linux/mm/slab.c
<<
>>
Prefs
   1/*
   2 * linux/mm/slab.c
   3 * Written by Mark Hemment, 1996/97.
   4 * (markhe@nextd.demon.co.uk)
   5 *
   6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   7 *
   8 * Major cleanup, different bufctl logic, per-cpu arrays
   9 *      (c) 2000 Manfred Spraul
  10 *
  11 * Cleanup, make the head arrays unconditional, preparation for NUMA
  12 *      (c) 2002 Manfred Spraul
  13 *
  14 * An implementation of the Slab Allocator as described in outline in;
  15 *      UNIX Internals: The New Frontiers by Uresh Vahalia
  16 *      Pub: Prentice Hall      ISBN 0-13-101908-2
  17 * or with a little more detail in;
  18 *      The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19 *      Jeff Bonwick (Sun Microsystems).
  20 *      Presented at: USENIX Summer 1994 Technical Conference
  21 *
  22 * The memory is organized in caches, one cache for each object type.
  23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24 * Each cache consists out of many slabs (they are small (usually one
  25 * page long) and always contiguous), and each slab contains multiple
  26 * initialized objects.
  27 *
  28 * This means, that your constructor is used only for newly allocated
  29 * slabs and you must pass objects with the same initializations to
  30 * kmem_cache_free.
  31 *
  32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33 * normal). If you need a special memory type, then must create a new
  34 * cache for that memory type.
  35 *
  36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37 *   full slabs with 0 free objects
  38 *   partial slabs
  39 *   empty slabs with no allocated objects
  40 *
  41 * If partial slabs exist, then new allocations come from these slabs,
  42 * otherwise from empty slabs or new slabs are allocated.
  43 *
  44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46 *
  47 * Each cache has a short per-cpu head array, most allocs
  48 * and frees go into that array, and if that array overflows, then 1/2
  49 * of the entries in the array are given back into the global cache.
  50 * The head array is strictly LIFO and should improve the cache hit rates.
  51 * On SMP, it additionally reduces the spinlock operations.
  52 *
  53 * The c_cpuarray may not be read with enabled local interrupts -
  54 * it's changed with a smp_call_function().
  55 *
  56 * SMP synchronization:
  57 *  constructors and destructors are called without any locking.
  58 *  Several members in struct kmem_cache and struct slab never change, they
  59 *      are accessed without any locking.
  60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61 *      and local interrupts are disabled so slab code is preempt-safe.
  62 *  The non-constant members are protected with a per-cache irq spinlock.
  63 *
  64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65 * in 2000 - many ideas in the current implementation are derived from
  66 * his patch.
  67 *
  68 * Further notes from the original documentation:
  69 *
  70 * 11 April '97.  Started multi-threading - markhe
  71 *      The global cache-chain is protected by the mutex 'slab_mutex'.
  72 *      The sem is only needed when accessing/extending the cache-chain, which
  73 *      can never happen inside an interrupt (kmem_cache_create(),
  74 *      kmem_cache_shrink() and kmem_cache_reap()).
  75 *
  76 *      At present, each engine can be growing a cache.  This should be blocked.
  77 *
  78 * 15 March 2005. NUMA slab allocator.
  79 *      Shai Fultheim <shai@scalex86.org>.
  80 *      Shobhit Dayal <shobhit@calsoftinc.com>
  81 *      Alok N Kataria <alokk@calsoftinc.com>
  82 *      Christoph Lameter <christoph@lameter.com>
  83 *
  84 *      Modified the slab allocator to be node aware on NUMA systems.
  85 *      Each node has its own list of partial, free and full slabs.
  86 *      All object allocations for a node occur from node specific slab lists.
  87 */
  88
  89#include        <linux/slab.h>
  90#include        <linux/mm.h>
  91#include        <linux/poison.h>
  92#include        <linux/swap.h>
  93#include        <linux/cache.h>
  94#include        <linux/interrupt.h>
  95#include        <linux/init.h>
  96#include        <linux/compiler.h>
  97#include        <linux/cpuset.h>
  98#include        <linux/proc_fs.h>
  99#include        <linux/seq_file.h>
 100#include        <linux/notifier.h>
 101#include        <linux/kallsyms.h>
 102#include        <linux/cpu.h>
 103#include        <linux/sysctl.h>
 104#include        <linux/module.h>
 105#include        <linux/rcupdate.h>
 106#include        <linux/string.h>
 107#include        <linux/uaccess.h>
 108#include        <linux/nodemask.h>
 109#include        <linux/kmemleak.h>
 110#include        <linux/mempolicy.h>
 111#include        <linux/mutex.h>
 112#include        <linux/fault-inject.h>
 113#include        <linux/rtmutex.h>
 114#include        <linux/reciprocal_div.h>
 115#include        <linux/debugobjects.h>
 116#include        <linux/kmemcheck.h>
 117#include        <linux/memory.h>
 118#include        <linux/prefetch.h>
 119
 120#include        <net/sock.h>
 121
 122#include        <asm/cacheflush.h>
 123#include        <asm/tlbflush.h>
 124#include        <asm/page.h>
 125
 126#include <trace/events/kmem.h>
 127
 128#include        "internal.h"
 129
 130#include        "slab.h"
 131
 132/*
 133 * DEBUG        - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 134 *                0 for faster, smaller code (especially in the critical paths).
 135 *
 136 * STATS        - 1 to collect stats for /proc/slabinfo.
 137 *                0 for faster, smaller code (especially in the critical paths).
 138 *
 139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 140 */
 141
 142#ifdef CONFIG_DEBUG_SLAB
 143#define DEBUG           1
 144#define STATS           1
 145#define FORCED_DEBUG    1
 146#else
 147#define DEBUG           0
 148#define STATS           0
 149#define FORCED_DEBUG    0
 150#endif
 151
 152/* Shouldn't this be in a header file somewhere? */
 153#define BYTES_PER_WORD          sizeof(void *)
 154#define REDZONE_ALIGN           max(BYTES_PER_WORD, __alignof__(unsigned long long))
 155
 156#ifndef ARCH_KMALLOC_FLAGS
 157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 158#endif
 159
 160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 161                                <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 162
 163#if FREELIST_BYTE_INDEX
 164typedef unsigned char freelist_idx_t;
 165#else
 166typedef unsigned short freelist_idx_t;
 167#endif
 168
 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 170
 171/*
 172 * struct array_cache
 173 *
 174 * Purpose:
 175 * - LIFO ordering, to hand out cache-warm objects from _alloc
 176 * - reduce the number of linked list operations
 177 * - reduce spinlock operations
 178 *
 179 * The limit is stored in the per-cpu structure to reduce the data cache
 180 * footprint.
 181 *
 182 */
 183struct array_cache {
 184        unsigned int avail;
 185        unsigned int limit;
 186        unsigned int batchcount;
 187        unsigned int touched;
 188        void *entry[];  /*
 189                         * Must have this definition in here for the proper
 190                         * alignment of array_cache. Also simplifies accessing
 191                         * the entries.
 192                         */
 193};
 194
 195struct alien_cache {
 196        spinlock_t lock;
 197        struct array_cache ac;
 198};
 199
 200/*
 201 * Need this for bootstrapping a per node allocator.
 202 */
 203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 205#define CACHE_CACHE 0
 206#define SIZE_NODE (MAX_NUMNODES)
 207
 208static int drain_freelist(struct kmem_cache *cache,
 209                        struct kmem_cache_node *n, int tofree);
 210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 211                        int node, struct list_head *list);
 212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 214static void cache_reap(struct work_struct *unused);
 215
 216static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 217                                                void **list);
 218static inline void fixup_slab_list(struct kmem_cache *cachep,
 219                                struct kmem_cache_node *n, struct page *page,
 220                                void **list);
 221static int slab_early_init = 1;
 222
 223#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 224
 225static void kmem_cache_node_init(struct kmem_cache_node *parent)
 226{
 227        INIT_LIST_HEAD(&parent->slabs_full);
 228        INIT_LIST_HEAD(&parent->slabs_partial);
 229        INIT_LIST_HEAD(&parent->slabs_free);
 230        parent->shared = NULL;
 231        parent->alien = NULL;
 232        parent->colour_next = 0;
 233        spin_lock_init(&parent->list_lock);
 234        parent->free_objects = 0;
 235        parent->free_touched = 0;
 236}
 237
 238#define MAKE_LIST(cachep, listp, slab, nodeid)                          \
 239        do {                                                            \
 240                INIT_LIST_HEAD(listp);                                  \
 241                list_splice(&get_node(cachep, nodeid)->slab, listp);    \
 242        } while (0)
 243
 244#define MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
 245        do {                                                            \
 246        MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
 247        MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 248        MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
 249        } while (0)
 250
 251#define CFLGS_OBJFREELIST_SLAB  (0x40000000UL)
 252#define CFLGS_OFF_SLAB          (0x80000000UL)
 253#define OBJFREELIST_SLAB(x)     ((x)->flags & CFLGS_OBJFREELIST_SLAB)
 254#define OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
 255
 256#define BATCHREFILL_LIMIT       16
 257/*
 258 * Optimization question: fewer reaps means less probability for unnessary
 259 * cpucache drain/refill cycles.
 260 *
 261 * OTOH the cpuarrays can contain lots of objects,
 262 * which could lock up otherwise freeable slabs.
