linux/mm/hugetlb.c
<<
>>
Prefs
   1/*
   2 * Generic hugetlb support.
   3 * (C) Nadia Yvette Chambers, April 2004
   4 */
   5#include <linux/list.h>
   6#include <linux/init.h>
   7#include <linux/mm.h>
   8#include <linux/seq_file.h>
   9#include <linux/sysctl.h>
  10#include <linux/highmem.h>
  11#include <linux/mmu_notifier.h>
  12#include <linux/nodemask.h>
  13#include <linux/pagemap.h>
  14#include <linux/mempolicy.h>
  15#include <linux/compiler.h>
  16#include <linux/cpuset.h>
  17#include <linux/mutex.h>
  18#include <linux/bootmem.h>
  19#include <linux/sysfs.h>
  20#include <linux/slab.h>
  21#include <linux/rmap.h>
  22#include <linux/swap.h>
  23#include <linux/swapops.h>
  24#include <linux/page-isolation.h>
  25#include <linux/jhash.h>
  26
  27#include <asm/page.h>
  28#include <asm/pgtable.h>
  29#include <asm/tlb.h>
  30
  31#include <linux/io.h>
  32#include <linux/hugetlb.h>
  33#include <linux/hugetlb_cgroup.h>
  34#include <linux/node.h>
  35#include "internal.h"
  36
  37int hugepages_treat_as_movable;
  38
  39int hugetlb_max_hstate __read_mostly;
  40unsigned int default_hstate_idx;
  41struct hstate hstates[HUGE_MAX_HSTATE];
  42/*
  43 * Minimum page order among possible hugepage sizes, set to a proper value
  44 * at boot time.
  45 */
  46static unsigned int minimum_order __read_mostly = UINT_MAX;
  47
  48__initdata LIST_HEAD(huge_boot_pages);
  49
  50/* for command line parsing */
  51static struct hstate * __initdata parsed_hstate;
  52static unsigned long __initdata default_hstate_max_huge_pages;
  53static unsigned long __initdata default_hstate_size;
  54static bool __initdata parsed_valid_hugepagesz = true;
  55
  56/*
  57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  58 * free_huge_pages, and surplus_huge_pages.
  59 */
  60DEFINE_SPINLOCK(hugetlb_lock);
  61
  62/*
  63 * Serializes faults on the same logical page.  This is used to
  64 * prevent spurious OOMs when the hugepage pool is fully utilized.
  65 */
  66static int num_fault_mutexes;
  67struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  68
  69/* Forward declaration */
  70static int hugetlb_acct_memory(struct hstate *h, long delta);
  71
  72static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  73{
  74        bool free = (spool->count == 0) && (spool->used_hpages == 0);
  75
  76        spin_unlock(&spool->lock);
  77
  78        /* If no pages are used, and no other handles to the subpool
  79         * remain, give up any reservations mased on minimum size and
  80         * free the subpool */
  81        if (free) {
  82                if (spool->min_hpages != -1)
  83                        hugetlb_acct_memory(spool->hstate,
  84                                                -spool->min_hpages);
  85                kfree(spool);
  86        }
  87}
  88
  89struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  90                                                long min_hpages)
  91{
  92        struct hugepage_subpool *spool;
  93
  94        spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  95        if (!spool)
  96                return NULL;
  97
  98        spin_lock_init(&spool->lock);
  99        spool->count = 1;
 100        spool->max_hpages = max_hpages;
 101        spool->hstate = h;
 102        spool->min_hpages = min_hpages;
 103
 104        if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 105                kfree(spool);
 106                return NULL;
 107        }
 108        spool->rsv_hpages = min_hpages;
 109
 110        return spool;
 111}
 112
 113void hugepage_put_subpool(struct hugepage_subpool *spool)
 114{
 115        spin_lock(&spool->lock);
 116        BUG_ON(!spool->count);
 117        spool->count--;
 118        unlock_or_release_subpool(spool);
 119}
 120
 121/*
 122 * Subpool accounting for allocating and reserving pages.
 123 * Return -ENOMEM if there are not enough resources to satisfy the
 124 * the request.  Otherwise, return the number of pages by which the
 125 * global pools must be adjusted (upward).  The returned value may
 126 * only be different than the passed value (delta) in the case where
 127 * a subpool minimum size must be manitained.
 128 */
 129static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 130                                      long delta)
 131{
 132        long ret = delta;
 133
 134        if (!spool)
 135                return ret;
 136
 137        spin_lock(&spool->lock);
 138
 139        if (spool->max_hpages != -1) {          /* maximum size accounting */
 140                if ((spool->used_hpages + delta) <= spool->max_hpages)
 141                        spool->used_hpages += delta;
 142                else {
 143                        ret = -ENOMEM;
 144                        goto unlock_ret;
 145                }
 146        }
 147
 148        /* minimum size accounting */
 149        if (spool->min_hpages != -1 && spool->rsv_hpages) {
 150                if (delta > spool->rsv_hpages) {
 151                        /*
 152                         * Asking for more reserves than those already taken on
 153                         * behalf of subpool.  Return difference.
 154                         */
 155                        ret = delta - spool->rsv_hpages;
 156                        spool->rsv_hpages = 0;
 157                } else {
 158                        ret = 0;        /* reserves already accounted for */
 159                        spool->rsv_hpages -= delta;
 160                }
 161        }
 162
 163unlock_ret:
 164        spin_unlock(&spool->lock);
 165        return ret;
 166}
 167
 168/*
 169 * Subpool accounting for freeing and unreserving pages.
 170 * Return the number of global page reservations that must be dropped.
 171 * The return value may only be different than the passed value (delta)
 172 * in the case where a subpool minimum size must be maintained.
 173 */
 174static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 175                                       long delta)
 176{
 177        long ret = delta;
 178
 179        if (!spool)
 180                return delta;
 181
 182        spin_lock(&spool->lock);
 183
 184        if (spool->max_hpages != -1)            /* maximum size accounting */
 185                spool->used_hpages -= delta;
 186
 187         /* minimum size accounting */
 188        if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 189                if (spool->rsv_hpages + delta <= spool->min_hpages)
 190                        ret = 0;
 191                else
 192                        ret = spool->rsv_hpages + delta - spool->min_hpages;
 193
 194                spool->rsv_hpages += delta;
 195                if (spool->rsv_hpages > spool->min_hpages)
 196                        spool->rsv_hpages = spool->min_hpages;
 197        }
 198
 199        /*
 200         * If hugetlbfs_put_super couldn't free spool due to an outstanding
 201         * quota reference, free it now.
 202         */
 203        unlock_or_release_subpool(spool);
 204
 205        return ret;
 206}
 207
 208static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 209{
 210        return HUGETLBFS_SB(inode->i_sb)->spool;
 211}
 212
 213static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 214{
 215        return subpool_inode(file_inode(vma->vm_file));
 216}
 217
 218/*
 219 * Region tracking -- allows tracking of reservations and instantiated pages
 220 *                    across the pages in a mapping.
 221 *
 222 * The region data structures are embedded into a resv_map and protected
 223 * by a resv_map's lock.  The set of regions within the resv_map represent
 224 * reservations for huge pages, or huge pages that have already been
 225 * instantiated within the map.  The from and to elements are huge page
 226 * indicies into the associated mapping.  from indicates the starting index
 227 * of the region.  to represents the first index past the end of  the region.
 228 *
 229 * For example, a file region structure with from == 0 and to == 4 represents
 230 * four huge pages in a mapping.  It is important to note that the to element
 231 * represents the first element past the end of the region. This is used in
 232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 233 *
 234 * Interval notation of the form [from, to) will be used to indicate that
 235 * the endpoint from is inclusive and to is exclusive.
 236 */
 237struct file_region {
 238        struct list_head link;
 239        long from;
 240        long to;
 241};
 242
 243/*
 244 * Add the huge page range represented by [f, t) to the reserve
 245 * map.  In the normal case, existing regions will be expanded
 246 * to accommodate the specified range.  Sufficient regions should
 247 * exist for expansion due to the previous call to region_chg
 248 * with the same range.  However, it is possible that region_del
 249 * could have been called after region_chg and modifed the map
 250 * in such a way that no region exists to be expanded.  In this
 251 * case, pull a region descriptor from the cache associated with
 252 * the map and use that for the new range.
 253 *
 254 * Return the number of new huge pages added to the map.  This
 255 * number is greater than or equal to zero.
 256 */
 257static long region_add(struct resv_map *resv, long f, long t)
 258{
 259        struct list_head *head = &resv->regions;
 260        struct file_region *rg, *nrg, *trg;
 261        long add = 0;
 262
 263        spin_lock(&resv->lock);
 264        /* Locate the region we are either in or before. */
 265        list_for_each_entry(rg, head, link)
 266                if (f <= rg->to)
 267                        break;
 268
 269        /*
 270         * If no region exists which can be expanded to include the
 271         * specified range, the list must have been modified by an
 272         * interleving call to region_del().  Pull a region descriptor
 273         * from the cache and use it for this range.
 274         */
 275        if (&rg->link == head || t < rg->from) {
 276                VM_BUG_ON(resv->region_cache_count <= 0);
 277
 278                resv->region_cache_count--;
 279                nrg = list_first_entry(&resv->region_cache, struct file_region,
 280                                        link);
 281                list_del(&nrg->link);
 282
 283                nrg->from = f;
 284                nrg->to = t;
 285                list_add(&nrg->link, rg->link.prev);
 286
 287                add += t - f;
 288                goto out_locked;
 289        }
 290
 291        /* Round our left edge to the current segment if it encloses us. */
 292        if (f > rg->from)
 293                f = rg->from;
 294
 295        /* Check for and consume any regions we now overlap with. */
 296        nrg = rg;
 297        list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 298                if (&rg->link == head)
 299                        break;
 300                if (rg->from > t)
 301                        break;
 302
 303                /* If this area reaches higher then extend our area to
 304                 * include it completely.  If this is not the first area
 305                 * which we intend to reuse, free it. */
 306                if (rg->to > t)
 307                        t = rg->to;
 308                if (rg != nrg) {
 309                        /* Decrement return value by the deleted range.
 310                         * Another range will span this area so that by
 311                         * end of routine add will be >= zero
 312                         */
 313                        add -= (rg->to - rg->from);
 314                        list_del(&rg->link);
 315                        kfree(rg);
 316                }
 317        }
 318
 319        add += (nrg->from - f);         /* Added to beginning of region */
 320        nrg->from = f;
 321        add += t - nrg->to;             /* Added to end of region */
 322        nrg->to = t;
 323
 324out_locked:
 325        resv->adds_in_progress--;
 326        spin_unlock(&resv->lock);
 327        VM_BUG_ON(add < 0);
 328        return add;
 329}
 330
 331/*
 332 * Examine the existing reserve map and determine how many
 333 * huge pages in the specified range [f, t) are NOT currently
 334 * represented.  This routine is called before a subsequent
 335 * call to region_add that will actually modify the reserve
 336 * map to add the specified range [f, t).  region_chg does
 337 * not change the number of huge pages represented by the
 338 * map.  However, if the existing regions in the map can not
 339 * be expanded to represent the new range, a new file_region
 340 * structure is added to the map as a placeholder.  This is
 341 * so that the subsequent region_add call will have all the
 342 * regions it needs and will not fail.
 343 *
 344 * Upon entry, region_chg will also examine the cache of region descriptors
 345 * associated with the map.  If there are not enough descriptors cached, one
 346 * will be allocated for the in progress add operation.
 347 *
 348 * Returns the number of huge pages that need to be added to the existing
 349 * reservation map for the range [f, t).  This number is greater or equal to
 350 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 351 * is needed and can not be allocated.
 352 */
 353static long region_chg(struct resv_map *resv, long f, long t)
 354{
 355        struct list_head *head = &resv->regions;
 356        struct file_region *rg, *nrg = NULL;
 357        long chg = 0;
 358
 359retry:
 360        spin_lock(&resv->lock);
 361retry_locked:
 362        resv->adds_in_progress++;
 363
 364        /*
 365         * Check for sufficient descriptors in the cache to accommodate
 366         * the number of in progress add operations.
 367         */
 368        if (resv->adds_in_progress > resv->region_cache_count) {
 369                struct file_region *trg;
 370
 371                VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 372                /* Must drop lock to allocate a new descriptor. */
 373                resv->adds_in_progress--;
 374                spin_unlock(&resv->lock);
 375
 376                trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 377                if (!trg) {
 378                        kfree(nrg);
 379                        return -ENOMEM;
 380                }
 381
 382                spin_lock(&resv->lock);
 383                list_add(&trg->link, &resv->region_cache);
 384                resv->region_cache_count++;
 385                goto retry_locked;
 386        }
 387
 388        /* Locate the region we are before or in. */
 389        list_for_each_entry(rg, head, link)
 390                if (f <= rg->to)
 391                        break;
 392
 393        /* If we are below the current region then a new region is required.
 394         * Subtle, allocate a new region at the position but make it zero
 395         * size such that we can guarantee to record the reservation. */
 396        if (&rg->link == head || t < rg->from) {
 397                if (!nrg) {
 398                        resv->adds_in_progress--;
 399                        spin_unlock(&resv->lock);
 400                        nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 401                        if (!nrg)
 402                                return -ENOMEM;
 403
 404                        nrg->from = f;
 405                        nrg->to   = f;
 406                        INIT_LIST_HEAD(&nrg->link);
 407                        goto retry;
 408                }
 409
 410                list_add(&nrg->link, rg->link.prev);
 411                chg = t - f;
 412                goto out_nrg;
 413        }
 414
 415        /* Round our left edge to the current segment if it encloses us. */
 416        if (f > rg->from)
 417                f = rg->from;
 418        chg = t - f;
 419
 420        /* Check for and consume any regions we now overlap with. */
 421        list_for_each_entry(rg, rg->link.prev, link) {
 422                if (&rg->link == head)
 423                        break;
 424                if (rg->from > t)
 425                        goto out;
 426
 427                /* We overlap with this area, if it extends further than
 428                 * us then we must extend ourselves.  Account for its
 429                 * existing reservation. */
 430                if (rg->to > t) {
 431                        chg += rg->to - t;
 432                        t = rg->to;
 433                }
 434                chg -= rg->to - rg->from;
 435        }
 436
 437out:
 438        spin_unlock(&resv->lock);
 439        /*  We already know we raced and no longer need the new region */
 440        kfree(nrg);
 441        return chg;
 442out_nrg:
 443        spin_unlock(&resv->lock);
 444        return chg;
 445}
 446
 447/*
 448 * Abort the in progress add operation.  The adds_in_progress field
 449 * of the resv_map keeps track of the operations in progress between
 450 * calls to region_chg and region_add.  Operations are sometimes
 451 * aborted after the call to region_chg.  In such cases, region_abort
 452 * is called to decrement the adds_in_progress counter.
 453 *
 454 * NOTE: The range arguments [f, t) are not needed or used in this
 455 * routine.  They are kept to make reading the calling code easier as
 456 * arguments will match the associated region_chg call.
 457 */
 458static void region_abort(struct resv_map *resv, long f, long t)
 459{
 460        spin_lock(&resv->lock);
 461        VM_BUG_ON(!resv->region_cache_count);
 462        resv->adds_in_progress--;
 463        spin_unlock(&resv->lock);
 464}
 465
 466/*
 467 * Delete the specified range [f, t) from the reserve map.  If the
 468 * t parameter is LONG_MAX, this indicates that ALL regions after f
 469 * should be deleted.  Locate the regions which intersect [f, t)
 470 * and either trim, delete or split the existing regions.
 471 *
 472 * Returns the number of huge pages deleted from the reserve map.
 473 * In the normal case, the return value is zero or more.  In the
 474 * case where a region must be split, a new region descriptor must
 475 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 476 * NOTE: If the parameter t == LONG_MAX, then we will never split
 477 * a region and possibly return -ENOMEM.  Callers specifying
 478 * t == LONG_MAX do not need to check for -ENOMEM error.
 479 */
 480static long region_del(struct resv_map *resv, long f, long t)
 481{
 482        struct list_head *head = &resv->regions;
 483        struct file_region *rg, *trg;
 484        struct file_region *nrg = NULL;
 485        long del = 0;
 486
 487retry:
 488        spin_lock(&resv->lock);
 489        list_for_each_entry_safe(rg, trg, head, link) {
 490                /*
 491                 * Skip regions before the range to be deleted.  file_region
 492                 * ranges are normally of the form [from, to).  However, there
 493                 * may be a "placeholder" entry in the map which is of the form
 494                 * (from, to) with from == to.  Check for placeholder entries
 495                 * at the beginning of the range to be deleted.
 496                 */
 497                if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 498                        continue;
 499
 500                if (rg->from >= t)
 501                        break;
 502
 503                if (f > rg->from && t < rg->to) { /* Must split region */
 504                        /*
 505                         * Check for an entry in the cache before dropping
 506                         * lock and attempting allocation.
