linux/kernel/stop_machine.c
<<
>>
Prefs
   1/*
   2 * kernel/stop_machine.c
   3 *
   4 * Copyright (C) 2008, 2005     IBM Corporation.
   5 * Copyright (C) 2008, 2005     Rusty Russell rusty@rustcorp.com.au
   6 * Copyright (C) 2010           SUSE Linux Products GmbH
   7 * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
   8 *
   9 * This file is released under the GPLv2 and any later version.
  10 */
  11#include <linux/completion.h>
  12#include <linux/cpu.h>
  13#include <linux/init.h>
  14#include <linux/kthread.h>
  15#include <linux/export.h>
  16#include <linux/percpu.h>
  17#include <linux/sched.h>
  18#include <linux/stop_machine.h>
  19#include <linux/interrupt.h>
  20#include <linux/kallsyms.h>
  21#include <linux/smpboot.h>
  22#include <linux/atomic.h>
  23#include <linux/lglock.h>
  24#include <linux/nmi.h>
  25
  26/*
  27 * Structure to determine completion condition and record errors.  May
  28 * be shared by works on different cpus.
  29 */
  30struct cpu_stop_done {
  31        atomic_t                nr_todo;        /* nr left to execute */
  32        int                     ret;            /* collected return value */
  33        struct completion       completion;     /* fired if nr_todo reaches 0 */
  34};
  35
  36/* the actual stopper, one per every possible cpu, enabled on online cpus */
  37struct cpu_stopper {
  38        struct task_struct      *thread;
  39
  40        spinlock_t              lock;
  41        bool                    enabled;        /* is this stopper enabled? */
  42        struct list_head        works;          /* list of pending works */
  43
  44        struct cpu_stop_work    stop_work;      /* for stop_cpus */
  45};
  46
  47static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
  48static bool stop_machine_initialized = false;
  49
  50/*
  51 * Avoids a race between stop_two_cpus and global stop_cpus, where
  52 * the stoppers could get queued up in reverse order, leading to
  53 * system deadlock. Using an lglock means stop_two_cpus remains
  54 * relatively cheap.
  55 */
  56DEFINE_STATIC_LGLOCK(stop_cpus_lock);
  57
  58static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
  59{
  60        memset(done, 0, sizeof(*done));
  61        atomic_set(&done->nr_todo, nr_todo);
  62        init_completion(&done->completion);
  63}
  64
  65/* signal completion unless @done is NULL */
  66static void cpu_stop_signal_done(struct cpu_stop_done *done)
  67{
  68        if (atomic_dec_and_test(&done->nr_todo))
  69                complete(&done->completion);
  70}
  71
  72static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
  73                                        struct cpu_stop_work *work)
  74{
  75        list_add_tail(&work->list, &stopper->works);
  76        wake_up_process(stopper->thread);
  77}
  78
  79/* queue @work to @stopper.  if offline, @work is completed immediately */
  80static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
  81{
  82        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  83        unsigned long flags;
  84        bool enabled;
  85
  86        spin_lock_irqsave(&stopper->lock, flags);
  87        enabled = stopper->enabled;
  88        if (enabled)
  89                __cpu_stop_queue_work(stopper, work);
  90        else if (work->done)
  91                cpu_stop_signal_done(work->done);
  92        spin_unlock_irqrestore(&stopper->lock, flags);
  93
  94        return enabled;
  95}
  96
  97/**
  98 * stop_one_cpu - stop a cpu
  99 * @cpu: cpu to stop
 100 * @fn: function to execute
 101 * @arg: argument to @fn
 102 *
 103 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
 104 * the highest priority preempting any task on the cpu and
 105 * monopolizing it.  This function returns after the execution is
 106 * complete.
 107 *
 108 * This function doesn't guarantee @cpu stays online till @fn
 109 * completes.  If @cpu goes down in the middle, execution may happen
 110 * partially or fully on different cpus.  @fn should either be ready
 111 * for that or the caller should ensure that @cpu stays online until
 112 * this function completes.
 113 *
 114 * CONTEXT:
 115 * Might sleep.
 116 *
 117 * RETURNS:
 118 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
 119 * otherwise, the return value of @fn.