 263 */
 264#define REAPTIMEOUT_AC          (2*HZ)
 265#define REAPTIMEOUT_NODE        (4*HZ)
 266
 267#if STATS
 268#define STATS_INC_ACTIVE(x)     ((x)->num_active++)
 269#define STATS_DEC_ACTIVE(x)     ((x)->num_active--)
 270#define STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 271#define STATS_INC_GROWN(x)      ((x)->grown++)
 272#define STATS_ADD_REAPED(x,y)   ((x)->reaped += (y))
 273#define STATS_SET_HIGH(x)                                               \
 274        do {                                                            \
 275                if ((x)->num_active > (x)->high_mark)                   \
 276                        (x)->high_mark = (x)->num_active;               \
 277        } while (0)
 278#define STATS_INC_ERR(x)        ((x)->errors++)
 279#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
 280#define STATS_INC_NODEFREES(x)  ((x)->node_frees++)
 281#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 282#define STATS_SET_FREEABLE(x, i)                                        \
 283        do {                                                            \
 284                if ((x)->max_freeable < i)                              \
 285                        (x)->max_freeable = i;                          \
 286        } while (0)
 287#define STATS_INC_ALLOCHIT(x)   atomic_inc(&(x)->allochit)
 288#define STATS_INC_ALLOCMISS(x)  atomic_inc(&(x)->allocmiss)
 289#define STATS_INC_FREEHIT(x)    atomic_inc(&(x)->freehit)
 290#define STATS_INC_FREEMISS(x)   atomic_inc(&(x)->freemiss)
 291#else
 292#define STATS_INC_ACTIVE(x)     do { } while (0)
 293#define STATS_DEC_ACTIVE(x)     do { } while (0)
 294#define STATS_INC_ALLOCED(x)    do { } while (0)
 295#define STATS_INC_GROWN(x)      do { } while (0)
 296#define STATS_ADD_REAPED(x,y)   do { (void)(y); } while (0)
 297#define STATS_SET_HIGH(x)       do { } while (0)
 298#define STATS_INC_ERR(x)        do { } while (0)
 299#define STATS_INC_NODEALLOCS(x) do { } while (0)
 300#define STATS_INC_NODEFREES(x)  do { } while (0)
 301#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 302#define STATS_SET_FREEABLE(x, i) do { } while (0)
 303#define STATS_INC_ALLOCHIT(x)   do { } while (0)
 304#define STATS_INC_ALLOCMISS(x)  do { } while (0)
 305#define STATS_INC_FREEHIT(x)    do { } while (0)
 306#define STATS_INC_FREEMISS(x)   do { } while (0)
 307#endif
 308
 309#if DEBUG
 310
 311/*
 312 * memory layout of objects:
 313 * 0            : objp
 314 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 315 *              the end of an object is aligned with the end of the real
 316 *              allocation. Catches writes behind the end of the allocation.
 317 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 318 *              redzone word.
 319 * cachep->obj_offset: The real object.
 320 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 321 * cachep->size - 1* BYTES_PER_WORD: last caller address
 322 *                                      [BYTES_PER_WORD long]
 323 */
 324static int obj_offset(struct kmem_cache *cachep)
 325{
 326        return cachep->obj_offset;
 327}
 328
 329static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 330{
 331        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 332        return (unsigned long long*) (objp + obj_offset(cachep) -
 333                                      sizeof(unsigned long long));
 334}
 335
 336static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 337{
 338        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 339        if (cachep->flags & SLAB_STORE_USER)
 340                return (unsigned long long *)(objp + cachep->size -
 341                                              sizeof(unsigned long long) -
 342                                              REDZONE_ALIGN);
 343        return (unsigned long long *) (objp + cachep->size -
 344                                       sizeof(unsigned long long));
 345}
 346
 347static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 348{
 349        BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 350        return (void **)(objp + cachep->size - BYTES_PER_WORD);
 351}
 352
 353#else
 354
 355#define obj_offset(x)                   0
 356#define dbg_redzone1(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 357#define dbg_redzone2(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 358#define dbg_userword(cachep, objp)      ({BUG(); (void **)NULL;})
 359
 360#endif
 361
 362#ifdef CONFIG_DEBUG_SLAB_LEAK
 363
 364static inline bool is_store_user_clean(struct kmem_cache *cachep)
 365{
 366        return atomic_read(&cachep->store_user_clean) == 1;
 367}
 368
 369static inline void set_store_user_clean(struct kmem_cache *cachep)
 370{
 371        atomic_set(&cachep->store_user_clean, 1);
 372}
 373
 374static inline void set_store_user_dirty(struct kmem_cache *cachep)
 375{
 376        if (is_store_user_clean(cachep))
 377                atomic_set(&cachep->store_user_clean, 0);
 378}
 379
 380#else
 381static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
 382
 383#endif
 384
 385/*
 386 * Do not go above this order unless 0 objects fit into the slab or
 387 * overridden on the command line.
 388 */
 389#define SLAB_MAX_ORDER_HI       1
 390#define SLAB_MAX_ORDER_LO       0
 391static int slab_max_order = SLAB_MAX_ORDER_LO;
 392static bool slab_max_order_set __initdata;
 393
 394static inline struct kmem_cache *virt_to_cache(const void *obj)
 395{
 396        struct page *page = virt_to_head_page(obj);
 397        return page->slab_cache;
 398}
 399
 400static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 401                                 unsigned int idx)
 402{
 403        return page->s_mem + cache->size * idx;
 404}
 405
 406/*
 407 * We want to avoid an expensive divide : (offset / cache->size)
 408 *   Using the fact that size is a constant for a particular cache,
 409 *   we can replace (offset / cache->size) by
 410 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 411 */
 412static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 413                                        const struct page *page, void *obj)
 414{
 415        u32 offset = (obj - page->s_mem);
 416        return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 417}
 418
 419#define BOOT_CPUCACHE_ENTRIES   1
 420/* internal cache of cache description objs */
 421static struct kmem_cache kmem_cache_boot = {
 422        .batchcount = 1,
 423        .limit = BOOT_CPUCACHE_ENTRIES,
 424        .shared = 1,
 425        .size = sizeof(struct kmem_cache),
 426        .name = "kmem_cache",
 427};
 428
 429static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 430
 431static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 432{
 433        return this_cpu_ptr(cachep->cpu_cache);
 434}
 435
 436/*
 437 * Calculate the number of objects and left-over bytes for a given buffer size.
 438 */
 439static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 440                unsigned long flags, size_t *left_over)
 441{
 442        unsigned int num;
 443        size_t slab_size = PAGE_SIZE << gfporder;
 444
 445        /*
 446         * The slab management structure can be either off the slab or
 447         * on it. For the latter case, the memory allocated for a
 448         * slab is used for:
 449         *
 450         * - @buffer_size bytes for each object
 451         * - One freelist_idx_t for each object
 452         *
 453         * We don't need to consider alignment of freelist because
 454         * freelist will be at the end of slab page. The objects will be
 455         * at the correct alignment.
 456         *
 457         * If the slab management structure is off the slab, then the
 458         * alignment will already be calculated into the size. Because
 459         * the slabs are all pages aligned, the objects will be at the
 460         * correct alignment when allocated.
 461         */
 462        if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 463                num = slab_size / buffer_size;
 464                *left_over = slab_size % buffer_size;
 465        } else {
 466                num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 467                *left_over = slab_size %
 468                        (buffer_size + sizeof(freelist_idx_t));
 469        }
 470
 471        return num;
 472}
 473
 474#if DEBUG
 475#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 476
 477static void __slab_error(const char *function, struct kmem_cache *cachep,
 478                        char *msg)
 479{
 480        pr_err("slab error in %s(): cache `%s': %s\n",
 481               function, cachep->name, msg);
 482        dump_stack();
 483        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 484}
 485#endif
 486
 487/*
 488 * By default on NUMA we use alien caches to stage the freeing of
 489 * objects allocated from other nodes. This causes massive memory
 490 * inefficiencies when using fake NUMA setup to split memory into a
 491 * large number of small nodes, so it can be disabled on the command
 492 * line
 493  */
 494
 495static int use_alien_caches __read_mostly = 1;
 496static int __init noaliencache_setup(char *s)
 497{
 498        use_alien_caches = 0;
 499        return 1;
 500}
 501__setup("noaliencache", noaliencache_setup);
 502
 503static int __init slab_max_order_setup(char *str)
 504{
 505        get_option(&str, &slab_max_order);
 506        slab_max_order = slab_max_order < 0 ? 0 :
 507                                min(slab_max_order, MAX_ORDER - 1);
 508        slab_max_order_set = true;
 509
 510        return 1;
 511}
 512__setup("slab_max_order=", slab_max_order_setup);
 513
 514#ifdef CONFIG_NUMA
 515/*
 516 * Special reaping functions for NUMA systems called from cache_reap().
 517 * These take care of doing round robin flushing of alien caches (containing
 518 * objects freed on different nodes from which they were allocated) and the
 519 * flushing of remote pcps by calling drain_node_pages.
 520 */
 521static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 522
 523static void init_reap_node(int cpu)
 524{
 525        per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 526                                                    node_online_map);
 527}
 528
 529static void next_reap_node(void)
 530{
 531        int node = __this_cpu_read(slab_reap_node);
 532
 533        node = next_node_in(node, node_online_map);
 534        __this_cpu_write(slab_reap_node, node);
 535}
 536
 537#else
 538#define init_reap_node(cpu) do { } while (0)
 539#define next_reap_node(void) do { } while (0)
 540#endif
 541
 542/*
 543 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 544 * via the workqueue/eventd.
 545 * Add the CPU number into the expiration time to minimize the possibility of
 546 * the CPUs getting into lockstep and contending for the global cache chain
 547 * lock.
 548 */
 549static void start_cpu_timer(int cpu)
 550{
 551        struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 552
 553        /*
 554         * When this gets called from do_initcalls via cpucache_init(),
 555         * init_workqueues() has already run, so keventd will be setup
 556         * at that time.
 557         */
 558        if (keventd_up() && reap_work->work.func == NULL) {
 559                init_reap_node(cpu);
 560                INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 561                schedule_delayed_work_on(cpu, reap_work,
 562                                        __round_jiffies_relative(HZ, cpu));
 563        }
 564}
 565
 566static void init_arraycache(struct array_cache *ac, int limit, int batch)
 567{
 568        /*
 569         * The array_cache structures contain pointers to free object.
 570         * However, when such objects are allocated or transferred to another
 571         * cache the pointers are not cleared and they could be counted as
 572         * valid references during a kmemleak scan. Therefore, kmemleak must
 573         * not scan such objects.
 574         */
 575        kmemleak_no_scan(ac);
 576        if (ac) {
 577                ac->avail = 0;
 578                ac->limit = limit;
 579                ac->batchcount = batch;
 580                ac->touched = 0;
 581        }
 582}
 583
 584static struct array_cache *alloc_arraycache(int node, int entries,
 585                                            int batchcount, gfp_t gfp)
 586{
 587        size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 588        struct array_cache *ac = NULL;
 589
 590        ac = kmalloc_node(memsize, gfp, node);
 591        init_arraycache(ac, entries, batchcount);
 592        return ac;
 593}
 594
 595static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 596                                        struct page *page, void *objp)
 597{
 598        struct kmem_cache_node *n;
 599        int page_node;
 600        LIST_HEAD(list);
 601
 602        page_node = page_to_nid(page);
 603        n = get_node(cachep, page_node);
 604
 605        spin_lock(&n->list_lock);
 606        free_block(cachep, &objp, 1, page_node, &list);
 607        spin_unlock(&n->list_lock);
 608
 609        slabs_destroy(cachep, &list);
 610}
 611
 612/*
 613 * Transfer objects in one arraycache to another.
