838        u64 deadline = dl_se->deadline;
 839
 840        WARN_ON(!dl_prio(prio));
 841        dl_rq->dl_nr_running++;
 842        add_nr_running(rq_of_dl_rq(dl_rq), 1);
 843
 844        inc_dl_deadline(dl_rq, deadline);
 845        inc_dl_migration(dl_se, dl_rq);
 846}
 847
 848static inline
 849void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 850{
 851        int prio = dl_task_of(dl_se)->prio;
 852
 853        WARN_ON(!dl_prio(prio));
 854        WARN_ON(!dl_rq->dl_nr_running);
 855        dl_rq->dl_nr_running--;
 856        sub_nr_running(rq_of_dl_rq(dl_rq), 1);
 857
 858        dec_dl_deadline(dl_rq, dl_se->deadline);
 859        dec_dl_migration(dl_se, dl_rq);
 860}
 861
 862static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
 863{
 864        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 865        struct rb_node **link = &dl_rq->rb_root.rb_node;
 866        struct rb_node *parent = NULL;
 867        struct sched_dl_entity *entry;
 868        int leftmost = 1;
 869
 870        BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
 871
 872        while (*link) {
 873                parent = *link;
 874                entry = rb_entry(parent, struct sched_dl_entity, rb_node);
 875                if (dl_time_before(dl_se->deadline, entry->deadline))
 876                        link = &parent->rb_left;
 877                else {
 878                        link = &parent->rb_right;
 879                        leftmost = 0;
 880                }
 881        }
 882
 883        if (leftmost)
 884                dl_rq->rb_leftmost = &dl_se->rb_node;
 885
 886        rb_link_node(&dl_se->rb_node, parent, link);
 887        rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
 888
 889        inc_dl_tasks(dl_se, dl_rq);
 890}
 891
 892static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
 893{
 894        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 895
 896        if (RB_EMPTY_NODE(&dl_se->rb_node))
 897                return;
 898
 899        if (dl_rq->rb_leftmost == &dl_se->rb_node) {
 900                struct rb_node *next_node;
 901
 902                next_node = rb_next(&dl_se->rb_node);
 903                dl_rq->rb_leftmost = next_node;
 904        }
 905
 906        rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
 907        RB_CLEAR_NODE(&dl_se->rb_node);
 908
 909        dec_dl_tasks(dl_se, dl_rq);
 910}
 911
 912static void
 913enqueue_dl_entity(struct sched_dl_entity *dl_se,
 914                  struct sched_dl_entity *pi_se, int flags)
 915{
 916        BUG_ON(on_dl_rq(dl_se));
 917
 918        /*
 919         * If this is a wakeup or a new instance, the scheduling
 920         * parameters of the task might need updating. Otherwise,
 921         * we want a replenishment of its runtime.
 922         */
 923        if (flags & ENQUEUE_WAKEUP)
 924                update_dl_entity(dl_se, pi_se);
 925        else if (flags & ENQUEUE_REPLENISH)
 926                replenish_dl_entity(dl_se, pi_se);
 927
 928        __enqueue_dl_entity(dl_se);
 929}
 930
 931static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
 932{
 933        __dequeue_dl_entity(dl_se);
 934}
 935
 936static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
 937{
 938        struct task_struct *pi_task = rt_mutex_get_top_task(p);
 939        struct sched_dl_entity *pi_se = &p->dl;
 940
 941        /*
 942         * Use the scheduling parameters of the top pi-waiter
 943         * task if we have one and its (absolute) deadline is
 944         * smaller than our one... OTW we keep our runtime and
 945         * deadline.
 946         */
 947        if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
 948                pi_se = &pi_task->dl;
 949        } else if (!dl_prio(p->normal_prio)) {
 950                /*
 951                 * Special case in which we have a !SCHED_DEADLINE task
 952                 * that is going to be deboosted, but exceedes its
 953                 * runtime while doing so. No point in replenishing
 954                 * it, as it's going to return back to its original
 955                 * scheduling class after this.
 956                 */
 957                BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
 958                return;
 959        }
 960
 961        /*
 962         * If p is throttled, we do nothing. In fact, if it exhausted
 963         * its budget it needs a replenishment and, since it now is on
 964         * its rq, the bandwidth timer callback (which clearly has not
 965         * run yet) will take care of this.
