linux/kernel/time/timekeeping.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/time/timekeeping.c
   3 *
   4 *  Kernel timekeeping code and accessor functions
   5 *
   6 *  This code was moved from linux/kernel/timer.c.
   7 *  Please see that file for copyright and history logs.
   8 *
   9 */
  10
  11#include <linux/timekeeper_internal.h>
  12#include <linux/module.h>
  13#include <linux/interrupt.h>
  14#include <linux/percpu.h>
  15#include <linux/init.h>
  16#include <linux/mm.h>
  17#include <linux/sched.h>
  18#include <linux/syscore_ops.h>
  19#include <linux/clocksource.h>
  20#include <linux/jiffies.h>
  21#include <linux/time.h>
  22#include <linux/tick.h>
  23#include <linux/stop_machine.h>
  24#include <linux/pvclock_gtod.h>
  25#include <linux/compiler.h>
  26
  27#include "tick-internal.h"
  28#include "ntp_internal.h"
  29#include "timekeeping_internal.h"
  30
  31#define TK_CLEAR_NTP            (1 << 0)
  32#define TK_MIRROR               (1 << 1)
  33#define TK_CLOCK_WAS_SET        (1 << 2)
  34
  35/*
  36 * The most important data for readout fits into a single 64 byte
  37 * cache line.
  38 */
  39static struct {
  40        seqcount_t              seq;
  41        struct timekeeper       timekeeper;
  42} tk_core ____cacheline_aligned;
  43
  44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
  45static struct timekeeper shadow_timekeeper;
  46
  47/**
  48 * struct tk_fast - NMI safe timekeeper
  49 * @seq:        Sequence counter for protecting updates. The lowest bit
  50 *              is the index for the tk_read_base array
  51 * @base:       tk_read_base array. Access is indexed by the lowest bit of
  52 *              @seq.
  53 *
  54 * See @update_fast_timekeeper() below.
  55 */
  56struct tk_fast {
  57        seqcount_t              seq;
  58        struct tk_read_base     base[2];
  59};
  60
  61static struct tk_fast tk_fast_mono ____cacheline_aligned;
  62static struct tk_fast tk_fast_raw  ____cacheline_aligned;
  63
  64/* flag for if timekeeping is suspended */
  65int __read_mostly timekeeping_suspended;
  66
  67static inline void tk_normalize_xtime(struct timekeeper *tk)
  68{
  69        while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
  70                tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
  71                tk->xtime_sec++;
  72        }
  73}
  74
  75static inline struct timespec64 tk_xtime(struct timekeeper *tk)
  76{
  77        struct timespec64 ts;
  78
  79        ts.tv_sec = tk->xtime_sec;
  80        ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
  81        return ts;
  82}
  83
  84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
  85{
  86        tk->xtime_sec = ts->tv_sec;
  87        tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
  88}
  89
  90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
  91{
  92        tk->xtime_sec += ts->tv_sec;
  93        tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
  94        tk_normalize_xtime(tk);
  95}
  96
  97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
  98{
  99        struct timespec64 tmp;
 100
 101        /*
 102         * Verify consistency of: offset_real = -wall_to_monotonic
 103         * before modifying anything
 104         */
 105        set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
 106                                        -tk->wall_to_monotonic.tv_nsec);
 107        WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
 108        tk->wall_to_monotonic = wtm;
 109        set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
 110        tk->offs_real = timespec64_to_ktime(tmp);
 111        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
 112}
 113
 114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
 115{
 116        tk->offs_boot = ktime_add(tk->offs_boot, delta);
 117}
 118
 119#ifdef CONFIG_DEBUG_TIMEKEEPING
 120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
 121
 122static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
 123{
 124
 125        cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
 126        const char *name = tk->tkr_mono.clock->name;
 127
 128        if (offset > max_cycles) {
 129                printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
 130                                offset, name, max_cycles);
 131                printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
 132        } else {
 133                if (offset > (max_cycles >> 1)) {
 134                        printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
 135                                        offset, name, max_cycles >> 1);
 136                        printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
 137                }
 138        }
 139
 140        if (tk->underflow_seen) {
 141                if (jiffies - tk->last_warning > WARNING_FREQ) {
 142                        printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
 143                        printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 144                        printk_deferred("         Your kernel is probably still fine.\n");
 145                        tk->last_warning = jiffies;
 146                }
 147                tk->underflow_seen = 0;
 148        }
 149
 150        if (tk->overflow_seen) {
 151                if (jiffies - tk->last_warning > WARNING_FREQ) {
 152                        printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
 153                        printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 154                        printk_deferred("         Your kernel is probably still fine.\n");
 155                        tk->last_warning = jiffies;
 156                }
 157                tk->overflow_seen = 0;
 158        }
 159}
 160
 161static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
 162{
 163        struct timekeeper *tk = &tk_core.timekeeper;
 164        cycle_t now, last, mask, max, delta;
 165        unsigned int seq;
 166
 167        /*
 168         * Since we're called holding a seqlock, the data may shift
 169         * under us while we're doing the calculation. This can cause
 170         * false positives, since we'd note a problem but throw the
 171         * results away. So nest another seqlock here to atomically
 172         * grab the points we are checking with.
 173         */
 174        do {
 175                seq = read_seqcount_begin(&tk_core.seq);
 176                now = tkr->read(tkr->clock);
 177                last = tkr->cycle_last;
 178                mask = tkr->mask;
 179                max = tkr->clock->max_cycles;
 180        } while (read_seqcount_retry(&tk_core.seq, seq));
 181
 182        delta = clocksource_delta(now, last, mask);
 183
 184        /*
 185         * Try to catch underflows by checking if we are seeing small
 186         * mask-relative negative values.
 187         */
 188        if (unlikely((~delta & mask) < (mask >> 3))) {
 189                tk->underflow_seen = 1;
 190                delta = 0;
 191        }
 192
 193        /* Cap delta value to the max_cycles values to avoid mult overflows */
 194        if (unlikely(delta > max)) {
 195                tk->overflow_seen = 1;
 196                delta = tkr->clock->max_cycles;
 197        }
 198
 199        return delta;
 200}
 201#else
 202static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
 203{
 204}
 205static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
 206{
 207        cycle_t cycle_now, delta;
 208
 209        /* read clocksource */
 210        cycle_now = tkr->read(tkr->clock);
 211
 212        /* calculate the delta since the last update_wall_time */
 213        delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
 214
 215        return delta;
 216}
 217#endif
 218
 219/**
 220 * tk_setup_internals - Set up internals to use clocksource clock.
 221 *
 222 * @tk:         The target timekeeper to setup.
 223 * @clock:              Pointer to clocksource.
 224 *
 225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 226 * pair and interval request.
 227 *
 228 * Unless you're the timekeeping code, you should not be using this!
 229 */
 230static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
 231{
 232        cycle_t interval;
 233        u64 tmp, ntpinterval;
 234        struct clocksource *old_clock;
 235
 236        ++tk->cs_was_changed_seq;
 237        old_clock = tk->tkr_mono.clock;
 238        tk->tkr_mono.clock = clock;
 239        tk->tkr_mono.read = clock->read;
 240        tk->tkr_mono.mask = clock->mask;
 241        tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
 242
 243        tk->tkr_raw.clock = clock;
 244        tk->tkr_raw.read = clock->read;
 245        tk->tkr_raw.mask = clock->mask;
 246        tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
 247
 248        /* Do the ns -> cycle conversion first, using original mult */
 249        tmp = NTP_INTERVAL_LENGTH;
 250        tmp <<= clock->shift;
 251        ntpinterval = tmp;
 252        tmp += clock->mult/2;
 253        do_div(tmp, clock->mult);
 254        if (tmp == 0)
 255                tmp = 1;
 256
 257        interval = (cycle_t) tmp;
 258        tk->cycle_interval = interval;
 259
 260        /* Go back from cycles -> shifted ns */
 261        tk->xtime_interval = (u64) interval * clock->mult;
 262        tk->xtime_remainder = ntpinterval - tk->xtime_interval;
 263        tk->raw_interval =
 264                ((u64) interval * clock->mult) >> clock->shift;
 265
 266         /* if changing clocks, convert xtime_nsec shift units */
 267        if (old_clock) {
 268                int shift_change = clock->shift - old_clock->shift;
 269                if (shift_change < 0)
 270                        tk->tkr_mono.xtime_nsec >>= -shift_change;
 271                else
 272                        tk->tkr_mono.xtime_nsec <<= shift_change;
 273        }
 274        tk->tkr_raw.xtime_nsec = 0;
 275
 276        tk->tkr_mono.shift = clock->shift;
 277        tk->tkr_raw.shift = clock->shift;
 278
 279        tk->ntp_error = 0;
 280        tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
 281        tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
 282
 283        /*
 284         * The timekeeper keeps its own mult values for the currently
 285         * active clocksource. These value will be adjusted via NTP
 286         * to counteract clock drifting.