 614 * Locking must be handled by the caller.
 615 *
 616 * Return the number of entries transferred.
 617 */
 618static int transfer_objects(struct array_cache *to,
 619                struct array_cache *from, unsigned int max)
 620{
 621        /* Figure out how many entries to transfer */
 622        int nr = min3(from->avail, max, to->limit - to->avail);
 623
 624        if (!nr)
 625                return 0;
 626
 627        memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 628                        sizeof(void *) *nr);
 629
 630        from->avail -= nr;
 631        to->avail += nr;
 632        return nr;
 633}
 634
 635#ifndef CONFIG_NUMA
 636
 637#define drain_alien_cache(cachep, alien) do { } while (0)
 638#define reap_alien(cachep, n) do { } while (0)
 639
 640static inline struct alien_cache **alloc_alien_cache(int node,
 641                                                int limit, gfp_t gfp)
 642{
 643        return NULL;
 644}
 645
 646static inline void free_alien_cache(struct alien_cache **ac_ptr)
 647{
 648}
 649
 650static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 651{
 652        return 0;
 653}
 654
 655static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 656                gfp_t flags)
 657{
 658        return NULL;
 659}
 660
 661static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 662                 gfp_t flags, int nodeid)
 663{
 664        return NULL;
 665}
 666
 667static inline gfp_t gfp_exact_node(gfp_t flags)
 668{
 669        return flags & ~__GFP_NOFAIL;
 670}
 671
 672#else   /* CONFIG_NUMA */
 673
 674static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 675static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 676
 677static struct alien_cache *__alloc_alien_cache(int node, int entries,
 678                                                int batch, gfp_t gfp)
 679{
 680        size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 681        struct alien_cache *alc = NULL;
 682
 683        alc = kmalloc_node(memsize, gfp, node);
 684        init_arraycache(&alc->ac, entries, batch);
 685        spin_lock_init(&alc->lock);
 686        return alc;
 687}
 688
 689static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 690{
 691        struct alien_cache **alc_ptr;
 692        size_t memsize = sizeof(void *) * nr_node_ids;
 693        int i;
 694
 695        if (limit > 1)
 696                limit = 12;
 697        alc_ptr = kzalloc_node(memsize, gfp, node);
 698        if (!alc_ptr)
 699                return NULL;
 700
 701        for_each_node(i) {
 702                if (i == node || !node_online(i))
 703                        continue;
 704                alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 705                if (!alc_ptr[i]) {
 706                        for (i--; i >= 0; i--)
 707                                kfree(alc_ptr[i]);
 708                        kfree(alc_ptr);
 709                        return NULL;
 710                }
 711        }
 712        return alc_ptr;
 713}
 714
 715static void free_alien_cache(struct alien_cache **alc_ptr)
 716{
 717        int i;
 718
 719        if (!alc_ptr)
 720                return;
 721        for_each_node(i)
 722            kfree(alc_ptr[i]);
 723        kfree(alc_ptr);
 724}
 725
 726static void __drain_alien_cache(struct kmem_cache *cachep,
 727                                struct array_cache *ac, int node,
 728                                struct list_head *list)
 729{
 730        struct kmem_cache_node *n = get_node(cachep, node);
 731
 732        if (ac->avail) {
 733                spin_lock(&n->list_lock);
 734                /*
 735                 * Stuff objects into the remote nodes shared array first.
 736                 * That way we could avoid the overhead of putting the objects
 737                 * into the free lists and getting them back later.
 738                 */
 739                if (n->shared)
 740                        transfer_objects(n->shared, ac, ac->limit);
 741
 742                free_block(cachep, ac->entry, ac->avail, node, list);
 743                ac->avail = 0;
 744                spin_unlock(&n->list_lock);
 745        }
 746}
 747
 748/*
 749 * Called from cache_reap() to regularly drain alien caches round robin.
 750 */
 751static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 752{
 753        int node = __this_cpu_read(slab_reap_node);
 754
 755        if (n->alien) {
 756                struct alien_cache *alc = n->alien[node];
 757                struct array_cache *ac;
 758
 759                if (alc) {
 760                        ac = &alc->ac;
 761                        if (ac->avail && spin_trylock_irq(&alc->lock)) {
 762                                LIST_HEAD(list);
 763
 764                                __drain_alien_cache(cachep, ac, node, &list);
 765                                spin_unlock_irq(&alc->lock);
 766                                slabs_destroy(cachep, &list);
 767                        }
 768                }
 769        }
 770}
 771
 772static void drain_alien_cache(struct kmem_cache *cachep,
 773                                struct alien_cache **alien)
 774{
 775        int i = 0;
 776        struct alien_cache *alc;
 777        struct array_cache *ac;
 778        unsigned long flags;
 779
 780        for_each_online_node(i) {
 781                alc = alien[i];
 782                if (alc) {
 783                        LIST_HEAD(list);
 784
 785                        ac = &alc->ac;
 786                        spin_lock_irqsave(&alc->lock, flags);
 787                        __drain_alien_cache(cachep, ac, i, &list);
 788                        spin_unlock_irqrestore(&alc->lock, flags);
 789                        slabs_destroy(cachep, &list);
 790                }
 791        }
 792}
 793
 794static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 795                                int node, int page_node)
 796{
 797        struct kmem_cache_node *n;
 798        struct alien_cache *alien = NULL;
 799        struct array_cache *ac;
 800        LIST_HEAD(list);
 801
 802        n = get_node(cachep, node);
 803        STATS_INC_NODEFREES(cachep);
 804        if (n->alien && n->alien[page_node]) {
 805                alien = n->alien[page_node];
 806                ac = &alien->ac;
 807                spin_lock(&alien->lock);
 808                if (unlikely(ac->avail == ac->limit)) {
 809                        STATS_INC_ACOVERFLOW(cachep);
 810                        __drain_alien_cache(cachep, ac, page_node, &list);
 811                }
 812                ac->entry[ac->avail++] = objp;
 813                spin_unlock(&alien->lock);
 814                slabs_destroy(cachep, &list);
 815        } else {
 816                n = get_node(cachep, page_node);
 817                spin_lock(&n->list_lock);
 818                free_block(cachep, &objp, 1, page_node, &list);
 819                spin_unlock(&n->list_lock);
 820                slabs_destroy(cachep, &list);
 821        }
 822        return 1;
 823}
 824
 825static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 826{
 827        int page_node = page_to_nid(virt_to_page(objp));
 828        int node = numa_mem_id();
 829        /*
 830         * Make sure we are not freeing a object from another node to the array
 831         * cache on this cpu.
 832         */
 833        if (likely(node == page_node))
 834                return 0;
 835
 836        return __cache_free_alien(cachep, objp, node, page_node);
 837}
 838
 839/*
 840 * Construct gfp mask to allocate from a specific node but do not reclaim or
 841 * warn about failures.
 842 */
 843static inline gfp_t gfp_exact_node(gfp_t flags)
 844{
 845        return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 846}
 847#endif
 848
 849static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 850{
 851        struct kmem_cache_node *n;
 852
 853        /*
 854         * Set up the kmem_cache_node for cpu before we can
 855         * begin anything. Make sure some other cpu on this
 856         * node has not already allocated this
 857         */
 858        n = get_node(cachep, node);
 859        if (n) {
 860                spin_lock_irq(&n->list_lock);
 861                n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 862                                cachep->num;
 863                spin_unlock_irq(&n->list_lock);
 864
 865                return 0;
 866        }
 867
 868        n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 869        if (!n)
 870                return -ENOMEM;
 871
 872        kmem_cache_node_init(n);
 873        n->next_reap = jiffies + REAPTIMEOUT_NODE +
 874                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 875
 876        n->free_limit =
 877                (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 878
 879        /*
 880         * The kmem_cache_nodes don't come and go as CPUs
 881         * come and go.  slab_mutex is sufficient
 882         * protection here.
 883         */
 884        cachep->node[node] = n;
 885
 886        return 0;
 887}
 888
 889/*
 890 * Allocates and initializes node for a node on each slab cache, used for
 891 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 892 * will be allocated off-node since memory is not yet online for the new node.
 893 * When hotplugging memory or a cpu, existing node are not replaced if
 894 * already in use.
 895 *
 896 * Must hold slab_mutex.
 897 */
 898static int init_cache_node_node(int node)
 899{
 900        int ret;
 901        struct kmem_cache *cachep;
 902
 903        list_for_each_entry(cachep, &slab_caches, list) {
 904                ret = init_cache_node(cachep, node, GFP_KERNEL);
 905                if (ret)
 906                        return ret;
 907        }
 908
 909        return 0;
 910}
 911
 912static int setup_kmem_cache_node(struct kmem_cache *cachep,
 913                                int node, gfp_t gfp, bool force_change)
 914{
 915        int ret = -ENOMEM;
 916        struct kmem_cache_node *n;
 917        struct array_cache *old_shared = NULL;
 918        struct array_cache *new_shared = NULL;
 919        struct alien_cache **new_alien = NULL;
 920        LIST_HEAD(list);
 921
 922        if (use_alien_caches) {
 923                new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 924                if (!new_alien)
 925                        goto fail;
 926        }
 927
 928        if (cachep->shared) {
 929                new_shared = alloc_arraycache(node,
 930                        cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 931                if (!new_shared)
 932                        goto fail;
 933        }
 934
 935        ret = init_cache_node(cachep, node, gfp);
 936        if (ret)
 937                goto fail;
 938
 939        n = get_node(cachep, node);
 940        spin_lock_irq(&n->list_lock);
 941        if (n->shared && force_change) {
 942                free_block(cachep, n->shared->entry,
 943                                n->shared->avail, node, &list);
 944                n->shared->avail = 0;
 945        }
 946
 947        if (!n->shared || force_change) {
 948                old_shared = n->shared;
 949                n->shared = new_shared;
 950                new_shared = NULL;
 951        }
 952
 953        if (!n->alien) {
 954                n->alien = new_alien;
 955                new_alien = NULL;
 956        }
 957
 958        spin_unlock_irq(&n->list_lock);
 959        slabs_destroy(cachep, &list);
 960
 961        /*
 962         * To protect lockless access to n->shared during irq disabled context.
 963         * If n->shared isn't NULL in irq disabled context, accessing to it is
 964         * guaranteed to be valid until irq is re-enabled, because it will be
 965         * freed after synchronize_sched().