 966         */
 967        if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
 968                return;
 969
 970        enqueue_dl_entity(&p->dl, pi_se, flags);
 971
 972        if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
 973                enqueue_pushable_dl_task(rq, p);
 974}
 975
 976static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
 977{
 978        dequeue_dl_entity(&p->dl);
 979        dequeue_pushable_dl_task(rq, p);
 980}
 981
 982static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
 983{
 984        update_curr_dl(rq);
 985        __dequeue_task_dl(rq, p, flags);
 986}
 987
 988/*
 989 * Yield task semantic for -deadline tasks is:
 990 *
 991 *   get off from the CPU until our next instance, with
 992 *   a new runtime. This is of little use now, since we
 993 *   don't have a bandwidth reclaiming mechanism. Anyway,
 994 *   bandwidth reclaiming is planned for the future, and
 995 *   yield_task_dl will indicate that some spare budget
 996 *   is available for other task instances to use it.
 997 */
 998static void yield_task_dl(struct rq *rq)
 999{
1000        /*
1001         * We make the task go to sleep until its current deadline by
1002         * forcing its runtime to zero. This way, update_curr_dl() stops
1003         * it and the bandwidth timer will wake it up and will give it
1004         * new scheduling parameters (thanks to dl_yielded=1).
1005         */
1006        rq->curr->dl.dl_yielded = 1;
1007
1008        update_rq_clock(rq);
1009        update_curr_dl(rq);
1010        /*
1011         * Tell update_rq_clock() that we've just updated,
1012         * so we don't do microscopic update in schedule()
1013         * and double the fastpath cost.
1014         */
1015        rq_clock_skip_update(rq, true);
1016}
1017
1018#ifdef CONFIG_SMP
1019
1020static int find_later_rq(struct task_struct *task);
1021
1022static int
1023select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1024{
1025        struct task_struct *curr;
1026        struct rq *rq;
1027
1028        if (sd_flag != SD_BALANCE_WAKE)
1029                goto out;
1030
1031        rq = cpu_rq(cpu);
1032
1033        rcu_read_lock();
1034        curr = READ_ONCE(rq->curr); /* unlocked access */
1035
1036        /*
1037         * If we are dealing with a -deadline task, we must
1038         * decide where to wake it up.
1039         * If it has a later deadline and the current task
1040         * on this rq can't move (provided the waking task
1041         * can!) we prefer to send it somewhere else. On the
1042         * other hand, if it has a shorter deadline, we
1043         * try to make it stay here, it might be important.
1044         */
1045        if (unlikely(dl_task(curr)) &&
1046            (tsk_nr_cpus_allowed(curr) < 2 ||
1047             !dl_entity_preempt(&p->dl, &curr->dl)) &&
1048            (tsk_nr_cpus_allowed(p) > 1)) {
1049                int target = find_later_rq(p);
1050
1051                if (target != -1 &&
1052                                (dl_time_before(p->dl.deadline,
1053                                        cpu_rq(target)->dl.earliest_dl.curr) ||
1054                                (cpu_rq(target)->dl.dl_nr_running == 0)))
1055                        cpu = target;
1056        }
1057        rcu_read_unlock();
1058
1059out:
1060        return cpu;
1061}
1062
1063static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1064{
1065        /*
1066         * Current can't be migrated, useless to reschedule,
1067         * let's hope p can move out.
1068         */
1069        if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
1070            cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1071                return;
1072
1073        /*
1074         * p is migratable, so let's not schedule it and
1075         * see if it is pushed or pulled somewhere else.
1076         */
1077        if (tsk_nr_cpus_allowed(p) != 1 &&
1078            cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1079                return;
1080
1081        resched_curr(rq);
1082}
1083
1084#endif /* CONFIG_SMP */
1085
1086/*
1087 * Only called when both the current and waking task are -deadline
1088 * tasks.
1089 */
1090static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1091                                  int flags)
1092{
1093        if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1094                resched_curr(rq);
1095                return;
1096        }
1097
1098#ifdef CONFIG_SMP
1099        /*
1100         * In the unlikely case current and p have the same deadline
1101         * let us try to decide what's the best thing to do...
