linux/mm/filemap.c
<<
>>
Prefs
   1/*
   2 *      linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
  16#include <linux/uaccess.h>
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
  32#include <linux/cpuset.h>
  33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  34#include <linux/hugetlb.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
  37#include <linux/rmap.h>
  38#include "internal.h"
  39
  40#define CREATE_TRACE_POINTS
  41#include <trace/events/filemap.h>
  42
  43/*
  44 * FIXME: remove all knowledge of the buffer layer from the core VM
  45 */
  46#include <linux/buffer_head.h> /* for try_to_free_buffers */
  47
  48#include <asm/mman.h>
  49
  50/*
  51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  52 * though.
  53 *
  54 * Shared mappings now work. 15.8.1995  Bruno.
  55 *
  56 * finished 'unifying' the page and buffer cache and SMP-threaded the
  57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  58 *
  59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  60 */
  61
  62/*
  63 * Lock ordering:
  64 *
  65 *  ->i_mmap_rwsem              (truncate_pagecache)
  66 *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
  67 *      ->swap_lock             (exclusive_swap_page, others)
  68 *        ->mapping->tree_lock
  69 *
  70 *  ->i_mutex
  71 *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
  72 *
  73 *  ->mmap_sem
  74 *    ->i_mmap_rwsem
  75 *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
  76 *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
  77 *
  78 *  ->mmap_sem
  79 *    ->lock_page               (access_process_vm)
  80 *
  81 *  ->i_mutex                   (generic_perform_write)
  82 *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
  83 *
  84 *  bdi->wb.list_lock
  85 *    sb_lock                   (fs/fs-writeback.c)
  86 *    ->mapping->tree_lock      (__sync_single_inode)
  87 *
  88 *  ->i_mmap_rwsem
  89 *    ->anon_vma.lock           (vma_adjust)
  90 *
  91 *  ->anon_vma.lock
  92 *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
  93 *
  94 *  ->page_table_lock or pte_lock
  95 *    ->swap_lock               (try_to_unmap_one)
  96 *    ->private_lock            (try_to_unmap_one)
  97 *    ->tree_lock               (try_to_unmap_one)
  98 *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
  99 *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
 100 *    ->private_lock            (page_remove_rmap->set_page_dirty)
 101 *    ->tree_lock               (page_remove_rmap->set_page_dirty)
 102 *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
 103 *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
 104 *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
 105 *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
 106 *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
 107 *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
 108 *
 109 * ->i_mmap_rwsem
 110 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 111 */
 112
 113static int page_cache_tree_insert(struct address_space *mapping,
 114                                  struct page *page, void **shadowp)
 115{
 116        struct radix_tree_node *node;
 117        void **slot;
 118        int error;
 119
 120        error = __radix_tree_create(&mapping->page_tree, page->index, 0,
 121                                    &node, &slot);
 122        if (error)
 123                return error;
 124        if (*slot) {
 125                void *p;
 126
 127                p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 128                if (!radix_tree_exceptional_entry(p))
 129                        return -EEXIST;
 130
 131                mapping->nrexceptional--;
 132                if (!dax_mapping(mapping)) {
 133                        if (shadowp)
 134                                *shadowp = p;
 135                        if (node)
 136                                workingset_node_shadows_dec(node);
 137                } else {
 138                        /* DAX can replace empty locked entry with a hole */
 139                        WARN_ON_ONCE(p !=
 140                                (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
 141                                         RADIX_DAX_ENTRY_LOCK));
 142                        /* DAX accounts exceptional entries as normal pages */
 143                        if (node)
 144                                workingset_node_pages_dec(node);
 145                        /* Wakeup waiters for exceptional entry lock */
 146                        dax_wake_mapping_entry_waiter(mapping, page->index,
 147                                                      false);
 148                }
 149        }
 150        radix_tree_replace_slot(slot, page);
 151        mapping->nrpages++;
 152        if (node) {
 153                workingset_node_pages_inc(node);
 154                /*
 155                 * Don't track node that contains actual pages.
 156                 *
 157                 * Avoid acquiring the list_lru lock if already
 158                 * untracked.  The list_empty() test is safe as
 159                 * node->private_list is protected by
 160                 * mapping->tree_lock.
 161                 */
 162                if (!list_empty(&node->private_list))
 163                        list_lru_del(&workingset_shadow_nodes,
 164                                     &node->private_list);
 165        }
 166        return 0;
 167}
 168
 169static void page_cache_tree_delete(struct address_space *mapping,
 170                                   struct page *page, void *shadow)
 171{
 172        struct radix_tree_node *node;
 173        int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
 174
 175        VM_BUG_ON_PAGE(!PageLocked(page), page);
 176        VM_BUG_ON_PAGE(PageTail(page), page);
 177        VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 178
 179        if (shadow) {
 180                mapping->nrexceptional += nr;
 181                /*
 182                 * Make sure the nrexceptional update is committed before
 183                 * the nrpages update so that final truncate racing
 184                 * with reclaim does not see both counters 0 at the
 185                 * same time and miss a shadow entry.
 186                 */
 187                smp_wmb();
 188        }
 189        mapping->nrpages -= nr;
 190
 191        for (i = 0; i < nr; i++) {
 192                node = radix_tree_replace_clear_tags(&mapping->page_tree,
 193                                page->index + i, shadow);
 194                if (!node) {
 195                        VM_BUG_ON_PAGE(nr != 1, page);
 196                        return;
 197                }
 198
 199                workingset_node_pages_dec(node);
 200                if (shadow)
 201                        workingset_node_shadows_inc(node);
 202                else
 203                        if (__radix_tree_delete_node(&mapping->page_tree, node))
 204                                continue;
 205
 206                /*
 207                 * Track node that only contains shadow entries. DAX mappings
 208                 * contain no shadow entries and may contain other exceptional
 209                 * entries so skip those.
 210                 *
 211                 * Avoid acquiring the list_lru lock if already tracked.
 212                 * The list_empty() test is safe as node->private_list is
 213                 * protected by mapping->tree_lock.
 214                 */
 215                if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
 216                                list_empty(&node->private_list)) {
 217                        node->private_data = mapping;
 218                        list_lru_add(&workingset_shadow_nodes,
 219                                        &node->private_list);
 220                }
 221        }
 222}
 223
 224/*
 225 * Delete a page from the page cache and free it. Caller has to make
 226 * sure the page is locked and that nobody else uses it - or that usage
 227 * is safe.  The caller must hold the mapping's tree_lock.
 228 */
 229void __delete_from_page_cache(struct page *page, void *shadow)
 230{
 231        struct address_space *mapping = page->mapping;
 232        int nr = hpage_nr_pages(page);
 233
 234        trace_mm_filemap_delete_from_page_cache(page);
 235        /*
 236         * if we're uptodate, flush out into the cleancache, otherwise
 237         * invalidate any existing cleancache entries.  We can't leave
 238         * stale data around in the cleancache once our page is gone
 239         */
 240        if (PageUptodate(page) && PageMappedToDisk(page))
 241                cleancache_put_page(page);
 242        else
 243                cleancache_invalidate_page(mapping, page);
 244
 245        VM_BUG_ON_PAGE(PageTail(page), page);
 246        VM_BUG_ON_PAGE(page_mapped(page), page);
 247        if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 248                int mapcount;
 249
 250                pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 251                         current->comm, page_to_pfn(page));
 252                dump_page(page, "still mapped when deleted");
 253                dump_stack();
 254                add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 255
 256                mapcount = page_mapcount(page);
 257                if (mapping_exiting(mapping) &&
 258                    page_count(page) >= mapcount + 2) {
 259                        /*
 260                         * All vmas have already been torn down, so it's
 261                         * a good bet that actually the page is unmapped,
 262                         * and we'd prefer not to leak it: if we're wrong,
 263                         * some other bad page check should catch it later.
 264                         */
 265                        page_mapcount_reset(page);
 266                        page_ref_sub(page, mapcount);
 267                }
 268        }
 269
 270        page_cache_tree_delete(mapping, page, shadow);
 271
 272        page->mapping = NULL;
 273        /* Leave page->index set: truncation lookup relies upon it */
 274
 275        /* hugetlb pages do not participate in page cache accounting. */
 276        if (!PageHuge(page))
 277                __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 278        if (PageSwapBacked(page)) {
 279                __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
 280                if (PageTransHuge(page))
 281                        __dec_node_page_state(page, NR_SHMEM_THPS);
 282        } else {
 283                VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
 284        }
 285
 286        /*
 287         * At this point page must be either written or cleaned by truncate.
 288         * Dirty page here signals a bug and loss of unwritten data.
 289         *
 290         * This fixes dirty accounting after removing the page entirely but
 291         * leaves PageDirty set: it has no effect for truncated page and
 292         * anyway will be cleared before returning page into buddy allocator.
 293         */
 294        if (WARN_ON_ONCE(PageDirty(page)))
 295                account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 296}
 297
 298/**
 299 * delete_from_page_cache - delete page from page cache
 300 * @page: the page which the kernel is trying to remove from page cache
 301 *
 302 * This must be called only on pages that have been verified to be in the page
 303 * cache and locked.  It will never put the page into the free list, the caller
 304 * has a reference on the page.
 305 */
 306void delete_from_page_cache(struct page *page)
 307{
 308        struct address_space *mapping = page_mapping(page);
 309        unsigned long flags;
 310        void (*freepage)(struct page *);
 311
 312        BUG_ON(!PageLocked(page));
 313
 314        freepage = mapping->a_ops->freepage;
 315
 316        spin_lock_irqsave(&mapping->tree_lock, flags);
 317        __delete_from_page_cache(page, NULL);
 318        spin_unlock_irqrestore(&mapping->tree_lock, flags);
 319
 320        if (freepage)
 321                freepage(page);
 322
 323        if (PageTransHuge(page) && !PageHuge(page)) {
 324                page_ref_sub(page, HPAGE_PMD_NR);
 325                VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 326        } else {
 327                put_page(page);
 328        }
 329}
 330EXPORT_SYMBOL(delete_from_page_cache);
 331
 332int filemap_check_errors(struct address_space *mapping)
 333{
 334        int ret = 0;
 335        /* Check for outstanding write errors */
 336        if (test_bit(AS_ENOSPC, &mapping->flags) &&
 337            test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 338                ret = -ENOSPC;
 339        if (test_bit(AS_EIO, &mapping->flags) &&
 340            test_and_clear_bit(AS_EIO, &mapping->flags))
 341                ret = -EIO;
 342        return ret;
 343}
 344EXPORT_SYMBOL(filemap_check_errors);
 345
 346/**
 347 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 348 * @mapping:    address space structure to write
 349 * @start:      offset in bytes where the range starts
 350 * @end:        offset in bytes where the range ends (inclusive)
 351 * @sync_mode:  enable synchronous operation
 352 *
 353 * Start writeback against all of a mapping's dirty pages that lie
 354 * within the byte offsets <start, end> inclusive.
 355 *
 356 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 357 * opposed to a regular memory cleansing writeback.  The difference between
 358 * these two operations is that if a dirty page/buffer is encountered, it must
 359 * be waited upon, and not just skipped over.