 966         */
 967        if (force_change)
 968                synchronize_sched();
 969
 970fail:
 971        kfree(old_shared);
 972        kfree(new_shared);
 973        free_alien_cache(new_alien);
 974
 975        return ret;
 976}
 977
 978static void cpuup_canceled(long cpu)
 979{
 980        struct kmem_cache *cachep;
 981        struct kmem_cache_node *n = NULL;
 982        int node = cpu_to_mem(cpu);
 983        const struct cpumask *mask = cpumask_of_node(node);
 984
 985        list_for_each_entry(cachep, &slab_caches, list) {
 986                struct array_cache *nc;
 987                struct array_cache *shared;
 988                struct alien_cache **alien;
 989                LIST_HEAD(list);
 990
 991                n = get_node(cachep, node);
 992                if (!n)
 993                        continue;
 994
 995                spin_lock_irq(&n->list_lock);
 996
 997                /* Free limit for this kmem_cache_node */
 998                n->free_limit -= cachep->batchcount;
 999
1000                /* cpu is dead; no one can alloc from it. */
1001                nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1002                if (nc) {
1003                        free_block(cachep, nc->entry, nc->avail, node, &list);
1004                        nc->avail = 0;
1005                }
1006
1007                if (!cpumask_empty(mask)) {
1008                        spin_unlock_irq(&n->list_lock);
1009                        goto free_slab;
1010                }
1011
1012                shared = n->shared;
1013                if (shared) {
1014                        free_block(cachep, shared->entry,
1015                                   shared->avail, node, &list);
1016                        n->shared = NULL;
1017                }
1018
1019                alien = n->alien;
1020                n->alien = NULL;
1021
1022                spin_unlock_irq(&n->list_lock);
1023
1024                kfree(shared);
1025                if (alien) {
1026                        drain_alien_cache(cachep, alien);
1027                        free_alien_cache(alien);
1028                }
1029
1030free_slab:
1031                slabs_destroy(cachep, &list);
1032        }
1033        /*
1034         * In the previous loop, all the objects were freed to
1035         * the respective cache's slabs,  now we can go ahead and
1036         * shrink each nodelist to its limit.
1037         */
1038        list_for_each_entry(cachep, &slab_caches, list) {
1039                n = get_node(cachep, node);
1040                if (!n)
1041                        continue;
1042                drain_freelist(cachep, n, INT_MAX);
1043        }
1044}
1045
1046static int cpuup_prepare(long cpu)
1047{
1048        struct kmem_cache *cachep;
1049        int node = cpu_to_mem(cpu);
1050        int err;
1051
1052        /*
1053         * We need to do this right in the beginning since
1054         * alloc_arraycache's are going to use this list.
1055         * kmalloc_node allows us to add the slab to the right
1056         * kmem_cache_node and not this cpu's kmem_cache_node
1057         */
1058        err = init_cache_node_node(node);
1059        if (err < 0)
1060                goto bad;
1061
1062        /*
1063         * Now we can go ahead with allocating the shared arrays and
1064         * array caches
1065         */
1066        list_for_each_entry(cachep, &slab_caches, list) {
1067                err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1068                if (err)
1069                        goto bad;
1070        }
1071
1072        return 0;
1073bad:
1074        cpuup_canceled(cpu);
1075        return -ENOMEM;
1076}
1077
1078static int cpuup_callback(struct notifier_block *nfb,
1079                                    unsigned long action, void *hcpu)
1080{
1081        long cpu = (long)hcpu;
1082        int err = 0;
1083
1084        switch (action) {
1085        case CPU_UP_PREPARE:
1086        case CPU_UP_PREPARE_FROZEN:
1087                mutex_lock(&slab_mutex);
1088                err = cpuup_prepare(cpu);
1089                mutex_unlock(&slab_mutex);
1090                break;
1091        case CPU_ONLINE:
1092        case CPU_ONLINE_FROZEN:
1093                start_cpu_timer(cpu);
1094                break;
1095#ifdef CONFIG_HOTPLUG_CPU
1096        case CPU_DOWN_PREPARE:
1097        case CPU_DOWN_PREPARE_FROZEN:
1098                /*
1099                 * Shutdown cache reaper. Note that the slab_mutex is
1100                 * held so that if cache_reap() is invoked it cannot do
1101                 * anything expensive but will only modify reap_work
1102                 * and reschedule the timer.
1103                */
1104                cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1105                /* Now the cache_reaper is guaranteed to be not running. */
1106                per_cpu(slab_reap_work, cpu).work.func = NULL;
1107                break;
1108        case CPU_DOWN_FAILED:
1109        case CPU_DOWN_FAILED_FROZEN:
1110                start_cpu_timer(cpu);
1111                break;
1112        case CPU_DEAD:
1113        case CPU_DEAD_FROZEN:
1114                /*
1115                 * Even if all the cpus of a node are down, we don't free the
1116                 * kmem_cache_node of any cache. This to avoid a race between
1117                 * cpu_down, and a kmalloc allocation from another cpu for
1118                 * memory from the node of the cpu going down.  The node
1119                 * structure is usually allocated from kmem_cache_create() and
1120                 * gets destroyed at kmem_cache_destroy().
1121                 */
1122                /* fall through */
1123#endif
1124        case CPU_UP_CANCELED:
1125        case CPU_UP_CANCELED_FROZEN:
1126                mutex_lock(&slab_mutex);
1127                cpuup_canceled(cpu);
1128                mutex_unlock(&slab_mutex);
1129                break;
1130        }
1131        return notifier_from_errno(err);
1132}
1133
1134static struct notifier_block cpucache_notifier = {
1135        &cpuup_callback, NULL, 0
1136};
1137
1138#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1139/*
1140 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1141 * Returns -EBUSY if all objects cannot be drained so that the node is not
1142 * removed.
1143 *
1144 * Must hold slab_mutex.
1145 */
1146static int __meminit drain_cache_node_node(int node)
1147{
1148        struct kmem_cache *cachep;
1149        int ret = 0;
1150
1151        list_for_each_entry(cachep, &slab_caches, list) {
1152                struct kmem_cache_node *n;
1153
1154                n = get_node(cachep, node);
1155                if (!n)
1156                        continue;
1157
1158                drain_freelist(cachep, n, INT_MAX);
1159
1160                if (!list_empty(&n->slabs_full) ||
1161                    !list_empty(&n->slabs_partial)) {
1162                        ret = -EBUSY;
1163                        break;
1164                }
1165        }
1166        return ret;
1167}
1168
1169static int __meminit slab_memory_callback(struct notifier_block *self,
1170                                        unsigned long action, void *arg)
1171{
1172        struct memory_notify *mnb = arg;
1173        int ret = 0;
1174        int nid;
1175
1176        nid = mnb->status_change_nid;
1177        if (nid < 0)
1178                goto out;
1179
1180        switch (action) {
1181        case MEM_GOING_ONLINE:
1182                mutex_lock(&slab_mutex);
1183                ret = init_cache_node_node(nid);
1184                mutex_unlock(&slab_mutex);
1185                break;
1186        case MEM_GOING_OFFLINE:
1187                mutex_lock(&slab_mutex);
1188                ret = drain_cache_node_node(nid);
1189                mutex_unlock(&slab_mutex);
1190                break;
1191        case MEM_ONLINE:
1192        case MEM_OFFLINE:
1193        case MEM_CANCEL_ONLINE:
1194        case MEM_CANCEL_OFFLINE:
1195                break;
1196        }
1197out:
1198        return notifier_from_errno(ret);
1199}
1200#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1201
1202/*
1203 * swap the static kmem_cache_node with kmalloced memory
1204 */
1205static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1206                                int nodeid)
1207{
1208        struct kmem_cache_node *ptr;
1209
1210        ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1211        BUG_ON(!ptr);
1212
1213        memcpy(ptr, list, sizeof(struct kmem_cache_node));
1214        /*
1215         * Do not assume that spinlocks can be initialized via memcpy:
1216         */
1217        spin_lock_init(&ptr->list_lock);
1218
1219        MAKE_ALL_LISTS(cachep, ptr, nodeid);
1220        cachep->node[nodeid] = ptr;
1221}
1222
1223/*
1224 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1225 * size of kmem_cache_node.
1226 */
1227static void __init set_up_node(struct kmem_cache *cachep, int index)
1228{
1229        int node;
1230
1231        for_each_online_node(node) {
1232                cachep->node[node] = &init_kmem_cache_node[index + node];
1233                cachep->node[node]->next_reap = jiffies +
1234                    REAPTIMEOUT_NODE +
1235                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1236        }
1237}
1238
1239/*
1240 * Initialisation.  Called after the page allocator have been initialised and
1241 * before smp_init().
1242 */
1243void __init kmem_cache_init(void)
1244{
1245        int i;
1246
1247        BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1248                                        sizeof(struct rcu_head));
1249        kmem_cache = &kmem_cache_boot;
1250
1251        if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1252                use_alien_caches = 0;
1253
1254        for (i = 0; i < NUM_INIT_LISTS; i++)
1255                kmem_cache_node_init(&init_kmem_cache_node[i]);
1256
1257        /*
1258         * Fragmentation resistance on low memory - only use bigger
1259         * page orders on machines with more than 32MB of memory if
1260         * not overridden on the command line.
1261         */
1262        if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1263                slab_max_order = SLAB_MAX_ORDER_HI;
1264
1265        /* Bootstrap is tricky, because several objects are allocated
1266         * from caches that do not exist yet:
1267         * 1) initialize the kmem_cache cache: it contains the struct
1268         *    kmem_cache structures of all caches, except kmem_cache itself:
1269         *    kmem_cache is statically allocated.
1270         *    Initially an __init data area is used for the head array and the
1271         *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1272         *    array at the end of the bootstrap.
1273         * 2) Create the first kmalloc cache.
1274         *    The struct kmem_cache for the new cache is allocated normally.
1275         *    An __init data area is used for the head array.
1276         * 3) Create the remaining kmalloc caches, with minimally sized
1277         *    head arrays.
1278         * 4) Replace the __init data head arrays for kmem_cache and the first
1279         *    kmalloc cache with kmalloc allocated arrays.
1280         * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1281         *    the other cache's with kmalloc allocated memory.
1282         * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1283         */
1284
1285        /* 1) create the kmem_cache */
1286
1287        /*
1288         * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1289         */
1290        create_boot_cache(kmem_cache, "kmem_cache",
1291                offsetof(struct kmem_cache, node) +
1292                                  nr_node_ids * sizeof(struct kmem_cache_node *),
1293                                  SLAB_HWCACHE_ALIGN);
1294        list_add(&kmem_cache->list, &slab_caches);
1295        slab_state = PARTIAL;
1296
1297        /*
1298         * Initialize the caches that provide memory for the  kmem_cache_node
1299         * structures first.  Without this, further allocations will bug.