 507                         */
 508                        if (!nrg &&
 509                            resv->region_cache_count > resv->adds_in_progress) {
 510                                nrg = list_first_entry(&resv->region_cache,
 511                                                        struct file_region,
 512                                                        link);
 513                                list_del(&nrg->link);
 514                                resv->region_cache_count--;
 515                        }
 516
 517                        if (!nrg) {
 518                                spin_unlock(&resv->lock);
 519                                nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 520                                if (!nrg)
 521                                        return -ENOMEM;
 522                                goto retry;
 523                        }
 524
 525                        del += t - f;
 526
 527                        /* New entry for end of split region */
 528                        nrg->from = t;
 529                        nrg->to = rg->to;
 530                        INIT_LIST_HEAD(&nrg->link);
 531
 532                        /* Original entry is trimmed */
 533                        rg->to = f;
 534
 535                        list_add(&nrg->link, &rg->link);
 536                        nrg = NULL;
 537                        break;
 538                }
 539
 540                if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 541                        del += rg->to - rg->from;
 542                        list_del(&rg->link);
 543                        kfree(rg);
 544                        continue;
 545                }
 546
 547                if (f <= rg->from) {    /* Trim beginning of region */
 548                        del += t - rg->from;
 549                        rg->from = t;
 550                } else {                /* Trim end of region */
 551                        del += rg->to - f;
 552                        rg->to = f;
 553                }
 554        }
 555
 556        spin_unlock(&resv->lock);
 557        kfree(nrg);
 558        return del;
 559}
 560
 561/*
 562 * A rare out of memory error was encountered which prevented removal of
 563 * the reserve map region for a page.  The huge page itself was free'ed
 564 * and removed from the page cache.  This routine will adjust the subpool
 565 * usage count, and the global reserve count if needed.  By incrementing
 566 * these counts, the reserve map entry which could not be deleted will
 567 * appear as a "reserved" entry instead of simply dangling with incorrect
 568 * counts.
 569 */
 570void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
 571{
 572        struct hugepage_subpool *spool = subpool_inode(inode);
 573        long rsv_adjust;
 574
 575        rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 576        if (restore_reserve && rsv_adjust) {
 577                struct hstate *h = hstate_inode(inode);
 578
 579                hugetlb_acct_memory(h, 1);
 580        }
 581}
 582
 583/*
 584 * Count and return the number of huge pages in the reserve map
 585 * that intersect with the range [f, t).
 586 */
 587static long region_count(struct resv_map *resv, long f, long t)
 588{
 589        struct list_head *head = &resv->regions;
 590        struct file_region *rg;
 591        long chg = 0;
 592
 593        spin_lock(&resv->lock);
 594        /* Locate each segment we overlap with, and count that overlap. */
 595        list_for_each_entry(rg, head, link) {
 596                long seg_from;
 597                long seg_to;
 598
 599                if (rg->to <= f)
 600                        continue;
 601                if (rg->from >= t)
 602                        break;
 603
 604                seg_from = max(rg->from, f);
 605                seg_to = min(rg->to, t);
 606
 607                chg += seg_to - seg_from;
 608        }
 609        spin_unlock(&resv->lock);
 610
 611        return chg;
 612}
 613
 614/*
 615 * Convert the address within this vma to the page offset within
 616 * the mapping, in pagecache page units; huge pages here.
 617 */
 618static pgoff_t vma_hugecache_offset(struct hstate *h,
 619                        struct vm_area_struct *vma, unsigned long address)
 620{
 621        return ((address - vma->vm_start) >> huge_page_shift(h)) +
 622                        (vma->vm_pgoff >> huge_page_order(h));
 623}
 624
 625pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 626                                     unsigned long address)
 627{
 628        return vma_hugecache_offset(hstate_vma(vma), vma, address);
 629}
 630EXPORT_SYMBOL_GPL(linear_hugepage_index);
 631
 632/*
 633 * Return the size of the pages allocated when backing a VMA. In the majority
 634 * cases this will be same size as used by the page table entries.
 635 */
 636unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 637{
 638        struct hstate *hstate;
 639
 640        if (!is_vm_hugetlb_page(vma))
 641                return PAGE_SIZE;
 642
 643        hstate = hstate_vma(vma);
 644
 645        return 1UL << huge_page_shift(hstate);
 646}
 647EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 648
 649/*
 650 * Return the page size being used by the MMU to back a VMA. In the majority
 651 * of cases, the page size used by the kernel matches the MMU size. On
 652 * architectures where it differs, an architecture-specific version of this
 653 * function is required.
 654 */
 655#ifndef vma_mmu_pagesize
 656unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 657{
 658        return vma_kernel_pagesize(vma);
 659}
 660#endif
 661
 662/*
 663 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 664 * bits of the reservation map pointer, which are always clear due to
 665 * alignment.
 666 */
 667#define HPAGE_RESV_OWNER    (1UL << 0)
 668#define HPAGE_RESV_UNMAPPED (1UL << 1)
 669#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 670
 671/*
 672 * These helpers are used to track how many pages are reserved for
 673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 674 * is guaranteed to have their future faults succeed.
 675 *
 676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 677 * the reserve counters are updated with the hugetlb_lock held. It is safe
 678 * to reset the VMA at fork() time as it is not in use yet and there is no
 679 * chance of the global counters getting corrupted as a result of the values.
 680 *
 681 * The private mapping reservation is represented in a subtly different
 682 * manner to a shared mapping.  A shared mapping has a region map associated
 683 * with the underlying file, this region map represents the backing file
 684 * pages which have ever had a reservation assigned which this persists even
 685 * after the page is instantiated.  A private mapping has a region map
 686 * associated with the original mmap which is attached to all VMAs which
 687 * reference it, this region map represents those offsets which have consumed
 688 * reservation ie. where pages have been instantiated.
 689 */
 690static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 691{
 692        return (unsigned long)vma->vm_private_data;
 693}
 694
 695static void set_vma_private_data(struct vm_area_struct *vma,
 696                                                        unsigned long value)
 697{
 698        vma->vm_private_data = (void *)value;
 699}
 700
 701struct resv_map *resv_map_alloc(void)
 702{
 703        struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 704        struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 705
 706        if (!resv_map || !rg) {
 707                kfree(resv_map);
 708                kfree(rg);
 709                return NULL;
 710        }
 711
 712        kref_init(&resv_map->refs);
 713        spin_lock_init(&resv_map->lock);
 714        INIT_LIST_HEAD(&resv_map->regions);
 715
 716        resv_map->adds_in_progress = 0;
 717
 718        INIT_LIST_HEAD(&resv_map->region_cache);
 719        list_add(&rg->link, &resv_map->region_cache);
 720        resv_map->region_cache_count = 1;
 721
 722        return resv_map;
 723}
 724
 725void resv_map_release(struct kref *ref)
 726{
 727        struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 728        struct list_head *head = &resv_map->region_cache;
 729        struct file_region *rg, *trg;
 730
 731        /* Clear out any active regions before we release the map. */
 732        region_del(resv_map, 0, LONG_MAX);
 733
 734        /* ... and any entries left in the cache */
 735        list_for_each_entry_safe(rg, trg, head, link) {
 736                list_del(&rg->link);
 737                kfree(rg);
 738        }
 739
 740        VM_BUG_ON(resv_map->adds_in_progress);
 741
 742        kfree(resv_map);
 743}
 744
 745static inline struct resv_map *inode_resv_map(struct inode *inode)
 746{
 747        return inode->i_mapping->private_data;
 748}
 749
 750static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 751{
 752        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 753        if (vma->vm_flags & VM_MAYSHARE) {
 754                struct address_space *mapping = vma->vm_file->f_mapping;
 755                struct inode *inode = mapping->host;
 756
 757                return inode_resv_map(inode);
 758
 759        } else {
 760                return (struct resv_map *)(get_vma_private_data(vma) &
 761                                                        ~HPAGE_RESV_MASK);
 762        }
 763}
 764
 765static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 766{
 767        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 768        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 769
 770        set_vma_private_data(vma, (get_vma_private_data(vma) &
 771                                HPAGE_RESV_MASK) | (unsigned long)map);
 772}
 773
 774static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 775{
 776        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 777        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 778
 779        set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 780}
 781
 782static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 783{
 784        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 785
 786        return (get_vma_private_data(vma) & flag) != 0;
 787}
 788
 789/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 790void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 791{
 792        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 793        if (!(vma->vm_flags & VM_MAYSHARE))
 794                vma->vm_private_data = (void *)0;
 795}
 796
 797/* Returns true if the VMA has associated reserve pages */
 798static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 799{
 800        if (vma->vm_flags & VM_NORESERVE) {
 801                /*
 802                 * This address is already reserved by other process(chg == 0),
 803                 * so, we should decrement reserved count. Without decrementing,
 804                 * reserve count remains after releasing inode, because this
 805                 * allocated page will go into page cache and is regarded as
 806                 * coming from reserved pool in releasing step.  Currently, we
 807                 * don't have any other solution to deal with this situation
 808                 * properly, so add work-around here.
 809                 */
 810                if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 811                        return true;
 812                else
 813                        return false;
 814        }
 815
 816        /* Shared mappings always use reserves */
 817        if (vma->vm_flags & VM_MAYSHARE) {
 818                /*
 819                 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 820                 * be a region map for all pages.  The only situation where
 821                 * there is no region map is if a hole was punched via
 822                 * fallocate.  In this case, there really are no reverves to
 823                 * use.  This situation is indicated if chg != 0.
 824                 */
 825                if (chg)
 826                        return false;
 827                else
 828                        return true;
 829        }
 830
 831        /*
 832         * Only the process that called mmap() has reserves for
 833         * private mappings.
 834         */
 835        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 836                /*
 837                 * Like the shared case above, a hole punch or truncate
 838                 * could have been performed on the private mapping.
 839                 * Examine the value of chg to determine if reserves
 840                 * actually exist or were previously consumed.
 841                 * Very Subtle - The value of chg comes from a previous
 842                 * call to vma_needs_reserves().  The reserve map for
 843                 * private mappings has different (opposite) semantics
 844                 * than that of shared mappings.  vma_needs_reserves()
 845                 * has already taken this difference in semantics into
 846                 * account.  Therefore, the meaning of chg is the same
 847                 * as in the shared case above.  Code could easily be
 848                 * combined, but keeping it separate draws attention to
 849                 * subtle differences.
 850                 */
 851                if (chg)
 852                        return false;
 853                else
 854                        return true;
 855        }
 856
 857        return false;
 858}
 859
 860static void enqueue_huge_page(struct hstate *h, struct page *page)
 861{
 862        int nid = page_to_nid(page);
 863        list_move(&page->lru, &h->hugepage_freelists[nid]);
 864        h->free_huge_pages++;
 865        h->free_huge_pages_node[nid]++;
 866}
 867
 868static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
 869{
 870        struct page *page;
 871
 872        list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 873                if (!is_migrate_isolate_page(page))
 874                        break;
 875        /*
 876         * if 'non-isolated free hugepage' not found on the list,
 877         * the allocation fails.
 878         */
 879        if (&h->hugepage_freelists[nid] == &page->lru)
 880                return NULL;
 881        list_move(&page->lru, &h->hugepage_activelist);
 882        set_page_refcounted(page);
 883        h->free_huge_pages--;
 884        h->free_huge_pages_node[nid]--;
 885        return page;
 886}
 887
 888/* Movability of hugepages depends on migration support. */
 889static inline gfp_t htlb_alloc_mask(struct hstate *h)
 890{
 891        if (hugepages_treat_as_movable || hugepage_migration_supported(h))
 892                return GFP_HIGHUSER_MOVABLE;
 893        else
 894                return GFP_HIGHUSER;
 895}
 896
 897static struct page *dequeue_huge_page_vma(struct hstate *h,
 898                                struct vm_area_struct *vma,
 899                                unsigned long address, int avoid_reserve,
 900                                long chg)
 901{
 902        struct page *page = NULL;
 903        struct mempolicy *mpol;
 904        nodemask_t *nodemask;
 905        struct zonelist *zonelist;
 906        struct zone *zone;
 907        struct zoneref *z;
 908        unsigned int cpuset_mems_cookie;
 909
 910        /*
 911         * A child process with MAP_PRIVATE mappings created by their parent
 912         * have no page reserves. This check ensures that reservations are
 913         * not "stolen". The child may still get SIGKILLed
 914         */
 915        if (!vma_has_reserves(vma, chg) &&
 916                        h->free_huge_pages - h->resv_huge_pages == 0)
 917                goto err;
 918
 919        /* If reserves cannot be used, ensure enough pages are in the pool */
 920        if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 921                goto err;
 922
 923retry_cpuset:
 924        cpuset_mems_cookie = read_mems_allowed_begin();
 925        zonelist = huge_zonelist(vma, address,
 926                                        htlb_alloc_mask(h), &mpol, &nodemask);
 927
 928        for_each_zone_zonelist_nodemask(zone, z, zonelist,
 929                                                MAX_NR_ZONES - 1, nodemask) {
 930                if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
 931                        page = dequeue_huge_page_node(h, zone_to_nid(zone));
 932                        if (page) {
 933                                if (avoid_reserve)
 934                                        break;
 935                                if (!vma_has_reserves(vma, chg))
 936                                        break;
 937
 938                                SetPagePrivate(page);
 939                                h->resv_huge_pages--;
 940                                break;
 941                        }
 942                }
 943        }
 944
 945        mpol_cond_put(mpol);
 946        if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
 947                goto retry_cpuset;
 948        return page;
 949
 950err:
 951        return NULL;
 952}
 953
 954/*
 955 * common helper functions for hstate_next_node_to_{alloc|free}.
 956 * We may have allocated or freed a huge page based on a different
 957 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 958 * be outside of *nodes_allowed.  Ensure that we use an allowed
 959 * node for alloc or free.
 960 */
 961static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 962{
 963        nid = next_node_in(nid, *nodes_allowed);
 964        VM_BUG_ON(nid >= MAX_NUMNODES);
 965
 966        return nid;
 967}
 968
 969static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 970{
 971        if (!node_isset(nid, *nodes_allowed))
 972                nid = next_node_allowed(nid, nodes_allowed);
 973        return nid;
 974}
 975
 976/*
 977 * returns the previously saved node ["this node"] from which to
 978 * allocate a persistent huge page for the pool and advance the
 979 * next node from which to allocate, handling wrap at end of node
 980 * mask.
 981 */
 982static int hstate_next_node_to_alloc(struct hstate *h,
 983                                        nodemask_t *nodes_allowed)
 984{
 985        int nid;
 986
 987        VM_BUG_ON(!nodes_allowed);
 988
 989        nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
 990        h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
 991
 992        return nid;
 993}
 994
 995/*
 996 * helper for free_pool_huge_page() - return the previously saved
 997 * node ["this node"] from which to free a huge page.  Advance the
 998 * next node id whether or not we find a free huge page to free so
 999 * that the next attempt to free addresses the next node.
1000 */
1001static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1002{
1003        int nid;
1004
1005        VM_BUG_ON(!nodes_allowed);
1006
1007        nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008        h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1009
1010        return nid;
1011}
1012
1013#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1014        for (nr_nodes = nodes_weight(*mask);                            \
1015                nr_nodes > 0 &&                                         \
1016                ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1017                nr_nodes--)
1018
1019#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1020        for (nr_nodes = nodes_weight(*mask);                            \
1021                nr_nodes > 0 &&                                         \
1022                ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1023                nr_nodes--)
1024
1025#if (defined(CONFIG_X86_64) || defined(CONFIG_S390)) && \
1026        ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1027        defined(CONFIG_CMA))
1028static void destroy_compound_gigantic_page(struct page *page,
1029                                        unsigned int order)
1030{
1031        int i;
1032        int nr_pages = 1 << order;
1033        struct page *p = page + 1;
1034
1035        atomic_set(compound_mapcount_ptr(page), 0);
1036        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1037                clear_compound_head(p);
1038                set_page_refcounted(p);
1039        }
1040
1041        set_compound_order(page, 0);
1042        __ClearPageHead(page);
1043}
1044
1045static void free_gigantic_page(struct page *page, unsigned int order)
1046{
1047        free_contig_range(page_to_pfn(page), 1 << order);
1048}
1049
1050static int __alloc_gigantic_page(unsigned long start_pfn,
1051                                unsigned long nr_pages)
1052{
1053        unsigned long end_pfn = start_pfn + nr_pages;
1054        return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1055}
1056
1057static bool pfn_range_valid_gigantic(struct zone *z,
1058                        unsigned long start_pfn, unsigned long nr_pages)
1059{
1060        unsigned long i, end_pfn = start_pfn + nr_pages;
1061        struct page *page;
1062
1063        for (i = start_pfn; i < end_pfn; i++) {
1064                if (!pfn_valid(i))
1065                        return false;
1066
1067                page = pfn_to_page(i);
1068
1069                if (page_zone(page) != z)
1070                        return false;
1071
1072                if (PageReserved(page))
1073                        return false;
1074
1075                if (page_count(page) > 0)
1076                        return false;
1077
1078                if (PageHuge(page))
1079                        return false;
1080        }
1081
1082        return true;
1083}
1084
1085static bool zone_spans_last_pfn(const struct zone *zone,
1086                        unsigned long start_pfn, unsigned long nr_pages)
1087{
1088        unsigned long last_pfn = start_pfn + nr_pages - 1;
1089        return zone_spans_pfn(zone, last_pfn);
1090}
1091
1092static struct page *alloc_gigantic_page(int nid, unsigned int order)
1093{
1094        unsigned long nr_pages = 1 << order;
1095        unsigned long ret, pfn, flags;
1096        struct zone *z;
1097
1098        z = NODE_DATA(nid)->node_zones;
1099        for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1100                spin_lock_irqsave(&z->lock, flags);
1101
1102                pfn = ALIGN(z->zone_start_pfn, nr_pages);
1103                while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1104                        if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1105                                /*
1106                                 * We release the zone lock here because
1107                                 * alloc_contig_range() will also lock the zone
1108                                 * at some point. If there's an allocation
1109                                 * spinning on this lock, it may win the race
1110                                 * and cause alloc_contig_range() to fail...