 360 */
 361int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 362                                loff_t end, int sync_mode)
 363{
 364        int ret;
 365        struct writeback_control wbc = {
 366                .sync_mode = sync_mode,
 367                .nr_to_write = LONG_MAX,
 368                .range_start = start,
 369                .range_end = end,
 370        };
 371
 372        if (!mapping_cap_writeback_dirty(mapping))
 373                return 0;
 374
 375        wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 376        ret = do_writepages(mapping, &wbc);
 377        wbc_detach_inode(&wbc);
 378        return ret;
 379}
 380
 381static inline int __filemap_fdatawrite(struct address_space *mapping,
 382        int sync_mode)
 383{
 384        return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 385}
 386
 387int filemap_fdatawrite(struct address_space *mapping)
 388{
 389        return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 390}
 391EXPORT_SYMBOL(filemap_fdatawrite);
 392
 393int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 394                                loff_t end)
 395{
 396        return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 397}
 398EXPORT_SYMBOL(filemap_fdatawrite_range);
 399
 400/**
 401 * filemap_flush - mostly a non-blocking flush
 402 * @mapping:    target address_space
 403 *
 404 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 405 * purposes - I/O may not be started against all dirty pages.
 406 */
 407int filemap_flush(struct address_space *mapping)
 408{
 409        return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 410}
 411EXPORT_SYMBOL(filemap_flush);
 412
 413static int __filemap_fdatawait_range(struct address_space *mapping,
 414                                     loff_t start_byte, loff_t end_byte)
 415{
 416        pgoff_t index = start_byte >> PAGE_SHIFT;
 417        pgoff_t end = end_byte >> PAGE_SHIFT;
 418        struct pagevec pvec;
 419        int nr_pages;
 420        int ret = 0;
 421
 422        if (end_byte < start_byte)
 423                goto out;
 424
 425        pagevec_init(&pvec, 0);
 426        while ((index <= end) &&
 427                        (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 428                        PAGECACHE_TAG_WRITEBACK,
 429                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 430                unsigned i;
 431
 432                for (i = 0; i < nr_pages; i++) {
 433                        struct page *page = pvec.pages[i];
 434
 435                        /* until radix tree lookup accepts end_index */
 436                        if (page->index > end)
 437                                continue;
 438
 439                        wait_on_page_writeback(page);
 440                        if (TestClearPageError(page))
 441                                ret = -EIO;
 442                }
 443                pagevec_release(&pvec);
 444                cond_resched();
 445        }
 446out:
 447        return ret;
 448}
 449
 450/**
 451 * filemap_fdatawait_range - wait for writeback to complete
 452 * @mapping:            address space structure to wait for
 453 * @start_byte:         offset in bytes where the range starts
 454 * @end_byte:           offset in bytes where the range ends (inclusive)
 455 *
 456 * Walk the list of under-writeback pages of the given address space
 457 * in the given range and wait for all of them.  Check error status of
 458 * the address space and return it.
 459 *
 460 * Since the error status of the address space is cleared by this function,
 461 * callers are responsible for checking the return value and handling and/or
 462 * reporting the error.
 463 */
 464int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 465                            loff_t end_byte)
 466{
 467        int ret, ret2;
 468
 469        ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
 470        ret2 = filemap_check_errors(mapping);
 471        if (!ret)
 472                ret = ret2;
 473
 474        return ret;
 475}
 476EXPORT_SYMBOL(filemap_fdatawait_range);
 477
 478/**
 479 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 480 * @mapping: address space structure to wait for
 481 *
 482 * Walk the list of under-writeback pages of the given address space
 483 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 484 * does not clear error status of the address space.
 485 *
 486 * Use this function if callers don't handle errors themselves.  Expected
 487 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 488 * fsfreeze(8)
 489 */
 490void filemap_fdatawait_keep_errors(struct address_space *mapping)
 491{
 492        loff_t i_size = i_size_read(mapping->host);
 493
 494        if (i_size == 0)
 495                return;
 496
 497        __filemap_fdatawait_range(mapping, 0, i_size - 1);
 498}
 499
 500/**
 501 * filemap_fdatawait - wait for all under-writeback pages to complete
 502 * @mapping: address space structure to wait for
 503 *
 504 * Walk the list of under-writeback pages of the given address space
 505 * and wait for all of them.  Check error status of the address space
 506 * and return it.
 507 *
 508 * Since the error status of the address space is cleared by this function,
 509 * callers are responsible for checking the return value and handling and/or
 510 * reporting the error.
 511 */
 512int filemap_fdatawait(struct address_space *mapping)
 513{
 514        loff_t i_size = i_size_read(mapping->host);
 515
 516        if (i_size == 0)
 517                return 0;
 518
 519        return filemap_fdatawait_range(mapping, 0, i_size - 1);
 520}
 521EXPORT_SYMBOL(filemap_fdatawait);
 522
 523int filemap_write_and_wait(struct address_space *mapping)
 524{
 525        int err = 0;
 526
 527        if ((!dax_mapping(mapping) && mapping->nrpages) ||
 528            (dax_mapping(mapping) && mapping->nrexceptional)) {
 529                err = filemap_fdatawrite(mapping);
 530                /*
 531                 * Even if the above returned error, the pages may be
 532                 * written partially (e.g. -ENOSPC), so we wait for it.
 533                 * But the -EIO is special case, it may indicate the worst
 534                 * thing (e.g. bug) happened, so we avoid waiting for it.
 535                 */
 536                if (err != -EIO) {
 537                        int err2 = filemap_fdatawait(mapping);
 538                        if (!err)
 539                                err = err2;
 540                }
 541        } else {
 542                err = filemap_check_errors(mapping);
 543        }
 544        return err;
 545}
 546EXPORT_SYMBOL(filemap_write_and_wait);
 547
 548/**
 549 * filemap_write_and_wait_range - write out & wait on a file range
 550 * @mapping:    the address_space for the pages
 551 * @lstart:     offset in bytes where the range starts
 552 * @lend:       offset in bytes where the range ends (inclusive)
 553 *
 554 * Write out and wait upon file offsets lstart->lend, inclusive.
 555 *
 556 * Note that `lend' is inclusive (describes the last byte to be written) so
 557 * that this function can be used to write to the very end-of-file (end = -1).
 558 */
 559int filemap_write_and_wait_range(struct address_space *mapping,
 560                                 loff_t lstart, loff_t lend)
 561{
 562        int err = 0;
 563
 564        if ((!dax_mapping(mapping) && mapping->nrpages) ||
 565            (dax_mapping(mapping) && mapping->nrexceptional)) {
 566                err = __filemap_fdatawrite_range(mapping, lstart, lend,
 567                                                 WB_SYNC_ALL);
 568                /* See comment of filemap_write_and_wait() */
 569                if (err != -EIO) {
 570                        int err2 = filemap_fdatawait_range(mapping,
 571                                                lstart, lend);
 572                        if (!err)
 573                                err = err2;
 574                }
 575        } else {
 576                err = filemap_check_errors(mapping);
 577        }
 578        return err;
 579}
 580EXPORT_SYMBOL(filemap_write_and_wait_range);
 581
 582/**
 583 * replace_page_cache_page - replace a pagecache page with a new one
 584 * @old:        page to be replaced
 585 * @new:        page to replace with
 586 * @gfp_mask:   allocation mode
 587 *
 588 * This function replaces a page in the pagecache with a new one.  On
 589 * success it acquires the pagecache reference for the new page and
 590 * drops it for the old page.  Both the old and new pages must be
 591 * locked.  This function does not add the new page to the LRU, the
 592 * caller must do that.
 593 *
 594 * The remove + add is atomic.  The only way this function can fail is
 595 * memory allocation failure.
 596 */
 597int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 598{
 599        int error;
 600
 601        VM_BUG_ON_PAGE(!PageLocked(old), old);
 602        VM_BUG_ON_PAGE(!PageLocked(new), new);
 603        VM_BUG_ON_PAGE(new->mapping, new);
 604
 605        error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 606        if (!error) {
 607                struct address_space *mapping = old->mapping;
 608                void (*freepage)(struct page *);
 609                unsigned long flags;
 610
 611                pgoff_t offset = old->index;
 612                freepage = mapping->a_ops->freepage;
 613
 614                get_page(new);
 615                new->mapping = mapping;
 616                new->index = offset;
 617
 618                spin_lock_irqsave(&mapping->tree_lock, flags);
 619                __delete_from_page_cache(old, NULL);
 620                error = page_cache_tree_insert(mapping, new, NULL);
 621                BUG_ON(error);
 622                mapping->nrpages++;
 623
 624                /*
 625                 * hugetlb pages do not participate in page cache accounting.
 626                 */
 627                if (!PageHuge(new))
 628                        __inc_node_page_state(new, NR_FILE_PAGES);
 629                if (PageSwapBacked(new))
 630                        __inc_node_page_state(new, NR_SHMEM);
 631                spin_unlock_irqrestore(&mapping->tree_lock, flags);
 632                mem_cgroup_migrate(old, new);
 633                radix_tree_preload_end();
 634                if (freepage)
 635                        freepage(old);
 636                put_page(old);
 637        }
 638
 639        return error;
 640}
 641EXPORT_SYMBOL_GPL(replace_page_cache_page);
 642
 643static int __add_to_page_cache_locked(struct page *page,
 644                                      struct address_space *mapping,
 645                                      pgoff_t offset, gfp_t gfp_mask,
 646                                      void **shadowp)
 647{
 648        int huge = PageHuge(page);
 649        struct mem_cgroup *memcg;
 650        int error;
 651
 652        VM_BUG_ON_PAGE(!PageLocked(page), page);
 653        VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 654
 655        if (!huge) {
 656                error = mem_cgroup_try_charge(page, current->mm,
 657                                              gfp_mask, &memcg, false);
 658                if (error)
 659                        return error;
 660        }
 661
 662        error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
 663        if (error) {
 664                if (!huge)
 665                        mem_cgroup_cancel_charge(page, memcg, false);
 666                return error;
 667        }
 668
 669        get_page(page);
 670        page->mapping = mapping;
 671        page->index = offset;
 672
 673        spin_lock_irq(&mapping->tree_lock);
 674        error = page_cache_tree_insert(mapping, page, shadowp);
 675        radix_tree_preload_end();
 676        if (unlikely(error))
 677                goto err_insert;
 678
 679        /* hugetlb pages do not participate in page cache accounting. */
 680        if (!huge)
 681                __inc_node_page_state(page, NR_FILE_PAGES);
 682        spin_unlock_irq(&mapping->tree_lock);
 683        if (!huge)
 684                mem_cgroup_commit_charge(page, memcg, false, false);
 685        trace_mm_filemap_add_to_page_cache(page);
 686        return 0;
 687err_insert:
 688        page->mapping = NULL;
 689        /* Leave page->index set: truncation relies upon it */
 690        spin_unlock_irq(&mapping->tree_lock);
 691        if (!huge)
 692                mem_cgroup_cancel_charge(page, memcg, false);
 693        put_page(page);
 694        return error;
 695}
 696
 697/**
 698 * add_to_page_cache_locked - add a locked page to the pagecache
 699 * @page:       page to add
 700 * @mapping:    the page's address_space
 701 * @offset:     page index
 702 * @gfp_mask:   page allocation mode
 703 *
 704 * This function is used to add a page to the pagecache. It must be locked.
 705 * This function does not add the page to the LRU.  The caller must do that.
 706 */
 707int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 708                pgoff_t offset, gfp_t gfp_mask)
 709{
 710        return __add_to_page_cache_locked(page, mapping, offset,
 711                                          gfp_mask, NULL);
 712}
 713EXPORT_SYMBOL(add_to_page_cache_locked);
 714
 715int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 716                                pgoff_t offset, gfp_t gfp_mask)
 717{
 718        void *shadow = NULL;
 719        int ret;
 720
 721        __SetPageLocked(page);
 722        ret = __add_to_page_cache_locked(page, mapping, offset,
 723                                         gfp_mask, &shadow);
 724        if (unlikely(ret))
 725                __ClearPageLocked(page);
 726        else {
 727                /*
 728                 * The page might have been evicted from cache only
 729                 * recently, in which case it should be activated like
 730                 * any other repeatedly accessed page.