1300         */
1301        kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1302                                kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1303        slab_state = PARTIAL_NODE;
1304        setup_kmalloc_cache_index_table();
1305
1306        slab_early_init = 0;
1307
1308        /* 5) Replace the bootstrap kmem_cache_node */
1309        {
1310                int nid;
1311
1312                for_each_online_node(nid) {
1313                        init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1314
1315                        init_list(kmalloc_caches[INDEX_NODE],
1316                                          &init_kmem_cache_node[SIZE_NODE + nid], nid);
1317                }
1318        }
1319
1320        create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1321}
1322
1323void __init kmem_cache_init_late(void)
1324{
1325        struct kmem_cache *cachep;
1326
1327        slab_state = UP;
1328
1329        /* 6) resize the head arrays to their final sizes */
1330        mutex_lock(&slab_mutex);
1331        list_for_each_entry(cachep, &slab_caches, list)
1332                if (enable_cpucache(cachep, GFP_NOWAIT))
1333                        BUG();
1334        mutex_unlock(&slab_mutex);
1335
1336        /* Done! */
1337        slab_state = FULL;
1338
1339        /*
1340         * Register a cpu startup notifier callback that initializes
1341         * cpu_cache_get for all new cpus
1342         */
1343        register_cpu_notifier(&cpucache_notifier);
1344
1345#ifdef CONFIG_NUMA
1346        /*
1347         * Register a memory hotplug callback that initializes and frees
1348         * node.
1349         */
1350        hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1351#endif
1352
1353        /*
1354         * The reap timers are started later, with a module init call: That part
1355         * of the kernel is not yet operational.
1356         */
1357}
1358
1359static int __init cpucache_init(void)
1360{
1361        int cpu;
1362
1363        /*
1364         * Register the timers that return unneeded pages to the page allocator
1365         */
1366        for_each_online_cpu(cpu)
1367                start_cpu_timer(cpu);
1368
1369        /* Done! */
1370        slab_state = FULL;
1371        return 0;
1372}
1373__initcall(cpucache_init);
1374
1375static noinline void
1376slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1377{
1378#if DEBUG
1379        struct kmem_cache_node *n;
1380        struct page *page;
1381        unsigned long flags;
1382        int node;
1383        static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1384                                      DEFAULT_RATELIMIT_BURST);
1385
1386        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1387                return;
1388
1389        pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1390                nodeid, gfpflags, &gfpflags);
1391        pr_warn("  cache: %s, object size: %d, order: %d\n",
1392                cachep->name, cachep->size, cachep->gfporder);
1393
1394        for_each_kmem_cache_node(cachep, node, n) {
1395                unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1396                unsigned long active_slabs = 0, num_slabs = 0;
1397
1398                spin_lock_irqsave(&n->list_lock, flags);
1399                list_for_each_entry(page, &n->slabs_full, lru) {
1400                        active_objs += cachep->num;
1401                        active_slabs++;
1402                }
1403                list_for_each_entry(page, &n->slabs_partial, lru) {
1404                        active_objs += page->active;
1405                        active_slabs++;
1406                }
1407                list_for_each_entry(page, &n->slabs_free, lru)
1408                        num_slabs++;
1409
1410                free_objects += n->free_objects;
1411                spin_unlock_irqrestore(&n->list_lock, flags);
1412
1413                num_slabs += active_slabs;
1414                num_objs = num_slabs * cachep->num;
1415                pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1416                        node, active_slabs, num_slabs, active_objs, num_objs,
1417                        free_objects);
1418        }
1419#endif
1420}
1421
1422/*
1423 * Interface to system's page allocator. No need to hold the
1424 * kmem_cache_node ->list_lock.
1425 *
1426 * If we requested dmaable memory, we will get it. Even if we
1427 * did not request dmaable memory, we might get it, but that
1428 * would be relatively rare and ignorable.
1429 */
1430static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1431                                                                int nodeid)
1432{
1433        struct page *page;
1434        int nr_pages;
1435
1436        flags |= cachep->allocflags;
1437        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1438                flags |= __GFP_RECLAIMABLE;
1439
1440        page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1441        if (!page) {
1442                slab_out_of_memory(cachep, flags, nodeid);
1443                return NULL;
1444        }
1445
1446        if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1447                __free_pages(page, cachep->gfporder);
1448                return NULL;
1449        }
1450
1451        nr_pages = (1 << cachep->gfporder);
1452        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1453                add_zone_page_state(page_zone(page),
1454                        NR_SLAB_RECLAIMABLE, nr_pages);
1455        else
1456                add_zone_page_state(page_zone(page),
1457                        NR_SLAB_UNRECLAIMABLE, nr_pages);
1458
1459        __SetPageSlab(page);
1460        /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1461        if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1462                SetPageSlabPfmemalloc(page);
1463
1464        if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1465                kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1466
1467                if (cachep->ctor)
1468                        kmemcheck_mark_uninitialized_pages(page, nr_pages);
1469                else
1470                        kmemcheck_mark_unallocated_pages(page, nr_pages);
1471        }
1472
1473        return page;
1474}
1475
1476/*
1477 * Interface to system's page release.
1478 */
1479static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1480{
1481        int order = cachep->gfporder;
1482        unsigned long nr_freed = (1 << order);
1483
1484        kmemcheck_free_shadow(page, order);
1485
1486        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1487                sub_zone_page_state(page_zone(page),
1488                                NR_SLAB_RECLAIMABLE, nr_freed);
1489        else
1490                sub_zone_page_state(page_zone(page),
1491                                NR_SLAB_UNRECLAIMABLE, nr_freed);
1492
1493        BUG_ON(!PageSlab(page));
1494        __ClearPageSlabPfmemalloc(page);
1495        __ClearPageSlab(page);
1496        page_mapcount_reset(page);
1497        page->mapping = NULL;
1498
1499        if (current->reclaim_state)
1500                current->reclaim_state->reclaimed_slab += nr_freed;
1501        memcg_uncharge_slab(page, order, cachep);
1502        __free_pages(page, order);
1503}
1504
1505static void kmem_rcu_free(struct rcu_head *head)
1506{
1507        struct kmem_cache *cachep;
1508        struct page *page;
1509
1510        page = container_of(head, struct page, rcu_head);
1511        cachep = page->slab_cache;
1512
1513        kmem_freepages(cachep, page);
1514}
1515
1516#if DEBUG
1517static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1518{
1519        if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1520                (cachep->size % PAGE_SIZE) == 0)
1521                return true;
1522
1523        return false;
1524}
1525
1526#ifdef CONFIG_DEBUG_PAGEALLOC
1527static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1528                            unsigned long caller)
1529{
1530        int size = cachep->object_size;
1531
1532        addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1533
1534        if (size < 5 * sizeof(unsigned long))
1535                return;
1536
1537        *addr++ = 0x12345678;
1538        *addr++ = caller;
1539        *addr++ = smp_processor_id();
1540        size -= 3 * sizeof(unsigned long);
1541        {
1542                unsigned long *sptr = &caller;
1543                unsigned long svalue;
1544
1545                while (!kstack_end(sptr)) {
1546                        svalue = *sptr++;
1547                        if (kernel_text_address(svalue)) {
1548                                *addr++ = svalue;
1549                                size -= sizeof(unsigned long);
1550                                if (size <= sizeof(unsigned long))
1551                                        break;
1552                        }
1553                }
1554
1555        }
1556        *addr++ = 0x87654321;
1557}
1558
1559static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1560                                int map, unsigned long caller)
1561{
1562        if (!is_debug_pagealloc_cache(cachep))
1563                return;
1564
1565        if (caller)
1566                store_stackinfo(cachep, objp, caller);
1567
1568        kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1569}
1570
1571#else
1572static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1573                                int map, unsigned long caller) {}
1574
1575#endif
1576
1577static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1578{
1579        int size = cachep->object_size;
1580        addr = &((char *)addr)[obj_offset(cachep)];
1581
1582        memset(addr, val, size);
1583        *(unsigned char *)(addr + size - 1) = POISON_END;
1584}
1585
1586static void dump_line(char *data, int offset, int limit)
1587{
1588        int i;
1589        unsigned char error = 0;
1590        int bad_count = 0;
1591
1592        pr_err("%03x: ", offset);
1593        for (i = 0; i < limit; i++) {
1594                if (data[offset + i] != POISON_FREE) {
1595                        error = data[offset + i];
1596                        bad_count++;
1597                }
1598        }
1599        print_hex_dump(KERN_CONT, "", 0, 16, 1,
1600                        &data[offset], limit, 1);
1601
1602        if (bad_count == 1) {
1603                error ^= POISON_FREE;
1604                if (!(error & (error - 1))) {
1605                        pr_err("Single bit error detected. Probably bad RAM.\n");
1606#ifdef CONFIG_X86
1607                        pr_err("Run memtest86+ or a similar memory test tool.\n");
1608#else
1609                        pr_err("Run a memory test tool.\n");
1610#endif
1611                }
1612        }
1613}
1614#endif
1615
1616#if DEBUG
1617
1618static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1619{
1620        int i, size;
1621        char *realobj;
1622
1623        if (cachep->flags & SLAB_RED_ZONE) {
1624                pr_err("Redzone: 0x%llx/0x%llx\n",
1625                       *dbg_redzone1(cachep, objp),
1626                       *dbg_redzone2(cachep, objp));
1627        }
1628
1629        if (cachep->flags & SLAB_STORE_USER) {
1630                pr_err("Last user: [<%p>](%pSR)\n",
1631                       *dbg_userword(cachep, objp),
1632                       *dbg_userword(cachep, objp));
1633        }
1634        realobj = (char *)objp + obj_offset(cachep);
1635        size = cachep->object_size;
1636        for (i = 0; i < size && lines; i += 16, lines--) {
1637                int limit;
1638                limit = 16;
1639                if (i + limit > size)
1640                        limit = size - i;
1641                dump_line(realobj, i, limit);
1642        }
1643}
1644
1645static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1646{
1647        char *realobj;
1648        int size, i;
1649        int lines = 0;
1650
1651        if (is_debug_pagealloc_cache(cachep))
1652                return;
1653
1654        realobj = (char *)objp + obj_offset(cachep);
1655        size = cachep->object_size;
1656
1657        for (i = 0; i < size; i++) {
1658                char exp = POISON_FREE;
1659                if (i == size - 1)
1660                        exp = POISON_END;
1661                if (realobj[i] != exp) {
1662                        int limit;
1663                        /* Mismatch ! */
1664                        /* Print header */
1665                        if (lines == 0) {
1666                                pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1667                                       print_tainted(), cachep->name,
1668                                       realobj, size);
1669                                print_objinfo(cachep, objp, 0);
1670                        }
1671                        /* Hexdump the affected line */
1672                        i = (i / 16) * 16;
1673                        limit = 16;
1674                        if (i + limit > size)
1675                                limit = size - i;
1676                        dump_line(realobj, i, limit);
1677                        i += 16;
1678                        lines++;
1679                        /* Limit to 5 lines */
1680                        if (lines > 5)
1681                                break;
1682                }
1683        }
1684        if (lines != 0) {
1685                /* Print some data about the neighboring objects, if they
1686                 * exist:
1687                 */
1688                struct page *page = virt_to_head_page(objp);
1689                unsigned int objnr;
1690
1691                objnr = obj_to_index(cachep, page, objp);
1692                if (objnr) {
1693                        objp = index_to_obj(cachep, page, objnr - 1);
1694                        realobj = (char *)objp + obj_offset(cachep);
1695                        pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1696                        print_objinfo(cachep, objp, 2);
1697                }
1698                if (objnr + 1 < cachep->num) {
1699                        objp = index_to_obj(cachep, page, objnr + 1);
1700                        realobj = (char *)objp + obj_offset(cachep);
1701                        pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1702                        print_objinfo(cachep, objp, 2);
1703                }
1704        }
1705}
1706#endif
1707
1708#if DEBUG
1709static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1710                                                struct page *page)
1711{
1712        int i;
1713
1714        if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1715                poison_obj(cachep, page->freelist - obj_offset(cachep),
1716                        POISON_FREE);
1717        }
1718
1719        for (i = 0; i < cachep->num; i++) {
1720                void *objp = index_to_obj(cachep, page, i);
1721
1722                if (cachep->flags & SLAB_POISON) {
1723                        check_poison_obj(cachep, objp);
1724                        slab_kernel_map(cachep, objp, 1, 0);
1725                }
1726                if (cachep->flags & SLAB_RED_ZONE) {
1727                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1728                                slab_error(cachep, "start of a freed object was overwritten");
1729                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1730                                slab_error(cachep, "end of a freed object was overwritten");
1731                }
1732        }
1733}
1734#else
1735static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1736                                                struct page *page)
1737{
1738}
1739#endif
1740
1741/**
1742 * slab_destroy - destroy and release all objects in a slab
1743 * @cachep: cache pointer being destroyed
1744 * @page: page pointer being destroyed
1745 *
1746 * Destroy all the objs in a slab page, and release the mem back to the system.