 287         */
 288        tk->tkr_mono.mult = clock->mult;
 289        tk->tkr_raw.mult = clock->mult;
 290        tk->ntp_err_mult = 0;
 291}
 292
 293/* Timekeeper helper functions. */
 294
 295#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
 296static u32 default_arch_gettimeoffset(void) { return 0; }
 297u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
 298#else
 299static inline u32 arch_gettimeoffset(void) { return 0; }
 300#endif
 301
 302static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
 303                                          cycle_t delta)
 304{
 305        s64 nsec;
 306
 307        nsec = delta * tkr->mult + tkr->xtime_nsec;
 308        nsec >>= tkr->shift;
 309
 310        /* If arch requires, add in get_arch_timeoffset() */
 311        return nsec + arch_gettimeoffset();
 312}
 313
 314static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
 315{
 316        cycle_t delta;
 317
 318        delta = timekeeping_get_delta(tkr);
 319        return timekeeping_delta_to_ns(tkr, delta);
 320}
 321
 322static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
 323                                            cycle_t cycles)
 324{
 325        cycle_t delta;
 326
 327        /* calculate the delta since the last update_wall_time */
 328        delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
 329        return timekeeping_delta_to_ns(tkr, delta);
 330}
 331
 332/**
 333 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 334 * @tkr: Timekeeping readout base from which we take the update
 335 *
 336 * We want to use this from any context including NMI and tracing /
 337 * instrumenting the timekeeping code itself.
 338 *
 339 * Employ the latch technique; see @raw_write_seqcount_latch.
 340 *
 341 * So if a NMI hits the update of base[0] then it will use base[1]
 342 * which is still consistent. In the worst case this can result is a
 343 * slightly wrong timestamp (a few nanoseconds). See
 344 * @ktime_get_mono_fast_ns.
 345 */
 346static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
 347{
 348        struct tk_read_base *base = tkf->base;
 349
 350        /* Force readers off to base[1] */
 351        raw_write_seqcount_latch(&tkf->seq);
 352
 353        /* Update base[0] */
 354        memcpy(base, tkr, sizeof(*base));
 355
 356        /* Force readers back to base[0] */
 357        raw_write_seqcount_latch(&tkf->seq);
 358
 359        /* Update base[1] */
 360        memcpy(base + 1, base, sizeof(*base));
 361}
 362
 363/**
 364 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 365 *
 366 * This timestamp is not guaranteed to be monotonic across an update.
 367 * The timestamp is calculated by:
 368 *
 369 *      now = base_mono + clock_delta * slope
 370 *
 371 * So if the update lowers the slope, readers who are forced to the
 372 * not yet updated second array are still using the old steeper slope.
 373 *
 374 * tmono
 375 * ^
 376 * |    o  n
 377 * |   o n
 378 * |  u
 379 * | o
 380 * |o
 381 * |12345678---> reader order
 382 *
 383 * o = old slope
 384 * u = update
 385 * n = new slope
 386 *
 387 * So reader 6 will observe time going backwards versus reader 5.
 388 *
 389 * While other CPUs are likely to be able observe that, the only way
 390 * for a CPU local observation is when an NMI hits in the middle of
 391 * the update. Timestamps taken from that NMI context might be ahead
 392 * of the following timestamps. Callers need to be aware of that and
 393 * deal with it.
 394 */
 395static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
 396{
 397        struct tk_read_base *tkr;
 398        unsigned int seq;
 399        u64 now;
 400
 401        do {
 402                seq = raw_read_seqcount_latch(&tkf->seq);
 403                tkr = tkf->base + (seq & 0x01);
 404                now = ktime_to_ns(tkr->base);
 405
 406                now += clocksource_delta(tkr->read(tkr->clock),
 407                                         tkr->cycle_last, tkr->mask);
 408        } while (read_seqcount_retry(&tkf->seq, seq));
 409
 410        return now;
 411}
 412
 413u64 ktime_get_mono_fast_ns(void)
 414{
 415        return __ktime_get_fast_ns(&tk_fast_mono);
 416}
 417EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
 418
 419u64 ktime_get_raw_fast_ns(void)
 420{
 421        return __ktime_get_fast_ns(&tk_fast_raw);
 422}
 423EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
 424
 425/* Suspend-time cycles value for halted fast timekeeper. */
 426static cycle_t cycles_at_suspend;
 427
 428static cycle_t dummy_clock_read(struct clocksource *cs)
 429{
 430        return cycles_at_suspend;
 431}
 432
 433/**
 434 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 435 * @tk: Timekeeper to snapshot.
 436 *
 437 * It generally is unsafe to access the clocksource after timekeeping has been
 438 * suspended, so take a snapshot of the readout base of @tk and use it as the
 439 * fast timekeeper's readout base while suspended.  It will return the same
 440 * number of cycles every time until timekeeping is resumed at which time the
 441 * proper readout base for the fast timekeeper will be restored automatically.
 442 */
 443static void halt_fast_timekeeper(struct timekeeper *tk)
 444{
 445        static struct tk_read_base tkr_dummy;
 446        struct tk_read_base *tkr = &tk->tkr_mono;
 447
 448        memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 449        cycles_at_suspend = tkr->read(tkr->clock);
 450        tkr_dummy.read = dummy_clock_read;
 451        update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
 452
 453        tkr = &tk->tkr_raw;
 454        memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 455        tkr_dummy.read = dummy_clock_read;
 456        update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
 457}
 458
 459#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
 460
 461static inline void update_vsyscall(struct timekeeper *tk)
 462{
 463        struct timespec xt, wm;
 464
 465        xt = timespec64_to_timespec(tk_xtime(tk));
 466        wm = timespec64_to_timespec(tk->wall_to_monotonic);
 467        update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
 468                            tk->tkr_mono.cycle_last);
 469}
 470
 471static inline void old_vsyscall_fixup(struct timekeeper *tk)
 472{
 473        s64 remainder;
 474
 475        /*
 476        * Store only full nanoseconds into xtime_nsec after rounding
 477        * it up and add the remainder to the error difference.
 478        * XXX - This is necessary to avoid small 1ns inconsistnecies caused
 479        * by truncating the remainder in vsyscalls. However, it causes
 480        * additional work to be done in timekeeping_adjust(). Once
 481        * the vsyscall implementations are converted to use xtime_nsec
 482        * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
 483        * users are removed, this can be killed.
 484        */
 485        remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
 486        if (remainder != 0) {
 487                tk->tkr_mono.xtime_nsec -= remainder;
 488                tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
 489                tk->ntp_error += remainder << tk->ntp_error_shift;
 490                tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
 491        }
 492}
 493#else
 494#define old_vsyscall_fixup(tk)
 495#endif
 496
 497static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
 498
 499static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
 500{
 501        raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
 502}
 503
 504/**
 505 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 506 */
 507int pvclock_gtod_register_notifier(struct notifier_block *nb)
 508{
 509        struct timekeeper *tk = &tk_core.timekeeper;
 510        unsigned long flags;
 511        int ret;
 512
 513        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 514        ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
 515        update_pvclock_gtod(tk, true);
 516        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 517
 518        return ret;
 519}
 520EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
 521
 522/**
 523 * pvclock_gtod_unregister_notifier - unregister a pvclock
 524 * timedata update listener
 525 */
 526int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
 527{
 528        unsigned long flags;
 529        int ret;
 530
 531        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 532        ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
 533        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 534
 535        return ret;
 536}
 537EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
 538
 539/*
 540 * tk_update_leap_state - helper to update the next_leap_ktime
 541 */
 542static inline void tk_update_leap_state(struct timekeeper *tk)
 543{
 544        tk->next_leap_ktime = ntp_get_next_leap();
 545        if (tk->next_leap_ktime.tv64 != KTIME_MAX)
 546                /* Convert to monotonic time */
 547                tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
 548}
 549
 550/*
 551 * Update the ktime_t based scalar nsec members of the timekeeper
 552 */
 553static inline void tk_update_ktime_data(struct timekeeper *tk)
 554{
 555        u64 seconds;
 556        u32 nsec;
 557
 558        /*
 559         * The xtime based monotonic readout is:
 560         *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
 561         * The ktime based monotonic readout is:
 562         *      nsec = base_mono + now();
 563         * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
 564         */
 565        seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
 566        nsec = (u32) tk->wall_to_monotonic.tv_nsec;
 567        tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
 568
 569        /* Update the monotonic raw base */
 570        tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
 571
 572        /*
 573         * The sum of the nanoseconds portions of xtime and
 574         * wall_to_monotonic can be greater/equal one second. Take
 575         * this into account before updating tk->ktime_sec.
 576         */
 577        nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 578        if (nsec >= NSEC_PER_SEC)
 579                seconds++;
 580        tk->ktime_sec = seconds;
 581}
 582
 583/* must hold timekeeper_lock */
 584static void timekeeping_update(struct timekeeper *tk, unsigned int action)
 585{
 586        if (action & TK_CLEAR_NTP) {
 587                tk->ntp_error = 0;
 588                ntp_clear();
 589        }
 590
 591        tk_update_leap_state(tk);
 592        tk_update_ktime_data(tk);
 593
 594        update_vsyscall(tk);
 595        update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
 596
 597        update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
 598        update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
 599
 600        if (action & TK_CLOCK_WAS_SET)
 601                tk->clock_was_set_seq++;
 602        /*
 603         * The mirroring of the data to the shadow-timekeeper needs
 604         * to happen last here to ensure we don't over-write the
 605         * timekeeper structure on the next update with stale data
 606         */
 607        if (action & TK_MIRROR)
 608                memcpy(&shadow_timekeeper, &tk_core.timekeeper,
 609                       sizeof(tk_core.timekeeper));
 610}
 611
 612/**
 613 * timekeeping_forward_now - update clock to the current time
 614 *
 615 * Forward the current clock to update its state since the last call to
 616 * update_wall_time(). This is useful before significant clock changes,
 617 * as it avoids having to deal with this time offset explicitly.
