1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89#include <linux/slab.h>
90#include <linux/mm.h>
91#include <linux/poison.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/cpuset.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
106#include <linux/string.h>
107#include <linux/uaccess.h>
108#include <linux/nodemask.h>
109#include <linux/kmemleak.h>
110#include <linux/mempolicy.h>
111#include <linux/mutex.h>
112#include <linux/fault-inject.h>
113#include <linux/rtmutex.h>
114#include <linux/reciprocal_div.h>
115#include <linux/debugobjects.h>
116#include <linux/kmemcheck.h>
117#include <linux/memory.h>
118#include <linux/prefetch.h>
119
120#include <net/sock.h>
121
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
126#include <trace/events/kmem.h>
127
128#include "internal.h"
129
130#include "slab.h"
131
132
133
134
135
136
137
138
139
140
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
152
153#define BYTES_PER_WORD sizeof(void *)
154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171
172
173
174
175
176
177
178
179
180
181
182
183struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
188 void *entry[];
189
190
191
192
193};
194
195struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198};
199
200
201
202
203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205#define CACHE_CACHE 0
206#define SIZE_NODE (MAX_NUMNODES)
207
208static int drain_freelist(struct kmem_cache *cache,
209 struct kmem_cache_node *n, int tofree);
210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 int node, struct list_head *list);
212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214static void cache_reap(struct work_struct *unused);
215
216static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
217 void **list);
218static inline void fixup_slab_list(struct kmem_cache *cachep,
219 struct kmem_cache_node *n, struct page *page,
220 void **list);
221static int slab_early_init = 1;
222
223#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
224
225static void kmem_cache_node_init(struct kmem_cache_node *parent)
226{
227 INIT_LIST_HEAD(&parent->slabs_full);
228 INIT_LIST_HEAD(&parent->slabs_partial);
229 INIT_LIST_HEAD(&parent->slabs_free);
230 parent->shared = NULL;
231 parent->alien = NULL;
232 parent->colour_next = 0;
233 spin_lock_init(&parent->list_lock);
234 parent->free_objects = 0;
235 parent->free_touched = 0;
236}
237
238#define MAKE_LIST(cachep, listp, slab, nodeid) \
239 do { \
240 INIT_LIST_HEAD(listp); \
241 list_splice(&get_node(cachep, nodeid)->slab, listp); \
242 } while (0)
243
244#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
245 do { \
246 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
247 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
248 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
249 } while (0)
250
251#define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
252#define CFLGS_OFF_SLAB (0x80000000UL)
253#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
254#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
255
256#define BATCHREFILL_LIMIT 16
257
258
259
260
261
262
263
264#define REAPTIMEOUT_AC (2*HZ)
265#define REAPTIMEOUT_NODE (4*HZ)
266
267#if STATS
268#define STATS_INC_ACTIVE(x) ((x)->num_active++)
269#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
270#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
271#define STATS_INC_GROWN(x) ((x)->grown++)
272#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
273#define STATS_SET_HIGH(x) \
274 do { \
275 if ((x)->num_active > (x)->high_mark) \
276 (x)->high_mark = (x)->num_active; \
277 } while (0)
278#define STATS_INC_ERR(x) ((x)->errors++)
279#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
280#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
281#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
282#define STATS_SET_FREEABLE(x, i) \
283 do { \
284 if ((x)->max_freeable < i) \
285 (x)->max_freeable = i; \
286 } while (0)
287#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
288#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
289#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
290#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
291#else
292#define STATS_INC_ACTIVE(x) do { } while (0)
293#define STATS_DEC_ACTIVE(x) do { } while (0)
294#define STATS_INC_ALLOCED(x) do { } while (0)
295#define STATS_INC_GROWN(x) do { } while (0)
296#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
297#define STATS_SET_HIGH(x) do { } while (0)
298#define STATS_INC_ERR(x) do { } while (0)
299#define STATS_INC_NODEALLOCS(x) do { } while (0)
300#define STATS_INC_NODEFREES(x) do { } while (0)
301#define STATS_INC_ACOVERFLOW(x) do { } while (0)
302#define STATS_SET_FREEABLE(x, i) do { } while (0)
303#define STATS_INC_ALLOCHIT(x) do { } while (0)
304#define STATS_INC_ALLOCMISS(x) do { } while (0)
305#define STATS_INC_FREEHIT(x) do { } while (0)
306#define STATS_INC_FREEMISS(x) do { } while (0)
307#endif
308
309#if DEBUG
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324static int obj_offset(struct kmem_cache *cachep)
325{
326 return cachep->obj_offset;
327}
328
329static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
330{
331 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
332 return (unsigned long long*) (objp + obj_offset(cachep) -
333 sizeof(unsigned long long));
334}
335
336static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
337{
338 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
339 if (cachep->flags & SLAB_STORE_USER)
340 return (unsigned long long *)(objp + cachep->size -
341 sizeof(unsigned long long) -
342 REDZONE_ALIGN);
343 return (unsigned long long *) (objp + cachep->size -
344 sizeof(unsigned long long));
345}
346
347static void **dbg_userword(struct kmem_cache *cachep, void *objp)
348{
349 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
350 return (void **)(objp + cachep->size - BYTES_PER_WORD);
351}
352
353#else
354
355#define obj_offset(x) 0
356#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
357#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
358#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
359
360#endif
361
362#ifdef CONFIG_DEBUG_SLAB_LEAK
363
364static inline bool is_store_user_clean(struct kmem_cache *cachep)
365{
366 return atomic_read(&cachep->store_user_clean) == 1;
367}
368
369static inline void set_store_user_clean(struct kmem_cache *cachep)
370{
371 atomic_set(&cachep->store_user_clean, 1);
372}
373
374static inline void set_store_user_dirty(struct kmem_cache *cachep)
375{
376 if (is_store_user_clean(cachep))
377 atomic_set(&cachep->store_user_clean, 0);
378}
379
380#else
381static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
382
383#endif
384
385
386
387
388
389#define SLAB_MAX_ORDER_HI 1
390#define SLAB_MAX_ORDER_LO 0
391static int slab_max_order = SLAB_MAX_ORDER_LO;
392static bool slab_max_order_set __initdata;
393
394static inline struct kmem_cache *virt_to_cache(const void *obj)
395{
396 struct page *page = virt_to_head_page(obj);
397 return page->slab_cache;
398}
399
400static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
401 unsigned int idx)
402{
403 return page->s_mem + cache->size * idx;
404}
405
406
407
408
409
410
411
412static inline unsigned int obj_to_index(const struct kmem_cache *cache,
413 const struct page *page, void *obj)
414{
415 u32 offset = (obj - page->s_mem);
416 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
417}
418
419#define BOOT_CPUCACHE_ENTRIES 1
420
421static struct kmem_cache kmem_cache_boot = {
422 .batchcount = 1,
423 .limit = BOOT_CPUCACHE_ENTRIES,
424 .shared = 1,
425 .size = sizeof(struct kmem_cache),
426 .name = "kmem_cache",
427};
428
429static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
430
431static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
432{
433 return this_cpu_ptr(cachep->cpu_cache);
434}
435
436
437
438
439static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
440 unsigned long flags, size_t *left_over)
441{
442 unsigned int num;
443 size_t slab_size = PAGE_SIZE << gfporder;
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
463 num = slab_size / buffer_size;
464 *left_over = slab_size % buffer_size;
465 } else {
466 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
467 *left_over = slab_size %
468 (buffer_size + sizeof(freelist_idx_t));
469 }
470
471 return num;
472}
473
474#if DEBUG
475#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
476
477static void __slab_error(const char *function, struct kmem_cache *cachep,
478 char *msg)
479{
480 pr_err("slab error in %s(): cache `%s': %s\n",
481 function, cachep->name, msg);
482 dump_stack();
483 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
484}
485#endif
486
487
488
489
490
491
492
493
494
495static int use_alien_caches __read_mostly = 1;
496static int __init noaliencache_setup(char *s)
497{
498 use_alien_caches = 0;
499 return 1;
500}
501__setup("noaliencache", noaliencache_setup);
502
503static int __init slab_max_order_setup(char *str)
504{
505 get_option(&str, &slab_max_order);
506 slab_max_order = slab_max_order < 0 ? 0 :
507 min(slab_max_order, MAX_ORDER - 1);
508 slab_max_order_set = true;
509
510 return 1;
511}
512__setup("slab_max_order=", slab_max_order_setup);
513
514#ifdef CONFIG_NUMA
515
516
517
518
519
520
521static DEFINE_PER_CPU(unsigned long, slab_reap_node);
522
523static void init_reap_node(int cpu)
524{
525 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
526 node_online_map);
527}
528
529static void next_reap_node(void)
530{
531 int node = __this_cpu_read(slab_reap_node);
532
533 node = next_node_in(node, node_online_map);
534 __this_cpu_write(slab_reap_node, node);
535}
536
537#else
538#define init_reap_node(cpu) do { } while (0)
539#define next_reap_node(void) do { } while (0)
540#endif
541
542
543
544
545
546
547
548
549static void start_cpu_timer(int cpu)
550{
551 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
552
553
554
555
556
557
558 if (keventd_up() && reap_work->work.func == NULL) {
559 init_reap_node(cpu);
560 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
561 schedule_delayed_work_on(cpu, reap_work,
562 __round_jiffies_relative(HZ, cpu));
563 }
564}
565
566static void init_arraycache(struct array_cache *ac, int limit, int batch)
567{
568
569
570
571
572
573
574
575 kmemleak_no_scan(ac);
576 if (ac) {
577 ac->avail = 0;
578 ac->limit = limit;
579 ac->batchcount = batch;
580 ac->touched = 0;
581 }
582}
583
584static struct array_cache *alloc_arraycache(int node, int entries,
585 int batchcount, gfp_t gfp)
586{
587 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
588 struct array_cache *ac = NULL;
589
590 ac = kmalloc_node(memsize, gfp, node);
591 init_arraycache(ac, entries, batchcount);
592 return ac;
593}
594
595static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
596 struct page *page, void *objp)
597{
598 struct kmem_cache_node *n;
599 int page_node;
600 LIST_HEAD(list);
601
602 page_node = page_to_nid(page);
603 n = get_node(cachep, page_node);
604
605 spin_lock(&n->list_lock);
606 free_block(cachep, &objp, 1, page_node, &list);
607 spin_unlock(&n->list_lock);
608
609 slabs_destroy(cachep, &list);
610}
611
612
613
614
615
616
617
618static int transfer_objects(struct array_cache *to,
619 struct array_cache *from, unsigned int max)
620{
621
622 int nr = min3(from->avail, max, to->limit - to->avail);
623
624 if (!nr)
625 return 0;
626
627 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
628 sizeof(void *) *nr);
629
630 from->avail -= nr;
631 to->avail += nr;
632 return nr;
633}
634
635#ifndef CONFIG_NUMA
636
637#define drain_alien_cache(cachep, alien) do { } while (0)
638#define reap_alien(cachep, n) do { } while (0)
639
640static inline struct alien_cache **alloc_alien_cache(int node,
641 int limit, gfp_t gfp)
642{
643 return NULL;
644}
645
646static inline void free_alien_cache(struct alien_cache **ac_ptr)
647{
648}
649
650static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