 731                 * The exception is pages getting rewritten; evicting other
 732                 * data from the working set, only to cache data that will
 733                 * get overwritten with something else, is a waste of memory.
 734                 */
 735                if (!(gfp_mask & __GFP_WRITE) &&
 736                    shadow && workingset_refault(shadow)) {
 737                        SetPageActive(page);
 738                        workingset_activation(page);
 739                } else
 740                        ClearPageActive(page);
 741                lru_cache_add(page);
 742        }
 743        return ret;
 744}
 745EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 746
 747#ifdef CONFIG_NUMA
 748struct page *__page_cache_alloc(gfp_t gfp)
 749{
 750        int n;
 751        struct page *page;
 752
 753        if (cpuset_do_page_mem_spread()) {
 754                unsigned int cpuset_mems_cookie;
 755                do {
 756                        cpuset_mems_cookie = read_mems_allowed_begin();
 757                        n = cpuset_mem_spread_node();
 758                        page = __alloc_pages_node(n, gfp, 0);
 759                } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 760
 761                return page;
 762        }
 763        return alloc_pages(gfp, 0);
 764}
 765EXPORT_SYMBOL(__page_cache_alloc);
 766#endif
 767
 768/*
 769 * In order to wait for pages to become available there must be
 770 * waitqueues associated with pages. By using a hash table of
 771 * waitqueues where the bucket discipline is to maintain all
 772 * waiters on the same queue and wake all when any of the pages
 773 * become available, and for the woken contexts to check to be
 774 * sure the appropriate page became available, this saves space
 775 * at a cost of "thundering herd" phenomena during rare hash
 776 * collisions.
 777 */
 778wait_queue_head_t *page_waitqueue(struct page *page)
 779{
 780        const struct zone *zone = page_zone(page);
 781
 782        return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 783}
 784EXPORT_SYMBOL(page_waitqueue);
 785
 786void wait_on_page_bit(struct page *page, int bit_nr)
 787{
 788        DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 789
 790        if (test_bit(bit_nr, &page->flags))
 791                __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
 792                                                        TASK_UNINTERRUPTIBLE);
 793}
 794EXPORT_SYMBOL(wait_on_page_bit);
 795
 796int wait_on_page_bit_killable(struct page *page, int bit_nr)
 797{
 798        DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 799
 800        if (!test_bit(bit_nr, &page->flags))
 801                return 0;
 802
 803        return __wait_on_bit(page_waitqueue(page), &wait,
 804                             bit_wait_io, TASK_KILLABLE);
 805}
 806
 807int wait_on_page_bit_killable_timeout(struct page *page,
 808                                       int bit_nr, unsigned long timeout)
 809{
 810        DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 811
 812        wait.key.timeout = jiffies + timeout;
 813        if (!test_bit(bit_nr, &page->flags))
 814                return 0;
 815        return __wait_on_bit(page_waitqueue(page), &wait,
 816                             bit_wait_io_timeout, TASK_KILLABLE);
 817}
 818EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
 819
 820/**
 821 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 822 * @page: Page defining the wait queue of interest
 823 * @waiter: Waiter to add to the queue
 824 *
 825 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 826 */
 827void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 828{
 829        wait_queue_head_t *q = page_waitqueue(page);
 830        unsigned long flags;
 831
 832        spin_lock_irqsave(&q->lock, flags);
 833        __add_wait_queue(q, waiter);
 834        spin_unlock_irqrestore(&q->lock, flags);
 835}
 836EXPORT_SYMBOL_GPL(add_page_wait_queue);
 837
 838/**
 839 * unlock_page - unlock a locked page
 840 * @page: the page
 841 *
 842 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 843 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 844 * mechanism between PageLocked pages and PageWriteback pages is shared.
 845 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 846 *
 847 * The mb is necessary to enforce ordering between the clear_bit and the read
 848 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 849 */
 850void unlock_page(struct page *page)
 851{
 852        page = compound_head(page);
 853        VM_BUG_ON_PAGE(!PageLocked(page), page);
 854        clear_bit_unlock(PG_locked, &page->flags);
 855        smp_mb__after_atomic();
 856        wake_up_page(page, PG_locked);
 857}
 858EXPORT_SYMBOL(unlock_page);
 859
 860/**
 861 * end_page_writeback - end writeback against a page
 862 * @page: the page
 863 */
 864void end_page_writeback(struct page *page)
 865{
 866        /*
 867         * TestClearPageReclaim could be used here but it is an atomic
 868         * operation and overkill in this particular case. Failing to
 869         * shuffle a page marked for immediate reclaim is too mild to
 870         * justify taking an atomic operation penalty at the end of
 871         * ever page writeback.
 872         */
 873        if (PageReclaim(page)) {
 874                ClearPageReclaim(page);
 875                rotate_reclaimable_page(page);
 876        }
 877
 878        if (!test_clear_page_writeback(page))
 879                BUG();
 880
 881        smp_mb__after_atomic();
 882        wake_up_page(page, PG_writeback);
 883}
 884EXPORT_SYMBOL(end_page_writeback);
 885
 886/*
 887 * After completing I/O on a page, call this routine to update the page
 888 * flags appropriately
 889 */
 890void page_endio(struct page *page, bool is_write, int err)
 891{
 892        if (!is_write) {
 893                if (!err) {
 894                        SetPageUptodate(page);
 895                } else {
 896                        ClearPageUptodate(page);
 897                        SetPageError(page);
 898                }
 899                unlock_page(page);
 900        } else {
 901                if (err) {
 902                        SetPageError(page);
 903                        if (page->mapping)
 904                                mapping_set_error(page->mapping, err);
 905                }
 906                end_page_writeback(page);
 907        }
 908}
 909EXPORT_SYMBOL_GPL(page_endio);
 910
 911/**
 912 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 913 * @page: the page to lock
 914 */
 915void __lock_page(struct page *page)
 916{
 917        struct page *page_head = compound_head(page);
 918        DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
 919
 920        __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
 921                                                        TASK_UNINTERRUPTIBLE);
 922}
 923EXPORT_SYMBOL(__lock_page);
 924
 925int __lock_page_killable(struct page *page)
 926{
 927        struct page *page_head = compound_head(page);
 928        DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
 929
 930        return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
 931                                        bit_wait_io, TASK_KILLABLE);
 932}
 933EXPORT_SYMBOL_GPL(__lock_page_killable);
 934
 935/*
 936 * Return values:
 937 * 1 - page is locked; mmap_sem is still held.
 938 * 0 - page is not locked.
 939 *     mmap_sem has been released (up_read()), unless flags had both
 940 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 941 *     which case mmap_sem is still held.
 942 *
 943 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 944 * with the page locked and the mmap_sem unperturbed.
 945 */
 946int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 947                         unsigned int flags)
 948{
 949        if (flags & FAULT_FLAG_ALLOW_RETRY) {
 950                /*
 951                 * CAUTION! In this case, mmap_sem is not released
 952                 * even though return 0.
 953                 */
 954                if (flags & FAULT_FLAG_RETRY_NOWAIT)
 955                        return 0;
 956
 957                up_read(&mm->mmap_sem);
 958                if (flags & FAULT_FLAG_KILLABLE)
 959                        wait_on_page_locked_killable(page);
 960                else
 961                        wait_on_page_locked(page);
 962                return 0;
 963        } else {
 964                if (flags & FAULT_FLAG_KILLABLE) {
 965                        int ret;
 966
 967                        ret = __lock_page_killable(page);
 968                        if (ret) {
 969                                up_read(&mm->mmap_sem);
 970                                return 0;
 971                        }
 972                } else
 973                        __lock_page(page);
 974                return 1;
 975        }
 976}
 977
 978/**
 979 * page_cache_next_hole - find the next hole (not-present entry)
 980 * @mapping: mapping
 981 * @index: index
 982 * @max_scan: maximum range to search
 983 *
 984 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
 985 * lowest indexed hole.
 986 *
 987 * Returns: the index of the hole if found, otherwise returns an index
 988 * outside of the set specified (in which case 'return - index >=
 989 * max_scan' will be true). In rare cases of index wrap-around, 0 will
 990 * be returned.
 991 *
 992 * page_cache_next_hole may be called under rcu_read_lock. However,
 993 * like radix_tree_gang_lookup, this will not atomically search a
 994 * snapshot of the tree at a single point in time. For example, if a
 995 * hole is created at index 5, then subsequently a hole is created at
 996 * index 10, page_cache_next_hole covering both indexes may return 10
 997 * if called under rcu_read_lock.
 998 */
 999pgoff_t page_cache_next_hole(struct address_space *mapping,
1000                             pgoff_t index, unsigned long max_scan)
1001{
1002        unsigned long i;
1003
1004        for (i = 0; i < max_scan; i++) {
1005                struct page *page;
1006
1007                page = radix_tree_lookup(&mapping->page_tree, index);
1008                if (!page || radix_tree_exceptional_entry(page))
1009                        break;
1010                index++;
1011                if (index == 0)
1012                        break;
1013        }
1014
1015        return index;
1016}
1017EXPORT_SYMBOL(page_cache_next_hole);
1018
1019/**
1020 * page_cache_prev_hole - find the prev hole (not-present entry)
1021 * @mapping: mapping
1022 * @index: index
1023 * @max_scan: maximum range to search
1024 *
1025 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1026 * the first hole.
1027 *
1028 * Returns: the index of the hole if found, otherwise returns an index
1029 * outside of the set specified (in which case 'index - return >=
1030 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1031 * will be returned.
1032 *
1033 * page_cache_prev_hole may be called under rcu_read_lock. However,
1034 * like radix_tree_gang_lookup, this will not atomically search a
1035 * snapshot of the tree at a single point in time. For example, if a
1036 * hole is created at index 10, then subsequently a hole is created at
1037 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1038 * called under rcu_read_lock.
1039 */
1040pgoff_t page_cache_prev_hole(struct address_space *mapping,
1041                             pgoff_t index, unsigned long max_scan)
1042{
1043        unsigned long i;
1044
1045        for (i = 0; i < max_scan; i++) {
1046                struct page *page;
1047
1048                page = radix_tree_lookup(&mapping->page_tree, index);
1049                if (!page || radix_tree_exceptional_entry(page))
1050                        break;
1051                index--;
1052                if (index == ULONG_MAX)
1053                        break;
1054        }
1055
1056        return index;
1057}
1058EXPORT_SYMBOL(page_cache_prev_hole);
1059
1060/**
1061 * find_get_entry - find and get a page cache entry
1062 * @mapping: the address_space to search
1063 * @offset: the page cache index
1064 *
1065 * Looks up the page cache slot at @mapping & @offset.  If there is a
1066 * page cache page, it is returned with an increased refcount.
1067 *
1068 * If the slot holds a shadow entry of a previously evicted page, or a
1069 * swap entry from shmem/tmpfs, it is returned.
1070 *
1071 * Otherwise, %NULL is returned.
1072 */
1073struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1074{
1075        void **pagep;
1076        struct page *head, *page;
1077
1078        rcu_read_lock();
1079repeat:
1080        page = NULL;
1081        pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1082        if (pagep) {
1083                page = radix_tree_deref_slot(pagep);
1084                if (unlikely(!page))
1085                        goto out;
1086                if (radix_tree_exception(page)) {
1087                        if (radix_tree_deref_retry(page))
1088                                goto repeat;
1089                        /*
1090                         * A shadow entry of a recently evicted page,
1091                         * or a swap entry from shmem/tmpfs.  Return
1092                         * it without attempting to raise page count.