1111                                 */
1112                                spin_unlock_irqrestore(&z->lock, flags);
1113                                ret = __alloc_gigantic_page(pfn, nr_pages);
1114                                if (!ret)
1115                                        return pfn_to_page(pfn);
1116                                spin_lock_irqsave(&z->lock, flags);
1117                        }
1118                        pfn += nr_pages;
1119                }
1120
1121                spin_unlock_irqrestore(&z->lock, flags);
1122        }
1123
1124        return NULL;
1125}
1126
1127static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1128static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1129
1130static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1131{
1132        struct page *page;
1133
1134        page = alloc_gigantic_page(nid, huge_page_order(h));
1135        if (page) {
1136                prep_compound_gigantic_page(page, huge_page_order(h));
1137                prep_new_huge_page(h, page, nid);
1138        }
1139
1140        return page;
1141}
1142
1143static int alloc_fresh_gigantic_page(struct hstate *h,
1144                                nodemask_t *nodes_allowed)
1145{
1146        struct page *page = NULL;
1147        int nr_nodes, node;
1148
1149        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1150                page = alloc_fresh_gigantic_page_node(h, node);
1151                if (page)
1152                        return 1;
1153        }
1154
1155        return 0;
1156}
1157
1158static inline bool gigantic_page_supported(void) { return true; }
1159#else
1160static inline bool gigantic_page_supported(void) { return false; }
1161static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162static inline void destroy_compound_gigantic_page(struct page *page,
1163                                                unsigned int order) { }
1164static inline int alloc_fresh_gigantic_page(struct hstate *h,
1165                                        nodemask_t *nodes_allowed) { return 0; }
1166#endif
1167
1168static void update_and_free_page(struct hstate *h, struct page *page)
1169{
1170        int i;
1171
1172        if (hstate_is_gigantic(h) && !gigantic_page_supported())
1173                return;
1174
1175        h->nr_huge_pages--;
1176        h->nr_huge_pages_node[page_to_nid(page)]--;
1177        for (i = 0; i < pages_per_huge_page(h); i++) {
1178                page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1179                                1 << PG_referenced | 1 << PG_dirty |
1180                                1 << PG_active | 1 << PG_private |
1181                                1 << PG_writeback);
1182        }
1183        VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1184        set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1185        set_page_refcounted(page);
1186        if (hstate_is_gigantic(h)) {
1187                destroy_compound_gigantic_page(page, huge_page_order(h));
1188                free_gigantic_page(page, huge_page_order(h));
1189        } else {
1190                __free_pages(page, huge_page_order(h));
1191        }
1192}
1193
1194struct hstate *size_to_hstate(unsigned long size)
1195{
1196        struct hstate *h;
1197
1198        for_each_hstate(h) {
1199                if (huge_page_size(h) == size)
1200                        return h;
1201        }
1202        return NULL;
1203}
1204
1205/*
1206 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1207 * to hstate->hugepage_activelist.)
1208 *
1209 * This function can be called for tail pages, but never returns true for them.
1210 */
1211bool page_huge_active(struct page *page)
1212{
1213        VM_BUG_ON_PAGE(!PageHuge(page), page);
1214        return PageHead(page) && PagePrivate(&page[1]);
1215}
1216
1217/* never called for tail page */
1218static void set_page_huge_active(struct page *page)
1219{
1220        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1221        SetPagePrivate(&page[1]);
1222}
1223
1224static void clear_page_huge_active(struct page *page)
1225{
1226        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227        ClearPagePrivate(&page[1]);
1228}
1229
1230void free_huge_page(struct page *page)
1231{
1232        /*
1233         * Can't pass hstate in here because it is called from the
1234         * compound page destructor.
1235         */
1236        struct hstate *h = page_hstate(page);
1237        int nid = page_to_nid(page);
1238        struct hugepage_subpool *spool =
1239                (struct hugepage_subpool *)page_private(page);
1240        bool restore_reserve;
1241
1242        set_page_private(page, 0);
1243        page->mapping = NULL;
1244        VM_BUG_ON_PAGE(page_count(page), page);
1245        VM_BUG_ON_PAGE(page_mapcount(page), page);
1246        restore_reserve = PagePrivate(page);
1247        ClearPagePrivate(page);
1248
1249        /*
1250         * A return code of zero implies that the subpool will be under its
1251         * minimum size if the reservation is not restored after page is free.
1252         * Therefore, force restore_reserve operation.
1253         */
1254        if (hugepage_subpool_put_pages(spool, 1) == 0)
1255                restore_reserve = true;
1256
1257        spin_lock(&hugetlb_lock);
1258        clear_page_huge_active(page);
1259        hugetlb_cgroup_uncharge_page(hstate_index(h),
1260                                     pages_per_huge_page(h), page);
1261        if (restore_reserve)
1262                h->resv_huge_pages++;
1263
1264        if (h->surplus_huge_pages_node[nid]) {
1265                /* remove the page from active list */
1266                list_del(&page->lru);
1267                update_and_free_page(h, page);
1268                h->surplus_huge_pages--;
1269                h->surplus_huge_pages_node[nid]--;
1270        } else {
1271                arch_clear_hugepage_flags(page);
1272                enqueue_huge_page(h, page);
1273        }
1274        spin_unlock(&hugetlb_lock);
1275}
1276
1277static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1278{
1279        INIT_LIST_HEAD(&page->lru);
1280        set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1281        spin_lock(&hugetlb_lock);
1282        set_hugetlb_cgroup(page, NULL);
1283        h->nr_huge_pages++;
1284        h->nr_huge_pages_node[nid]++;
1285        spin_unlock(&hugetlb_lock);
1286        put_page(page); /* free it into the hugepage allocator */
1287}
1288
1289static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1290{
1291        int i;
1292        int nr_pages = 1 << order;
1293        struct page *p = page + 1;
1294
1295        /* we rely on prep_new_huge_page to set the destructor */
1296        set_compound_order(page, order);
1297        __ClearPageReserved(page);
1298        __SetPageHead(page);
1299        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1300                /*
1301                 * For gigantic hugepages allocated through bootmem at
1302                 * boot, it's safer to be consistent with the not-gigantic
1303                 * hugepages and clear the PG_reserved bit from all tail pages
1304                 * too.  Otherwse drivers using get_user_pages() to access tail
1305                 * pages may get the reference counting wrong if they see
1306                 * PG_reserved set on a tail page (despite the head page not
1307                 * having PG_reserved set).  Enforcing this consistency between
1308                 * head and tail pages allows drivers to optimize away a check
1309                 * on the head page when they need know if put_page() is needed
1310                 * after get_user_pages().
1311                 */
1312                __ClearPageReserved(p);
1313                set_page_count(p, 0);
1314                set_compound_head(p, page);
1315        }
1316        atomic_set(compound_mapcount_ptr(page), -1);
1317}
1318
1319/*
1320 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1321 * transparent huge pages.  See the PageTransHuge() documentation for more
1322 * details.
1323 */
1324int PageHuge(struct page *page)
1325{
1326        if (!PageCompound(page))
1327                return 0;
1328
1329        page = compound_head(page);
1330        return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1331}
1332EXPORT_SYMBOL_GPL(PageHuge);
1333
1334/*
1335 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1336 * normal or transparent huge pages.
1337 */
1338int PageHeadHuge(struct page *page_head)
1339{
1340        if (!PageHead(page_head))
1341                return 0;
1342
1343        return get_compound_page_dtor(page_head) == free_huge_page;
1344}
1345
1346pgoff_t __basepage_index(struct page *page)
1347{
1348        struct page *page_head = compound_head(page);
1349        pgoff_t index = page_index(page_head);
1350        unsigned long compound_idx;
1351
1352        if (!PageHuge(page_head))
1353                return page_index(page);
1354
1355        if (compound_order(page_head) >= MAX_ORDER)
1356                compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1357        else
1358                compound_idx = page - page_head;
1359
1360        return (index << compound_order(page_head)) + compound_idx;
1361}
1362
1363static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1364{
1365        struct page *page;
1366
1367        page = __alloc_pages_node(nid,
1368                htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1369                                                __GFP_REPEAT|__GFP_NOWARN,
1370                huge_page_order(h));
1371        if (page) {
1372                prep_new_huge_page(h, page, nid);
1373        }
1374
1375        return page;
1376}
1377
1378static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1379{
1380        struct page *page;
1381        int nr_nodes, node;
1382        int ret = 0;
1383
1384        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1385                page = alloc_fresh_huge_page_node(h, node);
1386                if (page) {
1387                        ret = 1;
1388                        break;
1389                }
1390        }
1391
1392        if (ret)
1393                count_vm_event(HTLB_BUDDY_PGALLOC);
1394        else
1395                count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1396
1397        return ret;
1398}
1399
1400/*
1401 * Free huge page from pool from next node to free.
1402 * Attempt to keep persistent huge pages more or less
1403 * balanced over allowed nodes.
1404 * Called with hugetlb_lock locked.
1405 */
1406static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1407                                                         bool acct_surplus)
1408{
1409        int nr_nodes, node;
1410        int ret = 0;
1411
1412        for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1413                /*
1414                 * If we're returning unused surplus pages, only examine
1415                 * nodes with surplus pages.
1416                 */
1417                if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1418                    !list_empty(&h->hugepage_freelists[node])) {
1419                        struct page *page =
1420                                list_entry(h->hugepage_freelists[node].next,
1421                                          struct page, lru);
1422                        list_del(&page->lru);
1423                        h->free_huge_pages--;
1424                        h->free_huge_pages_node[node]--;
1425                        if (acct_surplus) {
1426                                h->surplus_huge_pages--;
1427                                h->surplus_huge_pages_node[node]--;
1428                        }
1429                        update_and_free_page(h, page);
1430                        ret = 1;
1431                        break;
1432                }
1433        }
1434
1435        return ret;
1436}
1437
1438/*
1439 * Dissolve a given free hugepage into free buddy pages. This function does
1440 * nothing for in-use (including surplus) hugepages.
1441 */
1442static void dissolve_free_huge_page(struct page *page)
1443{
1444        spin_lock(&hugetlb_lock);
1445        if (PageHuge(page) && !page_count(page)) {
1446                struct hstate *h = page_hstate(page);
1447                int nid = page_to_nid(page);
1448                list_del(&page->lru);
1449                h->free_huge_pages--;
1450                h->free_huge_pages_node[nid]--;
1451                h->max_huge_pages--;
1452                update_and_free_page(h, page);
1453        }
1454        spin_unlock(&hugetlb_lock);
1455}
1456
1457/*
1458 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1459 * make specified memory blocks removable from the system.
1460 * Note that start_pfn should aligned with (minimum) hugepage size.
1461 */
1462void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1463{
1464        unsigned long pfn;
1465
1466        if (!hugepages_supported())
1467                return;
1468
1469        VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1470        for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1471                dissolve_free_huge_page(pfn_to_page(pfn));
1472}
1473
1474/*
1475 * There are 3 ways this can get called:
1476 * 1. With vma+addr: we use the VMA's memory policy
1477 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1478 *    page from any node, and let the buddy allocator itself figure
1479 *    it out.
1480 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1481 *    strictly from 'nid'
1482 */
1483static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1484                struct vm_area_struct *vma, unsigned long addr, int nid)
1485{
1486        int order = huge_page_order(h);
1487        gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1488        unsigned int cpuset_mems_cookie;
1489
1490        /*
1491         * We need a VMA to get a memory policy.  If we do not
1492         * have one, we use the 'nid' argument.
1493         *
1494         * The mempolicy stuff below has some non-inlined bits
1495         * and calls ->vm_ops.  That makes it hard to optimize at
1496         * compile-time, even when NUMA is off and it does
1497         * nothing.  This helps the compiler optimize it out.
1498         */
1499        if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1500                /*
1501                 * If a specific node is requested, make sure to
1502                 * get memory from there, but only when a node
1503                 * is explicitly specified.
1504                 */
1505                if (nid != NUMA_NO_NODE)
1506                        gfp |= __GFP_THISNODE;
1507                /*
1508                 * Make sure to call something that can handle
1509                 * nid=NUMA_NO_NODE
1510                 */
1511                return alloc_pages_node(nid, gfp, order);
1512        }
1513
1514        /*
1515         * OK, so we have a VMA.  Fetch the mempolicy and try to
1516         * allocate a huge page with it.  We will only reach this
1517         * when CONFIG_NUMA=y.
1518         */
1519        do {
1520                struct page *page;
1521                struct mempolicy *mpol;
1522                struct zonelist *zl;
1523                nodemask_t *nodemask;
1524
1525                cpuset_mems_cookie = read_mems_allowed_begin();
1526                zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1527                mpol_cond_put(mpol);
1528                page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1529                if (page)
1530                        return page;
1531        } while (read_mems_allowed_retry(cpuset_mems_cookie));
1532
1533        return NULL;
1534}
1535
1536/*
1537 * There are two ways to allocate a huge page:
1538 * 1. When you have a VMA and an address (like a fault)
1539 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1540 *
1541 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1542 * this case which signifies that the allocation should be done with
1543 * respect for the VMA's memory policy.
1544 *
1545 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1546 * implies that memory policies will not be taken in to account.
1547 */
1548static struct page *__alloc_buddy_huge_page(struct hstate *h,
1549                struct vm_area_struct *vma, unsigned long addr, int nid)
1550{
1551        struct page *page;
1552        unsigned int r_nid;
1553
1554        if (hstate_is_gigantic(h))
1555                return NULL;
1556
1557        /*
1558         * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1559         * This makes sure the caller is picking _one_ of the modes with which
1560         * we can call this function, not both.
1561         */
1562        if (vma || (addr != -1)) {
1563                VM_WARN_ON_ONCE(addr == -1);
1564                VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1565        }
1566        /*
1567         * Assume we will successfully allocate the surplus page to
1568         * prevent racing processes from causing the surplus to exceed
1569         * overcommit
1570         *
1571         * This however introduces a different race, where a process B
1572         * tries to grow the static hugepage pool while alloc_pages() is
1573         * called by process A. B will only examine the per-node
1574         * counters in determining if surplus huge pages can be
1575         * converted to normal huge pages in adjust_pool_surplus(). A
1576         * won't be able to increment the per-node counter, until the
1577         * lock is dropped by B, but B doesn't drop hugetlb_lock until
1578         * no more huge pages can be converted from surplus to normal
1579         * state (and doesn't try to convert again). Thus, we have a
1580         * case where a surplus huge page exists, the pool is grown, and
1581         * the surplus huge page still exists after, even though it
1582         * should just have been converted to a normal huge page. This
1583         * does not leak memory, though, as the hugepage will be freed
1584         * once it is out of use. It also does not allow the counters to
1585         * go out of whack in adjust_pool_surplus() as we don't modify
1586         * the node values until we've gotten the hugepage and only the
1587         * per-node value is checked there.
1588         */
1589        spin_lock(&hugetlb_lock);
1590        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1591                spin_unlock(&hugetlb_lock);
1592                return NULL;
1593        } else {
1594                h->nr_huge_pages++;
1595                h->surplus_huge_pages++;
1596        }
1597        spin_unlock(&hugetlb_lock);
1598
1599        page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1600
1601        spin_lock(&hugetlb_lock);
1602        if (page) {
1603                INIT_LIST_HEAD(&page->lru);
1604                r_nid = page_to_nid(page);
1605                set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1606                set_hugetlb_cgroup(page, NULL);
1607                /*
1608                 * We incremented the global counters already
1609                 */
1610                h->nr_huge_pages_node[r_nid]++;
1611                h->surplus_huge_pages_node[r_nid]++;
1612                __count_vm_event(HTLB_BUDDY_PGALLOC);
1613        } else {
1614                h->nr_huge_pages--;
1615                h->surplus_huge_pages--;
1616                __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1617        }
1618        spin_unlock(&hugetlb_lock);
1619
1620        return page;
1621}
1622
1623/*
1624 * Allocate a huge page from 'nid'.  Note, 'nid' may be
1625 * NUMA_NO_NODE, which means that it may be allocated
1626 * anywhere.
1627 */
1628static
1629struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1630{
1631        unsigned long addr = -1;
1632
1633        return __alloc_buddy_huge_page(h, NULL, addr, nid);
1634}
1635
1636/*
1637 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1638 */
1639static
1640struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1641                struct vm_area_struct *vma, unsigned long addr)
1642{
1643        return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1644}
1645
1646/*
1647 * This allocation function is useful in the context where vma is irrelevant.
1648 * E.g. soft-offlining uses this function because it only cares physical
1649 * address of error page.
1650 */
1651struct page *alloc_huge_page_node(struct hstate *h, int nid)
1652{
1653        struct page *page = NULL;
1654
1655        spin_lock(&hugetlb_lock);
1656        if (h->free_huge_pages - h->resv_huge_pages > 0)
1657                page = dequeue_huge_page_node(h, nid);
1658        spin_unlock(&hugetlb_lock);
1659
1660        if (!page)
1661                page = __alloc_buddy_huge_page_no_mpol(h, nid);
1662
1663        return page;
1664}
1665
1666/*
1667 * Increase the hugetlb pool such that it can accommodate a reservation
1668 * of size 'delta'.
1669 */
1670static int gather_surplus_pages(struct hstate *h, int delta)
1671{
1672        struct list_head surplus_list;
1673        struct page *page, *tmp;
1674        int ret, i;
1675        int needed, allocated;
1676        bool alloc_ok = true;
1677
1678        needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1679        if (needed <= 0) {
1680                h->resv_huge_pages += delta;
1681                return 0;
1682        }
1683
1684        allocated = 0;
1685        INIT_LIST_HEAD(&surplus_list);
1686
1687        ret = -ENOMEM;
1688retry:
1689        spin_unlock(&hugetlb_lock);
1690        for (i = 0; i < needed; i++) {
1691                page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1692                if (!page) {
1693                        alloc_ok = false;
1694                        break;
1695                }
1696                list_add(&page->lru, &surplus_list);
1697        }
1698        allocated += i;
1699
1700        /*
1701         * After retaking hugetlb_lock, we need to recalculate 'needed'
1702         * because either resv_huge_pages or free_huge_pages may have changed.