651{
652 return 0;
653}
654
655static inline void *alternate_node_alloc(struct kmem_cache *cachep,
656 gfp_t flags)
657{
658 return NULL;
659}
660
661static inline void *____cache_alloc_node(struct kmem_cache *cachep,
662 gfp_t flags, int nodeid)
663{
664 return NULL;
665}
666
667static inline gfp_t gfp_exact_node(gfp_t flags)
668{
669 return flags & ~__GFP_NOFAIL;
670}
671
672#else
673
674static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
675static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
676
677static struct alien_cache *__alloc_alien_cache(int node, int entries,
678 int batch, gfp_t gfp)
679{
680 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
681 struct alien_cache *alc = NULL;
682
683 alc = kmalloc_node(memsize, gfp, node);
684 init_arraycache(&alc->ac, entries, batch);
685 spin_lock_init(&alc->lock);
686 return alc;
687}
688
689static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
690{
691 struct alien_cache **alc_ptr;
692 size_t memsize = sizeof(void *) * nr_node_ids;
693 int i;
694
695 if (limit > 1)
696 limit = 12;
697 alc_ptr = kzalloc_node(memsize, gfp, node);
698 if (!alc_ptr)
699 return NULL;
700
701 for_each_node(i) {
702 if (i == node || !node_online(i))
703 continue;
704 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
705 if (!alc_ptr[i]) {
706 for (i--; i >= 0; i--)
707 kfree(alc_ptr[i]);
708 kfree(alc_ptr);
709 return NULL;
710 }
711 }
712 return alc_ptr;
713}
714
715static void free_alien_cache(struct alien_cache **alc_ptr)
716{
717 int i;
718
719 if (!alc_ptr)
720 return;
721 for_each_node(i)
722 kfree(alc_ptr[i]);
723 kfree(alc_ptr);
724}
725
726static void __drain_alien_cache(struct kmem_cache *cachep,
727 struct array_cache *ac, int node,
728 struct list_head *list)
729{
730 struct kmem_cache_node *n = get_node(cachep, node);
731
732 if (ac->avail) {
733 spin_lock(&n->list_lock);
734
735
736
737
738
739 if (n->shared)
740 transfer_objects(n->shared, ac, ac->limit);
741
742 free_block(cachep, ac->entry, ac->avail, node, list);
743 ac->avail = 0;
744 spin_unlock(&n->list_lock);
745 }
746}
747
748
749
750
751static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
752{
753 int node = __this_cpu_read(slab_reap_node);
754
755 if (n->alien) {
756 struct alien_cache *alc = n->alien[node];
757 struct array_cache *ac;
758
759 if (alc) {
760 ac = &alc->ac;
761 if (ac->avail && spin_trylock_irq(&alc->lock)) {
762 LIST_HEAD(list);
763
764 __drain_alien_cache(cachep, ac, node, &list);
765 spin_unlock_irq(&alc->lock);
766 slabs_destroy(cachep, &list);
767 }
768 }
769 }
770}
771
772static void drain_alien_cache(struct kmem_cache *cachep,
773 struct alien_cache **alien)
774{
775 int i = 0;
776 struct alien_cache *alc;
777 struct array_cache *ac;
778 unsigned long flags;
779
780 for_each_online_node(i) {
781 alc = alien[i];
782 if (alc) {
783 LIST_HEAD(list);
784
785 ac = &alc->ac;
786 spin_lock_irqsave(&alc->lock, flags);
787 __drain_alien_cache(cachep, ac, i, &list);
788 spin_unlock_irqrestore(&alc->lock, flags);
789 slabs_destroy(cachep, &list);
790 }
791 }
792}
793
794static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
795 int node, int page_node)
796{
797 struct kmem_cache_node *n;
798 struct alien_cache *alien = NULL;
799 struct array_cache *ac;
800 LIST_HEAD(list);
801
802 n = get_node(cachep, node);
803 STATS_INC_NODEFREES(cachep);
804 if (n->alien && n->alien[page_node]) {
805 alien = n->alien[page_node];
806 ac = &alien->ac;
807 spin_lock(&alien->lock);
808 if (unlikely(ac->avail == ac->limit)) {
809 STATS_INC_ACOVERFLOW(cachep);
810 __drain_alien_cache(cachep, ac, page_node, &list);
811 }
812 ac->entry[ac->avail++] = objp;
813 spin_unlock(&alien->lock);
814 slabs_destroy(cachep, &list);
815 } else {
816 n = get_node(cachep, page_node);
817 spin_lock(&n->list_lock);
818 free_block(cachep, &objp, 1, page_node, &list);
819 spin_unlock(&n->list_lock);
820 slabs_destroy(cachep, &list);
821 }
822 return 1;
823}
824
825static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
826{
827 int page_node = page_to_nid(virt_to_page(objp));
828 int node = numa_mem_id();
829
830
831
832
833 if (likely(node == page_node))
834 return 0;
835
836 return __cache_free_alien(cachep, objp, node, page_node);
837}
838
839
840
841
842
843static inline gfp_t gfp_exact_node(gfp_t flags)
844{
845 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
846}
847#endif
848
849static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
850{
851 struct kmem_cache_node *n;
852
853
854
855
856
857
858 n = get_node(cachep, node);
859 if (n) {
860 spin_lock_irq(&n->list_lock);
861 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
862 cachep->num;
863 spin_unlock_irq(&n->list_lock);
864
865 return 0;
866 }
867
868 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
869 if (!n)
870 return -ENOMEM;
871
872 kmem_cache_node_init(n);
873 n->next_reap = jiffies + REAPTIMEOUT_NODE +
874 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
875
876 n->free_limit =
877 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
878
879
880
881
882
883
884 cachep->node[node] = n;
885
886 return 0;
887}
888
889
890
891
892
893
894
895
896
897
898static int init_cache_node_node(int node)
899{
900 int ret;
901 struct kmem_cache *cachep;
902
903 list_for_each_entry(cachep, &slab_caches, list) {
904 ret = init_cache_node(cachep, node, GFP_KERNEL);
905 if (ret)
906 return ret;
907 }
908
909 return 0;
910}
911
912static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 int node, gfp_t gfp, bool force_change)
914{
915 int ret = -ENOMEM;
916 struct kmem_cache_node *n;
917 struct array_cache *old_shared = NULL;
918 struct array_cache *new_shared = NULL;
919 struct alien_cache **new_alien = NULL;
920 LIST_HEAD(list);
921
922 if (use_alien_caches) {
923 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 if (!new_alien)
925 goto fail;
926 }
927
928 if (cachep->shared) {
929 new_shared = alloc_arraycache(node,
930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 if (!new_shared)
932 goto fail;
933 }
934
935 ret = init_cache_node(cachep, node, gfp);
936 if (ret)
937 goto fail;
938
939 n = get_node(cachep, node);
940 spin_lock_irq(&n->list_lock);
941 if (n->shared && force_change) {
942 free_block(cachep, n->shared->entry,
943 n->shared->avail, node, &list);
944 n->shared->avail = 0;
945 }
946
947 if (!n->shared || force_change) {
948 old_shared = n->shared;
949 n->shared = new_shared;
950 new_shared = NULL;
951 }
952
953 if (!n->alien) {
954 n->alien = new_alien;
955 new_alien = NULL;
956 }
957
958 spin_unlock_irq(&n->list_lock);
959 slabs_destroy(cachep, &list);
960
961
962
963
964
965
966
967 if (force_change)
968 synchronize_sched();
969
970fail:
971 kfree(old_shared);
972 kfree(new_shared);
973 free_alien_cache(new_alien);
974
975 return ret;
976}
977
978static void cpuup_canceled(long cpu)
979{
980 struct kmem_cache *cachep;
981 struct kmem_cache_node *n = NULL;
982 int node = cpu_to_mem(cpu);
983 const struct cpumask *mask = cpumask_of_node(node);
984
985 list_for_each_entry(cachep, &slab_caches, list) {
986 struct array_cache *nc;
987 struct array_cache *shared;
988 struct alien_cache **alien;
989 LIST_HEAD(list);
990
991 n = get_node(cachep, node);
992 if (!n)
993 continue;
994
995 spin_lock_irq(&n->list_lock);
996
997
998 n->free_limit -= cachep->batchcount;
999
1000
1001 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1002 if (nc) {
1003 free_block(cachep, nc->entry, nc->avail, node, &list);
1004 nc->avail = 0;
1005 }
1006
1007 if (!cpumask_empty(mask)) {
1008 spin_unlock_irq(&n->list_lock);
1009 goto free_slab;
1010 }
1011
1012 shared = n->shared;
1013 if (shared) {
1014 free_block(cachep, shared->entry,
1015 shared->avail, node, &list);
1016 n->shared = NULL;
1017 }
1018
1019 alien = n->alien;
1020 n->alien = NULL;
1021
1022 spin_unlock_irq(&n->list_lock);
1023
1024 kfree(shared);
1025 if (alien) {
1026 drain_alien_cache(cachep, alien);
1027 free_alien_cache(alien);
1028 }
1029
1030free_slab:
1031 slabs_destroy(cachep, &list);
1032 }
1033
1034
1035
1036
1037
1038 list_for_each_entry(cachep, &slab_caches, list) {
1039 n = get_node(cachep, node);
1040 if (!n)
1041 continue;
1042 drain_freelist(cachep, n, INT_MAX);
1043 }
1044}
1045
1046static int cpuup_prepare(long cpu)
1047{
1048 struct kmem_cache *cachep;
1049 int node = cpu_to_mem(cpu);
1050 int err;
1051
1052
1053
1054
1055
1056
1057
1058 err = init_cache_node_node(node);
1059 if (err < 0)
1060 goto bad;
1061
1062
1063
1064
1065
1066 list_for_each_entry(cachep, &slab_caches, list) {
1067 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1068 if (err)
1069 goto bad;
1070 }
1071
1072 return 0;
1073bad:
1074 cpuup_canceled(cpu);
1075 return -ENOMEM;
1076}
1077
1078static int cpuup_callback(struct notifier_block *nfb,
1079 unsigned long action, void *hcpu)
1080{
1081 long cpu = (long)hcpu;
1082 int err = 0;
1083
1084 switch (action) {
1085 case CPU_UP_PREPARE:
1086 case CPU_UP_PREPARE_FROZEN:
1087 mutex_lock(&slab_mutex);
1088 err = cpuup_prepare(cpu);
1089 mutex_unlock(&slab_mutex);
1090 break;
1091 case CPU_ONLINE:
1092 case CPU_ONLINE_FROZEN:
1093 start_cpu_timer(cpu);
1094 break;
1095#ifdef CONFIG_HOTPLUG_CPU
1096 case CPU_DOWN_PREPARE:
1097 case CPU_DOWN_PREPARE_FROZEN:
1098
1099
1100
1101
1102
1103
1104 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1105
1106 per_cpu(slab_reap_work, cpu).work.func = NULL;
1107 break;
1108 case CPU_DOWN_FAILED:
1109 case CPU_DOWN_FAILED_FROZEN:
1110 start_cpu_timer(cpu);
1111 break;
1112 case CPU_DEAD:
1113 case CPU_DEAD_FROZEN:
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123#endif
1124 case CPU_UP_CANCELED:
1125 case CPU_UP_CANCELED_FROZEN:
1126 mutex_lock(&slab_mutex);
1127 cpuup_canceled(cpu);
1128 mutex_unlock(&slab_mutex);
1129 break;
1130 }
1131 return notifier_from_errno(err);
1132}
1133
1134static struct notifier_block cpucache_notifier = {
1135 &cpuup_callback, NULL, 0
1136};
1137
1138#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1139
1140
1141
1142
1143
1144
1145
1146static int __meminit drain_cache_node_node(int node)
1147{
1148 struct kmem_cache *cachep;
1149 int ret = 0;
1150
1151 list_for_each_entry(cachep, &slab_caches, list) {
1152 struct kmem_cache_node *n;
1153
1154 n = get_node(cachep, node);
1155 if (!n)
1156 continue;
1157
1158 drain_freelist(cachep, n, INT_MAX);
1159
1160 if (!list_empty(&n->slabs_full) ||
1161 !list_empty(&n->slabs_partial)) {
1162 ret = -EBUSY;
1163 break;
1164 }
1165 }
1166 return ret;
1167}
1168
1169static int __meminit slab_memory_callback(struct notifier_block *self,
1170 unsigned long action, void *arg)
1171{
1172 struct memory_notify *mnb = arg;
1173 int ret = 0;
1174 int nid;
1175
1176 nid = mnb->status_change_nid;
1177 if (nid < 0)
1178 goto out;
1179
1180 switch (action) {
1181 case MEM_GOING_ONLINE:
1182 mutex_lock(&slab_mutex);
1183 ret = init_cache_node_node(nid);
1184 mutex_unlock(&slab_mutex);
1185 break;
1186 case MEM_GOING_OFFLINE:
1187 mutex_lock(&slab_mutex);
1188 ret = drain_cache_node_node(nid);
1189 mutex_unlock(&slab_mutex);
1190 break;
1191 case MEM_ONLINE:
1192 case MEM_OFFLINE:
1193 case MEM_CANCEL_ONLINE:
1194 case MEM_CANCEL_OFFLINE:
1195 break;
1196 }
1197out:
1198 return notifier_from_errno(ret);
1199}
1200#endif
1201
1202
1203
1204
1205static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1206 int nodeid)
1207{
1208 struct kmem_cache_node *ptr;
1209
1210 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1211 BUG_ON(!ptr);
1212
1213 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1214
1215
1216
1217 spin_lock_init(&ptr->list_lock);
1218
1219 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1220 cachep->node[nodeid] = ptr;
1221}
1222
1223
1224
1225
1226
1227static void __init set_up_node(struct kmem_cache *cachep, int index)
1228{
1229 int node;
1230
1231 for_each_online_node(node) {
1232 cachep->node[node] = &init_kmem_cache_node[index + node];
1233 cachep->node[node]->next_reap = jiffies +