 618 */
 619static void timekeeping_forward_now(struct timekeeper *tk)
 620{
 621        struct clocksource *clock = tk->tkr_mono.clock;
 622        cycle_t cycle_now, delta;
 623        s64 nsec;
 624
 625        cycle_now = tk->tkr_mono.read(clock);
 626        delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 627        tk->tkr_mono.cycle_last = cycle_now;
 628        tk->tkr_raw.cycle_last  = cycle_now;
 629
 630        tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
 631
 632        /* If arch requires, add in get_arch_timeoffset() */
 633        tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
 634
 635        tk_normalize_xtime(tk);
 636
 637        nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
 638        timespec64_add_ns(&tk->raw_time, nsec);
 639}
 640
 641/**
 642 * __getnstimeofday64 - Returns the time of day in a timespec64.
 643 * @ts:         pointer to the timespec to be set
 644 *
 645 * Updates the time of day in the timespec.
 646 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
 647 */
 648int __getnstimeofday64(struct timespec64 *ts)
 649{
 650        struct timekeeper *tk = &tk_core.timekeeper;
 651        unsigned long seq;
 652        s64 nsecs = 0;
 653
 654        do {
 655                seq = read_seqcount_begin(&tk_core.seq);
 656
 657                ts->tv_sec = tk->xtime_sec;
 658                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 659
 660        } while (read_seqcount_retry(&tk_core.seq, seq));
 661
 662        ts->tv_nsec = 0;
 663        timespec64_add_ns(ts, nsecs);
 664
 665        /*
 666         * Do not bail out early, in case there were callers still using
 667         * the value, even in the face of the WARN_ON.
 668         */
 669        if (unlikely(timekeeping_suspended))
 670                return -EAGAIN;
 671        return 0;
 672}
 673EXPORT_SYMBOL(__getnstimeofday64);
 674
 675/**
 676 * getnstimeofday64 - Returns the time of day in a timespec64.
 677 * @ts:         pointer to the timespec64 to be set
 678 *
 679 * Returns the time of day in a timespec64 (WARN if suspended).
 680 */
 681void getnstimeofday64(struct timespec64 *ts)
 682{
 683        WARN_ON(__getnstimeofday64(ts));
 684}
 685EXPORT_SYMBOL(getnstimeofday64);
 686
 687ktime_t ktime_get(void)
 688{
 689        struct timekeeper *tk = &tk_core.timekeeper;
 690        unsigned int seq;
 691        ktime_t base;
 692        s64 nsecs;
 693
 694        WARN_ON(timekeeping_suspended);
 695
 696        do {
 697                seq = read_seqcount_begin(&tk_core.seq);
 698                base = tk->tkr_mono.base;
 699                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 700
 701        } while (read_seqcount_retry(&tk_core.seq, seq));
 702
 703        return ktime_add_ns(base, nsecs);
 704}
 705EXPORT_SYMBOL_GPL(ktime_get);
 706
 707u32 ktime_get_resolution_ns(void)
 708{
 709        struct timekeeper *tk = &tk_core.timekeeper;
 710        unsigned int seq;
 711        u32 nsecs;
 712
 713        WARN_ON(timekeeping_suspended);
 714
 715        do {
 716                seq = read_seqcount_begin(&tk_core.seq);
 717                nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
 718        } while (read_seqcount_retry(&tk_core.seq, seq));
 719
 720        return nsecs;
 721}
 722EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
 723
 724static ktime_t *offsets[TK_OFFS_MAX] = {
 725        [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
 726        [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
 727        [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
 728};
 729
 730ktime_t ktime_get_with_offset(enum tk_offsets offs)
 731{
 732        struct timekeeper *tk = &tk_core.timekeeper;
 733        unsigned int seq;
 734        ktime_t base, *offset = offsets[offs];
 735        s64 nsecs;
 736
 737        WARN_ON(timekeeping_suspended);
 738
 739        do {
 740                seq = read_seqcount_begin(&tk_core.seq);
 741                base = ktime_add(tk->tkr_mono.base, *offset);
 742                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 743
 744        } while (read_seqcount_retry(&tk_core.seq, seq));
 745
 746        return ktime_add_ns(base, nsecs);
 747
 748}
 749EXPORT_SYMBOL_GPL(ktime_get_with_offset);
 750
 751/**
 752 * ktime_mono_to_any() - convert mononotic time to any other time
 753 * @tmono:      time to convert.
 754 * @offs:       which offset to use
 755 */
 756ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
 757{
 758        ktime_t *offset = offsets[offs];
 759        unsigned long seq;
 760        ktime_t tconv;
 761
 762        do {
 763                seq = read_seqcount_begin(&tk_core.seq);
 764                tconv = ktime_add(tmono, *offset);
 765        } while (read_seqcount_retry(&tk_core.seq, seq));
 766
 767        return tconv;
 768}
 769EXPORT_SYMBOL_GPL(ktime_mono_to_any);
 770
 771/**
 772 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 773 */
 774ktime_t ktime_get_raw(void)
 775{
 776        struct timekeeper *tk = &tk_core.timekeeper;
 777        unsigned int seq;
 778        ktime_t base;
 779        s64 nsecs;
 780
 781        do {
 782                seq = read_seqcount_begin(&tk_core.seq);
 783                base = tk->tkr_raw.base;
 784                nsecs = timekeeping_get_ns(&tk->tkr_raw);
 785
 786        } while (read_seqcount_retry(&tk_core.seq, seq));
 787
 788        return ktime_add_ns(base, nsecs);
 789}
 790EXPORT_SYMBOL_GPL(ktime_get_raw);
 791
 792/**
 793 * ktime_get_ts64 - get the monotonic clock in timespec64 format
 794 * @ts:         pointer to timespec variable
 795 *
 796 * The function calculates the monotonic clock from the realtime
 797 * clock and the wall_to_monotonic offset and stores the result
 798 * in normalized timespec64 format in the variable pointed to by @ts.
 799 */
 800void ktime_get_ts64(struct timespec64 *ts)
 801{
 802        struct timekeeper *tk = &tk_core.timekeeper;
 803        struct timespec64 tomono;
 804        s64 nsec;
 805        unsigned int seq;
 806
 807        WARN_ON(timekeeping_suspended);
 808
 809        do {
 810                seq = read_seqcount_begin(&tk_core.seq);
 811                ts->tv_sec = tk->xtime_sec;
 812                nsec = timekeeping_get_ns(&tk->tkr_mono);
 813                tomono = tk->wall_to_monotonic;
 814
 815        } while (read_seqcount_retry(&tk_core.seq, seq));
 816
 817        ts->tv_sec += tomono.tv_sec;
 818        ts->tv_nsec = 0;
 819        timespec64_add_ns(ts, nsec + tomono.tv_nsec);
 820}
 821EXPORT_SYMBOL_GPL(ktime_get_ts64);
 822
 823/**
 824 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 825 *
 826 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 827 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 828 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 829 * covers ~136 years of uptime which should be enough to prevent
 830 * premature wrap arounds.
 831 */
 832time64_t ktime_get_seconds(void)
 833{
 834        struct timekeeper *tk = &tk_core.timekeeper;
 835
 836        WARN_ON(timekeeping_suspended);
 837        return tk->ktime_sec;
 838}
 839EXPORT_SYMBOL_GPL(ktime_get_seconds);
 840
 841/**
 842 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 843 *
 844 * Returns the wall clock seconds since 1970. This replaces the
 845 * get_seconds() interface which is not y2038 safe on 32bit systems.
 846 *
 847 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 848 * 32bit systems the access must be protected with the sequence
 849 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 850 * value.
 851 */
 852time64_t ktime_get_real_seconds(void)
 853{
 854        struct timekeeper *tk = &tk_core.timekeeper;
 855        time64_t seconds;
 856        unsigned int seq;
 857
 858        if (IS_ENABLED(CONFIG_64BIT))
 859                return tk->xtime_sec;
 860
 861        do {
 862                seq = read_seqcount_begin(&tk_core.seq);
 863                seconds = tk->xtime_sec;
 864
 865        } while (read_seqcount_retry(&tk_core.seq, seq));
 866
 867        return seconds;
 868}
 869EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
 870
 871/**
 872 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 873 * but without the sequence counter protect. This internal function
 874 * is called just when timekeeping lock is already held.