1703         */
1704        spin_lock(&hugetlb_lock);
1705        needed = (h->resv_huge_pages + delta) -
1706                        (h->free_huge_pages + allocated);
1707        if (needed > 0) {
1708                if (alloc_ok)
1709                        goto retry;
1710                /*
1711                 * We were not able to allocate enough pages to
1712                 * satisfy the entire reservation so we free what
1713                 * we've allocated so far.
1714                 */
1715                goto free;
1716        }
1717        /*
1718         * The surplus_list now contains _at_least_ the number of extra pages
1719         * needed to accommodate the reservation.  Add the appropriate number
1720         * of pages to the hugetlb pool and free the extras back to the buddy
1721         * allocator.  Commit the entire reservation here to prevent another
1722         * process from stealing the pages as they are added to the pool but
1723         * before they are reserved.
1724         */
1725        needed += allocated;
1726        h->resv_huge_pages += delta;
1727        ret = 0;
1728
1729        /* Free the needed pages to the hugetlb pool */
1730        list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1731                if ((--needed) < 0)
1732                        break;
1733                /*
1734                 * This page is now managed by the hugetlb allocator and has
1735                 * no users -- drop the buddy allocator's reference.
1736                 */
1737                put_page_testzero(page);
1738                VM_BUG_ON_PAGE(page_count(page), page);
1739                enqueue_huge_page(h, page);
1740        }
1741free:
1742        spin_unlock(&hugetlb_lock);
1743
1744        /* Free unnecessary surplus pages to the buddy allocator */
1745        list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1746                put_page(page);
1747        spin_lock(&hugetlb_lock);
1748
1749        return ret;
1750}
1751
1752/*
1753 * When releasing a hugetlb pool reservation, any surplus pages that were
1754 * allocated to satisfy the reservation must be explicitly freed if they were
1755 * never used.
1756 * Called with hugetlb_lock held.
1757 */
1758static void return_unused_surplus_pages(struct hstate *h,
1759                                        unsigned long unused_resv_pages)
1760{
1761        unsigned long nr_pages;
1762
1763        /* Uncommit the reservation */
1764        h->resv_huge_pages -= unused_resv_pages;
1765
1766        /* Cannot return gigantic pages currently */
1767        if (hstate_is_gigantic(h))
1768                return;
1769
1770        nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1771
1772        /*
1773         * We want to release as many surplus pages as possible, spread
1774         * evenly across all nodes with memory. Iterate across these nodes
1775         * until we can no longer free unreserved surplus pages. This occurs
1776         * when the nodes with surplus pages have no free pages.
1777         * free_pool_huge_page() will balance the the freed pages across the
1778         * on-line nodes with memory and will handle the hstate accounting.
1779         */
1780        while (nr_pages--) {
1781                if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1782                        break;
1783                cond_resched_lock(&hugetlb_lock);
1784        }
1785}
1786
1787
1788/*
1789 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1790 * are used by the huge page allocation routines to manage reservations.
1791 *
1792 * vma_needs_reservation is called to determine if the huge page at addr
1793 * within the vma has an associated reservation.  If a reservation is
1794 * needed, the value 1 is returned.  The caller is then responsible for
1795 * managing the global reservation and subpool usage counts.  After
1796 * the huge page has been allocated, vma_commit_reservation is called
1797 * to add the page to the reservation map.  If the page allocation fails,
1798 * the reservation must be ended instead of committed.  vma_end_reservation
1799 * is called in such cases.
1800 *
1801 * In the normal case, vma_commit_reservation returns the same value
1802 * as the preceding vma_needs_reservation call.  The only time this
1803 * is not the case is if a reserve map was changed between calls.  It
1804 * is the responsibility of the caller to notice the difference and
1805 * take appropriate action.
1806 */
1807enum vma_resv_mode {
1808        VMA_NEEDS_RESV,
1809        VMA_COMMIT_RESV,
1810        VMA_END_RESV,
1811};
1812static long __vma_reservation_common(struct hstate *h,
1813                                struct vm_area_struct *vma, unsigned long addr,
1814                                enum vma_resv_mode mode)
1815{
1816        struct resv_map *resv;
1817        pgoff_t idx;
1818        long ret;
1819
1820        resv = vma_resv_map(vma);
1821        if (!resv)
1822                return 1;
1823
1824        idx = vma_hugecache_offset(h, vma, addr);
1825        switch (mode) {
1826        case VMA_NEEDS_RESV:
1827                ret = region_chg(resv, idx, idx + 1);
1828                break;
1829        case VMA_COMMIT_RESV:
1830                ret = region_add(resv, idx, idx + 1);
1831                break;
1832        case VMA_END_RESV:
1833                region_abort(resv, idx, idx + 1);
1834                ret = 0;
1835                break;
1836        default:
1837                BUG();
1838        }
1839
1840        if (vma->vm_flags & VM_MAYSHARE)
1841                return ret;
1842        else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1843                /*
1844                 * In most cases, reserves always exist for private mappings.
1845                 * However, a file associated with mapping could have been
1846                 * hole punched or truncated after reserves were consumed.
1847                 * As subsequent fault on such a range will not use reserves.
1848                 * Subtle - The reserve map for private mappings has the
1849                 * opposite meaning than that of shared mappings.  If NO
1850                 * entry is in the reserve map, it means a reservation exists.
1851                 * If an entry exists in the reserve map, it means the
1852                 * reservation has already been consumed.  As a result, the
1853                 * return value of this routine is the opposite of the
1854                 * value returned from reserve map manipulation routines above.
1855                 */
1856                if (ret)
1857                        return 0;
1858                else
1859                        return 1;
1860        }
1861        else
1862                return ret < 0 ? ret : 0;
1863}
1864
1865static long vma_needs_reservation(struct hstate *h,
1866                        struct vm_area_struct *vma, unsigned long addr)
1867{
1868        return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1869}
1870
1871static long vma_commit_reservation(struct hstate *h,
1872                        struct vm_area_struct *vma, unsigned long addr)
1873{
1874        return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1875}
1876
1877static void vma_end_reservation(struct hstate *h,
1878                        struct vm_area_struct *vma, unsigned long addr)
1879{
1880        (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1881}
1882
1883struct page *alloc_huge_page(struct vm_area_struct *vma,
1884                                    unsigned long addr, int avoid_reserve)
1885{
1886        struct hugepage_subpool *spool = subpool_vma(vma);
1887        struct hstate *h = hstate_vma(vma);
1888        struct page *page;
1889        long map_chg, map_commit;
1890        long gbl_chg;
1891        int ret, idx;
1892        struct hugetlb_cgroup *h_cg;
1893
1894        idx = hstate_index(h);
1895        /*
1896         * Examine the region/reserve map to determine if the process
1897         * has a reservation for the page to be allocated.  A return
1898         * code of zero indicates a reservation exists (no change).
1899         */
1900        map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1901        if (map_chg < 0)
1902                return ERR_PTR(-ENOMEM);
1903
1904        /*
1905         * Processes that did not create the mapping will have no
1906         * reserves as indicated by the region/reserve map. Check
1907         * that the allocation will not exceed the subpool limit.
1908         * Allocations for MAP_NORESERVE mappings also need to be
1909         * checked against any subpool limit.
1910         */
1911        if (map_chg || avoid_reserve) {
1912                gbl_chg = hugepage_subpool_get_pages(spool, 1);
1913                if (gbl_chg < 0) {
1914                        vma_end_reservation(h, vma, addr);
1915                        return ERR_PTR(-ENOSPC);
1916                }
1917
1918                /*
1919                 * Even though there was no reservation in the region/reserve
1920                 * map, there could be reservations associated with the
1921                 * subpool that can be used.  This would be indicated if the
1922                 * return value of hugepage_subpool_get_pages() is zero.
1923                 * However, if avoid_reserve is specified we still avoid even
1924                 * the subpool reservations.
1925                 */
1926                if (avoid_reserve)
1927                        gbl_chg = 1;
1928        }
1929
1930        ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1931        if (ret)
1932                goto out_subpool_put;
1933
1934        spin_lock(&hugetlb_lock);
1935        /*
1936         * glb_chg is passed to indicate whether or not a page must be taken
1937         * from the global free pool (global change).  gbl_chg == 0 indicates
1938         * a reservation exists for the allocation.
1939         */
1940        page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1941        if (!page) {
1942                spin_unlock(&hugetlb_lock);
1943                page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1944                if (!page)
1945                        goto out_uncharge_cgroup;
1946                if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1947                        SetPagePrivate(page);
1948                        h->resv_huge_pages--;
1949                }
1950                spin_lock(&hugetlb_lock);
1951                list_move(&page->lru, &h->hugepage_activelist);
1952                /* Fall through */
1953        }
1954        hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1955        spin_unlock(&hugetlb_lock);
1956
1957        set_page_private(page, (unsigned long)spool);
1958
1959        map_commit = vma_commit_reservation(h, vma, addr);
1960        if (unlikely(map_chg > map_commit)) {
1961                /*
1962                 * The page was added to the reservation map between
1963                 * vma_needs_reservation and vma_commit_reservation.
1964                 * This indicates a race with hugetlb_reserve_pages.
1965                 * Adjust for the subpool count incremented above AND
1966                 * in hugetlb_reserve_pages for the same page.  Also,
1967                 * the reservation count added in hugetlb_reserve_pages
1968                 * no longer applies.
1969                 */
1970                long rsv_adjust;
1971
1972                rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1973                hugetlb_acct_memory(h, -rsv_adjust);
1974        }
1975        return page;
1976
1977out_uncharge_cgroup:
1978        hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1979out_subpool_put:
1980        if (map_chg || avoid_reserve)
1981                hugepage_subpool_put_pages(spool, 1);
1982        vma_end_reservation(h, vma, addr);
1983        return ERR_PTR(-ENOSPC);
1984}
1985
1986/*
1987 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1988 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1989 * where no ERR_VALUE is expected to be returned.
1990 */
1991struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1992                                unsigned long addr, int avoid_reserve)
1993{
1994        struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1995        if (IS_ERR(page))
1996                page = NULL;
1997        return page;
1998}
1999
2000int __weak alloc_bootmem_huge_page(struct hstate *h)
2001{
2002        struct huge_bootmem_page *m;
2003        int nr_nodes, node;
2004
2005        for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2006                void *addr;
2007
2008                addr = memblock_virt_alloc_try_nid_nopanic(
2009                                huge_page_size(h), huge_page_size(h),
2010                                0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2011                if (addr) {
2012                        /*
2013                         * Use the beginning of the huge page to store the
2014                         * huge_bootmem_page struct (until gather_bootmem
2015                         * puts them into the mem_map).
2016                         */
2017                        m = addr;
2018                        goto found;
2019                }
2020        }
2021        return 0;
2022
2023found:
2024        BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2025        /* Put them into a private list first because mem_map is not up yet */
2026        list_add(&m->list, &huge_boot_pages);
2027        m->hstate = h;
2028        return 1;
2029}
2030
2031static void __init prep_compound_huge_page(struct page *page,
2032                unsigned int order)
2033{
2034        if (unlikely(order > (MAX_ORDER - 1)))
2035                prep_compound_gigantic_page(page, order);
2036        else
2037                prep_compound_page(page, order);
2038}
2039
2040/* Put bootmem huge pages into the standard lists after mem_map is up */
2041static void __init gather_bootmem_prealloc(void)
2042{
2043        struct huge_bootmem_page *m;
2044
2045        list_for_each_entry(m, &huge_boot_pages, list) {
2046                struct hstate *h = m->hstate;
2047                struct page *page;
2048
2049#ifdef CONFIG_HIGHMEM
2050                page = pfn_to_page(m->phys >> PAGE_SHIFT);
2051                memblock_free_late(__pa(m),
2052                                   sizeof(struct huge_bootmem_page));
2053#else
2054                page = virt_to_page(m);
2055#endif
2056                WARN_ON(page_count(page) != 1);
2057                prep_compound_huge_page(page, h->order);
2058                WARN_ON(PageReserved(page));
2059                prep_new_huge_page(h, page, page_to_nid(page));
2060                /*
2061                 * If we had gigantic hugepages allocated at boot time, we need
2062                 * to restore the 'stolen' pages to totalram_pages in order to
2063                 * fix confusing memory reports from free(1) and another
2064                 * side-effects, like CommitLimit going negative.
2065                 */
2066                if (hstate_is_gigantic(h))
2067                        adjust_managed_page_count(page, 1 << h->order);
2068        }
2069}
2070
2071static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2072{
2073        unsigned long i;
2074
2075        for (i = 0; i < h->max_huge_pages; ++i) {
2076                if (hstate_is_gigantic(h)) {
2077                        if (!alloc_bootmem_huge_page(h))
2078                                break;
2079                } else if (!alloc_fresh_huge_page(h,
2080                                         &node_states[N_MEMORY]))
2081                        break;
2082        }
2083        h->max_huge_pages = i;
2084}
2085
2086static void __init hugetlb_init_hstates(void)
2087{
2088        struct hstate *h;
2089
2090        for_each_hstate(h) {
2091                if (minimum_order > huge_page_order(h))
2092                        minimum_order = huge_page_order(h);
2093
2094                /* oversize hugepages were init'ed in early boot */
2095                if (!hstate_is_gigantic(h))
2096                        hugetlb_hstate_alloc_pages(h);
2097        }
2098        VM_BUG_ON(minimum_order == UINT_MAX);
2099}
2100
2101static char * __init memfmt(char *buf, unsigned long n)
2102{
2103        if (n >= (1UL << 30))
2104                sprintf(buf, "%lu GB", n >> 30);
2105        else if (n >= (1UL << 20))
2106                sprintf(buf, "%lu MB", n >> 20);
2107        else
2108                sprintf(buf, "%lu KB", n >> 10);
2109        return buf;
2110}
2111
2112static void __init report_hugepages(void)
2113{
2114        struct hstate *h;
2115
2116        for_each_hstate(h) {
2117                char buf[32];
2118                pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2119                        memfmt(buf, huge_page_size(h)),
2120                        h->free_huge_pages);
2121        }
2122}
2123
2124#ifdef CONFIG_HIGHMEM
2125static void try_to_free_low(struct hstate *h, unsigned long count,
2126                                                nodemask_t *nodes_allowed)
2127{
2128        int i;
2129
2130        if (hstate_is_gigantic(h))
2131                return;
2132
2133        for_each_node_mask(i, *nodes_allowed) {
2134                struct page *page, *next;
2135                struct list_head *freel = &h->hugepage_freelists[i];
2136                list_for_each_entry_safe(page, next, freel, lru) {
2137                        if (count >= h->nr_huge_pages)
2138                                return;
2139                        if (PageHighMem(page))
2140                                continue;
2141                        list_del(&page->lru);
2142                        update_and_free_page(h, page);
2143                        h->free_huge_pages--;
2144                        h->free_huge_pages_node[page_to_nid(page)]--;
2145                }
2146        }
2147}
2148#else
2149static inline void try_to_free_low(struct hstate *h, unsigned long count,
2150                                                nodemask_t *nodes_allowed)
2151{
2152}
2153#endif
2154
2155/*
2156 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2157 * balanced by operating on them in a round-robin fashion.
2158 * Returns 1 if an adjustment was made.
2159 */
2160static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2161                                int delta)
2162{
2163        int nr_nodes, node;
2164
2165        VM_BUG_ON(delta != -1 && delta != 1);
2166
2167        if (delta < 0) {
2168                for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2169                        if (h->surplus_huge_pages_node[node])
2170                                goto found;
2171                }
2172        } else {
2173                for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2174                        if (h->surplus_huge_pages_node[node] <
2175                                        h->nr_huge_pages_node[node])
2176                                goto found;
2177                }
2178        }
2179        return 0;
2180
2181found:
2182        h->surplus_huge_pages += delta;
2183        h->surplus_huge_pages_node[node] += delta;
2184        return 1;
2185}
2186
2187#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2188static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2189                                                nodemask_t *nodes_allowed)
2190{
2191        unsigned long min_count, ret;
2192
2193        if (hstate_is_gigantic(h) && !gigantic_page_supported())
2194                return h->max_huge_pages;
2195
2196        /*
2197         * Increase the pool size
2198         * First take pages out of surplus state.  Then make up the
2199         * remaining difference by allocating fresh huge pages.
2200         *
2201         * We might race with __alloc_buddy_huge_page() here and be unable
2202         * to convert a surplus huge page to a normal huge page. That is
2203         * not critical, though, it just means the overall size of the
2204         * pool might be one hugepage larger than it needs to be, but
2205         * within all the constraints specified by the sysctls.
2206         */
2207        spin_lock(&hugetlb_lock);
2208        while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2209                if (!adjust_pool_surplus(h, nodes_allowed, -1))
2210                        break;
2211        }
2212
2213        while (count > persistent_huge_pages(h)) {
2214                /*
2215                 * If this allocation races such that we no longer need the
2216                 * page, free_huge_page will handle it by freeing the page
2217                 * and reducing the surplus.
2218                 */
2219                spin_unlock(&hugetlb_lock);
2220
2221                /* yield cpu to avoid soft lockup */
2222                cond_resched();
2223
2224                if (hstate_is_gigantic(h))
2225                        ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2226                else
2227                        ret = alloc_fresh_huge_page(h, nodes_allowed);
2228                spin_lock(&hugetlb_lock);
2229                if (!ret)
2230                        goto out;
2231
2232                /* Bail for signals. Probably ctrl-c from user */
2233                if (signal_pending(current))
2234                        goto out;
2235        }
2236
2237        /*
2238         * Decrease the pool size
2239         * First return free pages to the buddy allocator (being careful
2240         * to keep enough around to satisfy reservations).  Then place
2241         * pages into surplus state as needed so the pool will shrink
2242         * to the desired size as pages become free.