 120 */
 121int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
 122{
 123        struct cpu_stop_done done;
 124        struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
 125
 126        cpu_stop_init_done(&done, 1);
 127        if (!cpu_stop_queue_work(cpu, &work))
 128                return -ENOENT;
 129        wait_for_completion(&done.completion);
 130        return done.ret;
 131}
 132
 133/* This controls the threads on each CPU. */
 134enum multi_stop_state {
 135        /* Dummy starting state for thread. */
 136        MULTI_STOP_NONE,
 137        /* Awaiting everyone to be scheduled. */
 138        MULTI_STOP_PREPARE,
 139        /* Disable interrupts. */
 140        MULTI_STOP_DISABLE_IRQ,
 141        /* Run the function */
 142        MULTI_STOP_RUN,
 143        /* Exit */
 144        MULTI_STOP_EXIT,
 145};
 146
 147struct multi_stop_data {
 148        cpu_stop_fn_t           fn;
 149        void                    *data;
 150        /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
 151        unsigned int            num_threads;
 152        const struct cpumask    *active_cpus;
 153
 154        enum multi_stop_state   state;
 155        atomic_t                thread_ack;
 156};
 157
 158static void set_state(struct multi_stop_data *msdata,
 159                      enum multi_stop_state newstate)
 160{
 161        /* Reset ack counter. */
 162        atomic_set(&msdata->thread_ack, msdata->num_threads);
 163        smp_wmb();
 164        msdata->state = newstate;
 165}
 166
 167/* Last one to ack a state moves to the next state. */
 168static void ack_state(struct multi_stop_data *msdata)
 169{
 170        if (atomic_dec_and_test(&msdata->thread_ack))
 171                set_state(msdata, msdata->state + 1);
 172}
 173
 174/* This is the cpu_stop function which stops the CPU. */
 175static int multi_cpu_stop(void *data)
 176{
 177        struct multi_stop_data *msdata = data;
 178        enum multi_stop_state curstate = MULTI_STOP_NONE;
 179        int cpu = smp_processor_id(), err = 0;
 180        unsigned long flags;
 181        bool is_active;
 182
 183        /*
 184         * When called from stop_machine_from_inactive_cpu(), irq might
 185         * already be disabled.  Save the state and restore it on exit.
 186         */
 187        local_save_flags(flags);
 188
 189        if (!msdata->active_cpus)
 190                is_active = cpu == cpumask_first(cpu_online_mask);
 191        else
 192                is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
 193
 194        /* Simple state machine */
 195        do {
 196                /* Chill out and ensure we re-read multi_stop_state. */
 197                cpu_relax();
 198                if (msdata->state != curstate) {
 199                        curstate = msdata->state;
 200                        switch (curstate) {
 201                        case MULTI_STOP_DISABLE_IRQ:
 202                                local_irq_disable();
 203                                hard_irq_disable();
 204                                break;
 205                        case MULTI_STOP_RUN:
 206                                if (is_active)
 207                                        err = msdata->fn(msdata->data);
 208                                break;
 209                        default:
 210                                break;
 211                        }
 212                        ack_state(msdata);
 213                } else if (curstate > MULTI_STOP_PREPARE) {
 214                        /*
 215                         * At this stage all other CPUs we depend on must spin
 216                         * in the same loop. Any reason for hard-lockup should
 217                         * be detected and reported on their side.
 218                         */
 219                        touch_nmi_watchdog();
 220                }
 221        } while (curstate != MULTI_STOP_EXIT);
 222
 223        local_irq_restore(flags);
 224        return err;
 225}
 226
 227static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
 228                                    int cpu2, struct cpu_stop_work *work2)
 229{
 230        struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
 231        struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
 232        int err;
 233
 234        lg_double_lock(&stop_cpus_lock, cpu1, cpu2);
 235        spin_lock_irq(&stopper1->lock);
 236        spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
 237
 238        err = -ENOENT;
 239        if (!stopper1->enabled || !stopper2->enabled)
 240                goto unlock;
 241
 242        err = 0;
 243        __cpu_stop_queue_work(stopper1, work1);
 244        __cpu_stop_queue_work(stopper2, work2);
 245unlock:
 246        spin_unlock(&stopper2->lock);
 247        spin_unlock_irq(&stopper1->lock);
 248        lg_double_unlock(&stop_cpus_lock, cpu1, cpu2);
 249
 250        return err;
 251}
 252/**
 253 * stop_two_cpus - stops two cpus
 254 * @cpu1: the cpu to stop
 255 * @cpu2: the other cpu to stop
 256 * @fn: function to execute
 257 * @arg: argument to @fn
 258 *
 259 * Stops both the current and specified CPU and runs @fn on one of them.