 875 */
 876time64_t __ktime_get_real_seconds(void)
 877{
 878        struct timekeeper *tk = &tk_core.timekeeper;
 879
 880        return tk->xtime_sec;
 881}
 882
 883/**
 884 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 885 * @systime_snapshot:   pointer to struct receiving the system time snapshot
 886 */
 887void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
 888{
 889        struct timekeeper *tk = &tk_core.timekeeper;
 890        unsigned long seq;
 891        ktime_t base_raw;
 892        ktime_t base_real;
 893        s64 nsec_raw;
 894        s64 nsec_real;
 895        cycle_t now;
 896
 897        WARN_ON_ONCE(timekeeping_suspended);
 898
 899        do {
 900                seq = read_seqcount_begin(&tk_core.seq);
 901
 902                now = tk->tkr_mono.read(tk->tkr_mono.clock);
 903                systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
 904                systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
 905                base_real = ktime_add(tk->tkr_mono.base,
 906                                      tk_core.timekeeper.offs_real);
 907                base_raw = tk->tkr_raw.base;
 908                nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
 909                nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
 910        } while (read_seqcount_retry(&tk_core.seq, seq));
 911
 912        systime_snapshot->cycles = now;
 913        systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
 914        systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
 915}
 916EXPORT_SYMBOL_GPL(ktime_get_snapshot);
 917
 918/* Scale base by mult/div checking for overflow */
 919static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
 920{
 921        u64 tmp, rem;
 922
 923        tmp = div64_u64_rem(*base, div, &rem);
 924
 925        if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
 926            ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
 927                return -EOVERFLOW;
 928        tmp *= mult;
 929        rem *= mult;
 930
 931        do_div(rem, div);
 932        *base = tmp + rem;
 933        return 0;
 934}
 935
 936/**
 937 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 938 * @history:                    Snapshot representing start of history
 939 * @partial_history_cycles:     Cycle offset into history (fractional part)
 940 * @total_history_cycles:       Total history length in cycles
 941 * @discontinuity:              True indicates clock was set on history period
 942 * @ts:                         Cross timestamp that should be adjusted using
 943 *      partial/total ratio
 944 *
 945 * Helper function used by get_device_system_crosststamp() to correct the
 946 * crosstimestamp corresponding to the start of the current interval to the
 947 * system counter value (timestamp point) provided by the driver. The
 948 * total_history_* quantities are the total history starting at the provided
 949 * reference point and ending at the start of the current interval. The cycle
 950 * count between the driver timestamp point and the start of the current
 951 * interval is partial_history_cycles.
 952 */
 953static int adjust_historical_crosststamp(struct system_time_snapshot *history,
 954                                         cycle_t partial_history_cycles,
 955                                         cycle_t total_history_cycles,
 956                                         bool discontinuity,
 957                                         struct system_device_crosststamp *ts)
 958{
 959        struct timekeeper *tk = &tk_core.timekeeper;
 960        u64 corr_raw, corr_real;
 961        bool interp_forward;
 962        int ret;
 963
 964        if (total_history_cycles == 0 || partial_history_cycles == 0)
 965                return 0;
 966
 967        /* Interpolate shortest distance from beginning or end of history */
 968        interp_forward = partial_history_cycles > total_history_cycles/2 ?
 969                true : false;
 970        partial_history_cycles = interp_forward ?
 971                total_history_cycles - partial_history_cycles :
 972                partial_history_cycles;
 973
 974        /*
 975         * Scale the monotonic raw time delta by:
 976         *      partial_history_cycles / total_history_cycles
 977         */
 978        corr_raw = (u64)ktime_to_ns(
 979                ktime_sub(ts->sys_monoraw, history->raw));
 980        ret = scale64_check_overflow(partial_history_cycles,
 981                                     total_history_cycles, &corr_raw);
 982        if (ret)
 983                return ret;
 984
 985        /*
 986         * If there is a discontinuity in the history, scale monotonic raw
 987         *      correction by:
 988         *      mult(real)/mult(raw) yielding the realtime correction
 989         * Otherwise, calculate the realtime correction similar to monotonic
 990         *      raw calculation
 991         */
 992        if (discontinuity) {
 993                corr_real = mul_u64_u32_div
 994                        (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
 995        } else {
 996                corr_real = (u64)ktime_to_ns(
 997                        ktime_sub(ts->sys_realtime, history->real));
 998                ret = scale64_check_overflow(partial_history_cycles,
 999                                             total_history_cycles, &corr_real);
1000                if (ret)
1001                        return ret;
1002        }
1003
1004        /* Fixup monotonic raw and real time time values */
1005        if (interp_forward) {
1006                ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1007                ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1008        } else {
1009                ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1010                ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1011        }
1012
1013        return 0;
1014}
1015
1016/*
1017 * cycle_between - true if test occurs chronologically between before and after
1018 */
1019static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1020{
1021        if (test > before && test < after)
1022                return true;
1023        if (test < before && before > after)
1024                return true;
1025        return false;
1026}
1027
1028/**
1029 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1030 * @get_time_fn:        Callback to get simultaneous device time and
1031 *      system counter from the device driver
1032 * @ctx:                Context passed to get_time_fn()
1033 * @history_begin:      Historical reference point used to interpolate system
1034 *      time when counter provided by the driver is before the current interval
1035 * @xtstamp:            Receives simultaneously captured system and device time
1036 *
1037 * Reads a timestamp from a device and correlates it to system time
1038 */
1039int get_device_system_crosststamp(int (*get_time_fn)
1040                                  (ktime_t *device_time,
1041                                   struct system_counterval_t *sys_counterval,
1042                                   void *ctx),
1043                                  void *ctx,
1044                                  struct system_time_snapshot *history_begin,
1045                                  struct system_device_crosststamp *xtstamp)
1046{
1047        struct system_counterval_t system_counterval;
1048        struct timekeeper *tk = &tk_core.timekeeper;
1049        cycle_t cycles, now, interval_start;
1050        unsigned int clock_was_set_seq = 0;
1051        ktime_t base_real, base_raw;
1052        s64 nsec_real, nsec_raw;
1053        u8 cs_was_changed_seq;
1054        unsigned long seq;
1055        bool do_interp;
1056        int ret;
1057
1058        do {
1059                seq = read_seqcount_begin(&tk_core.seq);
1060                /*
1061                 * Try to synchronously capture device time and a system
1062                 * counter value calling back into the device driver
1063                 */
1064                ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1065                if (ret)
1066                        return ret;
1067
1068                /*
1069                 * Verify that the clocksource associated with the captured
1070                 * system counter value is the same as the currently installed
1071                 * timekeeper clocksource
1072                 */
1073                if (tk->tkr_mono.clock != system_counterval.cs)
1074                        return -ENODEV;
1075                cycles = system_counterval.cycles;
1076
1077                /*
1078                 * Check whether the system counter value provided by the
1079                 * device driver is on the current timekeeping interval.
1080                 */
1081                now = tk->tkr_mono.read(tk->tkr_mono.clock);
1082                interval_start = tk->tkr_mono.cycle_last;
1083                if (!cycle_between(interval_start, cycles, now)) {
1084                        clock_was_set_seq = tk->clock_was_set_seq;
1085                        cs_was_changed_seq = tk->cs_was_changed_seq;
1086                        cycles = interval_start;
1087                        do_interp = true;
1088                } else {
1089                        do_interp = false;
1090                }
1091
1092                base_real = ktime_add(tk->tkr_mono.base,
1093                                      tk_core.timekeeper.offs_real);
1094                base_raw = tk->tkr_raw.base;
1095
1096                nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1097                                                     system_counterval.cycles);
1098                nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1099                                                    system_counterval.cycles);
1100        } while (read_seqcount_retry(&tk_core.seq, seq));
1101
1102        xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1103        xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1104
1105        /*
1106         * Interpolate if necessary, adjusting back from the start of the
1107         * current interval
1108         */
1109        if (do_interp) {
1110                cycle_t partial_history_cycles, total_history_cycles;
1111                bool discontinuity;
1112
1113                /*
1114                 * Check that the counter value occurs after the provided
1115                 * history reference and that the history doesn't cross a
1116                 * clocksource change
1117                 */
1118                if (!history_begin ||
1119                    !cycle_between(history_begin->cycles,
1120                                   system_counterval.cycles, cycles) ||
1121                    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1122                        return -EINVAL;
1123                partial_history_cycles = cycles - system_counterval.cycles;
1124                total_history_cycles = cycles - history_begin->cycles;
1125                discontinuity =
1126                        history_begin->clock_was_set_seq != clock_was_set_seq;
1127
1128                ret = adjust_historical_crosststamp(history_begin,
1129                                                    partial_history_cycles,
1130                                                    total_history_cycles,
1131                                                    discontinuity, xtstamp);
1132                if (ret)
1133                        return ret;
1134        }
1135
1136        return 0;
1137}
1138EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1139
1140/**
1141 * do_gettimeofday - Returns the time of day in a timeval
1142 * @tv:         pointer to the timeval to be set
1143 *
1144 * NOTE: Users should be converted to using getnstimeofday()
1145 */
1146void do_gettimeofday(struct timeval *tv)
1147{
1148        struct timespec64 now;
1149
1150        getnstimeofday64(&now);
1151        tv->tv_sec = now.tv_sec;
1152        tv->tv_usec = now.tv_nsec/1000;
1153}
1154EXPORT_SYMBOL(do_gettimeofday);
1155
1156/**
1157 * do_settimeofday64 - Sets the time of day.
1158 * @ts:     pointer to the timespec64 variable containing the new time
1159 *
1160 * Sets the time of day to the new time and update NTP and notify hrtimers
1161 */
1162int do_settimeofday64(const struct timespec64 *ts)
1163{
1164        struct timekeeper *tk = &tk_core.timekeeper;
1165        struct timespec64 ts_delta, xt;
1166        unsigned long flags;
1167        int ret = 0;
1168
1169        if (!timespec64_valid_strict(ts))
1170                return -EINVAL;
1171
1172        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1173        write_seqcount_begin(&tk_core.seq);
1174
1175        timekeeping_forward_now(tk);
1176
1177        xt = tk_xtime(tk);
1178        ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1179        ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1180
1181        if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1182                ret = -EINVAL;
1183                goto out;
1184        }
1185
1186        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1187
1188        tk_set_xtime(tk, ts);
1189out:
1190        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1191
1192        write_seqcount_end(&tk_core.seq);
1193        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1194
1195        /* signal hrtimers about time change */
1196        clock_was_set();
1197
1198        return ret;
1199}
1200EXPORT_SYMBOL(do_settimeofday64);
1201
1202/**
1203 * timekeeping_inject_offset - Adds or subtracts from the current time.