2243         *
2244         * By placing pages into the surplus state independent of the
2245         * overcommit value, we are allowing the surplus pool size to
2246         * exceed overcommit. There are few sane options here. Since
2247         * __alloc_buddy_huge_page() is checking the global counter,
2248         * though, we'll note that we're not allowed to exceed surplus
2249         * and won't grow the pool anywhere else. Not until one of the
2250         * sysctls are changed, or the surplus pages go out of use.
2251         */
2252        min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2253        min_count = max(count, min_count);
2254        try_to_free_low(h, min_count, nodes_allowed);
2255        while (min_count < persistent_huge_pages(h)) {
2256                if (!free_pool_huge_page(h, nodes_allowed, 0))
2257                        break;
2258                cond_resched_lock(&hugetlb_lock);
2259        }
2260        while (count < persistent_huge_pages(h)) {
2261                if (!adjust_pool_surplus(h, nodes_allowed, 1))
2262                        break;
2263        }
2264out:
2265        ret = persistent_huge_pages(h);
2266        spin_unlock(&hugetlb_lock);
2267        return ret;
2268}
2269
2270#define HSTATE_ATTR_RO(_name) \
2271        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2272
2273#define HSTATE_ATTR(_name) \
2274        static struct kobj_attribute _name##_attr = \
2275                __ATTR(_name, 0644, _name##_show, _name##_store)
2276
2277static struct kobject *hugepages_kobj;
2278static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2279
2280static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2281
2282static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2283{
2284        int i;
2285
2286        for (i = 0; i < HUGE_MAX_HSTATE; i++)
2287                if (hstate_kobjs[i] == kobj) {
2288                        if (nidp)
2289                                *nidp = NUMA_NO_NODE;
2290                        return &hstates[i];
2291                }
2292
2293        return kobj_to_node_hstate(kobj, nidp);
2294}
2295
2296static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2297                                        struct kobj_attribute *attr, char *buf)
2298{
2299        struct hstate *h;
2300        unsigned long nr_huge_pages;
2301        int nid;
2302
2303        h = kobj_to_hstate(kobj, &nid);
2304        if (nid == NUMA_NO_NODE)
2305                nr_huge_pages = h->nr_huge_pages;
2306        else
2307                nr_huge_pages = h->nr_huge_pages_node[nid];
2308
2309        return sprintf(buf, "%lu\n", nr_huge_pages);
2310}
2311
2312static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2313                                           struct hstate *h, int nid,
2314                                           unsigned long count, size_t len)
2315{
2316        int err;
2317        NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2318
2319        if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2320                err = -EINVAL;
2321                goto out;
2322        }
2323
2324        if (nid == NUMA_NO_NODE) {
2325                /*
2326                 * global hstate attribute
2327                 */
2328                if (!(obey_mempolicy &&
2329                                init_nodemask_of_mempolicy(nodes_allowed))) {
2330                        NODEMASK_FREE(nodes_allowed);
2331                        nodes_allowed = &node_states[N_MEMORY];
2332                }
2333        } else if (nodes_allowed) {
2334                /*
2335                 * per node hstate attribute: adjust count to global,
2336                 * but restrict alloc/free to the specified node.
2337                 */
2338                count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2339                init_nodemask_of_node(nodes_allowed, nid);
2340        } else
2341                nodes_allowed = &node_states[N_MEMORY];
2342
2343        h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2344
2345        if (nodes_allowed != &node_states[N_MEMORY])
2346                NODEMASK_FREE(nodes_allowed);
2347
2348        return len;
2349out:
2350        NODEMASK_FREE(nodes_allowed);
2351        return err;
2352}
2353
2354static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2355                                         struct kobject *kobj, const char *buf,
2356                                         size_t len)
2357{
2358        struct hstate *h;
2359        unsigned long count;
2360        int nid;
2361        int err;
2362
2363        err = kstrtoul(buf, 10, &count);
2364        if (err)
2365                return err;
2366
2367        h = kobj_to_hstate(kobj, &nid);
2368        return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2369}
2370
2371static ssize_t nr_hugepages_show(struct kobject *kobj,
2372                                       struct kobj_attribute *attr, char *buf)
2373{
2374        return nr_hugepages_show_common(kobj, attr, buf);
2375}
2376
2377static ssize_t nr_hugepages_store(struct kobject *kobj,
2378               struct kobj_attribute *attr, const char *buf, size_t len)
2379{
2380        return nr_hugepages_store_common(false, kobj, buf, len);
2381}
2382HSTATE_ATTR(nr_hugepages);
2383
2384#ifdef CONFIG_NUMA
2385
2386/*
2387 * hstate attribute for optionally mempolicy-based constraint on persistent
2388 * huge page alloc/free.
2389 */
2390static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2391                                       struct kobj_attribute *attr, char *buf)
2392{
2393        return nr_hugepages_show_common(kobj, attr, buf);
2394}
2395
2396static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2397               struct kobj_attribute *attr, const char *buf, size_t len)
2398{
2399        return nr_hugepages_store_common(true, kobj, buf, len);
2400}
2401HSTATE_ATTR(nr_hugepages_mempolicy);
2402#endif
2403
2404
2405static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2406                                        struct kobj_attribute *attr, char *buf)
2407{
2408        struct hstate *h = kobj_to_hstate(kobj, NULL);
2409        return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2410}
2411
2412static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2413                struct kobj_attribute *attr, const char *buf, size_t count)
2414{
2415        int err;
2416        unsigned long input;
2417        struct hstate *h = kobj_to_hstate(kobj, NULL);
2418
2419        if (hstate_is_gigantic(h))
2420                return -EINVAL;
2421
2422        err = kstrtoul(buf, 10, &input);
2423        if (err)
2424                return err;
2425
2426        spin_lock(&hugetlb_lock);
2427        h->nr_overcommit_huge_pages = input;
2428        spin_unlock(&hugetlb_lock);
2429
2430        return count;
2431}
2432HSTATE_ATTR(nr_overcommit_hugepages);
2433
2434static ssize_t free_hugepages_show(struct kobject *kobj,
2435                                        struct kobj_attribute *attr, char *buf)
2436{
2437        struct hstate *h;
2438        unsigned long free_huge_pages;
2439        int nid;
2440
2441        h = kobj_to_hstate(kobj, &nid);
2442        if (nid == NUMA_NO_NODE)
2443                free_huge_pages = h->free_huge_pages;
2444        else
2445                free_huge_pages = h->free_huge_pages_node[nid];
2446
2447        return sprintf(buf, "%lu\n", free_huge_pages);
2448}
2449HSTATE_ATTR_RO(free_hugepages);
2450
2451static ssize_t resv_hugepages_show(struct kobject *kobj,
2452                                        struct kobj_attribute *attr, char *buf)
2453{
2454        struct hstate *h = kobj_to_hstate(kobj, NULL);
2455        return sprintf(buf, "%lu\n", h->resv_huge_pages);
2456}
2457HSTATE_ATTR_RO(resv_hugepages);
2458
2459static ssize_t surplus_hugepages_show(struct kobject *kobj,
2460                                        struct kobj_attribute *attr, char *buf)
2461{
2462        struct hstate *h;
2463        unsigned long surplus_huge_pages;
2464        int nid;
2465
2466        h = kobj_to_hstate(kobj, &nid);
2467        if (nid == NUMA_NO_NODE)
2468                surplus_huge_pages = h->surplus_huge_pages;
2469        else
2470                surplus_huge_pages = h->surplus_huge_pages_node[nid];
2471
2472        return sprintf(buf, "%lu\n", surplus_huge_pages);
2473}
2474HSTATE_ATTR_RO(surplus_hugepages);
2475
2476static struct attribute *hstate_attrs[] = {
2477        &nr_hugepages_attr.attr,
2478        &nr_overcommit_hugepages_attr.attr,
2479        &free_hugepages_attr.attr,
2480        &resv_hugepages_attr.attr,
2481        &surplus_hugepages_attr.attr,
2482#ifdef CONFIG_NUMA
2483        &nr_hugepages_mempolicy_attr.attr,
2484#endif
2485        NULL,
2486};
2487
2488static struct attribute_group hstate_attr_group = {
2489        .attrs = hstate_attrs,
2490};
2491
2492static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2493                                    struct kobject **hstate_kobjs,
2494                                    struct attribute_group *hstate_attr_group)
2495{
2496        int retval;
2497        int hi = hstate_index(h);
2498
2499        hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2500        if (!hstate_kobjs[hi])
2501                return -ENOMEM;
2502
2503        retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2504        if (retval)
2505                kobject_put(hstate_kobjs[hi]);
2506
2507        return retval;
2508}
2509
2510static void __init hugetlb_sysfs_init(void)
2511{
2512        struct hstate *h;
2513        int err;
2514
2515        hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2516        if (!hugepages_kobj)
2517                return;
2518
2519        for_each_hstate(h) {
2520                err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2521                                         hstate_kobjs, &hstate_attr_group);
2522                if (err)
2523                        pr_err("Hugetlb: Unable to add hstate %s", h->name);
2524        }
2525}
2526
2527#ifdef CONFIG_NUMA
2528
2529/*
2530 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2531 * with node devices in node_devices[] using a parallel array.  The array
2532 * index of a node device or _hstate == node id.
2533 * This is here to avoid any static dependency of the node device driver, in
2534 * the base kernel, on the hugetlb module.
2535 */
2536struct node_hstate {
2537        struct kobject          *hugepages_kobj;
2538        struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2539};
2540static struct node_hstate node_hstates[MAX_NUMNODES];
2541
2542/*
2543 * A subset of global hstate attributes for node devices
2544 */
2545static struct attribute *per_node_hstate_attrs[] = {
2546        &nr_hugepages_attr.attr,
2547        &free_hugepages_attr.attr,
2548        &surplus_hugepages_attr.attr,
2549        NULL,
2550};
2551
2552static struct attribute_group per_node_hstate_attr_group = {
2553        .attrs = per_node_hstate_attrs,
2554};
2555
2556/*
2557 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2558 * Returns node id via non-NULL nidp.
2559 */
2560static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2561{
2562        int nid;
2563
2564        for (nid = 0; nid < nr_node_ids; nid++) {
2565                struct node_hstate *nhs = &node_hstates[nid];
2566                int i;
2567                for (i = 0; i < HUGE_MAX_HSTATE; i++)
2568                        if (nhs->hstate_kobjs[i] == kobj) {
2569                                if (nidp)
2570                                        *nidp = nid;
2571                                return &hstates[i];
2572                        }
2573        }
2574
2575        BUG();
2576        return NULL;
2577}
2578
2579/*
2580 * Unregister hstate attributes from a single node device.
2581 * No-op if no hstate attributes attached.
2582 */
2583static void hugetlb_unregister_node(struct node *node)
2584{
2585        struct hstate *h;
2586        struct node_hstate *nhs = &node_hstates[node->dev.id];
2587
2588        if (!nhs->hugepages_kobj)
2589                return;         /* no hstate attributes */
2590
2591        for_each_hstate(h) {
2592                int idx = hstate_index(h);
2593                if (nhs->hstate_kobjs[idx]) {
2594                        kobject_put(nhs->hstate_kobjs[idx]);
2595                        nhs->hstate_kobjs[idx] = NULL;
2596                }
2597        }
2598
2599        kobject_put(nhs->hugepages_kobj);
2600        nhs->hugepages_kobj = NULL;
2601}
2602
2603
2604/*
2605 * Register hstate attributes for a single node device.
2606 * No-op if attributes already registered.
2607 */
2608static void hugetlb_register_node(struct node *node)
2609{
2610        struct hstate *h;
2611        struct node_hstate *nhs = &node_hstates[node->dev.id];
2612        int err;
2613
2614        if (nhs->hugepages_kobj)
2615                return;         /* already allocated */
2616
2617        nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2618                                                        &node->dev.kobj);
2619        if (!nhs->hugepages_kobj)
2620                return;
2621
2622        for_each_hstate(h) {
2623                err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2624                                                nhs->hstate_kobjs,
2625                                                &per_node_hstate_attr_group);
2626                if (err) {
2627                        pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2628                                h->name, node->dev.id);
2629                        hugetlb_unregister_node(node);
2630                        break;
2631                }
2632        }
2633}
2634
2635/*
2636 * hugetlb init time:  register hstate attributes for all registered node
2637 * devices of nodes that have memory.  All on-line nodes should have
2638 * registered their associated device by this time.
2639 */
2640static void __init hugetlb_register_all_nodes(void)
2641{
2642        int nid;
2643
2644        for_each_node_state(nid, N_MEMORY) {
2645                struct node *node = node_devices[nid];
2646                if (node->dev.id == nid)
2647                        hugetlb_register_node(node);
2648        }
2649
2650        /*
2651         * Let the node device driver know we're here so it can
2652         * [un]register hstate attributes on node hotplug.
2653         */
2654        register_hugetlbfs_with_node(hugetlb_register_node,
2655                                     hugetlb_unregister_node);
2656}
2657#else   /* !CONFIG_NUMA */
2658
2659static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2660{
2661        BUG();
2662        if (nidp)
2663                *nidp = -1;
2664        return NULL;
2665}
2666
2667static void hugetlb_register_all_nodes(void) { }
2668
2669#endif
2670
2671static int __init hugetlb_init(void)
2672{
2673        int i;
2674
2675        if (!hugepages_supported())
2676                return 0;
2677
2678        if (!size_to_hstate(default_hstate_size)) {
2679                default_hstate_size = HPAGE_SIZE;
2680                if (!size_to_hstate(default_hstate_size))
2681                        hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2682        }
2683        default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2684        if (default_hstate_max_huge_pages) {
2685                if (!default_hstate.max_huge_pages)
2686                        default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2687        }
2688
2689        hugetlb_init_hstates();
2690        gather_bootmem_prealloc();
2691        report_hugepages();
2692
2693        hugetlb_sysfs_init();
2694        hugetlb_register_all_nodes();
2695        hugetlb_cgroup_file_init();
2696
2697#ifdef CONFIG_SMP
2698        num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2699#else
2700        num_fault_mutexes = 1;
2701#endif
2702        hugetlb_fault_mutex_table =
2703                kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2704        BUG_ON(!hugetlb_fault_mutex_table);
2705
2706        for (i = 0; i < num_fault_mutexes; i++)
2707                mutex_init(&hugetlb_fault_mutex_table[i]);
2708        return 0;
2709}
2710subsys_initcall(hugetlb_init);
2711
2712/* Should be called on processing a hugepagesz=... option */
2713void __init hugetlb_bad_size(void)
2714{
2715        parsed_valid_hugepagesz = false;
2716}
2717
2718void __init hugetlb_add_hstate(unsigned int order)
2719{
2720        struct hstate *h;
2721        unsigned long i;
2722
2723        if (size_to_hstate(PAGE_SIZE << order)) {
2724                pr_warn("hugepagesz= specified twice, ignoring\n");
2725                return;
2726        }
2727        BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2728        BUG_ON(order == 0);
2729        h = &hstates[hugetlb_max_hstate++];
2730        h->order = order;
2731        h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2732        h->nr_huge_pages = 0;
2733        h->free_huge_pages = 0;
2734        for (i = 0; i < MAX_NUMNODES; ++i)
2735                INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2736        INIT_LIST_HEAD(&h->hugepage_activelist);
2737        h->next_nid_to_alloc = first_memory_node;
2738        h->next_nid_to_free = first_memory_node;
2739        snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2740                                        huge_page_size(h)/1024);
2741
2742        parsed_hstate = h;
2743}
2744
2745static int __init hugetlb_nrpages_setup(char *s)
2746{
2747        unsigned long *mhp;
2748        static unsigned long *last_mhp;
2749
2750        if (!parsed_valid_hugepagesz) {
2751                pr_warn("hugepages = %s preceded by "
2752                        "an unsupported hugepagesz, ignoring\n", s);
2753                parsed_valid_hugepagesz = true;
2754                return 1;
2755        }
2756        /*
2757         * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2758         * so this hugepages= parameter goes to the "default hstate".
2759         */
2760        else if (!hugetlb_max_hstate)
2761                mhp = &default_hstate_max_huge_pages;
2762        else
2763                mhp = &parsed_hstate->max_huge_pages;
2764
2765        if (mhp == last_mhp) {
2766                pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2767                return 1;
2768        }
2769
2770        if (sscanf(s, "%lu", mhp) <= 0)
2771                *mhp = 0;
2772
2773        /*
2774         * Global state is always initialized later in hugetlb_init.
2775         * But we need to allocate >= MAX_ORDER hstates here early to still
2776         * use the bootmem allocator.