1102         */
1103        if ((p->dl.deadline == rq->curr->dl.deadline) &&
1104            !test_tsk_need_resched(rq->curr))
1105                check_preempt_equal_dl(rq, p);
1106#endif /* CONFIG_SMP */
1107}
1108
1109#ifdef CONFIG_SCHED_HRTICK
1110static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1111{
1112        hrtick_start(rq, p->dl.runtime);
1113}
1114#else /* !CONFIG_SCHED_HRTICK */
1115static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1116{
1117}
1118#endif
1119
1120static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1121                                                   struct dl_rq *dl_rq)
1122{
1123        struct rb_node *left = dl_rq->rb_leftmost;
1124
1125        if (!left)
1126                return NULL;
1127
1128        return rb_entry(left, struct sched_dl_entity, rb_node);
1129}
1130
1131struct task_struct *
1132pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
1133{
1134        struct sched_dl_entity *dl_se;
1135        struct task_struct *p;
1136        struct dl_rq *dl_rq;
1137
1138        dl_rq = &rq->dl;
1139
1140        if (need_pull_dl_task(rq, prev)) {
1141                /*
1142                 * This is OK, because current is on_cpu, which avoids it being
1143                 * picked for load-balance and preemption/IRQs are still
1144                 * disabled avoiding further scheduler activity on it and we're
1145                 * being very careful to re-start the picking loop.
1146                 */
1147                lockdep_unpin_lock(&rq->lock, cookie);
1148                pull_dl_task(rq);
1149                lockdep_repin_lock(&rq->lock, cookie);
1150                /*
1151                 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1152                 * means a stop task can slip in, in which case we need to
1153                 * re-start task selection.
1154                 */
1155                if (rq->stop && task_on_rq_queued(rq->stop))
1156                        return RETRY_TASK;
1157        }
1158
1159        /*
1160         * When prev is DL, we may throttle it in put_prev_task().
1161         * So, we update time before we check for dl_nr_running.
1162         */
1163        if (prev->sched_class == &dl_sched_class)
1164                update_curr_dl(rq);
1165
1166        if (unlikely(!dl_rq->dl_nr_running))
1167                return NULL;
1168
1169        put_prev_task(rq, prev);
1170
1171        dl_se = pick_next_dl_entity(rq, dl_rq);
1172        BUG_ON(!dl_se);
1173
1174        p = dl_task_of(dl_se);
1175        p->se.exec_start = rq_clock_task(rq);
1176
1177        /* Running task will never be pushed. */
1178       dequeue_pushable_dl_task(rq, p);
1179
1180        if (hrtick_enabled(rq))
1181                start_hrtick_dl(rq, p);
1182
1183        queue_push_tasks(rq);
1184
1185        return p;
1186}
1187
1188static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1189{
1190        update_curr_dl(rq);
1191
1192        if (on_dl_rq(&p->dl) && tsk_nr_cpus_allowed(p) > 1)
1193                enqueue_pushable_dl_task(rq, p);
1194}
1195
1196static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1197{
1198        update_curr_dl(rq);
1199
1200        /*
1201         * Even when we have runtime, update_curr_dl() might have resulted in us
1202         * not being the leftmost task anymore. In that case NEED_RESCHED will
1203         * be set and schedule() will start a new hrtick for the next task.
1204         */
1205        if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1206            is_leftmost(p, &rq->dl))
1207                start_hrtick_dl(rq, p);
1208}
1209
1210static void task_fork_dl(struct task_struct *p)
1211{
1212        /*
1213         * SCHED_DEADLINE tasks cannot fork and this is achieved through
1214         * sched_fork()
1215         */
1216}
1217
1218static void task_dead_dl(struct task_struct *p)
1219{
1220        struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1221
1222        /*
1223         * Since we are TASK_DEAD we won't slip out of the domain!