1234 REAPTIMEOUT_NODE +
1235 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1236 }
1237}
1238
1239
1240
1241
1242
1243void __init kmem_cache_init(void)
1244{
1245 int i;
1246
1247 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1248 sizeof(struct rcu_head));
1249 kmem_cache = &kmem_cache_boot;
1250
1251 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1252 use_alien_caches = 0;
1253
1254 for (i = 0; i < NUM_INIT_LISTS; i++)
1255 kmem_cache_node_init(&init_kmem_cache_node[i]);
1256
1257
1258
1259
1260
1261
1262 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1263 slab_max_order = SLAB_MAX_ORDER_HI;
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290 create_boot_cache(kmem_cache, "kmem_cache",
1291 offsetof(struct kmem_cache, node) +
1292 nr_node_ids * sizeof(struct kmem_cache_node *),
1293 SLAB_HWCACHE_ALIGN);
1294 list_add(&kmem_cache->list, &slab_caches);
1295 slab_state = PARTIAL;
1296
1297
1298
1299
1300
1301 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1302 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1303 slab_state = PARTIAL_NODE;
1304 setup_kmalloc_cache_index_table();
1305
1306 slab_early_init = 0;
1307
1308
1309 {
1310 int nid;
1311
1312 for_each_online_node(nid) {
1313 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1314
1315 init_list(kmalloc_caches[INDEX_NODE],
1316 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1317 }
1318 }
1319
1320 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1321}
1322
1323void __init kmem_cache_init_late(void)
1324{
1325 struct kmem_cache *cachep;
1326
1327 slab_state = UP;
1328
1329
1330 mutex_lock(&slab_mutex);
1331 list_for_each_entry(cachep, &slab_caches, list)
1332 if (enable_cpucache(cachep, GFP_NOWAIT))
1333 BUG();
1334 mutex_unlock(&slab_mutex);
1335
1336
1337 slab_state = FULL;
1338
1339
1340
1341
1342
1343 register_cpu_notifier(&cpucache_notifier);
1344
1345#ifdef CONFIG_NUMA
1346
1347
1348
1349
1350 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1351#endif
1352
1353
1354
1355
1356
1357}
1358
1359static int __init cpucache_init(void)
1360{
1361 int cpu;
1362
1363
1364
1365
1366 for_each_online_cpu(cpu)
1367 start_cpu_timer(cpu);
1368
1369
1370 slab_state = FULL;
1371 return 0;
1372}
1373__initcall(cpucache_init);
1374
1375static noinline void
1376slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1377{
1378#if DEBUG
1379 struct kmem_cache_node *n;
1380 struct page *page;
1381 unsigned long flags;
1382 int node;
1383 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1384 DEFAULT_RATELIMIT_BURST);
1385
1386 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1387 return;
1388
1389 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1390 nodeid, gfpflags, &gfpflags);
1391 pr_warn(" cache: %s, object size: %d, order: %d\n",
1392 cachep->name, cachep->size, cachep->gfporder);
1393
1394 for_each_kmem_cache_node(cachep, node, n) {
1395 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1396 unsigned long active_slabs = 0, num_slabs = 0;
1397
1398 spin_lock_irqsave(&n->list_lock, flags);
1399 list_for_each_entry(page, &n->slabs_full, lru) {
1400 active_objs += cachep->num;
1401 active_slabs++;
1402 }
1403 list_for_each_entry(page, &n->slabs_partial, lru) {
1404 active_objs += page->active;
1405 active_slabs++;
1406 }
1407 list_for_each_entry(page, &n->slabs_free, lru)
1408 num_slabs++;
1409
1410 free_objects += n->free_objects;
1411 spin_unlock_irqrestore(&n->list_lock, flags);
1412
1413 num_slabs += active_slabs;
1414 num_objs = num_slabs * cachep->num;
1415 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1416 node, active_slabs, num_slabs, active_objs, num_objs,
1417 free_objects);
1418 }
1419#endif
1420}
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1431 int nodeid)
1432{
1433 struct page *page;
1434 int nr_pages;
1435
1436 flags |= cachep->allocflags;
1437 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1438 flags |= __GFP_RECLAIMABLE;
1439
1440 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1441 if (!page) {
1442 slab_out_of_memory(cachep, flags, nodeid);
1443 return NULL;
1444 }
1445
1446 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1447 __free_pages(page, cachep->gfporder);
1448 return NULL;
1449 }
1450
1451 nr_pages = (1 << cachep->gfporder);
1452 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1453 add_zone_page_state(page_zone(page),
1454 NR_SLAB_RECLAIMABLE, nr_pages);
1455 else
1456 add_zone_page_state(page_zone(page),
1457 NR_SLAB_UNRECLAIMABLE, nr_pages);
1458
1459 __SetPageSlab(page);
1460
1461 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1462 SetPageSlabPfmemalloc(page);
1463
1464 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1465 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1466
1467 if (cachep->ctor)
1468 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1469 else
1470 kmemcheck_mark_unallocated_pages(page, nr_pages);
1471 }
1472
1473 return page;
1474}
1475
1476
1477
1478
1479static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1480{
1481 int order = cachep->gfporder;
1482 unsigned long nr_freed = (1 << order);
1483
1484 kmemcheck_free_shadow(page, order);
1485
1486 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1487 sub_zone_page_state(page_zone(page),
1488 NR_SLAB_RECLAIMABLE, nr_freed);
1489 else
1490 sub_zone_page_state(page_zone(page),
1491 NR_SLAB_UNRECLAIMABLE, nr_freed);
1492
1493 BUG_ON(!PageSlab(page));
1494 __ClearPageSlabPfmemalloc(page);
1495 __ClearPageSlab(page);
1496 page_mapcount_reset(page);
1497 page->mapping = NULL;
1498
1499 if (current->reclaim_state)
1500 current->reclaim_state->reclaimed_slab += nr_freed;
1501 memcg_uncharge_slab(page, order, cachep);
1502 __free_pages(page, order);
1503}
1504
1505static void kmem_rcu_free(struct rcu_head *head)
1506{
1507 struct kmem_cache *cachep;
1508 struct page *page;
1509
1510 page = container_of(head, struct page, rcu_head);
1511 cachep = page->slab_cache;
1512
1513 kmem_freepages(cachep, page);
1514}
1515
1516#if DEBUG
1517static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1518{
1519 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1520 (cachep->size % PAGE_SIZE) == 0)
1521 return true;
1522
1523 return false;
1524}
1525
1526#ifdef CONFIG_DEBUG_PAGEALLOC
1527static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1528 unsigned long caller)
1529{
1530 int size = cachep->object_size;
1531
1532 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1533
1534 if (size < 5 * sizeof(unsigned long))
1535 return;
1536
1537 *addr++ = 0x12345678;
1538 *addr++ = caller;
1539 *addr++ = smp_processor_id();
1540 size -= 3 * sizeof(unsigned long);
1541 {
1542 unsigned long *sptr = &caller;
1543 unsigned long svalue;
1544
1545 while (!kstack_end(sptr)) {
1546 svalue = *sptr++;
1547 if (kernel_text_address(svalue)) {
1548 *addr++ = svalue;
1549 size -= sizeof(unsigned long);
1550 if (size <= sizeof(unsigned long))
1551 break;
1552 }
1553 }
1554
1555 }
1556 *addr++ = 0x87654321;
1557}
1558
1559static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1560 int map, unsigned long caller)
1561{
1562 if (!is_debug_pagealloc_cache(cachep))
1563 return;
1564
1565 if (caller)
1566 store_stackinfo(cachep, objp, caller);
1567
1568 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1569}
1570
1571#else
1572static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1573 int map, unsigned long caller) {}
1574
1575#endif
1576
1577static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1578{
1579 int size = cachep->object_size;
1580 addr = &((char *)addr)[obj_offset(cachep)];
1581
1582 memset(addr, val, size);
1583 *(unsigned char *)(addr + size - 1) = POISON_END;
1584}
1585
1586static void dump_line(char *data, int offset, int limit)
1587{
1588 int i;
1589 unsigned char error = 0;
1590 int bad_count = 0;
1591
1592 pr_err("%03x: ", offset);
1593 for (i = 0; i < limit; i++) {
1594 if (data[offset + i] != POISON_FREE) {
1595 error = data[offset + i];
1596 bad_count++;
1597 }
1598 }
1599 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1600 &data[offset], limit, 1);
1601
1602 if (bad_count == 1) {
1603 error ^= POISON_FREE;
1604 if (!(error & (error - 1))) {
1605 pr_err("Single bit error detected. Probably bad RAM.\n");
1606#ifdef CONFIG_X86
1607 pr_err("Run memtest86+ or a similar memory test tool.\n");
1608#else
1609 pr_err("Run a memory test tool.\n");
1610#endif
1611 }
1612 }
1613}
1614#endif
1615
1616#if DEBUG
1617
1618static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1619{
1620 int i, size;
1621 char *realobj;
1622
1623 if (cachep->flags & SLAB_RED_ZONE) {
1624 pr_err("Redzone: 0x%llx/0x%llx\n",
1625 *dbg_redzone1(cachep, objp),
1626 *dbg_redzone2(cachep, objp));
1627 }
1628
1629 if (cachep->flags & SLAB_STORE_USER) {
1630 pr_err("Last user: [<%p>](%pSR)\n",
1631 *dbg_userword(cachep, objp),
1632 *dbg_userword(cachep, objp));
1633 }
1634 realobj = (char *)objp + obj_offset(cachep);
1635 size = cachep->object_size;
1636 for (i = 0; i < size && lines; i += 16, lines--) {
1637 int limit;
1638 limit = 16;
1639 if (i + limit > size)
1640 limit = size - i;
1641 dump_line(realobj, i, limit);
1642 }
1643}
1644
1645static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1646{
1647 char *realobj;
1648 int size, i;
1649 int lines = 0;
1650
1651 if (is_debug_pagealloc_cache(cachep))
1652 return;
1653
1654 realobj = (char *)objp + obj_offset(cachep);
1655 size = cachep->object_size;
1656
1657 for (i = 0; i < size; i++) {
1658 char exp = POISON_FREE;
1659 if (i == size - 1)
1660 exp = POISON_END;
1661 if (realobj[i] != exp) {
1662 int limit;
1663
1664
1665 if (lines == 0) {
1666 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1667 print_tainted(), cachep->name,
1668 realobj, size);
1669 print_objinfo(cachep, objp, 0);
1670 }
1671
1672 i = (i / 16) * 16;
1673 limit = 16;
1674 if (i + limit > size)
1675 limit = size - i;
1676 dump_line(realobj, i, limit);
1677 i += 16;
1678 lines++;
1679
1680 if (lines > 5)
1681 break;
1682 }
1683 }
1684 if (lines != 0) {
1685
1686
1687
1688 struct page *page = virt_to_head_page(objp);
1689 unsigned int objnr;
1690
1691 objnr = obj_to_index(cachep, page, objp);
1692 if (objnr) {
1693 objp = index_to_obj(cachep, page, objnr - 1);
1694 realobj = (char *)objp + obj_offset(cachep);
1695 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1696 print_objinfo(cachep, objp, 2);
1697 }
1698 if (objnr + 1 < cachep->num) {
1699 objp = index_to_obj(cachep, page, objnr + 1);
1700 realobj = (char *)objp + obj_offset(cachep);
1701 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1702 print_objinfo(cachep, objp, 2);
1703 }
1704 }
1705}
1706#endif
1707
1708#if DEBUG
1709static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1710 struct page *page)
1711{
1712 int i;
1713
1714 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1715 poison_obj(cachep, page->freelist - obj_offset(cachep),
1716 POISON_FREE);
1717 }
1718
1719 for (i = 0; i < cachep->num; i++) {
1720 void *objp = index_to_obj(cachep, page, i);
1721
1722 if (cachep->flags & SLAB_POISON) {
1723 check_poison_obj(cachep, objp);
1724 slab_kernel_map(cachep, objp, 1, 0);
1725 }
1726 if (cachep->flags & SLAB_RED_ZONE) {
1727 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1728 slab_error(cachep, "start of a freed object was overwritten");
1729 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1730 slab_error(cachep, "end of a freed object was overwritten");
1731 }
1732 }
1733}
1734#else
1735static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1736 struct page *page)
1737{
1738}
1739#endif
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1751{
1752 void *freelist;
1753
1754 freelist = page->freelist;
1755 slab_destroy_debugcheck(cachep, page);
1756 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1757 call_rcu(&page->rcu_head, kmem_rcu_free);
1758 else
1759 kmem_freepages(cachep, page);
1760
1761
1762
1763
1764
1765 if (OFF_SLAB(cachep))
1766 kmem_cache_free(cachep->freelist_cache, freelist);