1204 * @tv:         pointer to the timespec variable containing the offset
1205 *
1206 * Adds or subtracts an offset value from the current time.
1207 */
1208int timekeeping_inject_offset(struct timespec *ts)
1209{
1210        struct timekeeper *tk = &tk_core.timekeeper;
1211        unsigned long flags;
1212        struct timespec64 ts64, tmp;
1213        int ret = 0;
1214
1215        if (!timespec_inject_offset_valid(ts))
1216                return -EINVAL;
1217
1218        ts64 = timespec_to_timespec64(*ts);
1219
1220        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1221        write_seqcount_begin(&tk_core.seq);
1222
1223        timekeeping_forward_now(tk);
1224
1225        /* Make sure the proposed value is valid */
1226        tmp = timespec64_add(tk_xtime(tk),  ts64);
1227        if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1228            !timespec64_valid_strict(&tmp)) {
1229                ret = -EINVAL;
1230                goto error;
1231        }
1232
1233        tk_xtime_add(tk, &ts64);
1234        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1235
1236error: /* even if we error out, we forwarded the time, so call update */
1237        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1238
1239        write_seqcount_end(&tk_core.seq);
1240        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1241
1242        /* signal hrtimers about time change */
1243        clock_was_set();
1244
1245        return ret;
1246}
1247EXPORT_SYMBOL(timekeeping_inject_offset);
1248
1249
1250/**
1251 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1252 *
1253 */
1254s32 timekeeping_get_tai_offset(void)
1255{
1256        struct timekeeper *tk = &tk_core.timekeeper;
1257        unsigned int seq;
1258        s32 ret;
1259
1260        do {
1261                seq = read_seqcount_begin(&tk_core.seq);
1262                ret = tk->tai_offset;
1263        } while (read_seqcount_retry(&tk_core.seq, seq));
1264
1265        return ret;
1266}
1267
1268/**
1269 * __timekeeping_set_tai_offset - Lock free worker function
1270 *
1271 */
1272static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1273{
1274        tk->tai_offset = tai_offset;
1275        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1276}
1277
1278/**
1279 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1280 *
1281 */
1282void timekeeping_set_tai_offset(s32 tai_offset)
1283{
1284        struct timekeeper *tk = &tk_core.timekeeper;
1285        unsigned long flags;
1286
1287        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1288        write_seqcount_begin(&tk_core.seq);
1289        __timekeeping_set_tai_offset(tk, tai_offset);
1290        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1291        write_seqcount_end(&tk_core.seq);
1292        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1293        clock_was_set();
1294}
1295
1296/**
1297 * change_clocksource - Swaps clocksources if a new one is available
1298 *
1299 * Accumulates current time interval and initializes new clocksource
1300 */
1301static int change_clocksource(void *data)
1302{
1303        struct timekeeper *tk = &tk_core.timekeeper;
1304        struct clocksource *new, *old;
1305        unsigned long flags;
1306
1307        new = (struct clocksource *) data;
1308
1309        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1310        write_seqcount_begin(&tk_core.seq);
1311
1312        timekeeping_forward_now(tk);
1313        /*
1314         * If the cs is in module, get a module reference. Succeeds
1315         * for built-in code (owner == NULL) as well.
1316         */
1317        if (try_module_get(new->owner)) {
1318                if (!new->enable || new->enable(new) == 0) {
1319                        old = tk->tkr_mono.clock;
1320                        tk_setup_internals(tk, new);
1321                        if (old->disable)
1322                                old->disable(old);
1323                        module_put(old->owner);
1324                } else {
1325                        module_put(new->owner);
1326                }
1327        }
1328        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1329
1330        write_seqcount_end(&tk_core.seq);
1331        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1332
1333        return 0;
1334}
1335
1336/**
1337 * timekeeping_notify - Install a new clock source
1338 * @clock:              pointer to the clock source
1339 *
1340 * This function is called from clocksource.c after a new, better clock
1341 * source has been registered. The caller holds the clocksource_mutex.
1342 */
1343int timekeeping_notify(struct clocksource *clock)
1344{
1345        struct timekeeper *tk = &tk_core.timekeeper;
1346
1347        if (tk->tkr_mono.clock == clock)
1348                return 0;
1349        stop_machine(change_clocksource, clock, NULL);
1350        tick_clock_notify();
1351        return tk->tkr_mono.clock == clock ? 0 : -1;
1352}
1353
1354/**
1355 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1356 * @ts:         pointer to the timespec64 to be set
1357 *
1358 * Returns the raw monotonic time (completely un-modified by ntp)
1359 */
1360void getrawmonotonic64(struct timespec64 *ts)
1361{
1362        struct timekeeper *tk = &tk_core.timekeeper;
1363        struct timespec64 ts64;
1364        unsigned long seq;
1365        s64 nsecs;
1366
1367        do {
1368                seq = read_seqcount_begin(&tk_core.seq);
1369                nsecs = timekeeping_get_ns(&tk->tkr_raw);
1370                ts64 = tk->raw_time;
1371
1372        } while (read_seqcount_retry(&tk_core.seq, seq));
1373
1374        timespec64_add_ns(&ts64, nsecs);
1375        *ts = ts64;
1376}
1377EXPORT_SYMBOL(getrawmonotonic64);
1378
1379
1380/**
1381 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1382 */
1383int timekeeping_valid_for_hres(void)
1384{
1385        struct timekeeper *tk = &tk_core.timekeeper;
1386        unsigned long seq;
1387        int ret;
1388
1389        do {
1390                seq = read_seqcount_begin(&tk_core.seq);
1391
1392                ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1393
1394        } while (read_seqcount_retry(&tk_core.seq, seq));
1395
1396        return ret;
1397}
1398
1399/**
1400 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1401 */
1402u64 timekeeping_max_deferment(void)
1403{
1404        struct timekeeper *tk = &tk_core.timekeeper;
1405        unsigned long seq;
1406        u64 ret;
1407
1408        do {
1409                seq = read_seqcount_begin(&tk_core.seq);
1410
1411                ret = tk->tkr_mono.clock->max_idle_ns;
1412
1413        } while (read_seqcount_retry(&tk_core.seq, seq));
1414
1415        return ret;
1416}
1417
1418/**
1419 * read_persistent_clock -  Return time from the persistent clock.
1420 *
1421 * Weak dummy function for arches that do not yet support it.
1422 * Reads the time from the battery backed persistent clock.
1423 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1424 *
1425 *  XXX - Do be sure to remove it once all arches implement it.
1426 */
1427void __weak read_persistent_clock(struct timespec *ts)
1428{
1429        ts->tv_sec = 0;
1430        ts->tv_nsec = 0;
1431}
1432
1433void __weak read_persistent_clock64(struct timespec64 *ts64)
1434{
1435        struct timespec ts;
1436
1437        read_persistent_clock(&ts);
1438        *ts64 = timespec_to_timespec64(ts);
1439}
1440
1441/**
1442 * read_boot_clock64 -  Return time of the system start.
1443 *
1444 * Weak dummy function for arches that do not yet support it.
1445 * Function to read the exact time the system has been started.
1446 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1447 *
1448 *  XXX - Do be sure to remove it once all arches implement it.
1449 */
1450void __weak read_boot_clock64(struct timespec64 *ts)
1451{
1452        ts->tv_sec = 0;
1453        ts->tv_nsec = 0;
1454}
1455
1456/* Flag for if timekeeping_resume() has injected sleeptime */
1457static bool sleeptime_injected;
1458
1459/* Flag for if there is a persistent clock on this platform */
1460static bool persistent_clock_exists;
1461
1462/*
1463 * timekeeping_init - Initializes the clocksource and common timekeeping values
1464 */
1465void __init timekeeping_init(void)
1466{
1467        struct timekeeper *tk = &tk_core.timekeeper;
1468        struct clocksource *clock;
1469        unsigned long flags;
1470        struct timespec64 now, boot, tmp;
1471
1472        read_persistent_clock64(&now);
1473        if (!timespec64_valid_strict(&now)) {
1474                pr_warn("WARNING: Persistent clock returned invalid value!\n"
1475                        "         Check your CMOS/BIOS settings.\n");
1476                now.tv_sec = 0;
1477                now.tv_nsec = 0;
1478        } else if (now.tv_sec || now.tv_nsec)
1479                persistent_clock_exists = true;
1480
1481        read_boot_clock64(&boot);
1482        if (!timespec64_valid_strict(&boot)) {
1483                pr_warn("WARNING: Boot clock returned invalid value!\n"
1484                        "         Check your CMOS/BIOS settings.\n");
1485                boot.tv_sec = 0;
1486                boot.tv_nsec = 0;
1487        }
1488
1489        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1490        write_seqcount_begin(&tk_core.seq);
1491        ntp_init();
1492
1493        clock = clocksource_default_clock();
1494        if (clock->enable)
1495                clock->enable(clock);
1496        tk_setup_internals(tk, clock);
1497
1498        tk_set_xtime(tk, &now);
1499        tk->raw_time.tv_sec = 0;
1500        tk->raw_time.tv_nsec = 0;
1501        if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1502                boot = tk_xtime(tk);
1503
1504        set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1505        tk_set_wall_to_mono(tk, tmp);
1506
1507        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1508
1509        write_seqcount_end(&tk_core.seq);
1510        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1511}
1512
1513/* time in seconds when suspend began for persistent clock */
1514static struct timespec64 timekeeping_suspend_time;
1515
1516/**
1517 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1518 * @delta: pointer to a timespec delta value
1519 *
1520 * Takes a timespec offset measuring a suspend interval and properly
1521 * adds the sleep offset to the timekeeping variables.