1747 * Before calling the slab page must have been unlinked from the cache. The
1748 * kmem_cache_node ->list_lock is not held/needed.
1749 */
1750static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1751{
1752        void *freelist;
1753
1754        freelist = page->freelist;
1755        slab_destroy_debugcheck(cachep, page);
1756        if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1757                call_rcu(&page->rcu_head, kmem_rcu_free);
1758        else
1759                kmem_freepages(cachep, page);
1760
1761        /*
1762         * From now on, we don't use freelist
1763         * although actual page can be freed in rcu context
1764         */
1765        if (OFF_SLAB(cachep))
1766                kmem_cache_free(cachep->freelist_cache, freelist);
1767}
1768
1769static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1770{
1771        struct page *page, *n;
1772
1773        list_for_each_entry_safe(page, n, list, lru) {
1774                list_del(&page->lru);
1775                slab_destroy(cachep, page);
1776        }
1777}
1778
1779/**
1780 * calculate_slab_order - calculate size (page order) of slabs
1781 * @cachep: pointer to the cache that is being created
1782 * @size: size of objects to be created in this cache.
1783 * @flags: slab allocation flags
1784 *
1785 * Also calculates the number of objects per slab.
1786 *
1787 * This could be made much more intelligent.  For now, try to avoid using
1788 * high order pages for slabs.  When the gfp() functions are more friendly
1789 * towards high-order requests, this should be changed.
1790 */
1791static size_t calculate_slab_order(struct kmem_cache *cachep,
1792                                size_t size, unsigned long flags)
1793{
1794        size_t left_over = 0;
1795        int gfporder;
1796
1797        for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1798                unsigned int num;
1799                size_t remainder;
1800
1801                num = cache_estimate(gfporder, size, flags, &remainder);
1802                if (!num)
1803                        continue;
1804
1805                /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1806                if (num > SLAB_OBJ_MAX_NUM)
1807                        break;
1808
1809                if (flags & CFLGS_OFF_SLAB) {
1810                        struct kmem_cache *freelist_cache;
1811                        size_t freelist_size;
1812
1813                        freelist_size = num * sizeof(freelist_idx_t);
1814                        freelist_cache = kmalloc_slab(freelist_size, 0u);
1815                        if (!freelist_cache)
1816                                continue;
1817
1818                        /*
1819                         * Needed to avoid possible looping condition
1820                         * in cache_grow_begin()
1821                         */
1822                        if (OFF_SLAB(freelist_cache))
1823                                continue;
1824
1825                        /* check if off slab has enough benefit */
1826                        if (freelist_cache->size > cachep->size / 2)
1827                                continue;
1828                }
1829
1830                /* Found something acceptable - save it away */
1831                cachep->num = num;
1832                cachep->gfporder = gfporder;
1833                left_over = remainder;
1834
1835                /*
1836                 * A VFS-reclaimable slab tends to have most allocations
1837                 * as GFP_NOFS and we really don't want to have to be allocating
1838                 * higher-order pages when we are unable to shrink dcache.
1839                 */
1840                if (flags & SLAB_RECLAIM_ACCOUNT)
1841                        break;
1842
1843                /*
1844                 * Large number of objects is good, but very large slabs are
1845                 * currently bad for the gfp()s.
1846                 */
1847                if (gfporder >= slab_max_order)
1848                        break;
1849
1850                /*
1851                 * Acceptable internal fragmentation?
1852                 */
1853                if (left_over * 8 <= (PAGE_SIZE << gfporder))
1854                        break;
1855        }
1856        return left_over;
1857}
1858
1859static struct array_cache __percpu *alloc_kmem_cache_cpus(
1860                struct kmem_cache *cachep, int entries, int batchcount)
1861{
1862        int cpu;
1863        size_t size;
1864        struct array_cache __percpu *cpu_cache;
1865
1866        size = sizeof(void *) * entries + sizeof(struct array_cache);
1867        cpu_cache = __alloc_percpu(size, sizeof(void *));
1868
1869        if (!cpu_cache)
1870                return NULL;
1871
1872        for_each_possible_cpu(cpu) {
1873                init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1874                                entries, batchcount);
1875        }
1876
1877        return cpu_cache;
1878}
1879
1880static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1881{
1882        if (slab_state >= FULL)
1883                return enable_cpucache(cachep, gfp);
1884
1885        cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1886        if (!cachep->cpu_cache)
1887                return 1;
1888
1889        if (slab_state == DOWN) {
1890                /* Creation of first cache (kmem_cache). */
1891                set_up_node(kmem_cache, CACHE_CACHE);
1892        } else if (slab_state == PARTIAL) {
1893                /* For kmem_cache_node */
1894                set_up_node(cachep, SIZE_NODE);
1895        } else {
1896                int node;
1897
1898                for_each_online_node(node) {
1899                        cachep->node[node] = kmalloc_node(
1900                                sizeof(struct kmem_cache_node), gfp, node);
1901                        BUG_ON(!cachep->node[node]);
1902                        kmem_cache_node_init(cachep->node[node]);
1903                }
1904        }
1905
1906        cachep->node[numa_mem_id()]->next_reap =
1907                        jiffies + REAPTIMEOUT_NODE +
1908                        ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1909
1910        cpu_cache_get(cachep)->avail = 0;
1911        cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1912        cpu_cache_get(cachep)->batchcount = 1;
1913        cpu_cache_get(cachep)->touched = 0;
1914        cachep->batchcount = 1;
1915        cachep->limit = BOOT_CPUCACHE_ENTRIES;
1916        return 0;
1917}
1918
1919unsigned long kmem_cache_flags(unsigned long object_size,
1920        unsigned long flags, const char *name,
1921        void (*ctor)(void *))
1922{
1923        return flags;
1924}
1925
1926struct kmem_cache *
1927__kmem_cache_alias(const char *name, size_t size, size_t align,
1928                   unsigned long flags, void (*ctor)(void *))
1929{
1930        struct kmem_cache *cachep;
1931
1932        cachep = find_mergeable(size, align, flags, name, ctor);
1933        if (cachep) {
1934                cachep->refcount++;
1935
1936                /*
1937                 * Adjust the object sizes so that we clear
1938                 * the complete object on kzalloc.
1939                 */
1940                cachep->object_size = max_t(int, cachep->object_size, size);
1941        }
1942        return cachep;
1943}
1944
1945static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1946                        size_t size, unsigned long flags)
1947{
1948        size_t left;
1949
1950        cachep->num = 0;
1951
1952        if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1953                return false;
1954
1955        left = calculate_slab_order(cachep, size,
1956                        flags | CFLGS_OBJFREELIST_SLAB);
1957        if (!cachep->num)
1958                return false;
1959
1960        if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1961                return false;
1962
1963        cachep->colour = left / cachep->colour_off;
1964
1965        return true;
1966}
1967
1968static bool set_off_slab_cache(struct kmem_cache *cachep,
1969                        size_t size, unsigned long flags)
1970{
1971        size_t left;
1972
1973        cachep->num = 0;
1974
1975        /*
1976         * Always use on-slab management when SLAB_NOLEAKTRACE
1977         * to avoid recursive calls into kmemleak.
1978         */
1979        if (flags & SLAB_NOLEAKTRACE)
1980                return false;
1981
1982        /*
1983         * Size is large, assume best to place the slab management obj
1984         * off-slab (should allow better packing of objs).
1985         */
1986        left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1987        if (!cachep->num)
1988                return false;
1989
1990        /*
1991         * If the slab has been placed off-slab, and we have enough space then
1992         * move it on-slab. This is at the expense of any extra colouring.