1093                         */
1094                        goto out;
1095                }
1096
1097                head = compound_head(page);
1098                if (!page_cache_get_speculative(head))
1099                        goto repeat;
1100
1101                /* The page was split under us? */
1102                if (compound_head(page) != head) {
1103                        put_page(head);
1104                        goto repeat;
1105                }
1106
1107                /*
1108                 * Has the page moved?
1109                 * This is part of the lockless pagecache protocol. See
1110                 * include/linux/pagemap.h for details.
1111                 */
1112                if (unlikely(page != *pagep)) {
1113                        put_page(head);
1114                        goto repeat;
1115                }
1116        }
1117out:
1118        rcu_read_unlock();
1119
1120        return page;
1121}
1122EXPORT_SYMBOL(find_get_entry);
1123
1124/**
1125 * find_lock_entry - locate, pin and lock a page cache entry
1126 * @mapping: the address_space to search
1127 * @offset: the page cache index
1128 *
1129 * Looks up the page cache slot at @mapping & @offset.  If there is a
1130 * page cache page, it is returned locked and with an increased
1131 * refcount.
1132 *
1133 * If the slot holds a shadow entry of a previously evicted page, or a
1134 * swap entry from shmem/tmpfs, it is returned.
1135 *
1136 * Otherwise, %NULL is returned.
1137 *
1138 * find_lock_entry() may sleep.
1139 */
1140struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1141{
1142        struct page *page;
1143
1144repeat:
1145        page = find_get_entry(mapping, offset);
1146        if (page && !radix_tree_exception(page)) {
1147                lock_page(page);
1148                /* Has the page been truncated? */
1149                if (unlikely(page_mapping(page) != mapping)) {
1150                        unlock_page(page);
1151                        put_page(page);
1152                        goto repeat;
1153                }
1154                VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1155        }
1156        return page;
1157}
1158EXPORT_SYMBOL(find_lock_entry);
1159
1160/**
1161 * pagecache_get_page - find and get a page reference
1162 * @mapping: the address_space to search
1163 * @offset: the page index
1164 * @fgp_flags: PCG flags
1165 * @gfp_mask: gfp mask to use for the page cache data page allocation
1166 *
1167 * Looks up the page cache slot at @mapping & @offset.
1168 *
1169 * PCG flags modify how the page is returned.
1170 *
1171 * FGP_ACCESSED: the page will be marked accessed
1172 * FGP_LOCK: Page is return locked
1173 * FGP_CREAT: If page is not present then a new page is allocated using
1174 *              @gfp_mask and added to the page cache and the VM's LRU
1175 *              list. The page is returned locked and with an increased
1176 *              refcount. Otherwise, %NULL is returned.
1177 *
1178 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1179 * if the GFP flags specified for FGP_CREAT are atomic.
1180 *
1181 * If there is a page cache page, it is returned with an increased refcount.
1182 */
1183struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1184        int fgp_flags, gfp_t gfp_mask)
1185{
1186        struct page *page;
1187
1188repeat:
1189        page = find_get_entry(mapping, offset);
1190        if (radix_tree_exceptional_entry(page))
1191                page = NULL;
1192        if (!page)
1193                goto no_page;
1194
1195        if (fgp_flags & FGP_LOCK) {
1196                if (fgp_flags & FGP_NOWAIT) {
1197                        if (!trylock_page(page)) {
1198                                put_page(page);
1199                                return NULL;
1200                        }
1201                } else {
1202                        lock_page(page);
1203                }
1204
1205                /* Has the page been truncated? */
1206                if (unlikely(page->mapping != mapping)) {
1207                        unlock_page(page);
1208                        put_page(page);
1209                        goto repeat;
1210                }
1211                VM_BUG_ON_PAGE(page->index != offset, page);
1212        }
1213
1214        if (page && (fgp_flags & FGP_ACCESSED))
1215                mark_page_accessed(page);
1216
1217no_page:
1218        if (!page && (fgp_flags & FGP_CREAT)) {
1219                int err;
1220                if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1221                        gfp_mask |= __GFP_WRITE;
1222                if (fgp_flags & FGP_NOFS)
1223                        gfp_mask &= ~__GFP_FS;
1224
1225                page = __page_cache_alloc(gfp_mask);
1226                if (!page)
1227                        return NULL;
1228
1229                if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1230                        fgp_flags |= FGP_LOCK;
1231
1232                /* Init accessed so avoid atomic mark_page_accessed later */
1233                if (fgp_flags & FGP_ACCESSED)
1234                        __SetPageReferenced(page);
1235
1236                err = add_to_page_cache_lru(page, mapping, offset,
1237                                gfp_mask & GFP_RECLAIM_MASK);
1238                if (unlikely(err)) {
1239                        put_page(page);
1240                        page = NULL;
1241                        if (err == -EEXIST)
1242                                goto repeat;
1243                }
1244        }
1245
1246        return page;
1247}
1248EXPORT_SYMBOL(pagecache_get_page);
1249
1250/**
1251 * find_get_entries - gang pagecache lookup
1252 * @mapping:    The address_space to search
1253 * @start:      The starting page cache index
1254 * @nr_entries: The maximum number of entries
1255 * @entries:    Where the resulting entries are placed
1256 * @indices:    The cache indices corresponding to the entries in @entries
1257 *
1258 * find_get_entries() will search for and return a group of up to
1259 * @nr_entries entries in the mapping.  The entries are placed at
1260 * @entries.  find_get_entries() takes a reference against any actual
1261 * pages it returns.
1262 *
1263 * The search returns a group of mapping-contiguous page cache entries
1264 * with ascending indexes.  There may be holes in the indices due to
1265 * not-present pages.
1266 *
1267 * Any shadow entries of evicted pages, or swap entries from
1268 * shmem/tmpfs, are included in the returned array.
1269 *
1270 * find_get_entries() returns the number of pages and shadow entries
1271 * which were found.
1272 */
1273unsigned find_get_entries(struct address_space *mapping,
1274                          pgoff_t start, unsigned int nr_entries,
1275                          struct page **entries, pgoff_t *indices)
1276{
1277        void **slot;
1278        unsigned int ret = 0;
1279        struct radix_tree_iter iter;
1280
1281        if (!nr_entries)
1282                return 0;
1283
1284        rcu_read_lock();
1285        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1286                struct page *head, *page;
1287repeat:
1288                page = radix_tree_deref_slot(slot);
1289                if (unlikely(!page))
1290                        continue;
1291                if (radix_tree_exception(page)) {
1292                        if (radix_tree_deref_retry(page)) {
1293                                slot = radix_tree_iter_retry(&iter);
1294                                continue;
1295                        }
1296                        /*
1297                         * A shadow entry of a recently evicted page, a swap
1298                         * entry from shmem/tmpfs or a DAX entry.  Return it
1299                         * without attempting to raise page count.
1300                         */
1301                        goto export;
1302                }
1303
1304                head = compound_head(page);
1305                if (!page_cache_get_speculative(head))
1306                        goto repeat;
1307
1308                /* The page was split under us? */
1309                if (compound_head(page) != head) {
1310                        put_page(head);
1311                        goto repeat;
1312                }
1313
1314                /* Has the page moved? */
1315                if (unlikely(page != *slot)) {
1316                        put_page(head);
1317                        goto repeat;
1318                }
1319export:
1320                indices[ret] = iter.index;
1321                entries[ret] = page;
1322                if (++ret == nr_entries)
1323                        break;
1324        }
1325        rcu_read_unlock();
1326        return ret;
1327}
1328
1329/**
1330 * find_get_pages - gang pagecache lookup
1331 * @mapping:    The address_space to search
1332 * @start:      The starting page index
1333 * @nr_pages:   The maximum number of pages
1334 * @pages:      Where the resulting pages are placed
1335 *
1336 * find_get_pages() will search for and return a group of up to
1337 * @nr_pages pages in the mapping.  The pages are placed at @pages.
1338 * find_get_pages() takes a reference against the returned pages.
1339 *
1340 * The search returns a group of mapping-contiguous pages with ascending
1341 * indexes.  There may be holes in the indices due to not-present pages.
1342 *
1343 * find_get_pages() returns the number of pages which were found.
1344 */
1345unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1346                            unsigned int nr_pages, struct page **pages)
1347{
1348        struct radix_tree_iter iter;
1349        void **slot;
1350        unsigned ret = 0;
1351
1352        if (unlikely(!nr_pages))
1353                return 0;
1354
1355        rcu_read_lock();
1356        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1357                struct page *head, *page;
1358repeat:
1359                page = radix_tree_deref_slot(slot);
1360                if (unlikely(!page))
1361                        continue;
1362
1363                if (radix_tree_exception(page)) {
1364                        if (radix_tree_deref_retry(page)) {
1365                                slot = radix_tree_iter_retry(&iter);
1366                                continue;
1367                        }
1368                        /*
1369                         * A shadow entry of a recently evicted page,
1370                         * or a swap entry from shmem/tmpfs.  Skip
1371                         * over it.
1372                         */
1373                        continue;
1374                }
1375
1376                head = compound_head(page);
1377                if (!page_cache_get_speculative(head))
1378                        goto repeat;
1379
1380                /* The page was split under us? */
1381                if (compound_head(page) != head) {
1382                        put_page(head);
1383                        goto repeat;
1384                }
1385
1386                /* Has the page moved? */
1387                if (unlikely(page != *slot)) {
1388                        put_page(head);
1389                        goto repeat;
1390                }
1391
1392                pages[ret] = page;
1393                if (++ret == nr_pages)
1394                        break;
1395        }
1396
1397        rcu_read_unlock();
1398        return ret;
1399}
1400
1401/**
1402 * find_get_pages_contig - gang contiguous pagecache lookup
1403 * @mapping:    The address_space to search
1404 * @index:      The starting page index
1405 * @nr_pages:   The maximum number of pages
1406 * @pages:      Where the resulting pages are placed
1407 *
1408 * find_get_pages_contig() works exactly like find_get_pages(), except
1409 * that the returned number of pages are guaranteed to be contiguous.
1410 *
1411 * find_get_pages_contig() returns the number of pages which were found.
1412 */
1413unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1414                               unsigned int nr_pages, struct page **pages)
1415{
1416        struct radix_tree_iter iter;
1417        void **slot;
1418        unsigned int ret = 0;
1419
1420        if (unlikely(!nr_pages))
1421                return 0;
1422
1423        rcu_read_lock();
1424        radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1425                struct page *head, *page;
1426repeat:
1427                page = radix_tree_deref_slot(slot);
1428                /* The hole, there no reason to continue */
1429                if (unlikely(!page))
1430                        break;
1431
1432                if (radix_tree_exception(page)) {
1433                        if (radix_tree_deref_retry(page)) {
1434                                slot = radix_tree_iter_retry(&iter);
1435                                continue;
1436                        }
1437                        /*
1438                         * A shadow entry of a recently evicted page,
1439                         * or a swap entry from shmem/tmpfs.  Stop
1440                         * looking for contiguous pages.
1441                         */
1442                        break;
1443                }
1444
1445                head = compound_head(page);
1446                if (!page_cache_get_speculative(head))
1447                        goto repeat;
1448
1449                /* The page was split under us? */
1450                if (compound_head(page) != head) {
1451                        put_page(head);
1452                        goto repeat;
1453                }
1454
1455                /* Has the page moved? */
1456                if (unlikely(page != *slot)) {
1457                        put_page(head);
1458                        goto repeat;
1459                }
1460
1461                /*
1462                 * must check mapping and index after taking the ref.
1463                 * otherwise we can get both false positives and false
1464                 * negatives, which is just confusing to the caller.