1224         */
1225        raw_spin_lock_irq(&dl_b->lock);
1226        /* XXX we should retain the bw until 0-lag */
1227        dl_b->total_bw -= p->dl.dl_bw;
1228        raw_spin_unlock_irq(&dl_b->lock);
1229}
1230
1231static void set_curr_task_dl(struct rq *rq)
1232{
1233        struct task_struct *p = rq->curr;
1234
1235        p->se.exec_start = rq_clock_task(rq);
1236
1237        /* You can't push away the running task */
1238        dequeue_pushable_dl_task(rq, p);
1239}
1240
1241#ifdef CONFIG_SMP
1242
1243/* Only try algorithms three times */
1244#define DL_MAX_TRIES 3
1245
1246static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1247{
1248        if (!task_running(rq, p) &&
1249            cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1250                return 1;
1251        return 0;
1252}
1253
1254/*
1255 * Return the earliest pushable rq's task, which is suitable to be executed
1256 * on the CPU, NULL otherwise:
1257 */
1258static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1259{
1260        struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1261        struct task_struct *p = NULL;
1262
1263        if (!has_pushable_dl_tasks(rq))
1264                return NULL;
1265
1266next_node:
1267        if (next_node) {
1268                p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1269
1270                if (pick_dl_task(rq, p, cpu))
1271                        return p;
1272
1273                next_node = rb_next(next_node);
1274                goto next_node;
1275        }
1276
1277        return NULL;
1278}
1279
1280static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1281
1282static int find_later_rq(struct task_struct *task)
1283{
1284        struct sched_domain *sd;
1285        struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1286        int this_cpu = smp_processor_id();
1287        int best_cpu, cpu = task_cpu(task);
1288
1289        /* Make sure the mask is initialized first */
1290        if (unlikely(!later_mask))
1291                return -1;
1292
1293        if (tsk_nr_cpus_allowed(task) == 1)
1294                return -1;
1295
1296        /*
1297         * We have to consider system topology and task affinity
1298         * first, then we can look for a suitable cpu.
1299         */
1300        best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1301                        task, later_mask);
1302        if (best_cpu == -1)
1303                return -1;
1304
1305        /*
1306         * If we are here, some target has been found,
1307         * the most suitable of which is cached in best_cpu.
1308         * This is, among the runqueues where the current tasks
1309         * have later deadlines than the task's one, the rq
1310         * with the latest possible one.
1311         *
1312         * Now we check how well this matches with task's
1313         * affinity and system topology.
1314         *
1315         * The last cpu where the task run is our first
1316         * guess, since it is most likely cache-hot there.
1317         */
1318        if (cpumask_test_cpu(cpu, later_mask))
1319                return cpu;
1320        /*
1321         * Check if this_cpu is to be skipped (i.e., it is
1322         * not in the mask) or not.
1323         */
1324        if (!cpumask_test_cpu(this_cpu, later_mask))
1325                this_cpu = -1;
1326
1327        rcu_read_lock();
1328        for_each_domain(cpu, sd) {
1329                if (sd->flags & SD_WAKE_AFFINE) {
1330
1331                        /*
1332                         * If possible, preempting this_cpu is
1333                         * cheaper than migrating.
1334                         */
1335                        if (this_cpu != -1 &&
1336                            cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1337                                rcu_read_unlock();
1338                                return this_cpu;
1339                        }
1340
1341                        /*
1342                         * Last chance: if best_cpu is valid and is
1343                         * in the mask, that becomes our choice.
1344                         */
1345                        if (best_cpu < nr_cpu_ids &&
1346                            cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1347                                rcu_read_unlock();
1348                                return best_cpu;
1349                        }
1350                }
1351        }
1352        rcu_read_unlock();
1353
1354        /*
1355         * At this point, all our guesses failed, we just return
1356         * 'something', and let the caller sort the things out.
1357         */
1358        if (this_cpu != -1)
1359                return this_cpu;
1360
1361        cpu = cpumask_any(later_mask);
1362        if (cpu < nr_cpu_ids)
1363                return cpu;
1364
1365        return -1;
1366}
1367
1368/* Locks the rq it finds */
1369static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1370{
1371        struct rq *later_rq = NULL;
1372        int tries;
1373        int cpu;
1374
1375        for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1376                cpu = find_later_rq(task);
1377
1378                if ((cpu == -1) || (cpu == rq->cpu))
1379                        break;
1380
1381                later_rq = cpu_rq(cpu);
1382
1383                if (later_rq->dl.dl_nr_running &&
1384                    !dl_time_before(task->dl.deadline,
1385                                        later_rq->dl.earliest_dl.curr)) {
1386                        /*
1387                         * Target rq has tasks of equal or earlier deadline,
1388                         * retrying does not release any lock and is unlikely
1389                         * to yield a different result.
1390                         */
1391                        later_rq = NULL;
1392                        break;
1393                }
1394
1395                /* Retry if something changed. */
1396                if (double_lock_balance(rq, later_rq)) {
1397                        if (unlikely(task_rq(task) != rq ||
1398                                     !cpumask_test_cpu(later_rq->cpu,
1399                                                       tsk_cpus_allowed(task)) ||
1400                                     task_running(rq, task) ||
1401                                     !dl_task(task) ||
1402                                     !task_on_rq_queued(task))) {
1403                                double_unlock_balance(rq, later_rq);
1404                                later_rq = NULL;
1405                                break;
1406                        }
1407                }
1408
1409                /*
1410                 * If the rq we found has no -deadline task, or
1411                 * its earliest one has a later deadline than our
1412                 * task, the rq is a good one.