1522 */
1523static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1524                                           struct timespec64 *delta)
1525{
1526        if (!timespec64_valid_strict(delta)) {
1527                printk_deferred(KERN_WARNING
1528                                "__timekeeping_inject_sleeptime: Invalid "
1529                                "sleep delta value!\n");
1530                return;
1531        }
1532        tk_xtime_add(tk, delta);
1533        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1534        tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1535        tk_debug_account_sleep_time(delta);
1536}
1537
1538#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1539/**
1540 * We have three kinds of time sources to use for sleep time
1541 * injection, the preference order is:
1542 * 1) non-stop clocksource
1543 * 2) persistent clock (ie: RTC accessible when irqs are off)
1544 * 3) RTC
1545 *
1546 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1547 * If system has neither 1) nor 2), 3) will be used finally.
1548 *
1549 *
1550 * If timekeeping has injected sleeptime via either 1) or 2),
1551 * 3) becomes needless, so in this case we don't need to call
1552 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1553 * means.
1554 */
1555bool timekeeping_rtc_skipresume(void)
1556{
1557        return sleeptime_injected;
1558}
1559
1560/**
1561 * 1) can be determined whether to use or not only when doing
1562 * timekeeping_resume() which is invoked after rtc_suspend(),
1563 * so we can't skip rtc_suspend() surely if system has 1).
1564 *
1565 * But if system has 2), 2) will definitely be used, so in this
1566 * case we don't need to call rtc_suspend(), and this is what
1567 * timekeeping_rtc_skipsuspend() means.
1568 */
1569bool timekeeping_rtc_skipsuspend(void)
1570{
1571        return persistent_clock_exists;
1572}
1573
1574/**
1575 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1576 * @delta: pointer to a timespec64 delta value
1577 *
1578 * This hook is for architectures that cannot support read_persistent_clock64
1579 * because their RTC/persistent clock is only accessible when irqs are enabled.
1580 * and also don't have an effective nonstop clocksource.
1581 *
1582 * This function should only be called by rtc_resume(), and allows
1583 * a suspend offset to be injected into the timekeeping values.
1584 */
1585void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1586{
1587        struct timekeeper *tk = &tk_core.timekeeper;
1588        unsigned long flags;
1589
1590        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1591        write_seqcount_begin(&tk_core.seq);
1592
1593        timekeeping_forward_now(tk);
1594
1595        __timekeeping_inject_sleeptime(tk, delta);
1596
1597        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1598
1599        write_seqcount_end(&tk_core.seq);
1600        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1601
1602        /* signal hrtimers about time change */
1603        clock_was_set();
1604}
1605#endif
1606
1607/**
1608 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1609 */
1610void timekeeping_resume(void)
1611{
1612        struct timekeeper *tk = &tk_core.timekeeper;
1613        struct clocksource *clock = tk->tkr_mono.clock;
1614        unsigned long flags;
1615        struct timespec64 ts_new, ts_delta;
1616        cycle_t cycle_now, cycle_delta;
1617
1618        sleeptime_injected = false;
1619        read_persistent_clock64(&ts_new);
1620
1621        clockevents_resume();
1622        clocksource_resume();
1623
1624        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1625        write_seqcount_begin(&tk_core.seq);
1626
1627        /*
1628         * After system resumes, we need to calculate the suspended time and
1629         * compensate it for the OS time. There are 3 sources that could be
1630         * used: Nonstop clocksource during suspend, persistent clock and rtc
1631         * device.
1632         *
1633         * One specific platform may have 1 or 2 or all of them, and the
1634         * preference will be:
1635         *      suspend-nonstop clocksource -> persistent clock -> rtc
1636         * The less preferred source will only be tried if there is no better
1637         * usable source. The rtc part is handled separately in rtc core code.
1638         */
1639        cycle_now = tk->tkr_mono.read(clock);
1640        if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1641                cycle_now > tk->tkr_mono.cycle_last) {
1642                u64 num, max = ULLONG_MAX;
1643                u32 mult = clock->mult;
1644                u32 shift = clock->shift;
1645                s64 nsec = 0;
1646
1647                cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1648                                                tk->tkr_mono.mask);
1649
1650                /*
1651                 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1652                 * suspended time is too long. In that case we need do the
1653                 * 64 bits math carefully
1654                 */
1655                do_div(max, mult);
1656                if (cycle_delta > max) {
1657                        num = div64_u64(cycle_delta, max);
1658                        nsec = (((u64) max * mult) >> shift) * num;
1659                        cycle_delta -= num * max;
1660                }
1661                nsec += ((u64) cycle_delta * mult) >> shift;
1662
1663                ts_delta = ns_to_timespec64(nsec);
1664                sleeptime_injected = true;
1665        } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1666                ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1667                sleeptime_injected = true;
1668        }
1669
1670        if (sleeptime_injected)
1671                __timekeeping_inject_sleeptime(tk, &ts_delta);
1672
1673        /* Re-base the last cycle value */
1674        tk->tkr_mono.cycle_last = cycle_now;
1675        tk->tkr_raw.cycle_last  = cycle_now;
1676
1677        tk->ntp_error = 0;
1678        timekeeping_suspended = 0;
1679        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1680        write_seqcount_end(&tk_core.seq);
1681        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1682
1683        touch_softlockup_watchdog();
1684
1685        tick_resume();
1686        hrtimers_resume();
1687}
1688
1689int timekeeping_suspend(void)
1690{
1691        struct timekeeper *tk = &tk_core.timekeeper;
1692        unsigned long flags;
1693        struct timespec64               delta, delta_delta;
1694        static struct timespec64        old_delta;
1695
1696        read_persistent_clock64(&timekeeping_suspend_time);
1697
1698        /*
1699         * On some systems the persistent_clock can not be detected at
1700         * timekeeping_init by its return value, so if we see a valid
1701         * value returned, update the persistent_clock_exists flag.
1702         */
1703        if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1704                persistent_clock_exists = true;
1705
1706        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1707        write_seqcount_begin(&tk_core.seq);
1708        timekeeping_forward_now(tk);
1709        timekeeping_suspended = 1;
1710
1711        if (persistent_clock_exists) {
1712                /*
1713                 * To avoid drift caused by repeated suspend/resumes,
1714                 * which each can add ~1 second drift error,
1715                 * try to compensate so the difference in system time
1716                 * and persistent_clock time stays close to constant.
1717                 */
1718                delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1719                delta_delta = timespec64_sub(delta, old_delta);
1720                if (abs(delta_delta.tv_sec) >= 2) {
1721                        /*
1722                         * if delta_delta is too large, assume time correction
1723                         * has occurred and set old_delta to the current delta.
1724                         */
1725                        old_delta = delta;
1726                } else {
1727                        /* Otherwise try to adjust old_system to compensate */
1728                        timekeeping_suspend_time =
1729                                timespec64_add(timekeeping_suspend_time, delta_delta);
1730                }
1731        }
1732
1733        timekeeping_update(tk, TK_MIRROR);
1734        halt_fast_timekeeper(tk);
1735        write_seqcount_end(&tk_core.seq);
1736        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1737
1738        tick_suspend();
1739        clocksource_suspend();
1740        clockevents_suspend();
1741
1742        return 0;
1743}
1744
1745/* sysfs resume/suspend bits for timekeeping */
1746static struct syscore_ops timekeeping_syscore_ops = {
1747        .resume         = timekeeping_resume,
1748        .suspend        = timekeeping_suspend,
1749};
1750
1751static int __init timekeeping_init_ops(void)
1752{
1753        register_syscore_ops(&timekeeping_syscore_ops);
1754        return 0;
1755}
1756device_initcall(timekeeping_init_ops);
1757
1758/*
1759 * Apply a multiplier adjustment to the timekeeper
1760 */
1761static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1762                                                         s64 offset,
1763                                                         bool negative,
1764                                                         int adj_scale)
1765{
1766        s64 interval = tk->cycle_interval;
1767        s32 mult_adj = 1;
1768
1769        if (negative) {
1770                mult_adj = -mult_adj;
1771                interval = -interval;
1772                offset  = -offset;
1773        }
1774        mult_adj <<= adj_scale;
1775        interval <<= adj_scale;
1776        offset <<= adj_scale;
1777
1778        /*
1779         * So the following can be confusing.
1780         *
1781         * To keep things simple, lets assume mult_adj == 1 for now.
1782         *
1783         * When mult_adj != 1, remember that the interval and offset values
1784         * have been appropriately scaled so the math is the same.