1465                 */
1466                if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1467                        put_page(page);
1468                        break;
1469                }
1470
1471                pages[ret] = page;
1472                if (++ret == nr_pages)
1473                        break;
1474        }
1475        rcu_read_unlock();
1476        return ret;
1477}
1478EXPORT_SYMBOL(find_get_pages_contig);
1479
1480/**
1481 * find_get_pages_tag - find and return pages that match @tag
1482 * @mapping:    the address_space to search
1483 * @index:      the starting page index
1484 * @tag:        the tag index
1485 * @nr_pages:   the maximum number of pages
1486 * @pages:      where the resulting pages are placed
1487 *
1488 * Like find_get_pages, except we only return pages which are tagged with
1489 * @tag.   We update @index to index the next page for the traversal.
1490 */
1491unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1492                        int tag, unsigned int nr_pages, struct page **pages)
1493{
1494        struct radix_tree_iter iter;
1495        void **slot;
1496        unsigned ret = 0;
1497
1498        if (unlikely(!nr_pages))
1499                return 0;
1500
1501        rcu_read_lock();
1502        radix_tree_for_each_tagged(slot, &mapping->page_tree,
1503                                   &iter, *index, tag) {
1504                struct page *head, *page;
1505repeat:
1506                page = radix_tree_deref_slot(slot);
1507                if (unlikely(!page))
1508                        continue;
1509
1510                if (radix_tree_exception(page)) {
1511                        if (radix_tree_deref_retry(page)) {
1512                                slot = radix_tree_iter_retry(&iter);
1513                                continue;
1514                        }
1515                        /*
1516                         * A shadow entry of a recently evicted page.
1517                         *
1518                         * Those entries should never be tagged, but
1519                         * this tree walk is lockless and the tags are
1520                         * looked up in bulk, one radix tree node at a
1521                         * time, so there is a sizable window for page
1522                         * reclaim to evict a page we saw tagged.
1523                         *
1524                         * Skip over it.
1525                         */
1526                        continue;
1527                }
1528
1529                head = compound_head(page);
1530                if (!page_cache_get_speculative(head))
1531                        goto repeat;
1532
1533                /* The page was split under us? */
1534                if (compound_head(page) != head) {
1535                        put_page(head);
1536                        goto repeat;
1537                }
1538
1539                /* Has the page moved? */
1540                if (unlikely(page != *slot)) {
1541                        put_page(head);
1542                        goto repeat;
1543                }
1544
1545                pages[ret] = page;
1546                if (++ret == nr_pages)
1547                        break;
1548        }
1549
1550        rcu_read_unlock();
1551
1552        if (ret)
1553                *index = pages[ret - 1]->index + 1;
1554
1555        return ret;
1556}
1557EXPORT_SYMBOL(find_get_pages_tag);
1558
1559/**
1560 * find_get_entries_tag - find and return entries that match @tag
1561 * @mapping:    the address_space to search
1562 * @start:      the starting page cache index
1563 * @tag:        the tag index
1564 * @nr_entries: the maximum number of entries
1565 * @entries:    where the resulting entries are placed
1566 * @indices:    the cache indices corresponding to the entries in @entries
1567 *
1568 * Like find_get_entries, except we only return entries which are tagged with
1569 * @tag.
1570 */
1571unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1572                        int tag, unsigned int nr_entries,
1573                        struct page **entries, pgoff_t *indices)
1574{
1575        void **slot;
1576        unsigned int ret = 0;
1577        struct radix_tree_iter iter;
1578
1579        if (!nr_entries)
1580                return 0;
1581
1582        rcu_read_lock();
1583        radix_tree_for_each_tagged(slot, &mapping->page_tree,
1584                                   &iter, start, tag) {
1585                struct page *head, *page;
1586repeat:
1587                page = radix_tree_deref_slot(slot);
1588                if (unlikely(!page))
1589                        continue;
1590                if (radix_tree_exception(page)) {
1591                        if (radix_tree_deref_retry(page)) {
1592                                slot = radix_tree_iter_retry(&iter);
1593                                continue;
1594                        }
1595
1596                        /*
1597                         * A shadow entry of a recently evicted page, a swap
1598                         * entry from shmem/tmpfs or a DAX entry.  Return it
1599                         * without attempting to raise page count.
1600                         */
1601                        goto export;
1602                }
1603
1604                head = compound_head(page);
1605                if (!page_cache_get_speculative(head))
1606                        goto repeat;
1607
1608                /* The page was split under us? */
1609                if (compound_head(page) != head) {
1610                        put_page(head);
1611                        goto repeat;
1612                }
1613
1614                /* Has the page moved? */
1615                if (unlikely(page != *slot)) {
1616                        put_page(head);
1617                        goto repeat;
1618                }
1619export:
1620                indices[ret] = iter.index;
1621                entries[ret] = page;
1622                if (++ret == nr_entries)
1623                        break;
1624        }
1625        rcu_read_unlock();
1626        return ret;
1627}
1628EXPORT_SYMBOL(find_get_entries_tag);
1629
1630/*
1631 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1632 * a _large_ part of the i/o request. Imagine the worst scenario:
1633 *
1634 *      ---R__________________________________________B__________
1635 *         ^ reading here                             ^ bad block(assume 4k)
1636 *
1637 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1638 * => failing the whole request => read(R) => read(R+1) =>
1639 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1640 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1641 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1642 *
1643 * It is going insane. Fix it by quickly scaling down the readahead size.
1644 */
1645static void shrink_readahead_size_eio(struct file *filp,
1646                                        struct file_ra_state *ra)
1647{
1648        ra->ra_pages /= 4;
1649}
1650
1651/**
1652 * do_generic_file_read - generic file read routine
1653 * @filp:       the file to read
1654 * @ppos:       current file position
1655 * @iter:       data destination
1656 * @written:    already copied
1657 *
1658 * This is a generic file read routine, and uses the
1659 * mapping->a_ops->readpage() function for the actual low-level stuff.
1660 *
1661 * This is really ugly. But the goto's actually try to clarify some
1662 * of the logic when it comes to error handling etc.
1663 */
1664static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1665                struct iov_iter *iter, ssize_t written)
1666{
1667        struct address_space *mapping = filp->f_mapping;
1668        struct inode *inode = mapping->host;
1669        struct file_ra_state *ra = &filp->f_ra;
1670        pgoff_t index;
1671        pgoff_t last_index;
1672        pgoff_t prev_index;
1673        unsigned long offset;      /* offset into pagecache page */
1674        unsigned int prev_offset;
1675        int error = 0;
1676
1677        index = *ppos >> PAGE_SHIFT;
1678        prev_index = ra->prev_pos >> PAGE_SHIFT;
1679        prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1680        last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1681        offset = *ppos & ~PAGE_MASK;
1682
1683        for (;;) {
1684                struct page *page;
1685                pgoff_t end_index;
1686                loff_t isize;
1687                unsigned long nr, ret;
1688
1689                cond_resched();
1690find_page:
1691                page = find_get_page(mapping, index);
1692                if (!page) {
1693                        page_cache_sync_readahead(mapping,
1694                                        ra, filp,
1695                                        index, last_index - index);
1696                        page = find_get_page(mapping, index);
1697                        if (unlikely(page == NULL))
1698                                goto no_cached_page;
1699                }
1700                if (PageReadahead(page)) {
1701                        page_cache_async_readahead(mapping,
1702                                        ra, filp, page,
1703                                        index, last_index - index);
1704                }
1705                if (!PageUptodate(page)) {
1706                        /*
1707                         * See comment in do_read_cache_page on why
1708                         * wait_on_page_locked is used to avoid unnecessarily
1709                         * serialisations and why it's safe.
1710                         */
1711                        wait_on_page_locked_killable(page);
1712                        if (PageUptodate(page))
1713                                goto page_ok;
1714
1715                        if (inode->i_blkbits == PAGE_SHIFT ||
1716                                        !mapping->a_ops->is_partially_uptodate)
1717                                goto page_not_up_to_date;
1718                        if (!trylock_page(page))
1719                                goto page_not_up_to_date;
1720                        /* Did it get truncated before we got the lock? */
1721                        if (!page->mapping)
1722                                goto page_not_up_to_date_locked;
1723                        if (!mapping->a_ops->is_partially_uptodate(page,
1724                                                        offset, iter->count))
1725                                goto page_not_up_to_date_locked;
1726                        unlock_page(page);
1727                }
1728page_ok:
1729                /*
1730                 * i_size must be checked after we know the page is Uptodate.
1731                 *
1732                 * Checking i_size after the check allows us to calculate
1733                 * the correct value for "nr", which means the zero-filled
1734                 * part of the page is not copied back to userspace (unless
1735                 * another truncate extends the file - this is desired though).
1736                 */
1737
1738                isize = i_size_read(inode);
1739                end_index = (isize - 1) >> PAGE_SHIFT;
1740                if (unlikely(!isize || index > end_index)) {
1741                        put_page(page);
1742                        goto out;
1743                }
1744
1745                /* nr is the maximum number of bytes to copy from this page */
1746                nr = PAGE_SIZE;
1747                if (index == end_index) {
1748                        nr = ((isize - 1) & ~PAGE_MASK) + 1;
1749                        if (nr <= offset) {
1750                                put_page(page);
1751                                goto out;
1752                        }
1753                }
1754                nr = nr - offset;
1755
1756                /* If users can be writing to this page using arbitrary
1757                 * virtual addresses, take care about potential aliasing
1758                 * before reading the page on the kernel side.
1759                 */
1760                if (mapping_writably_mapped(mapping))
1761                        flush_dcache_page(page);
1762
1763                /*
1764                 * When a sequential read accesses a page several times,
1765                 * only mark it as accessed the first time.
1766                 */
1767                if (prev_index != index || offset != prev_offset)
1768                        mark_page_accessed(page);
1769                prev_index = index;
1770
1771                /*
1772                 * Ok, we have the page, and it's up-to-date, so
1773                 * now we can copy it to user space...
1774                 */
1775
1776                ret = copy_page_to_iter(page, offset, nr, iter);
1777                offset += ret;
1778                index += offset >> PAGE_SHIFT;
1779                offset &= ~PAGE_MASK;
1780                prev_offset = offset;
1781
1782                put_page(page);
1783                written += ret;
1784                if (!iov_iter_count(iter))
1785                        goto out;
1786                if (ret < nr) {
1787                        error = -EFAULT;
1788                        goto out;
1789                }
1790                continue;
1791
1792page_not_up_to_date:
1793                /* Get exclusive access to the page ... */
1794                error = lock_page_killable(page);
1795                if (unlikely(error))
1796                        goto readpage_error;
1797
1798page_not_up_to_date_locked:
1799                /* Did it get truncated before we got the lock? */
1800                if (!page->mapping) {
1801                        unlock_page(page);
1802                        put_page(page);
1803                        continue;
1804                }
1805
1806                /* Did somebody else fill it already? */
1807                if (PageUptodate(page)) {
1808                        unlock_page(page);
1809                        goto page_ok;
1810                }
1811
1812readpage:
1813                /*
1814                 * A previous I/O error may have been due to temporary
1815                 * failures, eg. multipath errors.
1816                 * PG_error will be set again if readpage fails.