 260 *
 261 * returns when both are completed.
 262 */
 263int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
 264{
 265        struct cpu_stop_done done;
 266        struct cpu_stop_work work1, work2;
 267        struct multi_stop_data msdata;
 268
 269        msdata = (struct multi_stop_data){
 270                .fn = fn,
 271                .data = arg,
 272                .num_threads = 2,
 273                .active_cpus = cpumask_of(cpu1),
 274        };
 275
 276        work1 = work2 = (struct cpu_stop_work){
 277                .fn = multi_cpu_stop,
 278                .arg = &msdata,
 279                .done = &done
 280        };
 281
 282        cpu_stop_init_done(&done, 2);
 283        set_state(&msdata, MULTI_STOP_PREPARE);
 284
 285        if (cpu1 > cpu2)
 286                swap(cpu1, cpu2);
 287        if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
 288                return -ENOENT;
 289
 290        wait_for_completion(&done.completion);
 291        return done.ret;
 292}
 293
 294/**
 295 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
 296 * @cpu: cpu to stop
 297 * @fn: function to execute
 298 * @arg: argument to @fn
 299 * @work_buf: pointer to cpu_stop_work structure
 300 *
 301 * Similar to stop_one_cpu() but doesn't wait for completion.  The
 302 * caller is responsible for ensuring @work_buf is currently unused
 303 * and will remain untouched until stopper starts executing @fn.
 304 *
 305 * CONTEXT:
 306 * Don't care.
 307 *
 308 * RETURNS:
 309 * true if cpu_stop_work was queued successfully and @fn will be called,
 310 * false otherwise.
 311 */
 312bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
 313                        struct cpu_stop_work *work_buf)
 314{
 315        *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
 316        return cpu_stop_queue_work(cpu, work_buf);
 317}
 318
 319/* static data for stop_cpus */
 320static DEFINE_MUTEX(stop_cpus_mutex);
 321
 322static bool queue_stop_cpus_work(const struct cpumask *cpumask,
 323                                 cpu_stop_fn_t fn, void *arg,
 324                                 struct cpu_stop_done *done)
 325{
 326        struct cpu_stop_work *work;
 327        unsigned int cpu;
 328        bool queued = false;
 329
 330        /*
 331         * Disable preemption while queueing to avoid getting
 332         * preempted by a stopper which might wait for other stoppers
 333         * to enter @fn which can lead to deadlock.
 334         */
 335        lg_global_lock(&stop_cpus_lock);
 336        for_each_cpu(cpu, cpumask) {
 337                work = &per_cpu(cpu_stopper.stop_work, cpu);
 338                work->fn = fn;
 339                work->arg = arg;
 340                work->done = done;
 341                if (cpu_stop_queue_work(cpu, work))
 342                        queued = true;
 343        }
 344        lg_global_unlock(&stop_cpus_lock);
 345
 346        return queued;
 347}
 348
 349static int __stop_cpus(const struct cpumask *cpumask,
 350                       cpu_stop_fn_t fn, void *arg)
 351{
 352        struct cpu_stop_done done;
 353
 354        cpu_stop_init_done(&done, cpumask_weight(cpumask));
 355        if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
 356                return -ENOENT;
 357        wait_for_completion(&done.completion);
 358        return done.ret;
 359}
 360
 361/**
 362 * stop_cpus - stop multiple cpus
 363 * @cpumask: cpus to stop
 364 * @fn: function to execute
 365 * @arg: argument to @fn
 366 *
 367 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
 368 * @fn is run in a process context with the highest priority
 369 * preempting any task on the cpu and monopolizing it.  This function
 370 * returns after all executions are complete.