1785         *
1786         * The basic idea here is that we're increasing the multiplier
1787         * by one, this causes the xtime_interval to be incremented by
1788         * one cycle_interval. This is because:
1789         *      xtime_interval = cycle_interval * mult
1790         * So if mult is being incremented by one:
1791         *      xtime_interval = cycle_interval * (mult + 1)
1792         * Its the same as:
1793         *      xtime_interval = (cycle_interval * mult) + cycle_interval
1794         * Which can be shortened to:
1795         *      xtime_interval += cycle_interval
1796         *
1797         * So offset stores the non-accumulated cycles. Thus the current
1798         * time (in shifted nanoseconds) is:
1799         *      now = (offset * adj) + xtime_nsec
1800         * Now, even though we're adjusting the clock frequency, we have
1801         * to keep time consistent. In other words, we can't jump back
1802         * in time, and we also want to avoid jumping forward in time.
1803         *
1804         * So given the same offset value, we need the time to be the same
1805         * both before and after the freq adjustment.
1806         *      now = (offset * adj_1) + xtime_nsec_1
1807         *      now = (offset * adj_2) + xtime_nsec_2
1808         * So:
1809         *      (offset * adj_1) + xtime_nsec_1 =
1810         *              (offset * adj_2) + xtime_nsec_2
1811         * And we know:
1812         *      adj_2 = adj_1 + 1
1813         * So:
1814         *      (offset * adj_1) + xtime_nsec_1 =
1815         *              (offset * (adj_1+1)) + xtime_nsec_2
1816         *      (offset * adj_1) + xtime_nsec_1 =
1817         *              (offset * adj_1) + offset + xtime_nsec_2
1818         * Canceling the sides:
1819         *      xtime_nsec_1 = offset + xtime_nsec_2
1820         * Which gives us:
1821         *      xtime_nsec_2 = xtime_nsec_1 - offset
1822         * Which simplfies to:
1823         *      xtime_nsec -= offset
1824         *
1825         * XXX - TODO: Doc ntp_error calculation.
1826         */
1827        if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1828                /* NTP adjustment caused clocksource mult overflow */
1829                WARN_ON_ONCE(1);
1830                return;
1831        }
1832
1833        tk->tkr_mono.mult += mult_adj;
1834        tk->xtime_interval += interval;
1835        tk->tkr_mono.xtime_nsec -= offset;
1836        tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1837}
1838
1839/*
1840 * Calculate the multiplier adjustment needed to match the frequency
1841 * specified by NTP
1842 */
1843static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1844                                                        s64 offset)
1845{
1846        s64 interval = tk->cycle_interval;
1847        s64 xinterval = tk->xtime_interval;
1848        u32 base = tk->tkr_mono.clock->mult;
1849        u32 max = tk->tkr_mono.clock->maxadj;
1850        u32 cur_adj = tk->tkr_mono.mult;
1851        s64 tick_error;
1852        bool negative;
1853        u32 adj_scale;
1854
1855        /* Remove any current error adj from freq calculation */
1856        if (tk->ntp_err_mult)
1857                xinterval -= tk->cycle_interval;
1858
1859        tk->ntp_tick = ntp_tick_length();
1860
1861        /* Calculate current error per tick */
1862        tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1863        tick_error -= (xinterval + tk->xtime_remainder);
1864
1865        /* Don't worry about correcting it if its small */
1866        if (likely((tick_error >= 0) && (tick_error <= interval)))
1867                return;
1868
1869        /* preserve the direction of correction */
1870        negative = (tick_error < 0);
1871
1872        /* If any adjustment would pass the max, just return */
1873        if (negative && (cur_adj - 1) <= (base - max))
1874                return;
1875        if (!negative && (cur_adj + 1) >= (base + max))
1876                return;
1877        /*
1878         * Sort out the magnitude of the correction, but
1879         * avoid making so large a correction that we go
1880         * over the max adjustment.
1881         */
1882        adj_scale = 0;
1883        tick_error = abs(tick_error);
1884        while (tick_error > interval) {
1885                u32 adj = 1 << (adj_scale + 1);
1886
1887                /* Check if adjustment gets us within 1 unit from the max */
1888                if (negative && (cur_adj - adj) <= (base - max))
1889                        break;
1890                if (!negative && (cur_adj + adj) >= (base + max))
1891                        break;
1892
1893                adj_scale++;
1894                tick_error >>= 1;
1895        }
1896
1897        /* scale the corrections */
1898        timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1899}
1900
1901/*
1902 * Adjust the timekeeper's multiplier to the correct frequency
1903 * and also to reduce the accumulated error value.
1904 */
1905static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1906{
1907        /* Correct for the current frequency error */
1908        timekeeping_freqadjust(tk, offset);
1909
1910        /* Next make a small adjustment to fix any cumulative error */
1911        if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1912                tk->ntp_err_mult = 1;
1913                timekeeping_apply_adjustment(tk, offset, 0, 0);
1914        } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1915                /* Undo any existing error adjustment */
1916                timekeeping_apply_adjustment(tk, offset, 1, 0);
1917                tk->ntp_err_mult = 0;
1918        }
1919
1920        if (unlikely(tk->tkr_mono.clock->maxadj &&
1921                (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1922                        > tk->tkr_mono.clock->maxadj))) {
1923                printk_once(KERN_WARNING
1924                        "Adjusting %s more than 11%% (%ld vs %ld)\n",
1925                        tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1926                        (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1927        }
1928
1929        /*
1930         * It may be possible that when we entered this function, xtime_nsec
1931         * was very small.  Further, if we're slightly speeding the clocksource
1932         * in the code above, its possible the required corrective factor to
1933         * xtime_nsec could cause it to underflow.
1934         *
1935         * Now, since we already accumulated the second, cannot simply roll
1936         * the accumulated second back, since the NTP subsystem has been
1937         * notified via second_overflow. So instead we push xtime_nsec forward
1938         * by the amount we underflowed, and add that amount into the error.
1939         *
1940         * We'll correct this error next time through this function, when
1941         * xtime_nsec is not as small.
1942         */
1943        if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1944                s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1945                tk->tkr_mono.xtime_nsec = 0;
1946                tk->ntp_error += neg << tk->ntp_error_shift;
1947        }
1948}
1949
1950/**
1951 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1952 *
1953 * Helper function that accumulates the nsecs greater than a second
1954 * from the xtime_nsec field to the xtime_secs field.
1955 * It also calls into the NTP code to handle leapsecond processing.
1956 *
1957 */
1958static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1959{
1960        u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1961        unsigned int clock_set = 0;
1962
1963        while (tk->tkr_mono.xtime_nsec >= nsecps) {
1964                int leap;
1965
1966                tk->tkr_mono.xtime_nsec -= nsecps;
1967                tk->xtime_sec++;
1968
1969                /* Figure out if its a leap sec and apply if needed */
1970                leap = second_overflow(tk->xtime_sec);
1971                if (unlikely(leap)) {
1972                        struct timespec64 ts;
1973
1974                        tk->xtime_sec += leap;
1975
1976                        ts.tv_sec = leap;
1977                        ts.tv_nsec = 0;
1978                        tk_set_wall_to_mono(tk,
1979                                timespec64_sub(tk->wall_to_monotonic, ts));
1980
1981                        __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1982
1983                        clock_set = TK_CLOCK_WAS_SET;
1984                }
1985        }
1986        return clock_set;
1987}
1988
1989/**
1990 * logarithmic_accumulation - shifted accumulation of cycles
1991 *
1992 * This functions accumulates a shifted interval of cycles into
1993 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1994 * loop.
1995 *
1996 * Returns the unconsumed cycles.
1997 */
1998static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1999                                                u32 shift,
2000                                                unsigned int *clock_set)
2001{
2002        cycle_t interval = tk->cycle_interval << shift;
2003        u64 raw_nsecs;
2004
2005        /* If the offset is smaller than a shifted interval, do nothing */
2006        if (offset < interval)
2007                return offset;
2008
2009        /* Accumulate one shifted interval */
2010        offset -= interval;
2011        tk->tkr_mono.cycle_last += interval;
2012        tk->tkr_raw.cycle_last  += interval;
2013
2014        tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2015        *clock_set |= accumulate_nsecs_to_secs(tk);
2016
2017        /* Accumulate raw time */
2018        raw_nsecs = (u64)tk->raw_interval << shift;
2019        raw_nsecs += tk->raw_time.tv_nsec;
2020        if (raw_nsecs >= NSEC_PER_SEC) {
2021                u64 raw_secs = raw_nsecs;
2022                raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2023                tk->raw_time.tv_sec += raw_secs;
2024        }
2025        tk->raw_time.tv_nsec = raw_nsecs;
2026
2027        /* Accumulate error between NTP and clock interval */
2028        tk->ntp_error += tk->ntp_tick << shift;
2029        tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2030                                                (tk->ntp_error_shift + shift);
2031
2032        return offset;
2033}
2034
2035/**
2036 * update_wall_time - Uses the current clocksource to increment the wall time
2037 *
2038 */
2039void update_wall_time(void)
2040{
2041        struct timekeeper *real_tk = &tk_core.timekeeper;
2042        struct timekeeper *tk = &shadow_timekeeper;
2043        cycle_t offset;
2044        int shift = 0, maxshift;
2045        unsigned int clock_set = 0;
2046        unsigned long flags;
2047
2048        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2049
2050        /* Make sure we're fully resumed: */
2051        if (unlikely(timekeeping_suspended))
2052                goto out;
2053
2054#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2055        offset = real_tk->cycle_interval;
2056#else
2057        offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2058                                   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2059#endif
2060
2061        /* Check if there's really nothing to do */
2062        if (offset < real_tk->cycle_interval)
2063                goto out;
2064
2065        /* Do some additional sanity checking */
2066        timekeeping_check_update(real_tk, offset);
2067
2068        /*
2069         * With NO_HZ we may have to accumulate many cycle_intervals
2070         * (think "ticks") worth of time at once. To do this efficiently,
2071         * we calculate the largest doubling multiple of cycle_intervals
2072         * that is smaller than the offset.  We then accumulate that
2073         * chunk in one go, and then try to consume the next smaller
2074         * doubled multiple.