1767}
1768
1769static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1770{
1771 struct page *page, *n;
1772
1773 list_for_each_entry_safe(page, n, list, lru) {
1774 list_del(&page->lru);
1775 slab_destroy(cachep, page);
1776 }
1777}
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791static size_t calculate_slab_order(struct kmem_cache *cachep,
1792 size_t size, unsigned long flags)
1793{
1794 size_t left_over = 0;
1795 int gfporder;
1796
1797 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1798 unsigned int num;
1799 size_t remainder;
1800
1801 num = cache_estimate(gfporder, size, flags, &remainder);
1802 if (!num)
1803 continue;
1804
1805
1806 if (num > SLAB_OBJ_MAX_NUM)
1807 break;
1808
1809 if (flags & CFLGS_OFF_SLAB) {
1810 struct kmem_cache *freelist_cache;
1811 size_t freelist_size;
1812
1813 freelist_size = num * sizeof(freelist_idx_t);
1814 freelist_cache = kmalloc_slab(freelist_size, 0u);
1815 if (!freelist_cache)
1816 continue;
1817
1818
1819
1820
1821
1822 if (OFF_SLAB(freelist_cache))
1823 continue;
1824
1825
1826 if (freelist_cache->size > cachep->size / 2)
1827 continue;
1828 }
1829
1830
1831 cachep->num = num;
1832 cachep->gfporder = gfporder;
1833 left_over = remainder;
1834
1835
1836
1837
1838
1839
1840 if (flags & SLAB_RECLAIM_ACCOUNT)
1841 break;
1842
1843
1844
1845
1846
1847 if (gfporder >= slab_max_order)
1848 break;
1849
1850
1851
1852
1853 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1854 break;
1855 }
1856 return left_over;
1857}
1858
1859static struct array_cache __percpu *alloc_kmem_cache_cpus(
1860 struct kmem_cache *cachep, int entries, int batchcount)
1861{
1862 int cpu;
1863 size_t size;
1864 struct array_cache __percpu *cpu_cache;
1865
1866 size = sizeof(void *) * entries + sizeof(struct array_cache);
1867 cpu_cache = __alloc_percpu(size, sizeof(void *));
1868
1869 if (!cpu_cache)
1870 return NULL;
1871
1872 for_each_possible_cpu(cpu) {
1873 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1874 entries, batchcount);
1875 }
1876
1877 return cpu_cache;
1878}
1879
1880static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1881{
1882 if (slab_state >= FULL)
1883 return enable_cpucache(cachep, gfp);
1884
1885 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1886 if (!cachep->cpu_cache)
1887 return 1;
1888
1889 if (slab_state == DOWN) {
1890
1891 set_up_node(kmem_cache, CACHE_CACHE);
1892 } else if (slab_state == PARTIAL) {
1893
1894 set_up_node(cachep, SIZE_NODE);
1895 } else {
1896 int node;
1897
1898 for_each_online_node(node) {
1899 cachep->node[node] = kmalloc_node(
1900 sizeof(struct kmem_cache_node), gfp, node);
1901 BUG_ON(!cachep->node[node]);
1902 kmem_cache_node_init(cachep->node[node]);
1903 }
1904 }
1905
1906 cachep->node[numa_mem_id()]->next_reap =
1907 jiffies + REAPTIMEOUT_NODE +
1908 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1909
1910 cpu_cache_get(cachep)->avail = 0;
1911 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1912 cpu_cache_get(cachep)->batchcount = 1;
1913 cpu_cache_get(cachep)->touched = 0;
1914 cachep->batchcount = 1;
1915 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1916 return 0;
1917}
1918
1919unsigned long kmem_cache_flags(unsigned long object_size,
1920 unsigned long flags, const char *name,
1921 void (*ctor)(void *))
1922{
1923 return flags;
1924}
1925
1926struct kmem_cache *
1927__kmem_cache_alias(const char *name, size_t size, size_t align,
1928 unsigned long flags, void (*ctor)(void *))
1929{
1930 struct kmem_cache *cachep;
1931
1932 cachep = find_mergeable(size, align, flags, name, ctor);
1933 if (cachep) {
1934 cachep->refcount++;
1935
1936
1937
1938
1939
1940 cachep->object_size = max_t(int, cachep->object_size, size);
1941 }
1942 return cachep;
1943}
1944
1945static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1946 size_t size, unsigned long flags)
1947{
1948 size_t left;
1949
1950 cachep->num = 0;
1951
1952 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1953 return false;
1954
1955 left = calculate_slab_order(cachep, size,
1956 flags | CFLGS_OBJFREELIST_SLAB);
1957 if (!cachep->num)
1958 return false;
1959
1960 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1961 return false;
1962
1963 cachep->colour = left / cachep->colour_off;
1964
1965 return true;
1966}
1967
1968static bool set_off_slab_cache(struct kmem_cache *cachep,
1969 size_t size, unsigned long flags)
1970{
1971 size_t left;
1972
1973 cachep->num = 0;
1974
1975
1976
1977
1978
1979 if (flags & SLAB_NOLEAKTRACE)
1980 return false;
1981
1982
1983
1984
1985
1986 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1987 if (!cachep->num)
1988 return false;
1989
1990
1991
1992
1993
1994 if (left >= cachep->num * sizeof(freelist_idx_t))
1995 return false;
1996
1997 cachep->colour = left / cachep->colour_off;
1998
1999 return true;
2000}
2001
2002static bool set_on_slab_cache(struct kmem_cache *cachep,
2003 size_t size, unsigned long flags)
2004{
2005 size_t left;
2006
2007 cachep->num = 0;
2008
2009 left = calculate_slab_order(cachep, size, flags);
2010 if (!cachep->num)
2011 return false;
2012
2013 cachep->colour = left / cachep->colour_off;
2014
2015 return true;
2016}
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039int
2040__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2041{
2042 size_t ralign = BYTES_PER_WORD;
2043 gfp_t gfp;
2044 int err;
2045 size_t size = cachep->size;
2046
2047#if DEBUG
2048#if FORCED_DEBUG
2049
2050
2051
2052
2053
2054
2055 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2056 2 * sizeof(unsigned long long)))
2057 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2058 if (!(flags & SLAB_DESTROY_BY_RCU))
2059 flags |= SLAB_POISON;
2060#endif
2061#endif
2062
2063
2064
2065
2066
2067
2068 if (size & (BYTES_PER_WORD - 1)) {
2069 size += (BYTES_PER_WORD - 1);
2070 size &= ~(BYTES_PER_WORD - 1);
2071 }
2072
2073 if (flags & SLAB_RED_ZONE) {
2074 ralign = REDZONE_ALIGN;
2075
2076
2077 size += REDZONE_ALIGN - 1;
2078 size &= ~(REDZONE_ALIGN - 1);
2079 }
2080
2081
2082 if (ralign < cachep->align) {
2083 ralign = cachep->align;
2084 }
2085
2086 if (ralign > __alignof__(unsigned long long))
2087 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2088
2089
2090
2091 cachep->align = ralign;
2092 cachep->colour_off = cache_line_size();
2093
2094 if (cachep->colour_off < cachep->align)
2095 cachep->colour_off = cachep->align;
2096
2097 if (slab_is_available())
2098 gfp = GFP_KERNEL;
2099 else
2100 gfp = GFP_NOWAIT;
2101
2102#if DEBUG
2103
2104
2105
2106
2107
2108 if (flags & SLAB_RED_ZONE) {
2109
2110 cachep->obj_offset += sizeof(unsigned long long);
2111 size += 2 * sizeof(unsigned long long);
2112 }
2113 if (flags & SLAB_STORE_USER) {
2114
2115
2116
2117
2118 if (flags & SLAB_RED_ZONE)
2119 size += REDZONE_ALIGN;
2120 else
2121 size += BYTES_PER_WORD;
2122 }
2123#endif
2124
2125 kasan_cache_create(cachep, &size, &flags);
2126
2127 size = ALIGN(size, cachep->align);
2128
2129
2130
2131
2132 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2133 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2134
2135#if DEBUG
2136
2137
2138
2139
2140
2141
2142
2143 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2144 size >= 256 && cachep->object_size > cache_line_size()) {
2145 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2146 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2147
2148 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2149 flags |= CFLGS_OFF_SLAB;
2150 cachep->obj_offset += tmp_size - size;
2151 size = tmp_size;
2152 goto done;
2153 }
2154 }
2155 }
2156#endif
2157
2158 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2159 flags |= CFLGS_OBJFREELIST_SLAB;
2160 goto done;
2161 }
2162
2163 if (set_off_slab_cache(cachep, size, flags)) {
2164 flags |= CFLGS_OFF_SLAB;
2165 goto done;
2166 }
2167
2168 if (set_on_slab_cache(cachep, size, flags))
2169 goto done;
2170
2171 return -E2BIG;
2172
2173done:
2174 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2175 cachep->flags = flags;
2176 cachep->allocflags = __GFP_COMP;
2177 if (flags & SLAB_CACHE_DMA)
2178 cachep->allocflags |= GFP_DMA;
2179 cachep->size = size;
2180 cachep->reciprocal_buffer_size = reciprocal_value(size);
2181
2182#if DEBUG
2183
2184
2185
2186
2187
2188 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2189 (cachep->flags & SLAB_POISON) &&
2190 is_debug_pagealloc_cache(cachep))
2191 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2192#endif
2193
2194 if (OFF_SLAB(cachep)) {
2195 cachep->freelist_cache =
2196 kmalloc_slab(cachep->freelist_size, 0u);
2197 }
2198
2199 err = setup_cpu_cache(cachep, gfp);
2200 if (err) {
2201 __kmem_cache_release(cachep);
2202 return err;
2203 }
2204
2205 return 0;
2206}
2207
2208#if DEBUG
2209static void check_irq_off(void)
2210{
2211 BUG_ON(!irqs_disabled());
2212}
2213
2214static void check_irq_on(void)
2215{
2216 BUG_ON(irqs_disabled());
2217}
2218
2219static void check_mutex_acquired(void)
2220{
2221 BUG_ON(!mutex_is_locked(&slab_mutex));
2222}
2223
2224static void check_spinlock_acquired(struct kmem_cache *cachep)
2225{
2226#ifdef CONFIG_SMP
2227 check_irq_off();
2228 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2229#endif
2230}
2231
2232static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2233{
2234#ifdef CONFIG_SMP
2235 check_irq_off();
2236 assert_spin_locked(&get_node(cachep, node)->list_lock);
2237#endif
2238}
2239
2240#else
2241#define check_irq_off() do { } while(0)
2242#define check_irq_on() do { } while(0)
2243#define check_mutex_acquired() do { } while(0)
2244#define check_spinlock_acquired(x) do { } while(0)
2245#define check_spinlock_acquired_node(x, y) do { } while(0)
2246#endif
2247
2248static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2249 int node, bool free_all, struct list_head *list)
2250{
2251 int tofree;
2252
2253 if (!ac || !ac->avail)
2254 return;
2255
2256 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2257 if (tofree > ac->avail)
2258 tofree = (ac->avail + 1) / 2;
2259
2260 free_block(cachep, ac->entry, tofree, node, list);
2261 ac->avail -= tofree;
2262 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2263}
2264
2265static void do_drain(void *arg)
2266{
2267 struct kmem_cache *cachep = arg;
2268 struct array_cache *ac;
2269 int node = numa_mem_id();
2270 struct kmem_cache_node *n;
2271 LIST_HEAD(list);
2272
2273 check_irq_off();
2274 ac = cpu_cache_get(cachep);
2275 n = get_node(cachep, node);
2276 spin_lock(&n->list_lock);
2277 free_block(cachep, ac->entry, ac->avail, node, &list);
2278 spin_unlock(&n->list_lock);
2279 slabs_destroy(cachep, &list);
2280 ac->avail = 0;
2281}
2282
2283static void drain_cpu_caches(struct kmem_cache *cachep)
2284{
2285 struct kmem_cache_node *n;
2286 int node;
2287 LIST_HEAD(list);
2288
2289 on_each_cpu(do_drain, cachep, 1);
2290 check_irq_on();
2291 for_each_kmem_cache_node(cachep, node, n)
2292 if (n->alien)
2293 drain_alien_cache(cachep, n->alien);
2294
2295 for_each_kmem_cache_node(cachep, node, n) {
2296 spin_lock_irq(&n->list_lock);
2297 drain_array_locked(cachep, n->shared, node, true, &list);
2298 spin_unlock_irq(&n->list_lock);
2299
2300 slabs_destroy(cachep, &list);
2301 }
2302}
2303
2304
2305
2306
2307
2308
2309
2310static int drain_freelist(struct kmem_cache *cache,
2311 struct kmem_cache_node *n, int tofree)
2312{
2313 struct list_head *p;
2314 int nr_freed;
2315 struct page *page;
2316
2317 nr_freed = 0;
2318 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2319
2320 spin_lock_irq(&n->list_lock);
2321 p = n->slabs_free.prev;
2322 if (p == &n->slabs_free) {
2323 spin_unlock_irq(&n->list_lock);
2324 goto out;
2325 }
2326
2327 page = list_entry(p, struct page, lru);
2328 list_del(&page->lru);
2329
2330
2331
2332
2333 n->free_objects -= cache->num;
2334 spin_unlock_irq(&n->list_lock);
2335 slab_destroy(cache, page);
2336 nr_freed++;
2337 }
2338out:
2339 return nr_freed;
2340}
2341
2342int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2343{