1817                 */
1818                ClearPageError(page);
1819                /* Start the actual read. The read will unlock the page. */
1820                error = mapping->a_ops->readpage(filp, page);
1821
1822                if (unlikely(error)) {
1823                        if (error == AOP_TRUNCATED_PAGE) {
1824                                put_page(page);
1825                                error = 0;
1826                                goto find_page;
1827                        }
1828                        goto readpage_error;
1829                }
1830
1831                if (!PageUptodate(page)) {
1832                        error = lock_page_killable(page);
1833                        if (unlikely(error))
1834                                goto readpage_error;
1835                        if (!PageUptodate(page)) {
1836                                if (page->mapping == NULL) {
1837                                        /*
1838                                         * invalidate_mapping_pages got it
1839                                         */
1840                                        unlock_page(page);
1841                                        put_page(page);
1842                                        goto find_page;
1843                                }
1844                                unlock_page(page);
1845                                shrink_readahead_size_eio(filp, ra);
1846                                error = -EIO;
1847                                goto readpage_error;
1848                        }
1849                        unlock_page(page);
1850                }
1851
1852                goto page_ok;
1853
1854readpage_error:
1855                /* UHHUH! A synchronous read error occurred. Report it */
1856                put_page(page);
1857                goto out;
1858
1859no_cached_page:
1860                /*
1861                 * Ok, it wasn't cached, so we need to create a new
1862                 * page..
1863                 */
1864                page = page_cache_alloc_cold(mapping);
1865                if (!page) {
1866                        error = -ENOMEM;
1867                        goto out;
1868                }
1869                error = add_to_page_cache_lru(page, mapping, index,
1870                                mapping_gfp_constraint(mapping, GFP_KERNEL));
1871                if (error) {
1872                        put_page(page);
1873                        if (error == -EEXIST) {
1874                                error = 0;
1875                                goto find_page;
1876                        }
1877                        goto out;
1878                }
1879                goto readpage;
1880        }
1881
1882out:
1883        ra->prev_pos = prev_index;
1884        ra->prev_pos <<= PAGE_SHIFT;
1885        ra->prev_pos |= prev_offset;
1886
1887        *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1888        file_accessed(filp);
1889        return written ? written : error;
1890}
1891
1892/**
1893 * generic_file_read_iter - generic filesystem read routine
1894 * @iocb:       kernel I/O control block
1895 * @iter:       destination for the data read
1896 *
1897 * This is the "read_iter()" routine for all filesystems
1898 * that can use the page cache directly.
1899 */
1900ssize_t
1901generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1902{
1903        struct file *file = iocb->ki_filp;
1904        ssize_t retval = 0;
1905        size_t count = iov_iter_count(iter);
1906
1907        if (!count)
1908                goto out; /* skip atime */
1909
1910        if (iocb->ki_flags & IOCB_DIRECT) {
1911                struct address_space *mapping = file->f_mapping;
1912                struct inode *inode = mapping->host;
1913                loff_t size;
1914
1915                size = i_size_read(inode);
1916                retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1917                                        iocb->ki_pos + count - 1);
1918                if (!retval) {
1919                        struct iov_iter data = *iter;
1920                        retval = mapping->a_ops->direct_IO(iocb, &data);
1921                }
1922
1923                if (retval > 0) {
1924                        iocb->ki_pos += retval;
1925                        iov_iter_advance(iter, retval);
1926                }
1927
1928                /*
1929                 * Btrfs can have a short DIO read if we encounter
1930                 * compressed extents, so if there was an error, or if
1931                 * we've already read everything we wanted to, or if
1932                 * there was a short read because we hit EOF, go ahead
1933                 * and return.  Otherwise fallthrough to buffered io for
1934                 * the rest of the read.  Buffered reads will not work for
1935                 * DAX files, so don't bother trying.
1936                 */
1937                if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1938                    IS_DAX(inode)) {
1939                        file_accessed(file);
1940                        goto out;
1941                }
1942        }
1943
1944        retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1945out:
1946        return retval;
1947}
1948EXPORT_SYMBOL(generic_file_read_iter);
1949
1950#ifdef CONFIG_MMU
1951/**
1952 * page_cache_read - adds requested page to the page cache if not already there
1953 * @file:       file to read
1954 * @offset:     page index
1955 * @gfp_mask:   memory allocation flags
1956 *
1957 * This adds the requested page to the page cache if it isn't already there,
1958 * and schedules an I/O to read in its contents from disk.
1959 */
1960static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1961{
1962        struct address_space *mapping = file->f_mapping;
1963        struct page *page;
1964        int ret;
1965
1966        do {
1967                page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1968                if (!page)
1969                        return -ENOMEM;
1970
1971                ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1972                if (ret == 0)
1973                        ret = mapping->a_ops->readpage(file, page);
1974                else if (ret == -EEXIST)
1975                        ret = 0; /* losing race to add is OK */
1976
1977                put_page(page);
1978
1979        } while (ret == AOP_TRUNCATED_PAGE);
1980
1981        return ret;
1982}
1983
1984#define MMAP_LOTSAMISS  (100)
1985
1986/*
1987 * Synchronous readahead happens when we don't even find
1988 * a page in the page cache at all.
1989 */
1990static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1991                                   struct file_ra_state *ra,
1992                                   struct file *file,
1993                                   pgoff_t offset)
1994{
1995        struct address_space *mapping = file->f_mapping;
1996
1997        /* If we don't want any read-ahead, don't bother */
1998        if (vma->vm_flags & VM_RAND_READ)
1999                return;
2000        if (!ra->ra_pages)
2001                return;
2002
2003        if (vma->vm_flags & VM_SEQ_READ) {
2004                page_cache_sync_readahead(mapping, ra, file, offset,
2005                                          ra->ra_pages);
2006                return;
2007        }
2008
2009        /* Avoid banging the cache line if not needed */
2010        if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2011                ra->mmap_miss++;
2012
2013        /*
2014         * Do we miss much more than hit in this file? If so,
2015         * stop bothering with read-ahead. It will only hurt.
2016         */
2017        if (ra->mmap_miss > MMAP_LOTSAMISS)
2018                return;
2019
2020        /*
2021         * mmap read-around
2022         */
2023        ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2024        ra->size = ra->ra_pages;
2025        ra->async_size = ra->ra_pages / 4;
2026        ra_submit(ra, mapping, file);
2027}
2028
2029/*
2030 * Asynchronous readahead happens when we find the page and PG_readahead,
2031 * so we want to possibly extend the readahead further..
2032 */
2033static void do_async_mmap_readahead(struct vm_area_struct *vma,
2034                                    struct file_ra_state *ra,
2035                                    struct file *file,
2036                                    struct page *page,
2037                                    pgoff_t offset)
2038{
2039        struct address_space *mapping = file->f_mapping;
2040
2041        /* If we don't want any read-ahead, don't bother */
2042        if (vma->vm_flags & VM_RAND_READ)
2043                return;
2044        if (ra->mmap_miss > 0)
2045                ra->mmap_miss--;
2046        if (PageReadahead(page))
2047                page_cache_async_readahead(mapping, ra, file,
2048                                           page, offset, ra->ra_pages);
2049}
2050
2051/**
2052 * filemap_fault - read in file data for page fault handling
2053 * @vma:        vma in which the fault was taken
2054 * @vmf:        struct vm_fault containing details of the fault
2055 *
2056 * filemap_fault() is invoked via the vma operations vector for a
2057 * mapped memory region to read in file data during a page fault.
2058 *
2059 * The goto's are kind of ugly, but this streamlines the normal case of having
2060 * it in the page cache, and handles the special cases reasonably without
2061 * having a lot of duplicated code.
2062 *
2063 * vma->vm_mm->mmap_sem must be held on entry.
2064 *
2065 * If our return value has VM_FAULT_RETRY set, it's because
2066 * lock_page_or_retry() returned 0.
2067 * The mmap_sem has usually been released in this case.
2068 * See __lock_page_or_retry() for the exception.
2069 *
2070 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2071 * has not been released.
2072 *
2073 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2074 */
2075int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2076{
2077        int error;
2078        struct file *file = vma->vm_file;
2079        struct address_space *mapping = file->f_mapping;
2080        struct file_ra_state *ra = &file->f_ra;
2081        struct inode *inode = mapping->host;
2082        pgoff_t offset = vmf->pgoff;
2083        struct page *page;
2084        loff_t size;
2085        int ret = 0;
2086
2087        size = round_up(i_size_read(inode), PAGE_SIZE);
2088        if (offset >= size >> PAGE_SHIFT)
2089                return VM_FAULT_SIGBUS;
2090
2091        /*
2092         * Do we have something in the page cache already?
2093         */
2094        page = find_get_page(mapping, offset);
2095        if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2096                /*
2097                 * We found the page, so try async readahead before
2098                 * waiting for the lock.
2099                 */
2100                do_async_mmap_readahead(vma, ra, file, page, offset);
2101        } else if (!page) {
2102                /* No page in the page cache at all */
2103                do_sync_mmap_readahead(vma, ra, file, offset);
2104                count_vm_event(PGMAJFAULT);
2105                mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2106                ret = VM_FAULT_MAJOR;
2107retry_find:
2108                page = find_get_page(mapping, offset);
2109                if (!page)
2110                        goto no_cached_page;
2111        }
2112
2113        if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2114                put_page(page);
2115                return ret | VM_FAULT_RETRY;
2116        }
2117
2118        /* Did it get truncated? */
2119        if (unlikely(page->mapping != mapping)) {
2120                unlock_page(page);
2121                put_page(page);
2122                goto retry_find;
2123        }
2124        VM_BUG_ON_PAGE(page->index != offset, page);
2125
2126        /*
2127         * We have a locked page in the page cache, now we need to check
2128         * that it's up-to-date. If not, it is going to be due to an error.
2129         */
2130        if (unlikely(!PageUptodate(page)))
2131                goto page_not_uptodate;
2132
2133        /*
2134         * Found the page and have a reference on it.
2135         * We must recheck i_size under page lock.
2136         */
2137        size = round_up(i_size_read(inode), PAGE_SIZE);
2138        if (unlikely(offset >= size >> PAGE_SHIFT)) {
2139                unlock_page(page);
2140                put_page(page);
2141                return VM_FAULT_SIGBUS;
2142        }
2143
2144        vmf->page = page;
2145        return ret | VM_FAULT_LOCKED;
2146
2147no_cached_page:
2148        /*
2149         * We're only likely to ever get here if MADV_RANDOM is in
2150         * effect.
2151         */
2152        error = page_cache_read(file, offset, vmf->gfp_mask);
2153
2154        /*
2155         * The page we want has now been added to the page cache.
2156         * In the unlikely event that someone removed it in the
2157         * meantime, we'll just come back here and read it again.
2158         */
2159        if (error >= 0)
2160                goto retry_find;
2161
2162        /*
2163         * An error return from page_cache_read can result if the
2164         * system is low on memory, or a problem occurs while trying
2165         * to schedule I/O.
2166         */
2167        if (error == -ENOMEM)
2168                return VM_FAULT_OOM;
2169        return VM_FAULT_SIGBUS;
2170
2171page_not_uptodate:
2172        /*
2173         * Umm, take care of errors if the page isn't up-to-date.
2174         * Try to re-read it _once_. We do this synchronously,
2175         * because there really aren't any performance issues here
2176         * and we need to check for errors.