2075         */
2076        shift = ilog2(offset) - ilog2(tk->cycle_interval);
2077        shift = max(0, shift);
2078        /* Bound shift to one less than what overflows tick_length */
2079        maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2080        shift = min(shift, maxshift);
2081        while (offset >= tk->cycle_interval) {
2082                offset = logarithmic_accumulation(tk, offset, shift,
2083                                                        &clock_set);
2084                if (offset < tk->cycle_interval<<shift)
2085                        shift--;
2086        }
2087
2088        /* correct the clock when NTP error is too big */
2089        timekeeping_adjust(tk, offset);
2090
2091        /*
2092         * XXX This can be killed once everyone converts
2093         * to the new update_vsyscall.
2094         */
2095        old_vsyscall_fixup(tk);
2096
2097        /*
2098         * Finally, make sure that after the rounding
2099         * xtime_nsec isn't larger than NSEC_PER_SEC
2100         */
2101        clock_set |= accumulate_nsecs_to_secs(tk);
2102
2103        write_seqcount_begin(&tk_core.seq);
2104        /*
2105         * Update the real timekeeper.
2106         *
2107         * We could avoid this memcpy by switching pointers, but that
2108         * requires changes to all other timekeeper usage sites as
2109         * well, i.e. move the timekeeper pointer getter into the
2110         * spinlocked/seqcount protected sections. And we trade this
2111         * memcpy under the tk_core.seq against one before we start
2112         * updating.
2113         */
2114        timekeeping_update(tk, clock_set);
2115        memcpy(real_tk, tk, sizeof(*tk));
2116        /* The memcpy must come last. Do not put anything here! */
2117        write_seqcount_end(&tk_core.seq);
2118out:
2119        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2120        if (clock_set)
2121                /* Have to call _delayed version, since in irq context*/
2122                clock_was_set_delayed();
2123}
2124
2125/**
2126 * getboottime64 - Return the real time of system boot.
2127 * @ts:         pointer to the timespec64 to be set
2128 *
2129 * Returns the wall-time of boot in a timespec64.
2130 *
2131 * This is based on the wall_to_monotonic offset and the total suspend
2132 * time. Calls to settimeofday will affect the value returned (which
2133 * basically means that however wrong your real time clock is at boot time,
2134 * you get the right time here).
2135 */
2136void getboottime64(struct timespec64 *ts)
2137{
2138        struct timekeeper *tk = &tk_core.timekeeper;
2139        ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2140
2141        *ts = ktime_to_timespec64(t);
2142}
2143EXPORT_SYMBOL_GPL(getboottime64);
2144
2145unsigned long get_seconds(void)
2146{
2147        struct timekeeper *tk = &tk_core.timekeeper;
2148
2149        return tk->xtime_sec;
2150}
2151EXPORT_SYMBOL(get_seconds);
2152
2153struct timespec __current_kernel_time(void)
2154{
2155        struct timekeeper *tk = &tk_core.timekeeper;
2156
2157        return timespec64_to_timespec(tk_xtime(tk));
2158}
2159
2160struct timespec64 current_kernel_time64(void)
2161{
2162        struct timekeeper *tk = &tk_core.timekeeper;
2163        struct timespec64 now;
2164        unsigned long seq;
2165
2166        do {
2167                seq = read_seqcount_begin(&tk_core.seq);
2168
2169                now = tk_xtime(tk);
2170        } while (read_seqcount_retry(&tk_core.seq, seq));
2171
2172        return now;
2173}
2174EXPORT_SYMBOL(current_kernel_time64);
2175
2176struct timespec64 get_monotonic_coarse64(void)
2177{
2178        struct timekeeper *tk = &tk_core.timekeeper;
2179        struct timespec64 now, mono;
2180        unsigned long seq;
2181
2182        do {
2183                seq = read_seqcount_begin(&tk_core.seq);
2184
2185                now = tk_xtime(tk);
2186                mono = tk->wall_to_monotonic;
2187        } while (read_seqcount_retry(&tk_core.seq, seq));
2188
2189        set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2190                                now.tv_nsec + mono.tv_nsec);
2191
2192        return now;
2193}
2194EXPORT_SYMBOL(get_monotonic_coarse64);
2195
2196/*
2197 * Must hold jiffies_lock
2198 */
2199void do_timer(unsigned long ticks)
2200{
2201        jiffies_64 += ticks;
2202        calc_global_load(ticks);
2203}
2204
2205/**
2206 * ktime_get_update_offsets_now - hrtimer helper
2207 * @cwsseq:     pointer to check and store the clock was set sequence number
2208 * @offs_real:  pointer to storage for monotonic -> realtime offset
2209 * @offs_boot:  pointer to storage for monotonic -> boottime offset
2210 * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2211 *
2212 * Returns current monotonic time and updates the offsets if the
2213 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2214 * different.
2215 *
2216 * Called from hrtimer_interrupt() or retrigger_next_event()
2217 */
2218ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2219                                     ktime_t *offs_boot, ktime_t *offs_tai)
2220{
2221        struct timekeeper *tk = &tk_core.timekeeper;
2222        unsigned int seq;
2223        ktime_t base;
2224        u64 nsecs;
2225
2226        do {
2227                seq = read_seqcount_begin(&tk_core.seq);
2228
2229                base = tk->tkr_mono.base;
2230                nsecs = timekeeping_get_ns(&tk->tkr_mono);
2231                base = ktime_add_ns(base, nsecs);
2232
2233                if (*cwsseq != tk->clock_was_set_seq) {
2234                        *cwsseq = tk->clock_was_set_seq;
2235                        *offs_real = tk->offs_real;
2236                        *offs_boot = tk->offs_boot;
2237                        *offs_tai = tk->offs_tai;
2238                }
2239
2240                /* Handle leapsecond insertion adjustments */
2241                if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2242                        *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2243
2244        } while (read_seqcount_retry(&tk_core.seq, seq));
2245
2246        return base;
2247}
2248
2249/**
2250 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2251 */
2252int do_adjtimex(struct timex *txc)
2253{
2254        struct timekeeper *tk = &tk_core.timekeeper;
2255        unsigned long flags;
2256        struct timespec64 ts;
2257        s32 orig_tai, tai;
2258        int ret;
2259
2260        /* Validate the data before disabling interrupts */
2261        ret = ntp_validate_timex(txc);
2262        if (ret)
2263                return ret;
2264
2265        if (txc->modes & ADJ_SETOFFSET) {
2266                struct timespec delta;
2267                delta.tv_sec  = txc->time.tv_sec;
2268                delta.tv_nsec = txc->time.tv_usec;
2269                if (!(txc->modes & ADJ_NANO))
2270                        delta.tv_nsec *= 1000;
2271                ret = timekeeping_inject_offset(&delta);
2272                if (ret)
2273                        return ret;
2274        }
2275
2276        getnstimeofday64(&ts);
2277
2278        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2279        write_seqcount_begin(&tk_core.seq);
2280
2281        orig_tai = tai = tk->tai_offset;
2282        ret = __do_adjtimex(txc, &ts, &tai);
2283
2284        if (tai != orig_tai) {
2285                __timekeeping_set_tai_offset(tk, tai);
2286                timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2287        }
2288        tk_update_leap_state(tk);
2289
2290        write_seqcount_end(&tk_core.seq);
2291        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2292
2293        if (tai != orig_tai)
2294                clock_was_set();
2295
2296        ntp_notify_cmos_timer();
2297
2298        return ret;
2299}
2300
2301#ifdef CONFIG_NTP_PPS
2302/**
2303 * hardpps() - Accessor function to NTP __hardpps function
2304 */
2305void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2306{
2307        unsigned long flags;
2308
2309        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2310        write_seqcount_begin(&tk_core.seq);
2311
2312        __hardpps(phase_ts, raw_ts);
2313
2314        write_seqcount_end(&tk_core.seq);
2315        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2316}
2317EXPORT_SYMBOL(hardpps);
2318#endif
2319
2320/**
2321 * xtime_update() - advances the timekeeping infrastructure
2322 * @ticks:      number of ticks, that have elapsed since the last call.
2323 *
2324 * Must be called with interrupts disabled.
2325 */
2326void xtime_update(unsigned long ticks)
2327{
2328        write_seqlock(&jiffies_lock);
2329        do_timer(ticks);
2330        write_sequnlock(&jiffies_lock);
2331        update_wall_time();
2332}
2333