2777         */
2778        if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2779                hugetlb_hstate_alloc_pages(parsed_hstate);
2780
2781        last_mhp = mhp;
2782
2783        return 1;
2784}
2785__setup("hugepages=", hugetlb_nrpages_setup);
2786
2787static int __init hugetlb_default_setup(char *s)
2788{
2789        default_hstate_size = memparse(s, &s);
2790        return 1;
2791}
2792__setup("default_hugepagesz=", hugetlb_default_setup);
2793
2794static unsigned int cpuset_mems_nr(unsigned int *array)
2795{
2796        int node;
2797        unsigned int nr = 0;
2798
2799        for_each_node_mask(node, cpuset_current_mems_allowed)
2800                nr += array[node];
2801
2802        return nr;
2803}
2804
2805#ifdef CONFIG_SYSCTL
2806static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2807                         struct ctl_table *table, int write,
2808                         void __user *buffer, size_t *length, loff_t *ppos)
2809{
2810        struct hstate *h = &default_hstate;
2811        unsigned long tmp = h->max_huge_pages;
2812        int ret;
2813
2814        if (!hugepages_supported())
2815                return -EOPNOTSUPP;
2816
2817        table->data = &tmp;
2818        table->maxlen = sizeof(unsigned long);
2819        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2820        if (ret)
2821                goto out;
2822
2823        if (write)
2824                ret = __nr_hugepages_store_common(obey_mempolicy, h,
2825                                                  NUMA_NO_NODE, tmp, *length);
2826out:
2827        return ret;
2828}
2829
2830int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2831                          void __user *buffer, size_t *length, loff_t *ppos)
2832{
2833
2834        return hugetlb_sysctl_handler_common(false, table, write,
2835                                                        buffer, length, ppos);
2836}
2837
2838#ifdef CONFIG_NUMA
2839int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2840                          void __user *buffer, size_t *length, loff_t *ppos)
2841{
2842        return hugetlb_sysctl_handler_common(true, table, write,
2843                                                        buffer, length, ppos);
2844}
2845#endif /* CONFIG_NUMA */
2846
2847int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2848                        void __user *buffer,
2849                        size_t *length, loff_t *ppos)
2850{
2851        struct hstate *h = &default_hstate;
2852        unsigned long tmp;
2853        int ret;
2854
2855        if (!hugepages_supported())
2856                return -EOPNOTSUPP;
2857
2858        tmp = h->nr_overcommit_huge_pages;
2859
2860        if (write && hstate_is_gigantic(h))
2861                return -EINVAL;
2862
2863        table->data = &tmp;
2864        table->maxlen = sizeof(unsigned long);
2865        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2866        if (ret)
2867                goto out;
2868
2869        if (write) {
2870                spin_lock(&hugetlb_lock);
2871                h->nr_overcommit_huge_pages = tmp;
2872                spin_unlock(&hugetlb_lock);
2873        }
2874out:
2875        return ret;
2876}
2877
2878#endif /* CONFIG_SYSCTL */
2879
2880void hugetlb_report_meminfo(struct seq_file *m)
2881{
2882        struct hstate *h = &default_hstate;
2883        if (!hugepages_supported())
2884                return;
2885        seq_printf(m,
2886                        "HugePages_Total:   %5lu\n"
2887                        "HugePages_Free:    %5lu\n"
2888                        "HugePages_Rsvd:    %5lu\n"
2889                        "HugePages_Surp:    %5lu\n"
2890                        "Hugepagesize:   %8lu kB\n",
2891                        h->nr_huge_pages,
2892                        h->free_huge_pages,
2893                        h->resv_huge_pages,
2894                        h->surplus_huge_pages,
2895                        1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2896}
2897
2898int hugetlb_report_node_meminfo(int nid, char *buf)
2899{
2900        struct hstate *h = &default_hstate;
2901        if (!hugepages_supported())
2902                return 0;
2903        return sprintf(buf,
2904                "Node %d HugePages_Total: %5u\n"
2905                "Node %d HugePages_Free:  %5u\n"
2906                "Node %d HugePages_Surp:  %5u\n",
2907                nid, h->nr_huge_pages_node[nid],
2908                nid, h->free_huge_pages_node[nid],
2909                nid, h->surplus_huge_pages_node[nid]);
2910}
2911
2912void hugetlb_show_meminfo(void)
2913{
2914        struct hstate *h;
2915        int nid;
2916
2917        if (!hugepages_supported())
2918                return;
2919
2920        for_each_node_state(nid, N_MEMORY)
2921                for_each_hstate(h)
2922                        pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2923                                nid,
2924                                h->nr_huge_pages_node[nid],
2925                                h->free_huge_pages_node[nid],
2926                                h->surplus_huge_pages_node[nid],
2927                                1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2928}
2929
2930void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2931{
2932        seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2933                   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2934}
2935
2936/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2937unsigned long hugetlb_total_pages(void)
2938{
2939        struct hstate *h;
2940        unsigned long nr_total_pages = 0;
2941
2942        for_each_hstate(h)
2943                nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2944        return nr_total_pages;
2945}
2946
2947static int hugetlb_acct_memory(struct hstate *h, long delta)
2948{
2949        int ret = -ENOMEM;
2950
2951        spin_lock(&hugetlb_lock);
2952        /*
2953         * When cpuset is configured, it breaks the strict hugetlb page
2954         * reservation as the accounting is done on a global variable. Such
2955         * reservation is completely rubbish in the presence of cpuset because
2956         * the reservation is not checked against page availability for the
2957         * current cpuset. Application can still potentially OOM'ed by kernel
2958         * with lack of free htlb page in cpuset that the task is in.
2959         * Attempt to enforce strict accounting with cpuset is almost
2960         * impossible (or too ugly) because cpuset is too fluid that
2961         * task or memory node can be dynamically moved between cpusets.
2962         *
2963         * The change of semantics for shared hugetlb mapping with cpuset is
2964         * undesirable. However, in order to preserve some of the semantics,
2965         * we fall back to check against current free page availability as
2966         * a best attempt and hopefully to minimize the impact of changing
2967         * semantics that cpuset has.
2968         */
2969        if (delta > 0) {
2970                if (gather_surplus_pages(h, delta) < 0)
2971                        goto out;
2972
2973                if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2974                        return_unused_surplus_pages(h, delta);
2975                        goto out;
2976                }
2977        }
2978
2979        ret = 0;
2980        if (delta < 0)
2981                return_unused_surplus_pages(h, (unsigned long) -delta);
2982
2983out:
2984        spin_unlock(&hugetlb_lock);
2985        return ret;
2986}
2987
2988static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2989{
2990        struct resv_map *resv = vma_resv_map(vma);
2991
2992        /*
2993         * This new VMA should share its siblings reservation map if present.
2994         * The VMA will only ever have a valid reservation map pointer where
2995         * it is being copied for another still existing VMA.  As that VMA
2996         * has a reference to the reservation map it cannot disappear until
2997         * after this open call completes.  It is therefore safe to take a
2998         * new reference here without additional locking.
2999         */
3000        if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3001                kref_get(&resv->refs);
3002}
3003
3004static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3005{
3006        struct hstate *h = hstate_vma(vma);
3007        struct resv_map *resv = vma_resv_map(vma);
3008        struct hugepage_subpool *spool = subpool_vma(vma);
3009        unsigned long reserve, start, end;
3010        long gbl_reserve;
3011
3012        if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3013                return;
3014
3015        start = vma_hugecache_offset(h, vma, vma->vm_start);
3016        end = vma_hugecache_offset(h, vma, vma->vm_end);
3017
3018        reserve = (end - start) - region_count(resv, start, end);
3019
3020        kref_put(&resv->refs, resv_map_release);
3021
3022        if (reserve) {
3023                /*
3024                 * Decrement reserve counts.  The global reserve count may be
3025                 * adjusted if the subpool has a minimum size.
3026                 */
3027                gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3028                hugetlb_acct_memory(h, -gbl_reserve);
3029        }
3030}
3031
3032/*
3033 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3034 * handle_mm_fault() to try to instantiate regular-sized pages in the
3035 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3036 * this far.
3037 */
3038static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3039{
3040        BUG();
3041        return 0;
3042}
3043
3044const struct vm_operations_struct hugetlb_vm_ops = {
3045        .fault = hugetlb_vm_op_fault,
3046        .open = hugetlb_vm_op_open,
3047        .close = hugetlb_vm_op_close,
3048};
3049
3050static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3051                                int writable)
3052{
3053        pte_t entry;
3054
3055        if (writable) {
3056                entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3057                                         vma->vm_page_prot)));
3058        } else {
3059                entry = huge_pte_wrprotect(mk_huge_pte(page,
3060                                           vma->vm_page_prot));
3061        }
3062        entry = pte_mkyoung(entry);
3063        entry = pte_mkhuge(entry);
3064        entry = arch_make_huge_pte(entry, vma, page, writable);
3065
3066        return entry;
3067}
3068
3069static void set_huge_ptep_writable(struct vm_area_struct *vma,
3070                                   unsigned long address, pte_t *ptep)
3071{
3072        pte_t entry;
3073
3074        entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3075        if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3076                update_mmu_cache(vma, address, ptep);
3077}
3078
3079static int is_hugetlb_entry_migration(pte_t pte)
3080{
3081        swp_entry_t swp;
3082
3083        if (huge_pte_none(pte) || pte_present(pte))
3084                return 0;
3085        swp = pte_to_swp_entry(pte);
3086        if (non_swap_entry(swp) && is_migration_entry(swp))
3087                return 1;
3088        else
3089                return 0;
3090}
3091
3092static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3093{
3094        swp_entry_t swp;
3095
3096        if (huge_pte_none(pte) || pte_present(pte))
3097                return 0;
3098        swp = pte_to_swp_entry(pte);
3099        if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3100                return 1;
3101        else
3102                return 0;
3103}
3104
3105int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3106                            struct vm_area_struct *vma)
3107{
3108        pte_t *src_pte, *dst_pte, entry;
3109        struct page *ptepage;
3110        unsigned long addr;
3111        int cow;
3112        struct hstate *h = hstate_vma(vma);
3113        unsigned long sz = huge_page_size(h);
3114        unsigned long mmun_start;       /* For mmu_notifiers */
3115        unsigned long mmun_end;         /* For mmu_notifiers */
3116        int ret = 0;
3117
3118        cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3119
3120        mmun_start = vma->vm_start;
3121        mmun_end = vma->vm_end;
3122        if (cow)
3123                mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3124
3125        for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3126                spinlock_t *src_ptl, *dst_ptl;
3127                src_pte = huge_pte_offset(src, addr);
3128                if (!src_pte)
3129                        continue;
3130                dst_pte = huge_pte_alloc(dst, addr, sz);
3131                if (!dst_pte) {
3132                        ret = -ENOMEM;
3133                        break;
3134                }
3135
3136                /* If the pagetables are shared don't copy or take references */
3137                if (dst_pte == src_pte)
3138                        continue;
3139
3140                dst_ptl = huge_pte_lock(h, dst, dst_pte);
3141                src_ptl = huge_pte_lockptr(h, src, src_pte);
3142                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3143                entry = huge_ptep_get(src_pte);
3144                if (huge_pte_none(entry)) { /* skip none entry */
3145                        ;
3146                } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3147                                    is_hugetlb_entry_hwpoisoned(entry))) {
3148                        swp_entry_t swp_entry = pte_to_swp_entry(entry);
3149
3150                        if (is_write_migration_entry(swp_entry) && cow) {
3151                                /*
3152                                 * COW mappings require pages in both
3153                                 * parent and child to be set to read.
3154                                 */
3155                                make_migration_entry_read(&swp_entry);
3156                                entry = swp_entry_to_pte(swp_entry);
3157                                set_huge_pte_at(src, addr, src_pte, entry);
3158                        }
3159                        set_huge_pte_at(dst, addr, dst_pte, entry);
3160                } else {
3161                        if (cow) {
3162                                huge_ptep_set_wrprotect(src, addr, src_pte);
3163                                mmu_notifier_invalidate_range(src, mmun_start,
3164                                                                   mmun_end);
3165                        }
3166                        entry = huge_ptep_get(src_pte);
3167                        ptepage = pte_page(entry);
3168                        get_page(ptepage);
3169                        page_dup_rmap(ptepage, true);
3170                        set_huge_pte_at(dst, addr, dst_pte, entry);
3171                        hugetlb_count_add(pages_per_huge_page(h), dst);
3172                }
3173                spin_unlock(src_ptl);
3174                spin_unlock(dst_ptl);
3175        }
3176
3177        if (cow)
3178                mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3179
3180        return ret;
3181}
3182
3183void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3184                            unsigned long start, unsigned long end,
3185                            struct page *ref_page)
3186{
3187        struct mm_struct *mm = vma->vm_mm;
3188        unsigned long address;
3189        pte_t *ptep;
3190        pte_t pte;
3191        spinlock_t *ptl;
3192        struct page *page;
3193        struct hstate *h = hstate_vma(vma);
3194        unsigned long sz = huge_page_size(h);
3195        const unsigned long mmun_start = start; /* For mmu_notifiers */
3196        const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3197
3198        WARN_ON(!is_vm_hugetlb_page(vma));
3199        BUG_ON(start & ~huge_page_mask(h));
3200        BUG_ON(end & ~huge_page_mask(h));
3201
3202        tlb_start_vma(tlb, vma);
3203        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3204        address = start;
3205        for (; address < end; address += sz) {
3206                ptep = huge_pte_offset(mm, address);
3207                if (!ptep)
3208                        continue;
3209
3210                ptl = huge_pte_lock(h, mm, ptep);
3211                if (huge_pmd_unshare(mm, &address, ptep)) {
3212                        spin_unlock(ptl);
3213                        continue;
3214                }
3215
3216                pte = huge_ptep_get(ptep);
3217                if (huge_pte_none(pte)) {
3218                        spin_unlock(ptl);
3219                        continue;
3220                }
3221
3222                /*
3223                 * Migrating hugepage or HWPoisoned hugepage is already
3224                 * unmapped and its refcount is dropped, so just clear pte here.
3225                 */
3226                if (unlikely(!pte_present(pte))) {
3227                        huge_pte_clear(mm, address, ptep);
3228                        spin_unlock(ptl);
3229                        continue;
3230                }
3231
3232                page = pte_page(pte);
3233                /*
3234                 * If a reference page is supplied, it is because a specific
3235                 * page is being unmapped, not a range. Ensure the page we
3236                 * are about to unmap is the actual page of interest.
3237                 */
3238                if (ref_page) {
3239                        if (page != ref_page) {
3240                                spin_unlock(ptl);
3241                                continue;
3242                        }
3243                        /*
3244                         * Mark the VMA as having unmapped its page so that
3245                         * future faults in this VMA will fail rather than
3246                         * looking like data was lost
3247                         */
3248                        set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3249                }
3250
3251                pte = huge_ptep_get_and_clear(mm, address, ptep);
3252                tlb_remove_tlb_entry(tlb, ptep, address);
3253                if (huge_pte_dirty(pte))
3254                        set_page_dirty(page);
3255
3256                hugetlb_count_sub(pages_per_huge_page(h), mm);
3257                page_remove_rmap(page, true);
3258
3259                spin_unlock(ptl);
3260                tlb_remove_page_size(tlb, page, huge_page_size(h));
3261                /*
3262                 * Bail out after unmapping reference page if supplied
3263                 */
3264                if (ref_page)
3265                        break;
3266        }
3267        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3268        tlb_end_vma(tlb, vma);
3269}
3270
3271void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3272                          struct vm_area_struct *vma, unsigned long start,
3273                          unsigned long end, struct page *ref_page)
3274{
3275        __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3276
3277        /*
3278         * Clear this flag so that x86's huge_pmd_share page_table_shareable
3279         * test will fail on a vma being torn down, and not grab a page table
3280         * on its way out.  We're lucky that the flag has such an appropriate
3281         * name, and can in fact be safely cleared here. We could clear it
3282         * before the __unmap_hugepage_range above, but all that's necessary
3283         * is to clear it before releasing the i_mmap_rwsem. This works
3284         * because in the context this is called, the VMA is about to be
3285         * destroyed and the i_mmap_rwsem is held.
3286         */
3287        vma->vm_flags &= ~VM_MAYSHARE;
3288}
3289
3290void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3291                          unsigned long end, struct page *ref_page)
3292{
3293        struct mm_struct *mm;
3294        struct mmu_gather tlb;
3295
3296        mm = vma->vm_mm;
3297
3298        tlb_gather_mmu(&tlb, mm, start, end);
3299        __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3300        tlb_finish_mmu(&tlb, start, end);
3301}
3302
3303/*
3304 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3305 * mappping it owns the reserve page for. The intention is to unmap the page
3306 * from other VMAs and let the children be SIGKILLed if they are faulting the
3307 * same region.
3308 */
3309static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3310                              struct page *page, unsigned long address)
3311{
3312        struct hstate *h = hstate_vma(vma);
3313        struct vm_area_struct *iter_vma;
3314        struct address_space *mapping;
3315        pgoff_t pgoff;
3316
3317        /*
3318         * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3319         * from page cache lookup which is in HPAGE_SIZE units.
3320         */
3321        address = address & huge_page_mask(h);
3322        pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3323                        vma->vm_pgoff;
3324        mapping = vma->vm_file->f_mapping;
3325
3326        /*
3327         * Take the mapping lock for the duration of the table walk. As
3328         * this mapping should be shared between all the VMAs,
3329         * __unmap_hugepage_range() is called as the lock is already held
3330         */
3331        i_mmap_lock_write(mapping);
3332        vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3333                /* Do not unmap the current VMA */
3334                if (iter_vma == vma)
3335                        continue;
3336
3337                /*
3338                 * Shared VMAs have their own reserves and do not affect
3339                 * MAP_PRIVATE accounting but it is possible that a shared
3340                 * VMA is using the same page so check and skip such VMAs.
3341                 */
3342                if (iter_vma->vm_flags & VM_MAYSHARE)
3343                        continue;
3344
3345                /*
3346                 * Unmap the page from other VMAs without their own reserves.
3347                 * They get marked to be SIGKILLed if they fault in these
3348                 * areas. This is because a future no-page fault on this VMA
3349                 * could insert a zeroed page instead of the data existing
3350                 * from the time of fork. This would look like data corruption
3351                 */
3352                if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3353                        unmap_hugepage_range(iter_vma, address,
3354                                             address + huge_page_size(h), page);
3355        }
3356        i_mmap_unlock_write(mapping);
3357}
3358
3359/*
3360 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3361 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3362 * cannot race with other handlers or page migration.
3363 * Keep the pte_same checks anyway to make transition from the mutex easier.