2344 int ret = 0;
2345 int node;
2346 struct kmem_cache_node *n;
2347
2348 drain_cpu_caches(cachep);
2349
2350 check_irq_on();
2351 for_each_kmem_cache_node(cachep, node, n) {
2352 drain_freelist(cachep, n, INT_MAX);
2353
2354 ret += !list_empty(&n->slabs_full) ||
2355 !list_empty(&n->slabs_partial);
2356 }
2357 return (ret ? 1 : 0);
2358}
2359
2360int __kmem_cache_shutdown(struct kmem_cache *cachep)
2361{
2362 return __kmem_cache_shrink(cachep, false);
2363}
2364
2365void __kmem_cache_release(struct kmem_cache *cachep)
2366{
2367 int i;
2368 struct kmem_cache_node *n;
2369
2370 cache_random_seq_destroy(cachep);
2371
2372 free_percpu(cachep->cpu_cache);
2373
2374
2375 for_each_kmem_cache_node(cachep, i, n) {
2376 kfree(n->shared);
2377 free_alien_cache(n->alien);
2378 kfree(n);
2379 cachep->node[i] = NULL;
2380 }
2381}
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397static void *alloc_slabmgmt(struct kmem_cache *cachep,
2398 struct page *page, int colour_off,
2399 gfp_t local_flags, int nodeid)
2400{
2401 void *freelist;
2402 void *addr = page_address(page);
2403
2404 page->s_mem = addr + colour_off;
2405 page->active = 0;
2406
2407 if (OBJFREELIST_SLAB(cachep))
2408 freelist = NULL;
2409 else if (OFF_SLAB(cachep)) {
2410
2411 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2412 local_flags, nodeid);
2413 if (!freelist)
2414 return NULL;
2415 } else {
2416
2417 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2418 cachep->freelist_size;
2419 }
2420
2421 return freelist;
2422}
2423
2424static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2425{
2426 return ((freelist_idx_t *)page->freelist)[idx];
2427}
2428
2429static inline void set_free_obj(struct page *page,
2430 unsigned int idx, freelist_idx_t val)
2431{
2432 ((freelist_idx_t *)(page->freelist))[idx] = val;
2433}
2434
2435static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2436{
2437#if DEBUG
2438 int i;
2439
2440 for (i = 0; i < cachep->num; i++) {
2441 void *objp = index_to_obj(cachep, page, i);
2442
2443 if (cachep->flags & SLAB_STORE_USER)
2444 *dbg_userword(cachep, objp) = NULL;
2445
2446 if (cachep->flags & SLAB_RED_ZONE) {
2447 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2448 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2449 }
2450
2451
2452
2453
2454
2455 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2456 kasan_unpoison_object_data(cachep,
2457 objp + obj_offset(cachep));
2458 cachep->ctor(objp + obj_offset(cachep));
2459 kasan_poison_object_data(
2460 cachep, objp + obj_offset(cachep));
2461 }
2462
2463 if (cachep->flags & SLAB_RED_ZONE) {
2464 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2465 slab_error(cachep, "constructor overwrote the end of an object");
2466 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2467 slab_error(cachep, "constructor overwrote the start of an object");
2468 }
2469
2470 if (cachep->flags & SLAB_POISON) {
2471 poison_obj(cachep, objp, POISON_FREE);
2472 slab_kernel_map(cachep, objp, 0, 0);
2473 }
2474 }
2475#endif
2476}
2477
2478#ifdef CONFIG_SLAB_FREELIST_RANDOM
2479
2480union freelist_init_state {
2481 struct {
2482 unsigned int pos;
2483 unsigned int *list;
2484 unsigned int count;
2485 unsigned int rand;
2486 };
2487 struct rnd_state rnd_state;
2488};
2489
2490
2491
2492
2493
2494static bool freelist_state_initialize(union freelist_init_state *state,
2495 struct kmem_cache *cachep,
2496 unsigned int count)
2497{
2498 bool ret;
2499 unsigned int rand;
2500
2501
2502 rand = get_random_int();
2503
2504
2505 if (!cachep->random_seq) {
2506 prandom_seed_state(&state->rnd_state, rand);
2507 ret = false;
2508 } else {
2509 state->list = cachep->random_seq;
2510 state->count = count;
2511 state->pos = 0;
2512 state->rand = rand;
2513 ret = true;
2514 }
2515 return ret;
2516}
2517
2518
2519static freelist_idx_t next_random_slot(union freelist_init_state *state)
2520{
2521 return (state->list[state->pos++] + state->rand) % state->count;
2522}
2523
2524
2525static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2526{
2527 swap(((freelist_idx_t *)page->freelist)[a],
2528 ((freelist_idx_t *)page->freelist)[b]);
2529}
2530
2531
2532
2533
2534
2535static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2536{
2537 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2538 union freelist_init_state state;
2539 bool precomputed;
2540
2541 if (count < 2)
2542 return false;
2543
2544 precomputed = freelist_state_initialize(&state, cachep, count);
2545
2546
2547 if (OBJFREELIST_SLAB(cachep)) {
2548 if (!precomputed)
2549 objfreelist = count - 1;
2550 else
2551 objfreelist = next_random_slot(&state);
2552 page->freelist = index_to_obj(cachep, page, objfreelist) +
2553 obj_offset(cachep);
2554 count--;
2555 }
2556
2557
2558
2559
2560
2561 if (!precomputed) {
2562 for (i = 0; i < count; i++)
2563 set_free_obj(page, i, i);
2564
2565
2566 for (i = count - 1; i > 0; i--) {
2567 rand = prandom_u32_state(&state.rnd_state);
2568 rand %= (i + 1);
2569 swap_free_obj(page, i, rand);
2570 }
2571 } else {
2572 for (i = 0; i < count; i++)
2573 set_free_obj(page, i, next_random_slot(&state));
2574 }
2575
2576 if (OBJFREELIST_SLAB(cachep))
2577 set_free_obj(page, cachep->num - 1, objfreelist);
2578
2579 return true;
2580}
2581#else
2582static inline bool shuffle_freelist(struct kmem_cache *cachep,
2583 struct page *page)
2584{
2585 return false;
2586}
2587#endif
2588
2589static void cache_init_objs(struct kmem_cache *cachep,
2590 struct page *page)
2591{
2592 int i;
2593 void *objp;
2594 bool shuffled;
2595
2596 cache_init_objs_debug(cachep, page);
2597
2598
2599 shuffled = shuffle_freelist(cachep, page);
2600
2601 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2602 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2603 obj_offset(cachep);
2604 }
2605
2606 for (i = 0; i < cachep->num; i++) {
2607 objp = index_to_obj(cachep, page, i);
2608 kasan_init_slab_obj(cachep, objp);
2609
2610
2611 if (DEBUG == 0 && cachep->ctor) {
2612 kasan_unpoison_object_data(cachep, objp);
2613 cachep->ctor(objp);
2614 kasan_poison_object_data(cachep, objp);
2615 }
2616
2617 if (!shuffled)
2618 set_free_obj(page, i, i);
2619 }
2620}
2621
2622static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2623{
2624 void *objp;
2625
2626 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2627 page->active++;
2628
2629#if DEBUG
2630 if (cachep->flags & SLAB_STORE_USER)
2631 set_store_user_dirty(cachep);
2632#endif
2633
2634 return objp;
2635}
2636
2637static void slab_put_obj(struct kmem_cache *cachep,
2638 struct page *page, void *objp)
2639{
2640 unsigned int objnr = obj_to_index(cachep, page, objp);
2641#if DEBUG
2642 unsigned int i;
2643
2644
2645 for (i = page->active; i < cachep->num; i++) {
2646 if (get_free_obj(page, i) == objnr) {
2647 pr_err("slab: double free detected in cache '%s', objp %p\n",
2648 cachep->name, objp);
2649 BUG();
2650 }
2651 }
2652#endif
2653 page->active--;
2654 if (!page->freelist)
2655 page->freelist = objp + obj_offset(cachep);
2656
2657 set_free_obj(page, page->active, objnr);
2658}
2659
2660
2661
2662
2663
2664
2665static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2666 void *freelist)
2667{
2668 page->slab_cache = cache;
2669 page->freelist = freelist;
2670}
2671
2672
2673
2674
2675
2676static struct page *cache_grow_begin(struct kmem_cache *cachep,
2677 gfp_t flags, int nodeid)
2678{
2679 void *freelist;
2680 size_t offset;
2681 gfp_t local_flags;
2682 int page_node;
2683 struct kmem_cache_node *n;
2684 struct page *page;
2685
2686
2687
2688
2689
2690 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2691 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2692 flags &= ~GFP_SLAB_BUG_MASK;
2693 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2694 invalid_mask, &invalid_mask, flags, &flags);
2695 dump_stack();
2696 }
2697 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2698
2699 check_irq_off();
2700 if (gfpflags_allow_blocking(local_flags))
2701 local_irq_enable();
2702
2703
2704
2705
2706
2707 page = kmem_getpages(cachep, local_flags, nodeid);
2708 if (!page)
2709 goto failed;
2710
2711 page_node = page_to_nid(page);
2712 n = get_node(cachep, page_node);
2713
2714
2715 n->colour_next++;
2716 if (n->colour_next >= cachep->colour)
2717 n->colour_next = 0;
2718
2719 offset = n->colour_next;
2720 if (offset >= cachep->colour)
2721 offset = 0;
2722
2723 offset *= cachep->colour_off;
2724
2725
2726 freelist = alloc_slabmgmt(cachep, page, offset,
2727 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2728 if (OFF_SLAB(cachep) && !freelist)
2729 goto opps1;
2730
2731 slab_map_pages(cachep, page, freelist);
2732
2733 kasan_poison_slab(page);
2734 cache_init_objs(cachep, page);
2735
2736 if (gfpflags_allow_blocking(local_flags))
2737 local_irq_disable();
2738
2739 return page;
2740
2741opps1:
2742 kmem_freepages(cachep, page);
2743failed:
2744 if (gfpflags_allow_blocking(local_flags))
2745 local_irq_disable();
2746 return NULL;
2747}
2748
2749static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2750{
2751 struct kmem_cache_node *n;
2752 void *list = NULL;
2753
2754 check_irq_off();
2755
2756 if (!page)
2757 return;
2758
2759 INIT_LIST_HEAD(&page->lru);
2760 n = get_node(cachep, page_to_nid(page));
2761
2762 spin_lock(&n->list_lock);
2763 if (!page->active)
2764 list_add_tail(&page->lru, &(n->slabs_free));
2765 else
2766 fixup_slab_list(cachep, n, page, &list);
2767 STATS_INC_GROWN(cachep);
2768 n->free_objects += cachep->num - page->active;
2769 spin_unlock(&n->list_lock);
2770
2771 fixup_objfreelist_debug(cachep, &list);
2772}
2773
2774#if DEBUG
2775
2776
2777
2778
2779
2780
2781static void kfree_debugcheck(const void *objp)
2782{
2783 if (!virt_addr_valid(objp)) {
2784 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2785 (unsigned long)objp);
2786 BUG();
2787 }
2788}
2789
2790static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2791{
2792 unsigned long long redzone1, redzone2;
2793
2794 redzone1 = *dbg_redzone1(cache, obj);
2795 redzone2 = *dbg_redzone2(cache, obj);
2796
2797
2798
2799
2800 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2801 return;
2802
2803 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2804 slab_error(cache, "double free detected");
2805 else
2806 slab_error(cache, "memory outside object was overwritten");
2807
2808 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2809 obj, redzone1, redzone2);
2810}
2811
2812static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2813 unsigned long caller)
2814{
2815 unsigned int objnr;
2816 struct page *page;
2817
2818 BUG_ON(virt_to_cache(objp) != cachep);
2819
2820 objp -= obj_offset(cachep);
2821 kfree_debugcheck(objp);
2822 page = virt_to_head_page(objp);
2823
2824 if (cachep->flags & SLAB_RED_ZONE) {
2825 verify_redzone_free(cachep, objp);
2826 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2827 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2828 }
2829 if (cachep->flags & SLAB_STORE_USER) {
2830 set_store_user_dirty(cachep);
2831 *dbg_userword(cachep, objp) = (void *)caller;
2832 }
2833
2834 objnr = obj_to_index(cachep, page, objp);
2835
2836 BUG_ON(objnr >= cachep->num);
2837 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2838
2839 if (cachep->flags & SLAB_POISON) {
2840 poison_obj(cachep, objp, POISON_FREE);
2841 slab_kernel_map(cachep, objp, 0, caller);
2842 }
2843 return objp;
2844}
2845
2846#else
2847#define kfree_debugcheck(x) do { } while(0)
2848#define cache_free_debugcheck(x,objp,z) (objp)
2849#endif
2850
2851static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2852 void **list)
2853{
2854#if DEBUG
2855 void *next = *list;
2856 void *objp;
2857
2858 while (next) {
2859 objp = next - obj_offset(cachep);
2860 next = *(void **)next;
2861 poison_obj(cachep, objp, POISON_FREE);
2862 }
2863#endif
2864}
2865
2866static inline void fixup_slab_list(struct kmem_cache *cachep,
2867 struct kmem_cache_node *n, struct page *page,
2868 void **list)