2177         */
2178        ClearPageError(page);
2179        error = mapping->a_ops->readpage(file, page);
2180        if (!error) {
2181                wait_on_page_locked(page);
2182                if (!PageUptodate(page))
2183                        error = -EIO;
2184        }
2185        put_page(page);
2186
2187        if (!error || error == AOP_TRUNCATED_PAGE)
2188                goto retry_find;
2189
2190        /* Things didn't work out. Return zero to tell the mm layer so. */
2191        shrink_readahead_size_eio(file, ra);
2192        return VM_FAULT_SIGBUS;
2193}
2194EXPORT_SYMBOL(filemap_fault);
2195
2196void filemap_map_pages(struct fault_env *fe,
2197                pgoff_t start_pgoff, pgoff_t end_pgoff)
2198{
2199        struct radix_tree_iter iter;
2200        void **slot;
2201        struct file *file = fe->vma->vm_file;
2202        struct address_space *mapping = file->f_mapping;
2203        pgoff_t last_pgoff = start_pgoff;
2204        loff_t size;
2205        struct page *head, *page;
2206
2207        rcu_read_lock();
2208        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2209                        start_pgoff) {
2210                if (iter.index > end_pgoff)
2211                        break;
2212repeat:
2213                page = radix_tree_deref_slot(slot);
2214                if (unlikely(!page))
2215                        goto next;
2216                if (radix_tree_exception(page)) {
2217                        if (radix_tree_deref_retry(page)) {
2218                                slot = radix_tree_iter_retry(&iter);
2219                                continue;
2220                        }
2221                        goto next;
2222                }
2223
2224                head = compound_head(page);
2225                if (!page_cache_get_speculative(head))
2226                        goto repeat;
2227
2228                /* The page was split under us? */
2229                if (compound_head(page) != head) {
2230                        put_page(head);
2231                        goto repeat;
2232                }
2233
2234                /* Has the page moved? */
2235                if (unlikely(page != *slot)) {
2236                        put_page(head);
2237                        goto repeat;
2238                }
2239
2240                if (!PageUptodate(page) ||
2241                                PageReadahead(page) ||
2242                                PageHWPoison(page))
2243                        goto skip;
2244                if (!trylock_page(page))
2245                        goto skip;
2246
2247                if (page->mapping != mapping || !PageUptodate(page))
2248                        goto unlock;
2249
2250                size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2251                if (page->index >= size >> PAGE_SHIFT)
2252                        goto unlock;
2253
2254                if (file->f_ra.mmap_miss > 0)
2255                        file->f_ra.mmap_miss--;
2256
2257                fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2258                if (fe->pte)
2259                        fe->pte += iter.index - last_pgoff;
2260                last_pgoff = iter.index;
2261                if (alloc_set_pte(fe, NULL, page))
2262                        goto unlock;
2263                unlock_page(page);
2264                goto next;
2265unlock:
2266                unlock_page(page);
2267skip:
2268                put_page(page);
2269next:
2270                /* Huge page is mapped? No need to proceed. */
2271                if (pmd_trans_huge(*fe->pmd))
2272                        break;
2273                if (iter.index == end_pgoff)
2274                        break;
2275        }
2276        rcu_read_unlock();
2277}
2278EXPORT_SYMBOL(filemap_map_pages);
2279
2280int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2281{
2282        struct page *page = vmf->page;
2283        struct inode *inode = file_inode(vma->vm_file);
2284        int ret = VM_FAULT_LOCKED;
2285
2286        sb_start_pagefault(inode->i_sb);
2287        file_update_time(vma->vm_file);
2288        lock_page(page);
2289        if (page->mapping != inode->i_mapping) {
2290                unlock_page(page);
2291                ret = VM_FAULT_NOPAGE;
2292                goto out;
2293        }
2294        /*
2295         * We mark the page dirty already here so that when freeze is in
2296         * progress, we are guaranteed that writeback during freezing will
2297         * see the dirty page and writeprotect it again.
2298         */
2299        set_page_dirty(page);
2300        wait_for_stable_page(page);
2301out:
2302        sb_end_pagefault(inode->i_sb);
2303        return ret;
2304}
2305EXPORT_SYMBOL(filemap_page_mkwrite);
2306
2307const struct vm_operations_struct generic_file_vm_ops = {
2308        .fault          = filemap_fault,
2309        .map_pages      = filemap_map_pages,
2310        .page_mkwrite   = filemap_page_mkwrite,
2311};
2312
2313/* This is used for a general mmap of a disk file */
2314
2315int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2316{
2317        struct address_space *mapping = file->f_mapping;
2318
2319        if (!mapping->a_ops->readpage)
2320                return -ENOEXEC;
2321        file_accessed(file);
2322        vma->vm_ops = &generic_file_vm_ops;
2323        return 0;
2324}
2325
2326/*
2327 * This is for filesystems which do not implement ->writepage.
2328 */
2329int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2330{
2331        if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2332                return -EINVAL;
2333        return generic_file_mmap(file, vma);
2334}
2335#else
2336int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2337{
2338        return -ENOSYS;
2339}
2340int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2341{
2342        return -ENOSYS;
2343}
2344#endif /* CONFIG_MMU */
2345
2346EXPORT_SYMBOL(generic_file_mmap);
2347EXPORT_SYMBOL(generic_file_readonly_mmap);
2348
2349static struct page *wait_on_page_read(struct page *page)
2350{
2351        if (!IS_ERR(page)) {
2352                wait_on_page_locked(page);
2353                if (!PageUptodate(page)) {
2354                        put_page(page);
2355                        page = ERR_PTR(-EIO);
2356                }
2357        }
2358        return page;
2359}
2360
2361static struct page *do_read_cache_page(struct address_space *mapping,
2362                                pgoff_t index,
2363                                int (*filler)(void *, struct page *),
2364                                void *data,
2365                                gfp_t gfp)
2366{
2367        struct page *page;
2368        int err;
2369repeat:
2370        page = find_get_page(mapping, index);
2371        if (!page) {
2372                page = __page_cache_alloc(gfp | __GFP_COLD);
2373                if (!page)
2374                        return ERR_PTR(-ENOMEM);
2375                err = add_to_page_cache_lru(page, mapping, index, gfp);
2376                if (unlikely(err)) {
2377                        put_page(page);
2378                        if (err == -EEXIST)
2379                                goto repeat;
2380                        /* Presumably ENOMEM for radix tree node */
2381                        return ERR_PTR(err);
2382                }
2383
2384filler:
2385                err = filler(data, page);
2386                if (err < 0) {
2387                        put_page(page);
2388                        return ERR_PTR(err);
2389                }
2390
2391                page = wait_on_page_read(page);
2392                if (IS_ERR(page))
2393                        return page;
2394                goto out;
2395        }
2396        if (PageUptodate(page))
2397                goto out;
2398
2399        /*
2400         * Page is not up to date and may be locked due one of the following
2401         * case a: Page is being filled and the page lock is held
2402         * case b: Read/write error clearing the page uptodate status
2403         * case c: Truncation in progress (page locked)
2404         * case d: Reclaim in progress
2405         *
2406         * Case a, the page will be up to date when the page is unlocked.
2407         *    There is no need to serialise on the page lock here as the page
2408         *    is pinned so the lock gives no additional protection. Even if the
2409         *    the page is truncated, the data is still valid if PageUptodate as
2410         *    it's a race vs truncate race.
2411         * Case b, the page will not be up to date
2412         * Case c, the page may be truncated but in itself, the data may still
2413         *    be valid after IO completes as it's a read vs truncate race. The
2414         *    operation must restart if the page is not uptodate on unlock but
2415         *    otherwise serialising on page lock to stabilise the mapping gives
2416         *    no additional guarantees to the caller as the page lock is
2417         *    released before return.
2418         * Case d, similar to truncation. If reclaim holds the page lock, it
2419         *    will be a race with remove_mapping that determines if the mapping
2420         *    is valid on unlock but otherwise the data is valid and there is
2421         *    no need to serialise with page lock.
2422         *
2423         * As the page lock gives no additional guarantee, we optimistically
2424         * wait on the page to be unlocked and check if it's up to date and
2425         * use the page if it is. Otherwise, the page lock is required to
2426         * distinguish between the different cases. The motivation is that we
2427         * avoid spurious serialisations and wakeups when multiple processes
2428         * wait on the same page for IO to complete.
2429         */
2430        wait_on_page_locked(page);
2431        if (PageUptodate(page))
2432                goto out;
2433
2434        /* Distinguish between all the cases under the safety of the lock */
2435        lock_page(page);
2436
2437        /* Case c or d, restart the operation */
2438        if (!page->mapping) {
2439                unlock_page(page);
2440                put_page(page);
2441                goto repeat;
2442        }
2443
2444        /* Someone else locked and filled the page in a very small window */
2445        if (PageUptodate(page)) {
2446                unlock_page(page);
2447                goto out;
2448        }
2449        goto filler;
2450
2451out:
2452        mark_page_accessed(page);
2453        return page;
2454}
2455
2456/**
2457 * read_cache_page - read into page cache, fill it if needed
2458 * @mapping:    the page's address_space
2459 * @index:      the page index
2460 * @filler:     function to perform the read
2461 * @data:       first arg to filler(data, page) function, often left as NULL
2462 *
2463 * Read into the page cache. If a page already exists, and PageUptodate() is
2464 * not set, try to fill the page and wait for it to become unlocked.
2465 *
2466 * If the page does not get brought uptodate, return -EIO.
2467 */
2468struct page *read_cache_page(struct address_space *mapping,
2469                                pgoff_t index,
2470                                int (*filler)(void *, struct page *),
2471                                void *data)
2472{
2473        return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2474}
2475EXPORT_SYMBOL(read_cache_page);
2476
2477/**
2478 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2479 * @mapping:    the page's address_space
2480 * @index:      the page index
2481 * @gfp:        the page allocator flags to use if allocating
2482 *
2483 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2484 * any new page allocations done using the specified allocation flags.
2485 *
2486 * If the page does not get brought uptodate, return -EIO.
2487 */
2488struct page *read_cache_page_gfp(struct address_space *mapping,
2489                                pgoff_t index,
2490                                gfp_t gfp)
2491{
2492        filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2493
2494        return do_read_cache_page(mapping, index, filler, NULL, gfp);
2495}
2496EXPORT_SYMBOL(read_cache_page_gfp);
2497
2498/*
2499 * Performs necessary checks before doing a write
2500 *
2501 * Can adjust writing position or amount of bytes to write.
2502 * Returns appropriate error code that caller should return or
2503 * zero in case that write should be allowed.
2504 */
2505inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2506{
2507        struct file *file = iocb->ki_filp;
2508        struct inode *inode = file->f_mapping->host;
2509        unsigned long limit = rlimit(RLIMIT_FSIZE);
2510        loff_t pos;
2511
2512        if (!iov_iter_count(from))
2513                return 0;
2514
2515        /* FIXME: this is for backwards compatibility with 2.4 */
2516        if (iocb->ki_flags & IOCB_APPEND)
2517                iocb->ki_pos = i_size_read(inode);
2518
2519        pos = iocb->ki_pos;
2520
2521        if (limit != RLIM_INFINITY) {
2522                if (iocb->ki_pos >= limit) {
2523                        send_sig(SIGXFSZ, current, 0);
2524                        return -EFBIG;
2525                }
2526                iov_iter_truncate(from, limit - (unsigned long)pos);
2527        }
2528
2529        /*
2530         * LFS rule
2531         */
2532        if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2533                                !(file->f_flags & O_LARGEFILE))) {
2534                if (pos >= MAX_NON_LFS)
2535                        return -EFBIG;
2536                iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2537        }
2538
2539        /*
2540         * Are we about to exceed the fs block limit ?
2541         *
2542         * If we have written data it becomes a short write.  If we have
2543         * exceeded without writing data we send a signal and return EFBIG.
2544         * Linus frestrict idea will clean these up nicely..