3364 */
3365static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3366                        unsigned long address, pte_t *ptep, pte_t pte,
3367                        struct page *pagecache_page, spinlock_t *ptl)
3368{
3369        struct hstate *h = hstate_vma(vma);
3370        struct page *old_page, *new_page;
3371        int ret = 0, outside_reserve = 0;
3372        unsigned long mmun_start;       /* For mmu_notifiers */
3373        unsigned long mmun_end;         /* For mmu_notifiers */
3374
3375        old_page = pte_page(pte);
3376
3377retry_avoidcopy:
3378        /* If no-one else is actually using this page, avoid the copy
3379         * and just make the page writable */
3380        if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3381                page_move_anon_rmap(old_page, vma);
3382                set_huge_ptep_writable(vma, address, ptep);
3383                return 0;
3384        }
3385
3386        /*
3387         * If the process that created a MAP_PRIVATE mapping is about to
3388         * perform a COW due to a shared page count, attempt to satisfy
3389         * the allocation without using the existing reserves. The pagecache
3390         * page is used to determine if the reserve at this address was
3391         * consumed or not. If reserves were used, a partial faulted mapping
3392         * at the time of fork() could consume its reserves on COW instead
3393         * of the full address range.
3394         */
3395        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3396                        old_page != pagecache_page)
3397                outside_reserve = 1;
3398
3399        get_page(old_page);
3400
3401        /*
3402         * Drop page table lock as buddy allocator may be called. It will
3403         * be acquired again before returning to the caller, as expected.
3404         */
3405        spin_unlock(ptl);
3406        new_page = alloc_huge_page(vma, address, outside_reserve);
3407
3408        if (IS_ERR(new_page)) {
3409                /*
3410                 * If a process owning a MAP_PRIVATE mapping fails to COW,
3411                 * it is due to references held by a child and an insufficient
3412                 * huge page pool. To guarantee the original mappers
3413                 * reliability, unmap the page from child processes. The child
3414                 * may get SIGKILLed if it later faults.
3415                 */
3416                if (outside_reserve) {
3417                        put_page(old_page);
3418                        BUG_ON(huge_pte_none(pte));
3419                        unmap_ref_private(mm, vma, old_page, address);
3420                        BUG_ON(huge_pte_none(pte));
3421                        spin_lock(ptl);
3422                        ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3423                        if (likely(ptep &&
3424                                   pte_same(huge_ptep_get(ptep), pte)))
3425                                goto retry_avoidcopy;
3426                        /*
3427                         * race occurs while re-acquiring page table
3428                         * lock, and our job is done.
3429                         */
3430                        return 0;
3431                }
3432
3433                ret = (PTR_ERR(new_page) == -ENOMEM) ?
3434                        VM_FAULT_OOM : VM_FAULT_SIGBUS;
3435                goto out_release_old;
3436        }
3437
3438        /*
3439         * When the original hugepage is shared one, it does not have
3440         * anon_vma prepared.
3441         */
3442        if (unlikely(anon_vma_prepare(vma))) {
3443                ret = VM_FAULT_OOM;
3444                goto out_release_all;
3445        }
3446
3447        copy_user_huge_page(new_page, old_page, address, vma,
3448                            pages_per_huge_page(h));
3449        __SetPageUptodate(new_page);
3450        set_page_huge_active(new_page);
3451
3452        mmun_start = address & huge_page_mask(h);
3453        mmun_end = mmun_start + huge_page_size(h);
3454        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3455
3456        /*
3457         * Retake the page table lock to check for racing updates
3458         * before the page tables are altered
3459         */
3460        spin_lock(ptl);
3461        ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3462        if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3463                ClearPagePrivate(new_page);
3464
3465                /* Break COW */
3466                huge_ptep_clear_flush(vma, address, ptep);
3467                mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3468                set_huge_pte_at(mm, address, ptep,
3469                                make_huge_pte(vma, new_page, 1));
3470                page_remove_rmap(old_page, true);
3471                hugepage_add_new_anon_rmap(new_page, vma, address);
3472                /* Make the old page be freed below */
3473                new_page = old_page;
3474        }
3475        spin_unlock(ptl);
3476        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3477out_release_all:
3478        put_page(new_page);
3479out_release_old:
3480        put_page(old_page);
3481
3482        spin_lock(ptl); /* Caller expects lock to be held */
3483        return ret;
3484}
3485
3486/* Return the pagecache page at a given address within a VMA */
3487static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3488                        struct vm_area_struct *vma, unsigned long address)
3489{
3490        struct address_space *mapping;
3491        pgoff_t idx;
3492
3493        mapping = vma->vm_file->f_mapping;
3494        idx = vma_hugecache_offset(h, vma, address);
3495
3496        return find_lock_page(mapping, idx);
3497}
3498
3499/*
3500 * Return whether there is a pagecache page to back given address within VMA.
3501 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3502 */
3503static bool hugetlbfs_pagecache_present(struct hstate *h,
3504                        struct vm_area_struct *vma, unsigned long address)
3505{
3506        struct address_space *mapping;
3507        pgoff_t idx;
3508        struct page *page;
3509
3510        mapping = vma->vm_file->f_mapping;
3511        idx = vma_hugecache_offset(h, vma, address);
3512
3513        page = find_get_page(mapping, idx);
3514        if (page)
3515                put_page(page);
3516        return page != NULL;
3517}
3518
3519int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3520                           pgoff_t idx)
3521{
3522        struct inode *inode = mapping->host;
3523        struct hstate *h = hstate_inode(inode);
3524        int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3525
3526        if (err)
3527                return err;
3528        ClearPagePrivate(page);
3529
3530        spin_lock(&inode->i_lock);
3531        inode->i_blocks += blocks_per_huge_page(h);
3532        spin_unlock(&inode->i_lock);
3533        return 0;
3534}
3535
3536static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3537                           struct address_space *mapping, pgoff_t idx,
3538                           unsigned long address, pte_t *ptep, unsigned int flags)
3539{
3540        struct hstate *h = hstate_vma(vma);
3541        int ret = VM_FAULT_SIGBUS;
3542        int anon_rmap = 0;
3543        unsigned long size;
3544        struct page *page;
3545        pte_t new_pte;
3546        spinlock_t *ptl;
3547
3548        /*
3549         * Currently, we are forced to kill the process in the event the
3550         * original mapper has unmapped pages from the child due to a failed
3551         * COW. Warn that such a situation has occurred as it may not be obvious
3552         */
3553        if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3554                pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3555                           current->pid);
3556                return ret;
3557        }
3558
3559        /*
3560         * Use page lock to guard against racing truncation
3561         * before we get page_table_lock.
3562         */
3563retry:
3564        page = find_lock_page(mapping, idx);
3565        if (!page) {
3566                size = i_size_read(mapping->host) >> huge_page_shift(h);
3567                if (idx >= size)
3568                        goto out;
3569                page = alloc_huge_page(vma, address, 0);
3570                if (IS_ERR(page)) {
3571                        ret = PTR_ERR(page);
3572                        if (ret == -ENOMEM)
3573                                ret = VM_FAULT_OOM;
3574                        else
3575                                ret = VM_FAULT_SIGBUS;
3576                        goto out;
3577                }
3578                clear_huge_page(page, address, pages_per_huge_page(h));
3579                __SetPageUptodate(page);
3580                set_page_huge_active(page);
3581
3582                if (vma->vm_flags & VM_MAYSHARE) {
3583                        int err = huge_add_to_page_cache(page, mapping, idx);
3584                        if (err) {
3585                                put_page(page);
3586                                if (err == -EEXIST)
3587                                        goto retry;
3588                                goto out;
3589                        }
3590                } else {
3591                        lock_page(page);
3592                        if (unlikely(anon_vma_prepare(vma))) {
3593                                ret = VM_FAULT_OOM;
3594                                goto backout_unlocked;
3595                        }
3596                        anon_rmap = 1;
3597                }
3598        } else {
3599                /*
3600                 * If memory error occurs between mmap() and fault, some process
3601                 * don't have hwpoisoned swap entry for errored virtual address.
3602                 * So we need to block hugepage fault by PG_hwpoison bit check.
3603                 */
3604                if (unlikely(PageHWPoison(page))) {
3605                        ret = VM_FAULT_HWPOISON |
3606                                VM_FAULT_SET_HINDEX(hstate_index(h));
3607                        goto backout_unlocked;
3608                }
3609        }
3610
3611        /*
3612         * If we are going to COW a private mapping later, we examine the
3613         * pending reservations for this page now. This will ensure that
3614         * any allocations necessary to record that reservation occur outside
3615         * the spinlock.
3616         */
3617        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3618                if (vma_needs_reservation(h, vma, address) < 0) {
3619                        ret = VM_FAULT_OOM;
3620                        goto backout_unlocked;
3621                }
3622                /* Just decrements count, does not deallocate */
3623                vma_end_reservation(h, vma, address);
3624        }
3625
3626        ptl = huge_pte_lockptr(h, mm, ptep);
3627        spin_lock(ptl);
3628        size = i_size_read(mapping->host) >> huge_page_shift(h);
3629        if (idx >= size)
3630                goto backout;
3631
3632        ret = 0;
3633        if (!huge_pte_none(huge_ptep_get(ptep)))
3634                goto backout;
3635
3636        if (anon_rmap) {
3637                ClearPagePrivate(page);
3638                hugepage_add_new_anon_rmap(page, vma, address);
3639        } else
3640                page_dup_rmap(page, true);
3641        new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3642                                && (vma->vm_flags & VM_SHARED)));
3643        set_huge_pte_at(mm, address, ptep, new_pte);
3644
3645        hugetlb_count_add(pages_per_huge_page(h), mm);
3646        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3647                /* Optimization, do the COW without a second fault */
3648                ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3649        }
3650
3651        spin_unlock(ptl);
3652        unlock_page(page);
3653out:
3654        return ret;
3655
3656backout:
3657        spin_unlock(ptl);
3658backout_unlocked:
3659        unlock_page(page);
3660        put_page(page);
3661        goto out;
3662}
3663
3664#ifdef CONFIG_SMP
3665u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3666                            struct vm_area_struct *vma,
3667                            struct address_space *mapping,
3668                            pgoff_t idx, unsigned long address)
3669{
3670        unsigned long key[2];
3671        u32 hash;
3672
3673        if (vma->vm_flags & VM_SHARED) {
3674                key[0] = (unsigned long) mapping;
3675                key[1] = idx;
3676        } else {
3677                key[0] = (unsigned long) mm;
3678                key[1] = address >> huge_page_shift(h);
3679        }
3680
3681        hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3682
3683        return hash & (num_fault_mutexes - 1);
3684}
3685#else
3686/*
3687 * For uniprocesor systems we always use a single mutex, so just
3688 * return 0 and avoid the hashing overhead.
3689 */
3690u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3691                            struct vm_area_struct *vma,
3692                            struct address_space *mapping,
3693                            pgoff_t idx, unsigned long address)
3694{
3695        return 0;
3696}
3697#endif
3698
3699int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3700                        unsigned long address, unsigned int flags)
3701{
3702        pte_t *ptep, entry;
3703        spinlock_t *ptl;
3704        int ret;
3705        u32 hash;
3706        pgoff_t idx;
3707        struct page *page = NULL;
3708        struct page *pagecache_page = NULL;
3709        struct hstate *h = hstate_vma(vma);
3710        struct address_space *mapping;
3711        int need_wait_lock = 0;
3712
3713        address &= huge_page_mask(h);
3714
3715        ptep = huge_pte_offset(mm, address);
3716        if (ptep) {
3717                entry = huge_ptep_get(ptep);
3718                if (unlikely(is_hugetlb_entry_migration(entry))) {
3719                        migration_entry_wait_huge(vma, mm, ptep);
3720                        return 0;
3721                } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3722                        return VM_FAULT_HWPOISON_LARGE |
3723                                VM_FAULT_SET_HINDEX(hstate_index(h));
3724        } else {
3725                ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3726                if (!ptep)
3727                        return VM_FAULT_OOM;
3728        }
3729
3730        mapping = vma->vm_file->f_mapping;
3731        idx = vma_hugecache_offset(h, vma, address);
3732
3733        /*
3734         * Serialize hugepage allocation and instantiation, so that we don't
3735         * get spurious allocation failures if two CPUs race to instantiate
3736         * the same page in the page cache.
3737         */
3738        hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3739        mutex_lock(&hugetlb_fault_mutex_table[hash]);
3740
3741        entry = huge_ptep_get(ptep);
3742        if (huge_pte_none(entry)) {
3743                ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3744                goto out_mutex;
3745        }
3746
3747        ret = 0;
3748
3749        /*
3750         * entry could be a migration/hwpoison entry at this point, so this
3751         * check prevents the kernel from going below assuming that we have
3752         * a active hugepage in pagecache. This goto expects the 2nd page fault,
3753         * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3754         * handle it.
3755         */
3756        if (!pte_present(entry))
3757                goto out_mutex;
3758
3759        /*
3760         * If we are going to COW the mapping later, we examine the pending
3761         * reservations for this page now. This will ensure that any
3762         * allocations necessary to record that reservation occur outside the
3763         * spinlock. For private mappings, we also lookup the pagecache
3764         * page now as it is used to determine if a reservation has been
3765         * consumed.
3766         */
3767        if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3768                if (vma_needs_reservation(h, vma, address) < 0) {
3769                        ret = VM_FAULT_OOM;
3770                        goto out_mutex;
3771                }
3772                /* Just decrements count, does not deallocate */
3773                vma_end_reservation(h, vma, address);
3774
3775                if (!(vma->vm_flags & VM_MAYSHARE))
3776                        pagecache_page = hugetlbfs_pagecache_page(h,
3777                                                                vma, address);
3778        }
3779
3780        ptl = huge_pte_lock(h, mm, ptep);
3781
3782        /* Check for a racing update before calling hugetlb_cow */
3783        if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3784                goto out_ptl;
3785
3786        /*
3787         * hugetlb_cow() requires page locks of pte_page(entry) and
3788         * pagecache_page, so here we need take the former one
3789         * when page != pagecache_page or !pagecache_page.
3790         */
3791        page = pte_page(entry);
3792        if (page != pagecache_page)
3793                if (!trylock_page(page)) {
3794                        need_wait_lock = 1;
3795                        goto out_ptl;
3796                }
3797
3798        get_page(page);
3799
3800        if (flags & FAULT_FLAG_WRITE) {
3801                if (!huge_pte_write(entry)) {
3802                        ret = hugetlb_cow(mm, vma, address, ptep, entry,
3803                                        pagecache_page, ptl);
3804                        goto out_put_page;
3805                }
3806                entry = huge_pte_mkdirty(entry);
3807        }
3808        entry = pte_mkyoung(entry);
3809        if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3810                                                flags & FAULT_FLAG_WRITE))
3811                update_mmu_cache(vma, address, ptep);
3812out_put_page:
3813        if (page != pagecache_page)
3814                unlock_page(page);
3815        put_page(page);
3816out_ptl:
3817        spin_unlock(ptl);
3818
3819        if (pagecache_page) {
3820                unlock_page(pagecache_page);
3821                put_page(pagecache_page);
3822        }
3823out_mutex:
3824        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3825        /*
3826         * Generally it's safe to hold refcount during waiting page lock. But
3827         * here we just wait to defer the next page fault to avoid busy loop and
3828         * the page is not used after unlocked before returning from the current
3829         * page fault. So we are safe from accessing freed page, even if we wait
3830         * here without taking refcount.
3831         */
3832        if (need_wait_lock)
3833                wait_on_page_locked(page);
3834        return ret;
3835}
3836
3837long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3838                         struct page **pages, struct vm_area_struct **vmas,
3839                         unsigned long *position, unsigned long *nr_pages,
3840                         long i, unsigned int flags)
3841{
3842        unsigned long pfn_offset;
3843        unsigned long vaddr = *position;
3844        unsigned long remainder = *nr_pages;
3845        struct hstate *h = hstate_vma(vma);
3846
3847        while (vaddr < vma->vm_end && remainder) {
3848                pte_t *pte;
3849                spinlock_t *ptl = NULL;
3850                int absent;
3851                struct page *page;
3852
3853                /*
3854                 * If we have a pending SIGKILL, don't keep faulting pages and
3855                 * potentially allocating memory.
3856                 */
3857                if (unlikely(fatal_signal_pending(current))) {
3858                        remainder = 0;
3859                        break;
3860                }
3861
3862                /*
3863                 * Some archs (sparc64, sh*) have multiple pte_ts to
3864                 * each hugepage.  We have to make sure we get the
3865                 * first, for the page indexing below to work.
3866                 *
3867                 * Note that page table lock is not held when pte is null.
3868                 */
3869                pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3870                if (pte)
3871                        ptl = huge_pte_lock(h, mm, pte);
3872                absent = !pte || huge_pte_none(huge_ptep_get(pte));
3873
3874                /*
3875                 * When coredumping, it suits get_dump_page if we just return
3876                 * an error where there's an empty slot with no huge pagecache
3877                 * to back it.  This way, we avoid allocating a hugepage, and
3878                 * the sparse dumpfile avoids allocating disk blocks, but its
3879                 * huge holes still show up with zeroes where they need to be.
3880                 */
3881                if (absent && (flags & FOLL_DUMP) &&
3882                    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3883                        if (pte)
3884                                spin_unlock(ptl);
3885                        remainder = 0;
3886                        break;
3887                }
3888
3889                /*
3890                 * We need call hugetlb_fault for both hugepages under migration
3891                 * (in which case hugetlb_fault waits for the migration,) and
3892                 * hwpoisoned hugepages (in which case we need to prevent the
3893                 * caller from accessing to them.) In order to do this, we use
3894                 * here is_swap_pte instead of is_hugetlb_entry_migration and
3895                 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3896                 * both cases, and because we can't follow correct pages
3897                 * directly from any kind of swap entries.