2869{
2870
2871 list_del(&page->lru);
2872 if (page->active == cachep->num) {
2873 list_add(&page->lru, &n->slabs_full);
2874 if (OBJFREELIST_SLAB(cachep)) {
2875#if DEBUG
2876
2877 if (cachep->flags & SLAB_POISON) {
2878 void **objp = page->freelist;
2879
2880 *objp = *list;
2881 *list = objp;
2882 }
2883#endif
2884 page->freelist = NULL;
2885 }
2886 } else
2887 list_add(&page->lru, &n->slabs_partial);
2888}
2889
2890
2891static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2892 struct page *page, bool pfmemalloc)
2893{
2894 if (!page)
2895 return NULL;
2896
2897 if (pfmemalloc)
2898 return page;
2899
2900 if (!PageSlabPfmemalloc(page))
2901 return page;
2902
2903
2904 if (n->free_objects > n->free_limit) {
2905 ClearPageSlabPfmemalloc(page);
2906 return page;
2907 }
2908
2909
2910 list_del(&page->lru);
2911 if (!page->active)
2912 list_add_tail(&page->lru, &n->slabs_free);
2913 else
2914 list_add_tail(&page->lru, &n->slabs_partial);
2915
2916 list_for_each_entry(page, &n->slabs_partial, lru) {
2917 if (!PageSlabPfmemalloc(page))
2918 return page;
2919 }
2920
2921 list_for_each_entry(page, &n->slabs_free, lru) {
2922 if (!PageSlabPfmemalloc(page))
2923 return page;
2924 }
2925
2926 return NULL;
2927}
2928
2929static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2930{
2931 struct page *page;
2932
2933 page = list_first_entry_or_null(&n->slabs_partial,
2934 struct page, lru);
2935 if (!page) {
2936 n->free_touched = 1;
2937 page = list_first_entry_or_null(&n->slabs_free,
2938 struct page, lru);
2939 }
2940
2941 if (sk_memalloc_socks())
2942 return get_valid_first_slab(n, page, pfmemalloc);
2943
2944 return page;
2945}
2946
2947static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2948 struct kmem_cache_node *n, gfp_t flags)
2949{
2950 struct page *page;
2951 void *obj;
2952 void *list = NULL;
2953
2954 if (!gfp_pfmemalloc_allowed(flags))
2955 return NULL;
2956
2957 spin_lock(&n->list_lock);
2958 page = get_first_slab(n, true);
2959 if (!page) {
2960 spin_unlock(&n->list_lock);
2961 return NULL;
2962 }
2963
2964 obj = slab_get_obj(cachep, page);
2965 n->free_objects--;
2966
2967 fixup_slab_list(cachep, n, page, &list);
2968
2969 spin_unlock(&n->list_lock);
2970 fixup_objfreelist_debug(cachep, &list);
2971
2972 return obj;
2973}
2974
2975
2976
2977
2978
2979static __always_inline int alloc_block(struct kmem_cache *cachep,
2980 struct array_cache *ac, struct page *page, int batchcount)
2981{
2982
2983
2984
2985
2986 BUG_ON(page->active >= cachep->num);
2987
2988 while (page->active < cachep->num && batchcount--) {
2989 STATS_INC_ALLOCED(cachep);
2990 STATS_INC_ACTIVE(cachep);
2991 STATS_SET_HIGH(cachep);
2992
2993 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2994 }
2995
2996 return batchcount;
2997}
2998
2999static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3000{
3001 int batchcount;
3002 struct kmem_cache_node *n;
3003 struct array_cache *ac, *shared;
3004 int node;
3005 void *list = NULL;
3006 struct page *page;
3007
3008 check_irq_off();
3009 node = numa_mem_id();
3010
3011 ac = cpu_cache_get(cachep);
3012 batchcount = ac->batchcount;
3013 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3014
3015
3016
3017
3018
3019 batchcount = BATCHREFILL_LIMIT;
3020 }
3021 n = get_node(cachep, node);
3022
3023 BUG_ON(ac->avail > 0 || !n);
3024 shared = READ_ONCE(n->shared);
3025 if (!n->free_objects && (!shared || !shared->avail))
3026 goto direct_grow;
3027
3028 spin_lock(&n->list_lock);
3029 shared = READ_ONCE(n->shared);
3030
3031
3032 if (shared && transfer_objects(ac, shared, batchcount)) {
3033 shared->touched = 1;
3034 goto alloc_done;
3035 }
3036
3037 while (batchcount > 0) {
3038
3039 page = get_first_slab(n, false);
3040 if (!page)
3041 goto must_grow;
3042
3043 check_spinlock_acquired(cachep);
3044
3045 batchcount = alloc_block(cachep, ac, page, batchcount);
3046 fixup_slab_list(cachep, n, page, &list);
3047 }
3048
3049must_grow:
3050 n->free_objects -= ac->avail;
3051alloc_done:
3052 spin_unlock(&n->list_lock);
3053 fixup_objfreelist_debug(cachep, &list);
3054
3055direct_grow:
3056 if (unlikely(!ac->avail)) {
3057
3058 if (sk_memalloc_socks()) {
3059 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3060
3061 if (obj)
3062 return obj;
3063 }
3064
3065 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3066
3067
3068
3069
3070
3071 ac = cpu_cache_get(cachep);
3072 if (!ac->avail && page)
3073 alloc_block(cachep, ac, page, batchcount);
3074 cache_grow_end(cachep, page);
3075
3076 if (!ac->avail)
3077 return NULL;
3078 }
3079 ac->touched = 1;
3080
3081 return ac->entry[--ac->avail];
3082}
3083
3084static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3085 gfp_t flags)
3086{
3087 might_sleep_if(gfpflags_allow_blocking(flags));
3088}
3089
3090#if DEBUG
3091static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3092 gfp_t flags, void *objp, unsigned long caller)
3093{
3094 if (!objp)
3095 return objp;
3096 if (cachep->flags & SLAB_POISON) {
3097 check_poison_obj(cachep, objp);
3098 slab_kernel_map(cachep, objp, 1, 0);
3099 poison_obj(cachep, objp, POISON_INUSE);
3100 }
3101 if (cachep->flags & SLAB_STORE_USER)
3102 *dbg_userword(cachep, objp) = (void *)caller;
3103
3104 if (cachep->flags & SLAB_RED_ZONE) {
3105 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3106 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3107 slab_error(cachep, "double free, or memory outside object was overwritten");
3108 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3109 objp, *dbg_redzone1(cachep, objp),
3110 *dbg_redzone2(cachep, objp));
3111 }
3112 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3113 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3114 }
3115
3116 objp += obj_offset(cachep);
3117 if (cachep->ctor && cachep->flags & SLAB_POISON)
3118 cachep->ctor(objp);
3119 if (ARCH_SLAB_MINALIGN &&
3120 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3121 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3122 objp, (int)ARCH_SLAB_MINALIGN);
3123 }
3124 return objp;
3125}
3126#else
3127#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3128#endif
3129
3130static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3131{
3132 void *objp;
3133 struct array_cache *ac;
3134
3135 check_irq_off();
3136
3137 ac = cpu_cache_get(cachep);
3138 if (likely(ac->avail)) {
3139 ac->touched = 1;
3140 objp = ac->entry[--ac->avail];
3141
3142 STATS_INC_ALLOCHIT(cachep);
3143 goto out;
3144 }
3145
3146 STATS_INC_ALLOCMISS(cachep);
3147 objp = cache_alloc_refill(cachep, flags);
3148
3149
3150
3151
3152 ac = cpu_cache_get(cachep);
3153
3154out:
3155
3156
3157
3158
3159
3160 if (objp)
3161 kmemleak_erase(&ac->entry[ac->avail]);
3162 return objp;
3163}
3164
3165#ifdef CONFIG_NUMA
3166
3167
3168
3169
3170
3171
3172static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3173{
3174 int nid_alloc, nid_here;
3175
3176 if (in_interrupt() || (flags & __GFP_THISNODE))
3177 return NULL;
3178 nid_alloc = nid_here = numa_mem_id();
3179 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3180 nid_alloc = cpuset_slab_spread_node();
3181 else if (current->mempolicy)
3182 nid_alloc = mempolicy_slab_node();
3183 if (nid_alloc != nid_here)
3184 return ____cache_alloc_node(cachep, flags, nid_alloc);
3185 return NULL;
3186}
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3197{
3198 struct zonelist *zonelist;
3199 struct zoneref *z;
3200 struct zone *zone;
3201 enum zone_type high_zoneidx = gfp_zone(flags);
3202 void *obj = NULL;
3203 struct page *page;
3204 int nid;
3205 unsigned int cpuset_mems_cookie;
3206
3207 if (flags & __GFP_THISNODE)
3208 return NULL;
3209
3210retry_cpuset:
3211 cpuset_mems_cookie = read_mems_allowed_begin();
3212 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3213
3214retry:
3215
3216
3217
3218
3219 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3220 nid = zone_to_nid(zone);
3221
3222 if (cpuset_zone_allowed(zone, flags) &&
3223 get_node(cache, nid) &&
3224 get_node(cache, nid)->free_objects) {
3225 obj = ____cache_alloc_node(cache,
3226 gfp_exact_node(flags), nid);
3227 if (obj)
3228 break;
3229 }
3230 }
3231
3232 if (!obj) {
3233
3234
3235
3236
3237
3238
3239 page = cache_grow_begin(cache, flags, numa_mem_id());
3240 cache_grow_end(cache, page);
3241 if (page) {
3242 nid = page_to_nid(page);
3243 obj = ____cache_alloc_node(cache,
3244 gfp_exact_node(flags), nid);
3245
3246
3247
3248
3249
3250 if (!obj)
3251 goto retry;
3252 }
3253 }
3254
3255 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3256 goto retry_cpuset;
3257 return obj;
3258}
3259
3260
3261
3262
3263static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3264 int nodeid)
3265{
3266 struct page *page;
3267 struct kmem_cache_node *n;
3268 void *obj = NULL;
3269 void *list = NULL;
3270
3271 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3272 n = get_node(cachep, nodeid);
3273 BUG_ON(!n);
3274
3275 check_irq_off();
3276 spin_lock(&n->list_lock);
3277 page = get_first_slab(n, false);
3278 if (!page)
3279 goto must_grow;
3280
3281 check_spinlock_acquired_node(cachep, nodeid);
3282
3283 STATS_INC_NODEALLOCS(cachep);
3284 STATS_INC_ACTIVE(cachep);
3285 STATS_SET_HIGH(cachep);
3286
3287 BUG_ON(page->active == cachep->num);
3288
3289 obj = slab_get_obj(cachep, page);
3290 n->free_objects--;
3291
3292 fixup_slab_list(cachep, n, page, &list);
3293
3294 spin_unlock(&n->list_lock);
3295 fixup_objfreelist_debug(cachep, &list);
3296 return obj;
3297
3298must_grow:
3299 spin_unlock(&n->list_lock);
3300 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3301 if (page) {
3302
3303 obj = slab_get_obj(cachep, page);
3304 }
3305 cache_grow_end(cachep, page);
3306
3307 return obj ? obj : fallback_alloc(cachep, flags);
3308}
3309
3310static __always_inline void *
3311slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3312 unsigned long caller)
3313{
3314 unsigned long save_flags;
3315 void *ptr;
3316 int slab_node = numa_mem_id();
3317
3318 flags &= gfp_allowed_mask;
3319 cachep = slab_pre_alloc_hook(cachep, flags);
3320 if (unlikely(!cachep))
3321 return NULL;
3322
3323 cache_alloc_debugcheck_before(cachep, flags);
3324 local_irq_save(save_flags);
3325
3326 if (nodeid == NUMA_NO_NODE)
3327 nodeid = slab_node;
3328
3329 if (unlikely(!get_node(cachep, nodeid))) {
3330
3331 ptr = fallback_alloc(cachep, flags);
3332 goto out;
3333 }
3334
3335 if (nodeid == slab_node) {
3336
3337
3338
3339
3340
3341
3342 ptr = ____cache_alloc(cachep, flags);
3343 if (ptr)
3344 goto out;
3345 }
3346
3347 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3348 out:
3349 local_irq_restore(save_flags);
3350 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3351
3352 if (unlikely(flags & __GFP_ZERO) && ptr)
3353 memset(ptr, 0, cachep->object_size);
3354
3355 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3356 return ptr;
3357}
3358
3359static __always_inline void *
3360__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3361{
3362 void *objp;
3363
3364 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3365 objp = alternate_node_alloc(cache, flags);
3366 if (objp)
3367 goto out;
3368 }
3369 objp = ____cache_alloc(cache, flags);
3370
3371
3372
3373
3374
3375 if (!objp)
3376 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3377
3378 out:
3379 return objp;
3380}
3381#else
3382
3383static __always_inline void *
3384__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3385{
3386 return ____cache_alloc(cachep, flags);
3387}
3388
3389#endif
3390
3391static __always_inline void *
3392slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3393{
3394 unsigned long save_flags;
3395 void *objp;
3396
3397 flags &= gfp_allowed_mask;
3398 cachep = slab_pre_alloc_hook(cachep, flags);
3399 if (unlikely(!cachep))
3400 return NULL;
3401
3402 cache_alloc_debugcheck_before(cachep, flags);
3403 local_irq_save(save_flags);
3404 objp = __do_cache_alloc(cachep, flags);
3405 local_irq_restore(save_flags);