1413                 */
1414                if (!later_rq->dl.dl_nr_running ||
1415                    dl_time_before(task->dl.deadline,
1416                                   later_rq->dl.earliest_dl.curr))
1417                        break;
1418
1419                /* Otherwise we try again. */
1420                double_unlock_balance(rq, later_rq);
1421                later_rq = NULL;
1422        }
1423
1424        return later_rq;
1425}
1426
1427static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1428{
1429        struct task_struct *p;
1430
1431        if (!has_pushable_dl_tasks(rq))
1432                return NULL;
1433
1434        p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1435                     struct task_struct, pushable_dl_tasks);
1436
1437        BUG_ON(rq->cpu != task_cpu(p));
1438        BUG_ON(task_current(rq, p));
1439        BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1440
1441        BUG_ON(!task_on_rq_queued(p));
1442        BUG_ON(!dl_task(p));
1443
1444        return p;
1445}
1446
1447/*
1448 * See if the non running -deadline tasks on this rq
1449 * can be sent to some other CPU where they can preempt
1450 * and start executing.
1451 */
1452static int push_dl_task(struct rq *rq)
1453{
1454        struct task_struct *next_task;
1455        struct rq *later_rq;
1456        int ret = 0;
1457
1458        if (!rq->dl.overloaded)
1459                return 0;
1460
1461        next_task = pick_next_pushable_dl_task(rq);
1462        if (!next_task)
1463                return 0;
1464
1465retry:
1466        if (unlikely(next_task == rq->curr)) {
1467                WARN_ON(1);
1468                return 0;
1469        }
1470
1471        /*
1472         * If next_task preempts rq->curr, and rq->curr
1473         * can move away, it makes sense to just reschedule
1474         * without going further in pushing next_task.
1475         */
1476        if (dl_task(rq->curr) &&
1477            dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1478            tsk_nr_cpus_allowed(rq->curr) > 1) {
1479                resched_curr(rq);
1480                return 0;
1481        }
1482
1483        /* We might release rq lock */
1484        get_task_struct(next_task);
1485
1486        /* Will lock the rq it'll find */
1487        later_rq = find_lock_later_rq(next_task, rq);
1488        if (!later_rq) {
1489                struct task_struct *task;
1490
1491                /*
1492                 * We must check all this again, since
1493                 * find_lock_later_rq releases rq->lock and it is
1494                 * then possible that next_task has migrated.
1495                 */
1496                task = pick_next_pushable_dl_task(rq);
1497                if (task_cpu(next_task) == rq->cpu && task == next_task) {
1498                        /*
1499                         * The task is still there. We don't try
1500                         * again, some other cpu will pull it when ready.
1501                         */
1502                        goto out;
1503                }
1504
1505                if (!task)
1506                        /* No more tasks */
1507                        goto out;
1508
1509                put_task_struct(next_task);
1510                next_task = task;
1511                goto retry;
1512        }
1513
1514        deactivate_task(rq, next_task, 0);
1515        set_task_cpu(next_task, later_rq->cpu);
1516        activate_task(later_rq, next_task, 0);
1517        ret = 1;
1518
1519        resched_curr(later_rq);
1520
1521        double_unlock_balance(rq, later_rq);
1522
1523out:
1524        put_task_struct(next_task);
1525
1526        return ret;
1527}
1528
1529static void push_dl_tasks(struct rq *rq)
1530{
1531        /* push_dl_task() will return true if it moved a -deadline task */
1532        while (push_dl_task(rq))
1533                ;
1534}
1535
1536static void pull_dl_task(struct rq *this_rq)
1537{
1538        int this_cpu = this_rq->cpu, cpu;
1539        struct task_struct *p;
1540        bool resched = false;
1541        struct rq *src_rq;
1542        u64 dmin = LONG_MAX;
1543
1544        if (likely(!dl_overloaded(this_rq)))
1545                return;
1546
1547        /*
1548         * Match the barrier from dl_set_overloaded; this guarantees that if we
1549         * see overloaded we must also see the dlo_mask bit.
1550         */
1551        smp_rmb();
1552
1553        for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1554                if (this_cpu == cpu)
1555                        continue;
1556
1557                src_rq = cpu_rq(cpu);
1558
1559                /*
1560                 * It looks racy, abd it is! However, as in sched_rt.c,
1561                 * we are fine with this.