3898                 */
3899                if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3900                    ((flags & FOLL_WRITE) &&
3901                      !huge_pte_write(huge_ptep_get(pte)))) {
3902                        int ret;
3903
3904                        if (pte)
3905                                spin_unlock(ptl);
3906                        ret = hugetlb_fault(mm, vma, vaddr,
3907                                (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3908                        if (!(ret & VM_FAULT_ERROR))
3909                                continue;
3910
3911                        remainder = 0;
3912                        break;
3913                }
3914
3915                pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3916                page = pte_page(huge_ptep_get(pte));
3917same_page:
3918                if (pages) {
3919                        pages[i] = mem_map_offset(page, pfn_offset);
3920                        get_page(pages[i]);
3921                }
3922
3923                if (vmas)
3924                        vmas[i] = vma;
3925
3926                vaddr += PAGE_SIZE;
3927                ++pfn_offset;
3928                --remainder;
3929                ++i;
3930                if (vaddr < vma->vm_end && remainder &&
3931                                pfn_offset < pages_per_huge_page(h)) {
3932                        /*
3933                         * We use pfn_offset to avoid touching the pageframes
3934                         * of this compound page.
3935                         */
3936                        goto same_page;
3937                }
3938                spin_unlock(ptl);
3939        }
3940        *nr_pages = remainder;
3941        *position = vaddr;
3942
3943        return i ? i : -EFAULT;
3944}
3945
3946#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
3947/*
3948 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
3949 * implement this.
3950 */
3951#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
3952#endif
3953
3954unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3955                unsigned long address, unsigned long end, pgprot_t newprot)
3956{
3957        struct mm_struct *mm = vma->vm_mm;
3958        unsigned long start = address;
3959        pte_t *ptep;
3960        pte_t pte;
3961        struct hstate *h = hstate_vma(vma);
3962        unsigned long pages = 0;
3963
3964        BUG_ON(address >= end);
3965        flush_cache_range(vma, address, end);
3966
3967        mmu_notifier_invalidate_range_start(mm, start, end);
3968        i_mmap_lock_write(vma->vm_file->f_mapping);
3969        for (; address < end; address += huge_page_size(h)) {
3970                spinlock_t *ptl;
3971                ptep = huge_pte_offset(mm, address);
3972                if (!ptep)
3973                        continue;
3974                ptl = huge_pte_lock(h, mm, ptep);
3975                if (huge_pmd_unshare(mm, &address, ptep)) {
3976                        pages++;
3977                        spin_unlock(ptl);
3978                        continue;
3979                }
3980                pte = huge_ptep_get(ptep);
3981                if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3982                        spin_unlock(ptl);
3983                        continue;
3984                }
3985                if (unlikely(is_hugetlb_entry_migration(pte))) {
3986                        swp_entry_t entry = pte_to_swp_entry(pte);
3987
3988                        if (is_write_migration_entry(entry)) {
3989                                pte_t newpte;
3990
3991                                make_migration_entry_read(&entry);
3992                                newpte = swp_entry_to_pte(entry);
3993                                set_huge_pte_at(mm, address, ptep, newpte);
3994                                pages++;
3995                        }
3996                        spin_unlock(ptl);
3997                        continue;
3998                }
3999                if (!huge_pte_none(pte)) {
4000                        pte = huge_ptep_get_and_clear(mm, address, ptep);
4001                        pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4002                        pte = arch_make_huge_pte(pte, vma, NULL, 0);
4003                        set_huge_pte_at(mm, address, ptep, pte);
4004                        pages++;
4005                }
4006                spin_unlock(ptl);
4007        }
4008        /*
4009         * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4010         * may have cleared our pud entry and done put_page on the page table:
4011         * once we release i_mmap_rwsem, another task can do the final put_page
4012         * and that page table be reused and filled with junk.
4013         */
4014        flush_hugetlb_tlb_range(vma, start, end);
4015        mmu_notifier_invalidate_range(mm, start, end);
4016        i_mmap_unlock_write(vma->vm_file->f_mapping);
4017        mmu_notifier_invalidate_range_end(mm, start, end);
4018
4019        return pages << h->order;
4020}
4021
4022int hugetlb_reserve_pages(struct inode *inode,
4023                                        long from, long to,
4024                                        struct vm_area_struct *vma,
4025                                        vm_flags_t vm_flags)
4026{
4027        long ret, chg;
4028        struct hstate *h = hstate_inode(inode);
4029        struct hugepage_subpool *spool = subpool_inode(inode);
4030        struct resv_map *resv_map;
4031        long gbl_reserve;
4032
4033        /*
4034         * Only apply hugepage reservation if asked. At fault time, an
4035         * attempt will be made for VM_NORESERVE to allocate a page
4036         * without using reserves
4037         */
4038        if (vm_flags & VM_NORESERVE)
4039                return 0;
4040
4041        /*
4042         * Shared mappings base their reservation on the number of pages that
4043         * are already allocated on behalf of the file. Private mappings need
4044         * to reserve the full area even if read-only as mprotect() may be
4045         * called to make the mapping read-write. Assume !vma is a shm mapping
4046         */
4047        if (!vma || vma->vm_flags & VM_MAYSHARE) {
4048                resv_map = inode_resv_map(inode);
4049
4050                chg = region_chg(resv_map, from, to);
4051
4052        } else {
4053                resv_map = resv_map_alloc();
4054                if (!resv_map)
4055                        return -ENOMEM;
4056
4057                chg = to - from;
4058
4059                set_vma_resv_map(vma, resv_map);
4060                set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4061        }
4062
4063        if (chg < 0) {
4064                ret = chg;
4065                goto out_err;
4066        }
4067
4068        /*
4069         * There must be enough pages in the subpool for the mapping. If
4070         * the subpool has a minimum size, there may be some global
4071         * reservations already in place (gbl_reserve).
4072         */
4073        gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4074        if (gbl_reserve < 0) {
4075                ret = -ENOSPC;
4076                goto out_err;
4077        }
4078
4079        /*
4080         * Check enough hugepages are available for the reservation.
4081         * Hand the pages back to the subpool if there are not
4082         */
4083        ret = hugetlb_acct_memory(h, gbl_reserve);
4084        if (ret < 0) {
4085                /* put back original number of pages, chg */
4086                (void)hugepage_subpool_put_pages(spool, chg);
4087                goto out_err;
4088        }
4089
4090        /*
4091         * Account for the reservations made. Shared mappings record regions
4092         * that have reservations as they are shared by multiple VMAs.
4093         * When the last VMA disappears, the region map says how much
4094         * the reservation was and the page cache tells how much of
4095         * the reservation was consumed. Private mappings are per-VMA and
4096         * only the consumed reservations are tracked. When the VMA
4097         * disappears, the original reservation is the VMA size and the
4098         * consumed reservations are stored in the map. Hence, nothing
4099         * else has to be done for private mappings here
4100         */
4101        if (!vma || vma->vm_flags & VM_MAYSHARE) {
4102                long add = region_add(resv_map, from, to);
4103
4104                if (unlikely(chg > add)) {
4105                        /*
4106                         * pages in this range were added to the reserve
4107                         * map between region_chg and region_add.  This
4108                         * indicates a race with alloc_huge_page.  Adjust
4109                         * the subpool and reserve counts modified above
4110                         * based on the difference.
4111                         */
4112                        long rsv_adjust;
4113
4114                        rsv_adjust = hugepage_subpool_put_pages(spool,
4115                                                                chg - add);
4116                        hugetlb_acct_memory(h, -rsv_adjust);
4117                }
4118        }
4119        return 0;
4120out_err:
4121        if (!vma || vma->vm_flags & VM_MAYSHARE)
4122                region_abort(resv_map, from, to);
4123        if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4124                kref_put(&resv_map->refs, resv_map_release);
4125        return ret;
4126}
4127
4128long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4129                                                                long freed)
4130{
4131        struct hstate *h = hstate_inode(inode);
4132        struct resv_map *resv_map = inode_resv_map(inode);
4133        long chg = 0;
4134        struct hugepage_subpool *spool = subpool_inode(inode);
4135        long gbl_reserve;
4136
4137        if (resv_map) {
4138                chg = region_del(resv_map, start, end);
4139                /*
4140                 * region_del() can fail in the rare case where a region
4141                 * must be split and another region descriptor can not be
4142                 * allocated.  If end == LONG_MAX, it will not fail.
4143                 */
4144                if (chg < 0)
4145                        return chg;
4146        }
4147
4148        spin_lock(&inode->i_lock);
4149        inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4150        spin_unlock(&inode->i_lock);
4151
4152        /*
4153         * If the subpool has a minimum size, the number of global
4154         * reservations to be released may be adjusted.
4155         */
4156        gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4157        hugetlb_acct_memory(h, -gbl_reserve);
4158
4159        return 0;
4160}
4161
4162#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4163static unsigned long page_table_shareable(struct vm_area_struct *svma,
4164                                struct vm_area_struct *vma,
4165                                unsigned long addr, pgoff_t idx)
4166{
4167        unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4168                                svma->vm_start;
4169        unsigned long sbase = saddr & PUD_MASK;
4170        unsigned long s_end = sbase + PUD_SIZE;
4171
4172        /* Allow segments to share if only one is marked locked */
4173        unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4174        unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4175
4176        /*
4177         * match the virtual addresses, permission and the alignment of the
4178         * page table page.
4179         */
4180        if (pmd_index(addr) != pmd_index(saddr) ||
4181            vm_flags != svm_flags ||
4182            sbase < svma->vm_start || svma->vm_end < s_end)
4183                return 0;
4184
4185        return saddr;
4186}
4187
4188static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4189{
4190        unsigned long base = addr & PUD_MASK;
4191        unsigned long end = base + PUD_SIZE;
4192
4193        /*
4194         * check on proper vm_flags and page table alignment
4195         */
4196        if (vma->vm_flags & VM_MAYSHARE &&
4197            vma->vm_start <= base && end <= vma->vm_end)
4198                return true;
4199        return false;
4200}
4201
4202/*
4203 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4204 * and returns the corresponding pte. While this is not necessary for the
4205 * !shared pmd case because we can allocate the pmd later as well, it makes the
4206 * code much cleaner. pmd allocation is essential for the shared case because
4207 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4208 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4209 * bad pmd for sharing.
4210 */
4211pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4212{
4213        struct vm_area_struct *vma = find_vma(mm, addr);
4214        struct address_space *mapping = vma->vm_file->f_mapping;
4215        pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4216                        vma->vm_pgoff;
4217        struct vm_area_struct *svma;
4218        unsigned long saddr;
4219        pte_t *spte = NULL;
4220        pte_t *pte;
4221        spinlock_t *ptl;
4222
4223        if (!vma_shareable(vma, addr))
4224                return (pte_t *)pmd_alloc(mm, pud, addr);
4225
4226        i_mmap_lock_write(mapping);
4227        vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4228                if (svma == vma)
4229                        continue;
4230
4231                saddr = page_table_shareable(svma, vma, addr, idx);
4232                if (saddr) {
4233                        spte = huge_pte_offset(svma->vm_mm, saddr);
4234                        if (spte) {
4235                                get_page(virt_to_page(spte));
4236                                break;
4237                        }
4238                }
4239        }
4240
4241        if (!spte)
4242                goto out;
4243
4244        ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4245        spin_lock(ptl);
4246        if (pud_none(*pud)) {
4247                pud_populate(mm, pud,
4248                                (pmd_t *)((unsigned long)spte & PAGE_MASK));
4249                mm_inc_nr_pmds(mm);
4250        } else {
4251                put_page(virt_to_page(spte));
4252        }
4253        spin_unlock(ptl);
4254out:
4255        pte = (pte_t *)pmd_alloc(mm, pud, addr);
4256        i_mmap_unlock_write(mapping);
4257        return pte;
4258}
4259
4260/*
4261 * unmap huge page backed by shared pte.
4262 *
4263 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4264 * indicated by page_count > 1, unmap is achieved by clearing pud and
4265 * decrementing the ref count. If count == 1, the pte page is not shared.
4266 *
4267 * called with page table lock held.
4268 *
4269 * returns: 1 successfully unmapped a shared pte page
4270 *          0 the underlying pte page is not shared, or it is the last user
4271 */
4272int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4273{
4274        pgd_t *pgd = pgd_offset(mm, *addr);
4275        pud_t *pud = pud_offset(pgd, *addr);
4276
4277        BUG_ON(page_count(virt_to_page(ptep)) == 0);
4278        if (page_count(virt_to_page(ptep)) == 1)
4279                return 0;
4280
4281        pud_clear(pud);
4282        put_page(virt_to_page(ptep));
4283        mm_dec_nr_pmds(mm);
4284        *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4285        return 1;
4286}
4287#define want_pmd_share()        (1)
4288#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4289pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4290{
4291        return NULL;
4292}
4293
4294int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4295{
4296        return 0;
4297}
4298#define want_pmd_share()        (0)
4299#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4300
4301#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4302pte_t *huge_pte_alloc(struct mm_struct *mm,
4303                        unsigned long addr, unsigned long sz)
4304{
4305        pgd_t *pgd;
4306        pud_t *pud;
4307        pte_t *pte = NULL;
4308
4309        pgd = pgd_offset(mm, addr);
4310        pud = pud_alloc(mm, pgd, addr);
4311        if (pud) {
4312                if (sz == PUD_SIZE) {
4313                        pte = (pte_t *)pud;
4314                } else {
4315                        BUG_ON(sz != PMD_SIZE);
4316                        if (want_pmd_share() && pud_none(*pud))
4317                                pte = huge_pmd_share(mm, addr, pud);
4318                        else
4319                                pte = (pte_t *)pmd_alloc(mm, pud, addr);
4320                }
4321        }
4322        BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4323
4324        return pte;
4325}
4326
4327pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4328{
4329        pgd_t *pgd;
4330        pud_t *pud;
4331        pmd_t *pmd = NULL;
4332
4333        pgd = pgd_offset(mm, addr);
4334        if (pgd_present(*pgd)) {
4335                pud = pud_offset(pgd, addr);
4336                if (pud_present(*pud)) {
4337                        if (pud_huge(*pud))
4338                                return (pte_t *)pud;
4339                        pmd = pmd_offset(pud, addr);
4340                }
4341        }
4342        return (pte_t *) pmd;
4343}
4344
4345#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4346
4347/*
4348 * These functions are overwritable if your architecture needs its own
4349 * behavior.
4350 */
4351struct page * __weak
4352follow_huge_addr(struct mm_struct *mm, unsigned long address,
4353                              int write)
4354{
4355        return ERR_PTR(-EINVAL);
4356}
4357
4358struct page * __weak
4359follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4360                pmd_t *pmd, int flags)
4361{
4362        struct page *page = NULL;
4363        spinlock_t *ptl;
4364retry:
4365        ptl = pmd_lockptr(mm, pmd);
4366        spin_lock(ptl);
4367        /*
4368         * make sure that the address range covered by this pmd is not
4369         * unmapped from other threads.
4370         */
4371        if (!pmd_huge(*pmd))
4372                goto out;
4373        if (pmd_present(*pmd)) {
4374                page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4375                if (flags & FOLL_GET)
4376                        get_page(page);
4377        } else {
4378                if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4379                        spin_unlock(ptl);
4380                        __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4381                        goto retry;
4382                }
4383                /*
4384                 * hwpoisoned entry is treated as no_page_table in
4385                 * follow_page_mask().
4386                 */
4387        }
4388out:
4389        spin_unlock(ptl);
4390        return page;
4391}
4392
4393struct page * __weak
4394follow_huge_pud(struct mm_struct *mm, unsigned long address,
4395                pud_t *pud, int flags)
4396{
4397        if (flags & FOLL_GET)
4398                return NULL;
4399
4400        return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4401}
4402
4403#ifdef CONFIG_MEMORY_FAILURE
4404
4405/*
4406 * This function is called from memory failure code.
4407 */
4408int dequeue_hwpoisoned_huge_page(struct page *hpage)
4409{
4410        struct hstate *h = page_hstate(hpage);
4411        int nid = page_to_nid(hpage);
4412        int ret = -EBUSY;
4413
4414        spin_lock(&hugetlb_lock);
4415        /*
4416         * Just checking !page_huge_active is not enough, because that could be
4417         * an isolated/hwpoisoned hugepage (which have >0 refcount).
4418         */
4419        if (!page_huge_active(hpage) && !page_count(hpage)) {
4420                /*
4421                 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4422                 * but dangling hpage->lru can trigger list-debug warnings
4423                 * (this happens when we call unpoison_memory() on it),
4424                 * so let it point to itself with list_del_init().
4425                 */
4426                list_del_init(&hpage->lru);
4427                set_page_refcounted(hpage);
4428                h->free_huge_pages--;
4429                h->free_huge_pages_node[nid]--;
4430                ret = 0;
4431        }
4432        spin_unlock(&hugetlb_lock);
4433        return ret;
4434}
4435#endif
4436
4437bool isolate_huge_page(struct page *page, struct list_head *list)
4438{
4439        bool ret = true;
4440
4441        VM_BUG_ON_PAGE(!PageHead(page), page);
4442        spin_lock(&hugetlb_lock);
4443        if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4444                ret = false;
4445                goto unlock;
4446        }
4447        clear_page_huge_active(page);
4448        list_move_tail(&page->lru, list);
4449unlock:
4450        spin_unlock(&hugetlb_lock);
4451        return ret;
4452}
4453
4454void putback_active_hugepage(struct page *page)
4455{
4456        VM_BUG_ON_PAGE(!PageHead(page), page);
4457        spin_lock(&hugetlb_lock);
4458        set_page_huge_active(page);
4459        list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4460        spin_unlock(&hugetlb_lock);
4461        put_page(page);
4462}
4463