2545         */
2546        if (unlikely(pos >= inode->i_sb->s_maxbytes))
2547                return -EFBIG;
2548
2549        iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2550        return iov_iter_count(from);
2551}
2552EXPORT_SYMBOL(generic_write_checks);
2553
2554int pagecache_write_begin(struct file *file, struct address_space *mapping,
2555                                loff_t pos, unsigned len, unsigned flags,
2556                                struct page **pagep, void **fsdata)
2557{
2558        const struct address_space_operations *aops = mapping->a_ops;
2559
2560        return aops->write_begin(file, mapping, pos, len, flags,
2561                                                        pagep, fsdata);
2562}
2563EXPORT_SYMBOL(pagecache_write_begin);
2564
2565int pagecache_write_end(struct file *file, struct address_space *mapping,
2566                                loff_t pos, unsigned len, unsigned copied,
2567                                struct page *page, void *fsdata)
2568{
2569        const struct address_space_operations *aops = mapping->a_ops;
2570
2571        return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2572}
2573EXPORT_SYMBOL(pagecache_write_end);
2574
2575ssize_t
2576generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2577{
2578        struct file     *file = iocb->ki_filp;
2579        struct address_space *mapping = file->f_mapping;
2580        struct inode    *inode = mapping->host;
2581        loff_t          pos = iocb->ki_pos;
2582        ssize_t         written;
2583        size_t          write_len;
2584        pgoff_t         end;
2585        struct iov_iter data;
2586
2587        write_len = iov_iter_count(from);
2588        end = (pos + write_len - 1) >> PAGE_SHIFT;
2589
2590        written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2591        if (written)
2592                goto out;
2593
2594        /*
2595         * After a write we want buffered reads to be sure to go to disk to get
2596         * the new data.  We invalidate clean cached page from the region we're
2597         * about to write.  We do this *before* the write so that we can return
2598         * without clobbering -EIOCBQUEUED from ->direct_IO().
2599         */
2600        if (mapping->nrpages) {
2601                written = invalidate_inode_pages2_range(mapping,
2602                                        pos >> PAGE_SHIFT, end);
2603                /*
2604                 * If a page can not be invalidated, return 0 to fall back
2605                 * to buffered write.
2606                 */
2607                if (written) {
2608                        if (written == -EBUSY)
2609                                return 0;
2610                        goto out;
2611                }
2612        }
2613
2614        data = *from;
2615        written = mapping->a_ops->direct_IO(iocb, &data);
2616
2617        /*
2618         * Finally, try again to invalidate clean pages which might have been
2619         * cached by non-direct readahead, or faulted in by get_user_pages()
2620         * if the source of the write was an mmap'ed region of the file
2621         * we're writing.  Either one is a pretty crazy thing to do,
2622         * so we don't support it 100%.  If this invalidation
2623         * fails, tough, the write still worked...
2624         */
2625        if (mapping->nrpages) {
2626                invalidate_inode_pages2_range(mapping,
2627                                              pos >> PAGE_SHIFT, end);
2628        }
2629
2630        if (written > 0) {
2631                pos += written;
2632                iov_iter_advance(from, written);
2633                if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2634                        i_size_write(inode, pos);
2635                        mark_inode_dirty(inode);
2636                }
2637                iocb->ki_pos = pos;
2638        }
2639out:
2640        return written;
2641}
2642EXPORT_SYMBOL(generic_file_direct_write);
2643
2644/*
2645 * Find or create a page at the given pagecache position. Return the locked
2646 * page. This function is specifically for buffered writes.
2647 */
2648struct page *grab_cache_page_write_begin(struct address_space *mapping,
2649                                        pgoff_t index, unsigned flags)
2650{
2651        struct page *page;
2652        int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2653
2654        if (flags & AOP_FLAG_NOFS)
2655                fgp_flags |= FGP_NOFS;
2656
2657        page = pagecache_get_page(mapping, index, fgp_flags,
2658                        mapping_gfp_mask(mapping));
2659        if (page)
2660                wait_for_stable_page(page);
2661
2662        return page;
2663}
2664EXPORT_SYMBOL(grab_cache_page_write_begin);
2665
2666ssize_t generic_perform_write(struct file *file,
2667                                struct iov_iter *i, loff_t pos)
2668{
2669        struct address_space *mapping = file->f_mapping;
2670        const struct address_space_operations *a_ops = mapping->a_ops;
2671        long status = 0;
2672        ssize_t written = 0;
2673        unsigned int flags = 0;
2674
2675        /*
2676         * Copies from kernel address space cannot fail (NFSD is a big user).
2677         */
2678        if (!iter_is_iovec(i))
2679                flags |= AOP_FLAG_UNINTERRUPTIBLE;
2680
2681        do {
2682                struct page *page;
2683                unsigned long offset;   /* Offset into pagecache page */
2684                unsigned long bytes;    /* Bytes to write to page */
2685                size_t copied;          /* Bytes copied from user */
2686                void *fsdata;
2687
2688                offset = (pos & (PAGE_SIZE - 1));
2689                bytes = min_t(unsigned long, PAGE_SIZE - offset,
2690                                                iov_iter_count(i));
2691
2692again:
2693                /*
2694                 * Bring in the user page that we will copy from _first_.
2695                 * Otherwise there's a nasty deadlock on copying from the
2696                 * same page as we're writing to, without it being marked
2697                 * up-to-date.
2698                 *
2699                 * Not only is this an optimisation, but it is also required
2700                 * to check that the address is actually valid, when atomic
2701                 * usercopies are used, below.
2702                 */
2703                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2704                        status = -EFAULT;
2705                        break;
2706                }
2707
2708                if (fatal_signal_pending(current)) {
2709                        status = -EINTR;
2710                        break;
2711                }
2712
2713                status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2714                                                &page, &fsdata);
2715                if (unlikely(status < 0))
2716                        break;
2717
2718                if (mapping_writably_mapped(mapping))
2719                        flush_dcache_page(page);
2720
2721                copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2722                flush_dcache_page(page);
2723
2724                status = a_ops->write_end(file, mapping, pos, bytes, copied,
2725                                                page, fsdata);
2726                if (unlikely(status < 0))
2727                        break;
2728                copied = status;
2729
2730                cond_resched();
2731
2732                iov_iter_advance(i, copied);
2733                if (unlikely(copied == 0)) {
2734                        /*
2735                         * If we were unable to copy any data at all, we must
2736                         * fall back to a single segment length write.
2737                         *
2738                         * If we didn't fallback here, we could livelock
2739                         * because not all segments in the iov can be copied at
2740                         * once without a pagefault.
2741                         */
2742                        bytes = min_t(unsigned long, PAGE_SIZE - offset,
2743                                                iov_iter_single_seg_count(i));
2744                        goto again;
2745                }
2746                pos += copied;
2747                written += copied;
2748
2749                balance_dirty_pages_ratelimited(mapping);
2750        } while (iov_iter_count(i));
2751
2752        return written ? written : status;
2753}
2754EXPORT_SYMBOL(generic_perform_write);
2755
2756/**
2757 * __generic_file_write_iter - write data to a file
2758 * @iocb:       IO state structure (file, offset, etc.)
2759 * @from:       iov_iter with data to write
2760 *
2761 * This function does all the work needed for actually writing data to a
2762 * file. It does all basic checks, removes SUID from the file, updates
2763 * modification times and calls proper subroutines depending on whether we
2764 * do direct IO or a standard buffered write.
2765 *
2766 * It expects i_mutex to be grabbed unless we work on a block device or similar
2767 * object which does not need locking at all.
2768 *
2769 * This function does *not* take care of syncing data in case of O_SYNC write.
2770 * A caller has to handle it. This is mainly due to the fact that we want to
2771 * avoid syncing under i_mutex.
2772 */
2773ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2774{
2775        struct file *file = iocb->ki_filp;
2776        struct address_space * mapping = file->f_mapping;
2777        struct inode    *inode = mapping->host;
2778        ssize_t         written = 0;
2779        ssize_t         err;
2780        ssize_t         status;
2781
2782        /* We can write back this queue in page reclaim */
2783        current->backing_dev_info = inode_to_bdi(inode);
2784        err = file_remove_privs(file);
2785        if (err)
2786                goto out;
2787
2788        err = file_update_time(file);
2789        if (err)
2790                goto out;
2791
2792        if (iocb->ki_flags & IOCB_DIRECT) {
2793                loff_t pos, endbyte;
2794
2795                written = generic_file_direct_write(iocb, from);
2796                /*
2797                 * If the write stopped short of completing, fall back to
2798                 * buffered writes.  Some filesystems do this for writes to
2799                 * holes, for example.  For DAX files, a buffered write will
2800                 * not succeed (even if it did, DAX does not handle dirty
2801                 * page-cache pages correctly).
2802                 */
2803                if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2804                        goto out;
2805
2806                status = generic_perform_write(file, from, pos = iocb->ki_pos);
2807                /*
2808                 * If generic_perform_write() returned a synchronous error
2809                 * then we want to return the number of bytes which were
2810                 * direct-written, or the error code if that was zero.  Note
2811                 * that this differs from normal direct-io semantics, which
2812                 * will return -EFOO even if some bytes were written.
2813                 */
2814                if (unlikely(status < 0)) {
2815                        err = status;
2816                        goto out;
2817                }
2818                /*
2819                 * We need to ensure that the page cache pages are written to
2820                 * disk and invalidated to preserve the expected O_DIRECT
2821                 * semantics.
2822                 */
2823                endbyte = pos + status - 1;
2824                err = filemap_write_and_wait_range(mapping, pos, endbyte);
2825                if (err == 0) {
2826                        iocb->ki_pos = endbyte + 1;
2827                        written += status;
2828                        invalidate_mapping_pages(mapping,
2829                                                 pos >> PAGE_SHIFT,
2830                                                 endbyte >> PAGE_SHIFT);
2831                } else {
2832                        /*
2833                         * We don't know how much we wrote, so just return
2834                         * the number of bytes which were direct-written
2835                         */
2836                }
2837        } else {
2838                written = generic_perform_write(file, from, iocb->ki_pos);
2839                if (likely(written > 0))
2840                        iocb->ki_pos += written;
2841        }
2842out:
2843        current->backing_dev_info = NULL;
2844        return written ? written : err;
2845}
2846EXPORT_SYMBOL(__generic_file_write_iter);
2847
2848/**
2849 * generic_file_write_iter - write data to a file
2850 * @iocb:       IO state structure
2851 * @from:       iov_iter with data to write
2852 *
2853 * This is a wrapper around __generic_file_write_iter() to be used by most
2854 * filesystems. It takes care of syncing the file in case of O_SYNC file
2855 * and acquires i_mutex as needed.
2856 */
2857ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2858{
2859        struct file *file = iocb->ki_filp;
2860        struct inode *inode = file->f_mapping->host;
2861        ssize_t ret;
2862
2863        inode_lock(inode);
2864        ret = generic_write_checks(iocb, from);
2865        if (ret > 0)
2866                ret = __generic_file_write_iter(iocb, from);
2867        inode_unlock(inode);
2868
2869        if (ret > 0)
2870                ret = generic_write_sync(iocb, ret);
2871        return ret;
2872}
2873EXPORT_SYMBOL(generic_file_write_iter);
2874
2875/**
2876 * try_to_release_page() - release old fs-specific metadata on a page
2877 *
2878 * @page: the page which the kernel is trying to free
2879 * @gfp_mask: memory allocation flags (and I/O mode)
2880 *
2881 * The address_space is to try to release any data against the page
2882 * (presumably at page->private).  If the release was successful, return `1'.
2883 * Otherwise return zero.
2884 *
2885 * This may also be called if PG_fscache is set on a page, indicating that the
2886 * page is known to the local caching routines.
2887 *
2888 * The @gfp_mask argument specifies whether I/O may be performed to release
2889 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2890 *
2891 */
2892int try_to_release_page(struct page *page, gfp_t gfp_mask)
2893{
2894        struct address_space * const mapping = page->mapping;
2895
2896        BUG_ON(!PageLocked(page));
2897        if (PageWriteback(page))
2898                return 0;
2899
2900        if (mapping && mapping->a_ops->releasepage)
2901                return mapping->a_ops->releasepage(page, gfp_mask);
2902        return try_to_free_buffers(page);
2903}
2904
2905EXPORT_SYMBOL(try_to_release_page);
2906