1993         */
1994        if (left >= cachep->num * sizeof(freelist_idx_t))
1995                return false;
1996
1997        cachep->colour = left / cachep->colour_off;
1998
1999        return true;
2000}
2001
2002static bool set_on_slab_cache(struct kmem_cache *cachep,
2003                        size_t size, unsigned long flags)
2004{
2005        size_t left;
2006
2007        cachep->num = 0;
2008
2009        left = calculate_slab_order(cachep, size, flags);
2010        if (!cachep->num)
2011                return false;
2012
2013        cachep->colour = left / cachep->colour_off;
2014
2015        return true;
2016}
2017
2018/**
2019 * __kmem_cache_create - Create a cache.
2020 * @cachep: cache management descriptor
2021 * @flags: SLAB flags
2022 *
2023 * Returns a ptr to the cache on success, NULL on failure.
2024 * Cannot be called within a int, but can be interrupted.
2025 * The @ctor is run when new pages are allocated by the cache.
2026 *
2027 * The flags are
2028 *
2029 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2030 * to catch references to uninitialised memory.
2031 *
2032 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2033 * for buffer overruns.
2034 *
2035 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2036 * cacheline.  This can be beneficial if you're counting cycles as closely
2037 * as davem.
2038 */
2039int
2040__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2041{
2042        size_t ralign = BYTES_PER_WORD;
2043        gfp_t gfp;
2044        int err;
2045        size_t size = cachep->size;
2046
2047#if DEBUG
2048#if FORCED_DEBUG
2049        /*
2050         * Enable redzoning and last user accounting, except for caches with
2051         * large objects, if the increased size would increase the object size
2052         * above the next power of two: caches with object sizes just above a
2053         * power of two have a significant amount of internal fragmentation.
2054         */
2055        if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2056                                                2 * sizeof(unsigned long long)))
2057                flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2058        if (!(flags & SLAB_DESTROY_BY_RCU))
2059                flags |= SLAB_POISON;
2060#endif
2061#endif
2062
2063        /*
2064         * Check that size is in terms of words.  This is needed to avoid
2065         * unaligned accesses for some archs when redzoning is used, and makes
2066         * sure any on-slab bufctl's are also correctly aligned.
2067         */
2068        if (size & (BYTES_PER_WORD - 1)) {
2069                size += (BYTES_PER_WORD - 1);
2070                size &= ~(BYTES_PER_WORD - 1);
2071        }
2072
2073        if (flags & SLAB_RED_ZONE) {
2074                ralign = REDZONE_ALIGN;
2075                /* If redzoning, ensure that the second redzone is suitably
2076                 * aligned, by adjusting the object size accordingly. */
2077                size += REDZONE_ALIGN - 1;
2078                size &= ~(REDZONE_ALIGN - 1);
2079        }
2080
2081        /* 3) caller mandated alignment */
2082        if (ralign < cachep->align) {
2083                ralign = cachep->align;
2084        }
2085        /* disable debug if necessary */
2086        if (ralign > __alignof__(unsigned long long))
2087                flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2088        /*
2089         * 4) Store it.
2090         */
2091        cachep->align = ralign;
2092        cachep->colour_off = cache_line_size();
2093        /* Offset must be a multiple of the alignment. */
2094        if (cachep->colour_off < cachep->align)
2095                cachep->colour_off = cachep->align;
2096
2097        if (slab_is_available())
2098                gfp = GFP_KERNEL;
2099        else
2100                gfp = GFP_NOWAIT;
2101
2102#if DEBUG
2103
2104        /*
2105         * Both debugging options require word-alignment which is calculated
2106         * into align above.
2107         */
2108        if (flags & SLAB_RED_ZONE) {
2109                /* add space for red zone words */
2110                cachep->obj_offset += sizeof(unsigned long long);
2111                size += 2 * sizeof(unsigned long long);
2112        }
2113        if (flags & SLAB_STORE_USER) {
2114                /* user store requires one word storage behind the end of
2115                 * the real object. But if the second red zone needs to be
2116                 * aligned to 64 bits, we must allow that much space.
2117                 */
2118                if (flags & SLAB_RED_ZONE)
2119                        size += REDZONE_ALIGN;
2120                else
2121                        size += BYTES_PER_WORD;
2122        }
2123#endif
2124
2125        kasan_cache_create(cachep, &size, &flags);
2126
2127        size = ALIGN(size, cachep->align);
2128        /*
2129         * We should restrict the number of objects in a slab to implement
2130         * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2131         */
2132        if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2133                size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2134
2135#if DEBUG
2136        /*
2137         * To activate debug pagealloc, off-slab management is necessary
2138         * requirement. In early phase of initialization, small sized slab
2139         * doesn't get initialized so it would not be possible. So, we need
2140         * to check size >= 256. It guarantees that all necessary small
2141         * sized slab is initialized in current slab initialization sequence.
2142         */
2143        if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2144                size >= 256 && cachep->object_size > cache_line_size()) {
2145                if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2146                        size_t tmp_size = ALIGN(size, PAGE_SIZE);
2147
2148                        if (set_off_slab_cache(cachep, tmp_size, flags)) {
2149                                flags |= CFLGS_OFF_SLAB;
2150                                cachep->obj_offset += tmp_size - size;
2151                                size = tmp_size;
2152                                goto done;
2153                        }
2154                }
2155        }
2156#endif
2157
2158        if (set_objfreelist_slab_cache(cachep, size, flags)) {
2159                flags |= CFLGS_OBJFREELIST_SLAB;
2160                goto done;
2161        }
2162
2163        if (set_off_slab_cache(cachep, size, flags)) {
2164                flags |= CFLGS_OFF_SLAB;
2165                goto done;
2166        }
2167
2168        if (set_on_slab_cache(cachep, size, flags))
2169                goto done;
2170
2171        return -E2BIG;
2172
2173done:
2174        cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2175        cachep->flags = flags;
2176        cachep->allocflags = __GFP_COMP;
2177        if (flags & SLAB_CACHE_DMA)
2178                cachep->allocflags |= GFP_DMA;
2179        cachep->size = size;
2180        cachep->reciprocal_buffer_size = reciprocal_value(size);
2181
2182#if DEBUG
2183        /*
2184         * If we're going to use the generic kernel_map_pages()
2185         * poisoning, then it's going to smash the contents of
2186         * the redzone and userword anyhow, so switch them off.
2187         */
2188        if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2189                (cachep->flags & SLAB_POISON) &&
2190                is_debug_pagealloc_cache(cachep))
2191                cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2192#endif
2193
2194        if (OFF_SLAB(cachep)) {
2195                cachep->freelist_cache =
2196                        kmalloc_slab(cachep->freelist_size, 0u);
2197        }
2198
2199        err = setup_cpu_cache(cachep, gfp);
2200        if (err) {
2201                __kmem_cache_release(cachep);
2202                return err;
2203        }
2204
2205        return 0;
2206}
2207
2208#if DEBUG
2209static void check_irq_off(void)
2210{
2211        BUG_ON(!irqs_disabled());
2212}
2213
2214static void check_irq_on(void)
2215{
2216        BUG_ON(irqs_disabled());
2217}
2218
2219static void check_mutex_acquired(void)
2220{
2221        BUG_ON(!mutex_is_locked(&slab_mutex));
2222}
2223
2224static void check_spinlock_acquired(struct kmem_cache *cachep)
2225{
2226#ifdef CONFIG_SMP
2227        check_irq_off();
2228        assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2229#endif
2230}
2231
2232static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2233{
2234#ifdef CONFIG_SMP
2235        check_irq_off();
2236        assert_spin_locked(&get_node(cachep, node)->list_lock);
2237#endif
2238}
2239
2240#else
2241#define check_irq_off() do { } while(0)
2242#define check_irq_on()  do { } while(0)
2243#define check_mutex_acquired()  do { } while(0)
2244#define check_spinlock_acquired(x) do { } while(0)
2245#define check_spinlock_acquired_node(x, y) do { } while(0)
2246#endif
2247
2248static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2249                                int node, bool free_all, struct list_head *list)
2250{
2251        int tofree;
2252
2253        if (!ac || !ac->avail)
2254                return;
2255
2256        tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2257        if (tofree > ac->avail)
2258                tofree = (ac->avail + 1) / 2;
2259
2260        free_block(cachep, ac->entry, tofree, node, list);
2261        ac->avail -= tofree;
2262        memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2263}
2264
2265static void do_drain(void *arg)
2266{
2267        struct kmem_cache *cachep = arg;
2268        struct array_cache *ac;
2269        int node = numa_mem_id();
2270        struct kmem_cache_node *n;
2271        LIST_HEAD(list);
2272
2273        check_irq_off();
2274        ac = cpu_cache_get(cachep);
2275        n = get_node(cachep, node);
2276        spin_lock(&n->list_lock);
2277        free_block(cachep, ac->entry, ac->avail, node, &list);
2278        spin_unlock(&n->list_lock);
2279        slabs_destroy(cachep, &list);
2280        ac->avail = 0;
2281}
2282
2283static void drain_cpu_caches(struct kmem_cache *cachep)
2284{
2285        struct kmem_cache_node *n;
2286        int node;
2287        LIST_HEAD(list);
2288
2289        on_each_cpu(do_drain, cachep, 1);
2290        check_irq_on();
2291        for_each_kmem_cache_node(cachep, node, n)
2292                if (n->alien)
2293                        drain_alien_cache(cachep, n->alien);
2294
2295        for_each_kmem_cache_node(cachep, node, n) {
2296                spin_lock_irq(&n->list_lock);
2297                drain_array_locked(cachep, n->shared, node, true, &list);
2298                spin_unlock_irq(&n->list_lock);
2299
2300                slabs_destroy(cachep, &list);
2301        }
2302}
2303
2304/*
2305 * Remove slabs from the list of free slabs.
2306 * Specify the number of slabs to drain in tofree.
2307 *
2308 * Returns the actual number of slabs released.
2309 */
2310static int drain_freelist(struct kmem_cache *cache,
2311                        struct kmem_cache_node *n, int tofree)
2312{
2313        struct list_head *p;
2314        int nr_freed;
2315        struct page *page;
2316
2317        nr_freed = 0;
2318        while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2319
2320                spin_lock_irq(&n->list_lock);
2321                p = n->slabs_free.prev;
2322                if (p == &n->slabs_free) {
2323                        spin_unlock_irq(&n->list_lock);
2324                        goto out;
2325                }
2326
2327                page = list_entry(p, struct page, lru);
2328                list_del(&page->lru);
2329                /*
2330                 * Safe to drop the lock. The slab is no longer linked
2331                 * to the cache.