 371 *
 372 * This function doesn't guarantee the cpus in @cpumask stay online
 373 * till @fn completes.  If some cpus go down in the middle, execution
 374 * on the cpu may happen partially or fully on different cpus.  @fn
 375 * should either be ready for that or the caller should ensure that
 376 * the cpus stay online until this function completes.
 377 *
 378 * All stop_cpus() calls are serialized making it safe for @fn to wait
 379 * for all cpus to start executing it.
 380 *
 381 * CONTEXT:
 382 * Might sleep.
 383 *
 384 * RETURNS:
 385 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
 386 * @cpumask were offline; otherwise, 0 if all executions of @fn
 387 * returned 0, any non zero return value if any returned non zero.
 388 */
 389int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
 390{
 391        int ret;
 392
 393        /* static works are used, process one request at a time */
 394        mutex_lock(&stop_cpus_mutex);
 395        ret = __stop_cpus(cpumask, fn, arg);
 396        mutex_unlock(&stop_cpus_mutex);
 397        return ret;
 398}
 399
 400/**
 401 * try_stop_cpus - try to stop multiple cpus
 402 * @cpumask: cpus to stop
 403 * @fn: function to execute
 404 * @arg: argument to @fn
 405 *
 406 * Identical to stop_cpus() except that it fails with -EAGAIN if
 407 * someone else is already using the facility.
 408 *
 409 * CONTEXT:
 410 * Might sleep.
 411 *
 412 * RETURNS:
 413 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
 414 * @fn(@arg) was not executed at all because all cpus in @cpumask were
 415 * offline; otherwise, 0 if all executions of @fn returned 0, any non
 416 * zero return value if any returned non zero.
 417 */
 418int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
 419{
 420        int ret;
 421
 422        /* static works are used, process one request at a time */
 423        if (!mutex_trylock(&stop_cpus_mutex))
 424                return -EAGAIN;
 425        ret = __stop_cpus(cpumask, fn, arg);
 426        mutex_unlock(&stop_cpus_mutex);
 427        return ret;
 428}
 429
 430static int cpu_stop_should_run(unsigned int cpu)
 431{
 432        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 433        unsigned long flags;
 434        int run;
 435
 436        spin_lock_irqsave(&stopper->lock, flags);
 437        run = !list_empty(&stopper->works);
 438        spin_unlock_irqrestore(&stopper->lock, flags);
 439        return run;
 440}
 441
 442static void cpu_stopper_thread(unsigned int cpu)
 443{
 444        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 445        struct cpu_stop_work *work;
 446
 447repeat:
 448        work = NULL;
 449        spin_lock_irq(&stopper->lock);
 450        if (!list_empty(&stopper->works)) {
 451                work = list_first_entry(&stopper->works,
 452                                        struct cpu_stop_work, list);
 453                list_del_init(&work->list);
 454        }
 455        spin_unlock_irq(&stopper->lock);
 456
 457        if (work) {
 458                cpu_stop_fn_t fn = work->fn;
 459                void *arg = work->arg;
 460                struct cpu_stop_done *done = work->done;
 461                int ret;
 462
 463                /* cpu stop callbacks must not sleep, make in_atomic() == T */
 464                preempt_count_inc();
 465                ret = fn(arg);
 466                if (done) {
 467                        if (ret)
 468                                done->ret = ret;
 469                        cpu_stop_signal_done(done);
 470                }
 471                preempt_count_dec();
 472                WARN_ONCE(preempt_count(),
 473                          "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
 474                goto repeat;
 475        }
 476}
 477
 478void stop_machine_park(int cpu)
 479{
 480        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 481        /*
 482         * Lockless. cpu_stopper_thread() will take stopper->lock and flush
 483         * the pending works before it parks, until then it is fine to queue
 484         * the new works.