3406 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3407 prefetchw(objp);
3408
3409 if (unlikely(flags & __GFP_ZERO) && objp)
3410 memset(objp, 0, cachep->object_size);
3411
3412 slab_post_alloc_hook(cachep, flags, 1, &objp);
3413 return objp;
3414}
3415
3416
3417
3418
3419
3420static void free_block(struct kmem_cache *cachep, void **objpp,
3421 int nr_objects, int node, struct list_head *list)
3422{
3423 int i;
3424 struct kmem_cache_node *n = get_node(cachep, node);
3425 struct page *page;
3426
3427 n->free_objects += nr_objects;
3428
3429 for (i = 0; i < nr_objects; i++) {
3430 void *objp;
3431 struct page *page;
3432
3433 objp = objpp[i];
3434
3435 page = virt_to_head_page(objp);
3436 list_del(&page->lru);
3437 check_spinlock_acquired_node(cachep, node);
3438 slab_put_obj(cachep, page, objp);
3439 STATS_DEC_ACTIVE(cachep);
3440
3441
3442 if (page->active == 0)
3443 list_add(&page->lru, &n->slabs_free);
3444 else {
3445
3446
3447
3448
3449 list_add_tail(&page->lru, &n->slabs_partial);
3450 }
3451 }
3452
3453 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3454 n->free_objects -= cachep->num;
3455
3456 page = list_last_entry(&n->slabs_free, struct page, lru);
3457 list_move(&page->lru, list);
3458 }
3459}
3460
3461static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3462{
3463 int batchcount;
3464 struct kmem_cache_node *n;
3465 int node = numa_mem_id();
3466 LIST_HEAD(list);
3467
3468 batchcount = ac->batchcount;
3469
3470 check_irq_off();
3471 n = get_node(cachep, node);
3472 spin_lock(&n->list_lock);
3473 if (n->shared) {
3474 struct array_cache *shared_array = n->shared;
3475 int max = shared_array->limit - shared_array->avail;
3476 if (max) {
3477 if (batchcount > max)
3478 batchcount = max;
3479 memcpy(&(shared_array->entry[shared_array->avail]),
3480 ac->entry, sizeof(void *) * batchcount);
3481 shared_array->avail += batchcount;
3482 goto free_done;
3483 }
3484 }
3485
3486 free_block(cachep, ac->entry, batchcount, node, &list);
3487free_done:
3488#if STATS
3489 {
3490 int i = 0;
3491 struct page *page;
3492
3493 list_for_each_entry(page, &n->slabs_free, lru) {
3494 BUG_ON(page->active);
3495
3496 i++;
3497 }
3498 STATS_SET_FREEABLE(cachep, i);
3499 }
3500#endif
3501 spin_unlock(&n->list_lock);
3502 slabs_destroy(cachep, &list);
3503 ac->avail -= batchcount;
3504 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3505}
3506
3507
3508
3509
3510
3511static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3512 unsigned long caller)
3513{
3514
3515 if (kasan_slab_free(cachep, objp))
3516 return;
3517
3518 ___cache_free(cachep, objp, caller);
3519}
3520
3521void ___cache_free(struct kmem_cache *cachep, void *objp,
3522 unsigned long caller)
3523{
3524 struct array_cache *ac = cpu_cache_get(cachep);
3525
3526 check_irq_off();
3527 kmemleak_free_recursive(objp, cachep->flags);
3528 objp = cache_free_debugcheck(cachep, objp, caller);
3529
3530 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3531
3532
3533
3534
3535
3536
3537
3538
3539 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3540 return;
3541
3542 if (ac->avail < ac->limit) {
3543 STATS_INC_FREEHIT(cachep);
3544 } else {
3545 STATS_INC_FREEMISS(cachep);
3546 cache_flusharray(cachep, ac);
3547 }
3548
3549 if (sk_memalloc_socks()) {
3550 struct page *page = virt_to_head_page(objp);
3551
3552 if (unlikely(PageSlabPfmemalloc(page))) {
3553 cache_free_pfmemalloc(cachep, page, objp);
3554 return;
3555 }
3556 }
3557
3558 ac->entry[ac->avail++] = objp;
3559}
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3570{
3571 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3572
3573 kasan_slab_alloc(cachep, ret, flags);
3574 trace_kmem_cache_alloc(_RET_IP_, ret,
3575 cachep->object_size, cachep->size, flags);
3576
3577 return ret;
3578}
3579EXPORT_SYMBOL(kmem_cache_alloc);
3580
3581static __always_inline void
3582cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3583 size_t size, void **p, unsigned long caller)
3584{
3585 size_t i;
3586
3587 for (i = 0; i < size; i++)
3588 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3589}
3590
3591int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3592 void **p)
3593{
3594 size_t i;
3595
3596 s = slab_pre_alloc_hook(s, flags);
3597 if (!s)
3598 return 0;
3599
3600 cache_alloc_debugcheck_before(s, flags);
3601
3602 local_irq_disable();
3603 for (i = 0; i < size; i++) {
3604 void *objp = __do_cache_alloc(s, flags);
3605
3606 if (unlikely(!objp))
3607 goto error;
3608 p[i] = objp;
3609 }
3610 local_irq_enable();
3611
3612 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3613
3614
3615 if (unlikely(flags & __GFP_ZERO))
3616 for (i = 0; i < size; i++)
3617 memset(p[i], 0, s->object_size);
3618
3619 slab_post_alloc_hook(s, flags, size, p);
3620
3621 return size;
3622error:
3623 local_irq_enable();
3624 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3625 slab_post_alloc_hook(s, flags, i, p);
3626 __kmem_cache_free_bulk(s, i, p);
3627 return 0;
3628}
3629EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3630
3631#ifdef CONFIG_TRACING
3632void *
3633kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3634{
3635 void *ret;
3636
3637 ret = slab_alloc(cachep, flags, _RET_IP_);
3638
3639 kasan_kmalloc(cachep, ret, size, flags);
3640 trace_kmalloc(_RET_IP_, ret,
3641 size, cachep->size, flags);
3642 return ret;
3643}
3644EXPORT_SYMBOL(kmem_cache_alloc_trace);
3645#endif
3646
3647#ifdef CONFIG_NUMA
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3660{
3661 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3662
3663 kasan_slab_alloc(cachep, ret, flags);
3664 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3665 cachep->object_size, cachep->size,
3666 flags, nodeid);
3667
3668 return ret;
3669}
3670EXPORT_SYMBOL(kmem_cache_alloc_node);
3671
3672#ifdef CONFIG_TRACING
3673void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3674 gfp_t flags,
3675 int nodeid,
3676 size_t size)
3677{
3678 void *ret;
3679
3680 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3681
3682 kasan_kmalloc(cachep, ret, size, flags);
3683 trace_kmalloc_node(_RET_IP_, ret,
3684 size, cachep->size,
3685 flags, nodeid);
3686 return ret;
3687}
3688EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3689#endif
3690
3691static __always_inline void *
3692__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3693{
3694 struct kmem_cache *cachep;
3695 void *ret;
3696
3697 cachep = kmalloc_slab(size, flags);
3698 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3699 return cachep;
3700 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3701 kasan_kmalloc(cachep, ret, size, flags);
3702
3703 return ret;
3704}
3705
3706void *__kmalloc_node(size_t size, gfp_t flags, int node)
3707{
3708 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3709}
3710EXPORT_SYMBOL(__kmalloc_node);
3711
3712void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3713 int node, unsigned long caller)
3714{
3715 return __do_kmalloc_node(size, flags, node, caller);
3716}
3717EXPORT_SYMBOL(__kmalloc_node_track_caller);
3718#endif
3719
3720
3721
3722
3723
3724
3725
3726static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3727 unsigned long caller)
3728{
3729 struct kmem_cache *cachep;
3730 void *ret;
3731
3732 cachep = kmalloc_slab(size, flags);
3733 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3734 return cachep;
3735 ret = slab_alloc(cachep, flags, caller);
3736
3737 kasan_kmalloc(cachep, ret, size, flags);
3738 trace_kmalloc(caller, ret,
3739 size, cachep->size, flags);
3740
3741 return ret;
3742}
3743
3744void *__kmalloc(size_t size, gfp_t flags)
3745{
3746 return __do_kmalloc(size, flags, _RET_IP_);
3747}
3748EXPORT_SYMBOL(__kmalloc);
3749
3750void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3751{
3752 return __do_kmalloc(size, flags, caller);
3753}
3754EXPORT_SYMBOL(__kmalloc_track_caller);
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3765{
3766 unsigned long flags;
3767 cachep = cache_from_obj(cachep, objp);
3768 if (!cachep)
3769 return;
3770
3771 local_irq_save(flags);
3772 debug_check_no_locks_freed(objp, cachep->object_size);
3773 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3774 debug_check_no_obj_freed(objp, cachep->object_size);
3775 __cache_free(cachep, objp, _RET_IP_);
3776 local_irq_restore(flags);
3777
3778 trace_kmem_cache_free(_RET_IP_, objp);
3779}
3780EXPORT_SYMBOL(kmem_cache_free);
3781
3782void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3783{
3784 struct kmem_cache *s;
3785 size_t i;
3786
3787 local_irq_disable();
3788 for (i = 0; i < size; i++) {
3789 void *objp = p[i];
3790
3791 if (!orig_s)
3792 s = virt_to_cache(objp);
3793 else
3794 s = cache_from_obj(orig_s, objp);
3795
3796 debug_check_no_locks_freed(objp, s->object_size);
3797 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3798 debug_check_no_obj_freed(objp, s->object_size);
3799
3800 __cache_free(s, objp, _RET_IP_);
3801 }
3802 local_irq_enable();
3803
3804
3805}
3806EXPORT_SYMBOL(kmem_cache_free_bulk);
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817void kfree(const void *objp)
3818{
3819 struct kmem_cache *c;
3820 unsigned long flags;
3821
3822 trace_kfree(_RET_IP_, objp);
3823
3824 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3825 return;
3826 local_irq_save(flags);
3827 kfree_debugcheck(objp);
3828 c = virt_to_cache(objp);
3829 debug_check_no_locks_freed(objp, c->object_size);
3830
3831 debug_check_no_obj_freed(objp, c->object_size);
3832 __cache_free(c, (void *)objp, _RET_IP_);
3833 local_irq_restore(flags);
3834}
3835EXPORT_SYMBOL(kfree);
3836
3837
3838
3839
3840static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3841{
3842 int ret;
3843 int node;
3844 struct kmem_cache_node *n;
3845
3846 for_each_online_node(node) {
3847 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3848 if (ret)
3849 goto fail;
3850
3851 }
3852
3853 return 0;
3854
3855fail:
3856 if (!cachep->list.next) {
3857
3858 node--;
3859 while (node >= 0) {
3860 n = get_node(cachep, node);
3861 if (n) {
3862 kfree(n->shared);
3863 free_alien_cache(n->alien);
3864 kfree(n);
3865 cachep->node[node] = NULL;
3866 }
3867 node--;
3868 }
3869 }
3870 return -ENOMEM;
3871}
3872
3873
3874static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3875 int batchcount, int shared, gfp_t gfp)
3876{
3877 struct array_cache __percpu *cpu_cache, *prev;
3878 int cpu;
3879
3880 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3881 if (!cpu_cache)
3882 return -ENOMEM;
3883
3884 prev = cachep->cpu_cache;
3885 cachep->cpu_cache = cpu_cache;
3886 kick_all_cpus_sync();
3887
3888 check_irq_on();
3889 cachep->batchcount = batchcount;
3890 cachep->limit = limit;
3891 cachep->shared = shared;
3892
3893 if (!prev)
3894 goto setup_node;
3895
3896 for_each_online_cpu(cpu) {
3897 LIST_HEAD(list);
3898 int node;
3899 struct kmem_cache_node *n;
3900 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3901
3902 node = cpu_to_mem(cpu);
3903 n = get_node(cachep, node);
3904 spin_lock_irq(&n->list_lock);
3905 free_block(cachep, ac->entry, ac->avail, node, &list);
3906 spin_unlock_irq(&n->list_lock);
3907 slabs_destroy(cachep, &list);
3908 }
3909 free_percpu(prev);
3910
3911setup_node:
3912 return setup_kmem_cache_nodes(cachep, gfp);
3913}
3914
3915static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3916 int batchcount, int shared, gfp_t gfp)
3917{
3918 int ret;
3919 struct kmem_cache *c;
3920
3921 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3922
3923 if (slab_state < FULL)
3924 return ret;
3925
3926 if ((ret < 0) || !is_root_cache(cachep))
3927 return ret;
3928
3929 lockdep_assert_held(&slab_mutex);
3930 for_each_memcg_cache(c, cachep) {
3931
3932 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3933 }
3934
3935 return ret;
3936}
3937
3938
3939static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3940{
3941 int err;
3942 int limit = 0;
3943 int shared = 0;
3944 int batchcount = 0;
3945
3946 err = cache_random_seq_create(cachep, cachep->num, gfp);
3947 if (err)