1562                 */
1563                if (this_rq->dl.dl_nr_running &&
1564                    dl_time_before(this_rq->dl.earliest_dl.curr,
1565                                   src_rq->dl.earliest_dl.next))
1566                        continue;
1567
1568                /* Might drop this_rq->lock */
1569                double_lock_balance(this_rq, src_rq);
1570
1571                /*
1572                 * If there are no more pullable tasks on the
1573                 * rq, we're done with it.
1574                 */
1575                if (src_rq->dl.dl_nr_running <= 1)
1576                        goto skip;
1577
1578                p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1579
1580                /*
1581                 * We found a task to be pulled if:
1582                 *  - it preempts our current (if there's one),
1583                 *  - it will preempt the last one we pulled (if any).
1584                 */
1585                if (p && dl_time_before(p->dl.deadline, dmin) &&
1586                    (!this_rq->dl.dl_nr_running ||
1587                     dl_time_before(p->dl.deadline,
1588                                    this_rq->dl.earliest_dl.curr))) {
1589                        WARN_ON(p == src_rq->curr);
1590                        WARN_ON(!task_on_rq_queued(p));
1591
1592                        /*
1593                         * Then we pull iff p has actually an earlier
1594                         * deadline than the current task of its runqueue.
1595                         */
1596                        if (dl_time_before(p->dl.deadline,
1597                                           src_rq->curr->dl.deadline))
1598                                goto skip;
1599
1600                        resched = true;
1601
1602                        deactivate_task(src_rq, p, 0);
1603                        set_task_cpu(p, this_cpu);
1604                        activate_task(this_rq, p, 0);
1605                        dmin = p->dl.deadline;
1606
1607                        /* Is there any other task even earlier? */
1608                }
1609skip:
1610                double_unlock_balance(this_rq, src_rq);
1611        }
1612
1613        if (resched)
1614                resched_curr(this_rq);
1615}
1616
1617/*
1618 * Since the task is not running and a reschedule is not going to happen
1619 * anytime soon on its runqueue, we try pushing it away now.
1620 */
1621static void task_woken_dl(struct rq *rq, struct task_struct *p)
1622{
1623        if (!task_running(rq, p) &&
1624            !test_tsk_need_resched(rq->curr) &&
1625            tsk_nr_cpus_allowed(p) > 1 &&
1626            dl_task(rq->curr) &&
1627            (tsk_nr_cpus_allowed(rq->curr) < 2 ||
1628             !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1629                push_dl_tasks(rq);
1630        }
1631}
1632
1633static void set_cpus_allowed_dl(struct task_struct *p,
1634                                const struct cpumask *new_mask)
1635{
1636        struct root_domain *src_rd;
1637        struct rq *rq;
1638
1639        BUG_ON(!dl_task(p));
1640
1641        rq = task_rq(p);
1642        src_rd = rq->rd;
1643        /*
1644         * Migrating a SCHED_DEADLINE task between exclusive
1645         * cpusets (different root_domains) entails a bandwidth
1646         * update. We already made space for us in the destination
1647         * domain (see cpuset_can_attach()).
1648         */
1649        if (!cpumask_intersects(src_rd->span, new_mask)) {
1650                struct dl_bw *src_dl_b;
1651
1652                src_dl_b = dl_bw_of(cpu_of(rq));
1653                /*
1654                 * We now free resources of the root_domain we are migrating
1655                 * off. In the worst case, sched_setattr() may temporary fail
1656                 * until we complete the update.
1657                 */
1658                raw_spin_lock(&src_dl_b->lock);
1659                __dl_clear(src_dl_b, p->dl.dl_bw);
1660                raw_spin_unlock(&src_dl_b->lock);
1661        }
1662
1663        set_cpus_allowed_common(p, new_mask);
1664}
1665
1666/* Assumes rq->lock is held */
1667static void rq_online_dl(struct rq *rq)
1668{
1669        if (rq->dl.overloaded)
1670                dl_set_overload(rq);
1671
1672        cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1673        if (rq->dl.dl_nr_running > 0)
1674                cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1675}
1676
1677/* Assumes rq->lock is held */
1678static void rq_offline_dl(struct rq *rq)
1679{
1680        if (rq->dl.overloaded)
1681                dl_clear_overload(rq);
1682
1683        cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1684        cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1685}
1686
1687void __init init_sched_dl_class(void)
1688{
1689        unsigned int i;
1690
1691        for_each_possible_cpu(i)
1692                zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1693                                        GFP_KERNEL, cpu_to_node(i));
1694}
1695
1696#endif /* CONFIG_SMP */
1697
1698static void switched_from_dl(struct rq *rq, struct task_struct *p)
1699{
1700        /*
1701         * Start the deadline timer; if we switch back to dl before this we'll
1702         * continue consuming our current CBS slice. If we stay outside of
1703         * SCHED_DEADLINE until the deadline passes, the timer will reset the
1704         * task.