 485         */
 486        stopper->enabled = false;
 487        kthread_park(stopper->thread);
 488}
 489
 490extern void sched_set_stop_task(int cpu, struct task_struct *stop);
 491
 492static void cpu_stop_create(unsigned int cpu)
 493{
 494        sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
 495}
 496
 497static void cpu_stop_park(unsigned int cpu)
 498{
 499        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 500
 501        WARN_ON(!list_empty(&stopper->works));
 502}
 503
 504void stop_machine_unpark(int cpu)
 505{
 506        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 507
 508        stopper->enabled = true;
 509        kthread_unpark(stopper->thread);
 510}
 511
 512static struct smp_hotplug_thread cpu_stop_threads = {
 513        .store                  = &cpu_stopper.thread,
 514        .thread_should_run      = cpu_stop_should_run,
 515        .thread_fn              = cpu_stopper_thread,
 516        .thread_comm            = "migration/%u",
 517        .create                 = cpu_stop_create,
 518        .park                   = cpu_stop_park,
 519        .selfparking            = true,
 520};
 521
 522static int __init cpu_stop_init(void)
 523{
 524        unsigned int cpu;
 525
 526        for_each_possible_cpu(cpu) {
 527                struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 528
 529                spin_lock_init(&stopper->lock);
 530                INIT_LIST_HEAD(&stopper->works);
 531        }
 532
 533        BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
 534        stop_machine_unpark(raw_smp_processor_id());
 535        stop_machine_initialized = true;
 536        return 0;
 537}
 538early_initcall(cpu_stop_init);
 539
 540static int __stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
 541{
 542        struct multi_stop_data msdata = {
 543                .fn = fn,
 544                .data = data,
 545                .num_threads = num_online_cpus(),
 546                .active_cpus = cpus,
 547        };
 548
 549        if (!stop_machine_initialized) {
 550                /*
 551                 * Handle the case where stop_machine() is called
 552                 * early in boot before stop_machine() has been
 553                 * initialized.
 554                 */
 555                unsigned long flags;
 556                int ret;
 557
 558                WARN_ON_ONCE(msdata.num_threads != 1);
 559
 560                local_irq_save(flags);
 561                hard_irq_disable();
 562                ret = (*fn)(data);
 563                local_irq_restore(flags);
 564
 565                return ret;
 566        }
 567
 568        /* Set the initial state and stop all online cpus. */
 569        set_state(&msdata, MULTI_STOP_PREPARE);
 570        return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
 571}
 572
 573int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
 574{
 575        int ret;
 576
 577        /* No CPUs can come up or down during this. */
 578        get_online_cpus();
 579        ret = __stop_machine(fn, data, cpus);
 580        put_online_cpus();
 581        return ret;
 582}
 583EXPORT_SYMBOL_GPL(stop_machine);
 584
 585/**
 586 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
 587 * @fn: the function to run
 588 * @data: the data ptr for the @fn()
 589 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
 590 *
 591 * This is identical to stop_machine() but can be called from a CPU which
 592 * is not active.  The local CPU is in the process of hotplug (so no other
 593 * CPU hotplug can start) and not marked active and doesn't have enough
 594 * context to sleep.
 595 *
 596 * This function provides stop_machine() functionality for such state by
 597 * using busy-wait for synchronization and executing @fn directly for local
 598 * CPU.
 599 *
 600 * CONTEXT:
 601 * Local CPU is inactive.  Temporarily stops all active CPUs.
 602 *
 603 * RETURNS:
 604 * 0 if all executions of @fn returned 0, any non zero return value if any
 605 * returned non zero.
 606 */
 607int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
 608                                  const struct cpumask *cpus)
 609{
 610        struct multi_stop_data msdata = { .fn = fn, .data = data,
 611                                            .active_cpus = cpus };
 612        struct cpu_stop_done done;
 613        int ret;
 614
 615        /* Local CPU must be inactive and CPU hotplug in progress. */
 616        BUG_ON(cpu_active(raw_smp_processor_id()));
 617        msdata.num_threads = num_active_cpus() + 1;     /* +1 for local */
 618
 619        /* No proper task established and can't sleep - busy wait for lock. */
 620        while (!mutex_trylock(&stop_cpus_mutex))
 621                cpu_relax();
 622
 623        /* Schedule work on other CPUs and execute directly for local CPU */
 624        set_state(&msdata, MULTI_STOP_PREPARE);
 625        cpu_stop_init_done(&done, num_active_cpus());
 626        queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
 627                             &done);
 628        ret = multi_cpu_stop(&msdata);
 629
 630        /* Busy wait for completion. */
 631        while (!completion_done(&done.completion))
 632                cpu_relax();
 633
 634        mutex_unlock(&stop_cpus_mutex);
 635        return ret ?: done.ret;
 636}
 637