3948 goto end;
3949
3950 if (!is_root_cache(cachep)) {
3951 struct kmem_cache *root = memcg_root_cache(cachep);
3952 limit = root->limit;
3953 shared = root->shared;
3954 batchcount = root->batchcount;
3955 }
3956
3957 if (limit && shared && batchcount)
3958 goto skip_setup;
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968 if (cachep->size > 131072)
3969 limit = 1;
3970 else if (cachep->size > PAGE_SIZE)
3971 limit = 8;
3972 else if (cachep->size > 1024)
3973 limit = 24;
3974 else if (cachep->size > 256)
3975 limit = 54;
3976 else
3977 limit = 120;
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988 shared = 0;
3989 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3990 shared = 8;
3991
3992#if DEBUG
3993
3994
3995
3996
3997 if (limit > 32)
3998 limit = 32;
3999#endif
4000 batchcount = (limit + 1) / 2;
4001skip_setup:
4002 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4003end:
4004 if (err)
4005 pr_err("enable_cpucache failed for %s, error %d\n",
4006 cachep->name, -err);
4007 return err;
4008}
4009
4010
4011
4012
4013
4014
4015static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4016 struct array_cache *ac, int node)
4017{
4018 LIST_HEAD(list);
4019
4020
4021 check_mutex_acquired();
4022
4023 if (!ac || !ac->avail)
4024 return;
4025
4026 if (ac->touched) {
4027 ac->touched = 0;
4028 return;
4029 }
4030
4031 spin_lock_irq(&n->list_lock);
4032 drain_array_locked(cachep, ac, node, false, &list);
4033 spin_unlock_irq(&n->list_lock);
4034
4035 slabs_destroy(cachep, &list);
4036}
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050static void cache_reap(struct work_struct *w)
4051{
4052 struct kmem_cache *searchp;
4053 struct kmem_cache_node *n;
4054 int node = numa_mem_id();
4055 struct delayed_work *work = to_delayed_work(w);
4056
4057 if (!mutex_trylock(&slab_mutex))
4058
4059 goto out;
4060
4061 list_for_each_entry(searchp, &slab_caches, list) {
4062 check_irq_on();
4063
4064
4065
4066
4067
4068
4069 n = get_node(searchp, node);
4070
4071 reap_alien(searchp, n);
4072
4073 drain_array(searchp, n, cpu_cache_get(searchp), node);
4074
4075
4076
4077
4078
4079 if (time_after(n->next_reap, jiffies))
4080 goto next;
4081
4082 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4083
4084 drain_array(searchp, n, n->shared, node);
4085
4086 if (n->free_touched)
4087 n->free_touched = 0;
4088 else {
4089 int freed;
4090
4091 freed = drain_freelist(searchp, n, (n->free_limit +
4092 5 * searchp->num - 1) / (5 * searchp->num));
4093 STATS_ADD_REAPED(searchp, freed);
4094 }
4095next:
4096 cond_resched();
4097 }
4098 check_irq_on();
4099 mutex_unlock(&slab_mutex);
4100 next_reap_node();
4101out:
4102
4103 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4104}
4105
4106#ifdef CONFIG_SLABINFO
4107void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4108{
4109 struct page *page;
4110 unsigned long active_objs;
4111 unsigned long num_objs;
4112 unsigned long active_slabs = 0;
4113 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4114 const char *name;
4115 char *error = NULL;
4116 int node;
4117 struct kmem_cache_node *n;
4118
4119 active_objs = 0;
4120 num_slabs = 0;
4121 for_each_kmem_cache_node(cachep, node, n) {
4122
4123 check_irq_on();
4124 spin_lock_irq(&n->list_lock);
4125
4126 list_for_each_entry(page, &n->slabs_full, lru) {
4127 if (page->active != cachep->num && !error)
4128 error = "slabs_full accounting error";
4129 active_objs += cachep->num;
4130 active_slabs++;
4131 }
4132 list_for_each_entry(page, &n->slabs_partial, lru) {
4133 if (page->active == cachep->num && !error)
4134 error = "slabs_partial accounting error";
4135 if (!page->active && !error)
4136 error = "slabs_partial accounting error";
4137 active_objs += page->active;
4138 active_slabs++;
4139 }
4140 list_for_each_entry(page, &n->slabs_free, lru) {
4141 if (page->active && !error)
4142 error = "slabs_free accounting error";
4143 num_slabs++;
4144 }
4145 free_objects += n->free_objects;
4146 if (n->shared)
4147 shared_avail += n->shared->avail;
4148
4149 spin_unlock_irq(&n->list_lock);
4150 }
4151 num_slabs += active_slabs;
4152 num_objs = num_slabs * cachep->num;
4153 if (num_objs - active_objs != free_objects && !error)
4154 error = "free_objects accounting error";
4155
4156 name = cachep->name;
4157 if (error)
4158 pr_err("slab: cache %s error: %s\n", name, error);
4159
4160 sinfo->active_objs = active_objs;
4161 sinfo->num_objs = num_objs;
4162 sinfo->active_slabs = active_slabs;
4163 sinfo->num_slabs = num_slabs;
4164 sinfo->shared_avail = shared_avail;
4165 sinfo->limit = cachep->limit;
4166 sinfo->batchcount = cachep->batchcount;
4167 sinfo->shared = cachep->shared;
4168 sinfo->objects_per_slab = cachep->num;
4169 sinfo->cache_order = cachep->gfporder;
4170}
4171
4172void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4173{
4174#if STATS
4175 {
4176 unsigned long high = cachep->high_mark;
4177 unsigned long allocs = cachep->num_allocations;
4178 unsigned long grown = cachep->grown;
4179 unsigned long reaped = cachep->reaped;
4180 unsigned long errors = cachep->errors;
4181 unsigned long max_freeable = cachep->max_freeable;
4182 unsigned long node_allocs = cachep->node_allocs;
4183 unsigned long node_frees = cachep->node_frees;
4184 unsigned long overflows = cachep->node_overflow;
4185
4186 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4187 allocs, high, grown,
4188 reaped, errors, max_freeable, node_allocs,
4189 node_frees, overflows);
4190 }
4191
4192 {
4193 unsigned long allochit = atomic_read(&cachep->allochit);
4194 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4195 unsigned long freehit = atomic_read(&cachep->freehit);
4196 unsigned long freemiss = atomic_read(&cachep->freemiss);
4197
4198 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4199 allochit, allocmiss, freehit, freemiss);
4200 }
4201#endif
4202}
4203
4204#define MAX_SLABINFO_WRITE 128
4205
4206
4207
4208
4209
4210
4211
4212ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4213 size_t count, loff_t *ppos)
4214{
4215 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4216 int limit, batchcount, shared, res;
4217 struct kmem_cache *cachep;
4218
4219 if (count > MAX_SLABINFO_WRITE)
4220 return -EINVAL;
4221 if (copy_from_user(&kbuf, buffer, count))
4222 return -EFAULT;
4223 kbuf[MAX_SLABINFO_WRITE] = '\0';
4224
4225 tmp = strchr(kbuf, ' ');
4226 if (!tmp)
4227 return -EINVAL;
4228 *tmp = '\0';
4229 tmp++;
4230 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4231 return -EINVAL;
4232
4233
4234 mutex_lock(&slab_mutex);
4235 res = -EINVAL;
4236 list_for_each_entry(cachep, &slab_caches, list) {
4237 if (!strcmp(cachep->name, kbuf)) {
4238 if (limit < 1 || batchcount < 1 ||
4239 batchcount > limit || shared < 0) {
4240 res = 0;
4241 } else {
4242 res = do_tune_cpucache(cachep, limit,
4243 batchcount, shared,
4244 GFP_KERNEL);
4245 }
4246 break;
4247 }
4248 }
4249 mutex_unlock(&slab_mutex);
4250 if (res >= 0)
4251 res = count;
4252 return res;
4253}
4254
4255#ifdef CONFIG_DEBUG_SLAB_LEAK
4256
4257static inline int add_caller(unsigned long *n, unsigned long v)
4258{
4259 unsigned long *p;
4260 int l;
4261 if (!v)
4262 return 1;
4263 l = n[1];
4264 p = n + 2;
4265 while (l) {
4266 int i = l/2;
4267 unsigned long *q = p + 2 * i;
4268 if (*q == v) {
4269 q[1]++;
4270 return 1;
4271 }
4272 if (*q > v) {
4273 l = i;
4274 } else {
4275 p = q + 2;
4276 l -= i + 1;
4277 }
4278 }
4279 if (++n[1] == n[0])
4280 return 0;
4281 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4282 p[0] = v;
4283 p[1] = 1;
4284 return 1;
4285}
4286
4287static void handle_slab(unsigned long *n, struct kmem_cache *c,
4288 struct page *page)
4289{
4290 void *p;
4291 int i, j;
4292 unsigned long v;
4293
4294 if (n[0] == n[1])
4295 return;
4296 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4297 bool active = true;
4298
4299 for (j = page->active; j < c->num; j++) {
4300 if (get_free_obj(page, j) == i) {
4301 active = false;
4302 break;
4303 }
4304 }
4305
4306 if (!active)
4307 continue;
4308
4309
4310
4311
4312
4313
4314
4315 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4316 continue;
4317
4318 if (!add_caller(n, v))
4319 return;
4320 }
4321}
4322
4323static void show_symbol(struct seq_file *m, unsigned long address)
4324{
4325#ifdef CONFIG_KALLSYMS
4326 unsigned long offset, size;
4327 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4328
4329 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4330 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4331 if (modname[0])
4332 seq_printf(m, " [%s]", modname);
4333 return;
4334 }
4335#endif
4336 seq_printf(m, "%p", (void *)address);
4337}
4338
4339static int leaks_show(struct seq_file *m, void *p)
4340{
4341 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4342 struct page *page;
4343 struct kmem_cache_node *n;
4344 const char *name;
4345 unsigned long *x = m->private;
4346 int node;
4347 int i;
4348
4349 if (!(cachep->flags & SLAB_STORE_USER))
4350 return 0;
4351 if (!(cachep->flags & SLAB_RED_ZONE))
4352 return 0;
4353
4354
4355
4356
4357
4358
4359
4360 do {
4361 set_store_user_clean(cachep);
4362 drain_cpu_caches(cachep);
4363
4364 x[1] = 0;
4365
4366 for_each_kmem_cache_node(cachep, node, n) {
4367
4368 check_irq_on();
4369 spin_lock_irq(&n->list_lock);
4370
4371 list_for_each_entry(page, &n->slabs_full, lru)
4372 handle_slab(x, cachep, page);
4373 list_for_each_entry(page, &n->slabs_partial, lru)
4374 handle_slab(x, cachep, page);
4375 spin_unlock_irq(&n->list_lock);
4376 }
4377 } while (!is_store_user_clean(cachep));
4378
4379 name = cachep->name;
4380 if (x[0] == x[1]) {
4381
4382 mutex_unlock(&slab_mutex);
4383 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4384 if (!m->private) {
4385
4386 m->private = x;
4387 mutex_lock(&slab_mutex);
4388 return -ENOMEM;
4389 }
4390 *(unsigned long *)m->private = x[0] * 2;
4391 kfree(x);
4392 mutex_lock(&slab_mutex);
4393
4394 m->count = m->size;
4395 return 0;
4396 }
4397 for (i = 0; i < x[1]; i++) {
4398 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4399 show_symbol(m, x[2*i+2]);
4400 seq_putc(m, '\n');
4401 }
4402
4403 return 0;
4404}
4405
4406static const struct seq_operations slabstats_op = {
4407 .start = slab_start,
4408 .next = slab_next,
4409 .stop = slab_stop,
4410 .show = leaks_show,
4411};
4412
4413static int slabstats_open(struct inode *inode, struct file *file)
4414{
4415 unsigned long *n;
4416
4417 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4418 if (!n)
4419 return -ENOMEM;
4420
4421 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4422
4423 return 0;
4424}
4425
4426static const struct file_operations proc_slabstats_operations = {
4427 .open = slabstats_open,
4428 .read = seq_read,
4429 .llseek = seq_lseek,
4430 .release = seq_release_private,
4431};
4432#endif
4433
4434static int __init slab_proc_init(void)
4435{
4436#ifdef CONFIG_DEBUG_SLAB_LEAK
4437 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4438#endif
4439 return 0;
4440}
4441module_init(slab_proc_init);
4442#endif
4443
4444#ifdef CONFIG_HARDENED_USERCOPY
4445
4446
4447
4448
4449
4450
4451const char *__check_heap_object(const void *ptr, unsigned long n,
4452 struct page *page)
4453{
4454 struct kmem_cache *cachep;
4455 unsigned int objnr;
4456 unsigned long offset;
4457
4458
4459 cachep = page->slab_cache;
4460 objnr = obj_to_index(cachep, page, (void *)ptr);
4461 BUG_ON(objnr >= cachep->num);
4462
4463
4464 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4465
4466
4467 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4468 return NULL;
4469
4470 return cachep->name;
4471}
4472#endif
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486size_t ksize(const void *objp)
4487{
4488 size_t size;
4489
4490 BUG_ON(!objp);
4491 if (unlikely(objp == ZERO_SIZE_PTR))
4492 return 0;
4493
4494 size = virt_to_cache(objp)->object_size;
4495
4496
4497
4498 kasan_unpoison_shadow(objp, size);
4499
4500 return size;
4501}
4502EXPORT_SYMBOL(ksize);
4503