1705         */
1706        if (!start_dl_timer(p))
1707                __dl_clear_params(p);
1708
1709        /*
1710         * Since this might be the only -deadline task on the rq,
1711         * this is the right place to try to pull some other one
1712         * from an overloaded cpu, if any.
1713         */
1714        if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1715                return;
1716
1717        queue_pull_task(rq);
1718}
1719
1720/*
1721 * When switching to -deadline, we may overload the rq, then
1722 * we try to push someone off, if possible.
1723 */
1724static void switched_to_dl(struct rq *rq, struct task_struct *p)
1725{
1726        if (dl_time_before(p->dl.deadline, rq_clock(rq)))
1727                setup_new_dl_entity(&p->dl, &p->dl);
1728
1729        if (task_on_rq_queued(p) && rq->curr != p) {
1730#ifdef CONFIG_SMP
1731                if (tsk_nr_cpus_allowed(p) > 1 && rq->dl.overloaded)
1732                        queue_push_tasks(rq);
1733#else
1734                if (dl_task(rq->curr))
1735                        check_preempt_curr_dl(rq, p, 0);
1736                else
1737                        resched_curr(rq);
1738#endif
1739        }
1740}
1741
1742/*
1743 * If the scheduling parameters of a -deadline task changed,
1744 * a push or pull operation might be needed.
1745 */
1746static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1747                            int oldprio)
1748{
1749        if (task_on_rq_queued(p) || rq->curr == p) {
1750#ifdef CONFIG_SMP
1751                /*
1752                 * This might be too much, but unfortunately
1753                 * we don't have the old deadline value, and
1754                 * we can't argue if the task is increasing
1755                 * or lowering its prio, so...
1756                 */
1757                if (!rq->dl.overloaded)
1758                        queue_pull_task(rq);
1759
1760                /*
1761                 * If we now have a earlier deadline task than p,
1762                 * then reschedule, provided p is still on this
1763                 * runqueue.
1764                 */
1765                if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1766                        resched_curr(rq);
1767#else
1768                /*
1769                 * Again, we don't know if p has a earlier
1770                 * or later deadline, so let's blindly set a
1771                 * (maybe not needed) rescheduling point.
1772                 */
1773                resched_curr(rq);
1774#endif /* CONFIG_SMP */
1775        }
1776}
1777
1778const struct sched_class dl_sched_class = {
1779        .next                   = &rt_sched_class,
1780        .enqueue_task           = enqueue_task_dl,
1781        .dequeue_task           = dequeue_task_dl,
1782        .yield_task             = yield_task_dl,
1783
1784        .check_preempt_curr     = check_preempt_curr_dl,
1785
1786        .pick_next_task         = pick_next_task_dl,
1787        .put_prev_task          = put_prev_task_dl,
1788
1789#ifdef CONFIG_SMP
1790        .select_task_rq         = select_task_rq_dl,
1791        .set_cpus_allowed       = set_cpus_allowed_dl,
1792        .rq_online              = rq_online_dl,
1793        .rq_offline             = rq_offline_dl,
1794        .task_woken             = task_woken_dl,
1795#endif
1796
1797        .set_curr_task          = set_curr_task_dl,
1798        .task_tick              = task_tick_dl,
1799        .task_fork              = task_fork_dl,
1800        .task_dead              = task_dead_dl,
1801
1802        .prio_changed           = prio_changed_dl,
1803        .switched_from          = switched_from_dl,
1804        .switched_to            = switched_to_dl,
1805
1806        .update_curr            = update_curr_dl,
1807};
1808
1809#ifdef CONFIG_SCHED_DEBUG
1810extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1811
1812void print_dl_stats(struct seq_file *m, int cpu)
1813{
1814        print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1815}
1816#endif /* CONFIG_SCHED_DEBUG */
1817