2332                 */
2333                n->free_objects -= cache->num;
2334                spin_unlock_irq(&n->list_lock);
2335                slab_destroy(cache, page);
2336                nr_freed++;
2337        }
2338out:
2339        return nr_freed;
2340}
2341
2342int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2343{
2344        int ret = 0;
2345        int node;
2346        struct kmem_cache_node *n;
2347
2348        drain_cpu_caches(cachep);
2349
2350        check_irq_on();
2351        for_each_kmem_cache_node(cachep, node, n) {
2352                drain_freelist(cachep, n, INT_MAX);
2353
2354                ret += !list_empty(&n->slabs_full) ||
2355                        !list_empty(&n->slabs_partial);
2356        }
2357        return (ret ? 1 : 0);
2358}
2359
2360int __kmem_cache_shutdown(struct kmem_cache *cachep)
2361{
2362        return __kmem_cache_shrink(cachep, false);
2363}
2364
2365void __kmem_cache_release(struct kmem_cache *cachep)
2366{
2367        int i;
2368        struct kmem_cache_node *n;
2369
2370        cache_random_seq_destroy(cachep);
2371
2372        free_percpu(cachep->cpu_cache);
2373
2374        /* NUMA: free the node structures */
2375        for_each_kmem_cache_node(cachep, i, n) {
2376                kfree(n->shared);
2377                free_alien_cache(n->alien);
2378                kfree(n);
2379                cachep->node[i] = NULL;
2380        }
2381}
2382
2383/*
2384 * Get the memory for a slab management obj.
2385 *
2386 * For a slab cache when the slab descriptor is off-slab, the
2387 * slab descriptor can't come from the same cache which is being created,
2388 * Because if it is the case, that means we defer the creation of
2389 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2390 * And we eventually call down to __kmem_cache_create(), which
2391 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2392 * This is a "chicken-and-egg" problem.
2393 *
2394 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2395 * which are all initialized during kmem_cache_init().
2396 */
2397static void *alloc_slabmgmt(struct kmem_cache *cachep,
2398                                   struct page *page, int colour_off,
2399                                   gfp_t local_flags, int nodeid)
2400{
2401        void *freelist;
2402        void *addr = page_address(page);
2403
2404        page->s_mem = addr + colour_off;
2405        page->active = 0;
2406
2407        if (OBJFREELIST_SLAB(cachep))
2408                freelist = NULL;
2409        else if (OFF_SLAB(cachep)) {
2410                /* Slab management obj is off-slab. */
2411                freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2412                                              local_flags, nodeid);
2413                if (!freelist)
2414                        return NULL;
2415        } else {
2416                /* We will use last bytes at the slab for freelist */
2417                freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2418                                cachep->freelist_size;
2419        }
2420
2421        return freelist;
2422}
2423
2424static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2425{
2426        return ((freelist_idx_t *)page->freelist)[idx];
2427}
2428
2429static inline void set_free_obj(struct page *page,
2430                                        unsigned int idx, freelist_idx_t val)
2431{
2432        ((freelist_idx_t *)(page->freelist))[idx] = val;
2433}
2434
2435static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2436{
2437#if DEBUG
2438        int i;
2439
2440        for (i = 0; i < cachep->num; i++) {
2441                void *objp = index_to_obj(cachep, page, i);
2442
2443                if (cachep->flags & SLAB_STORE_USER)
2444                        *dbg_userword(cachep, objp) = NULL;
2445
2446                if (cachep->flags & SLAB_RED_ZONE) {
2447                        *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2448                        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2449                }
2450                /*
2451                 * Constructors are not allowed to allocate memory from the same
2452                 * cache which they are a constructor for.  Otherwise, deadlock.
2453                 * They must also be threaded.
2454                 */
2455                if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2456                        kasan_unpoison_object_data(cachep,
2457                                                   objp + obj_offset(cachep));
2458                        cachep->ctor(objp + obj_offset(cachep));
2459                        kasan_poison_object_data(
2460                                cachep, objp + obj_offset(cachep));
2461                }
2462
2463                if (cachep->flags & SLAB_RED_ZONE) {
2464                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2465                                slab_error(cachep, "constructor overwrote the end of an object");
2466                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2467                                slab_error(cachep, "constructor overwrote the start of an object");
2468                }
2469                /* need to poison the objs? */
2470                if (cachep->flags & SLAB_POISON) {
2471                        poison_obj(cachep, objp, POISON_FREE);
2472                        slab_kernel_map(cachep, objp, 0, 0);
2473                }
2474        }
2475#endif
2476}
2477
2478#ifdef CONFIG_SLAB_FREELIST_RANDOM
2479/* Hold information during a freelist initialization */
2480union freelist_init_state {
2481        struct {
2482                unsigned int pos;
2483                unsigned int *list;
2484                unsigned int count;
2485                unsigned int rand;
2486        };
2487        struct rnd_state rnd_state;
2488};
2489
2490/*
2491 * Initialize the state based on the randomization methode available.
2492 * return true if the pre-computed list is available, false otherwize.
2493 */
2494static bool freelist_state_initialize(union freelist_init_state *state,
2495                                struct kmem_cache *cachep,
2496                                unsigned int count)
2497{
2498        bool ret;
2499        unsigned int rand;
2500
2501        /* Use best entropy available to define a random shift */
2502        rand = get_random_int();
2503
2504        /* Use a random state if the pre-computed list is not available */
2505        if (!cachep->random_seq) {
2506                prandom_seed_state(&state->rnd_state, rand);
2507                ret = false;
2508        } else {
2509                state->list = cachep->random_seq;
2510                state->count = count;
2511                state->pos = 0;
2512                state->rand = rand;
2513                ret = true;
2514        }
2515        return ret;
2516}
2517
2518/* Get the next entry on the list and randomize it using a random shift */
2519static freelist_idx_t next_random_slot(union freelist_init_state *state)
2520{
2521        return (state->list[state->pos++] + state->rand) % state->count;
2522}
2523
2524/* Swap two freelist entries */
2525static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2526{
2527        swap(((freelist_idx_t *)page->freelist)[a],
2528                ((freelist_idx_t *)page->freelist)[b]);
2529}
2530
2531/*
2532 * Shuffle the freelist initialization state based on pre-computed lists.
2533 * return true if the list was successfully shuffled, false otherwise.
2534 */
2535static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2536{
2537        unsigned int objfreelist = 0, i, rand, count = cachep->num;
2538        union freelist_init_state state;
2539        bool precomputed;
2540
2541        if (count < 2)
2542                return false;
2543
2544        precomputed = freelist_state_initialize(&state, cachep, count);
2545
2546        /* Take a random entry as the objfreelist */
2547        if (OBJFREELIST_SLAB(cachep)) {
2548                if (!precomputed)
2549                        objfreelist = count - 1;
2550                else
2551                        objfreelist = next_random_slot(&state);
2552                page->freelist = index_to_obj(cachep, page, objfreelist) +
2553                                                obj_offset(cachep);
2554                count--;
2555        }
2556
2557        /*
2558         * On early boot, generate the list dynamically.
2559         * Later use a pre-computed list for speed.
2560         */
2561        if (!precomputed) {
2562                for (i = 0; i < count; i++)
2563                        set_free_obj(page, i, i);
2564
2565                /* Fisher-Yates shuffle */
2566                for (i = count - 1; i > 0; i--) {
2567                        rand = prandom_u32_state(&state.rnd_state);
2568                        rand %= (i + 1);
2569                        swap_free_obj(page, i, rand);
2570                }
2571        } else {
2572                for (i = 0; i < count; i++)
2573                        set_free_obj(page, i, next_random_slot(&state));
2574        }
2575
2576        if (OBJFREELIST_SLAB(cachep))
2577                set_free_obj(page, cachep->num - 1, objfreelist);
2578
2579        return true;
2580}
2581#else
2582static inline bool shuffle_freelist(struct kmem_cache *cachep,
2583                                struct page *page)
2584{
2585        return false;
2586}
2587#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2588
2589static void cache_init_objs(struct kmem_cache *cachep,
2590                            struct page *page)
2591{
2592        int i;
2593        void *objp;
2594        bool shuffled;
2595
2596        cache_init_objs_debug(cachep, page);
2597
2598        /* Try to randomize the freelist if enabled */
2599        shuffled = shuffle_freelist(cachep, page);
2600
2601        if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2602                page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2603                                                obj_offset(cachep);
2604        }
2605
2606        for (i = 0; i < cachep->num; i++) {
2607                objp = index_to_obj(cachep, page, i);
2608                kasan_init_slab_obj(cachep, objp);
2609
2610                /* constructor could break poison info */
2611                if (DEBUG == 0 && cachep->ctor) {
2612                        kasan_unpoison_object_data(cachep, objp);
2613                        cachep->ctor(objp);
2614                        kasan_poison_object_data(cachep, objp);
2615                }
2616
2617                if (!shuffled)
2618                        set_free_obj(page, i, i);
2619        }
2620}
2621
2622static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2623{
2624        void *objp;
2625
2626        objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2627        page->active++;
2628
2629#if DEBUG
2630        if (cachep->flags & SLAB_STORE_USER)
2631                set_store_user_dirty(cachep);
2632#endif
2633
2634        return objp;
2635}
2636
2637static void slab_put_obj(struct kmem_cache *cachep,
2638                        struct page *page, void *objp)
2639{
2640        unsigned int objnr = obj_to_index(cachep, page, objp);
2641#if DEBUG
2642        unsigned int i;
2643
2644        /* Verify double free bug */
2645        for (i = page->active; i < cachep->num; i++) {
2646                if (get_free_obj(page, i) == objnr) {
2647                        pr_err("slab: double free detected in cache '%s', objp %p\n",
2648                               cachep->name, objp);
2649                        BUG();
2650                }
2651        }
2652#endif
2653        page->active--;
2654        if (!page->freelist)
2655                page->freelist = objp + obj_offset(cachep);
2656
2657        set_free_obj(page, page->active, objnr);
2658}
2659
2660/*
2661 * Map pages beginning at addr to the given cache and slab. This is required
2662 * for the slab allocator to be able to lookup the cache and slab of a
2663 * virtual address for kfree, ksize, and slab debugging.
2664 */
2665static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2666                           void *freelist)
2667{
2668        page->slab_cache = cache;
2669        page->freelist = freelist;
2670}
2671
2672/*
2673 * Grow (by 1) the number of slabs within a cache.  This is called by
2674 * kmem_cache_alloc() when there are no active objs left in a cache.
2675 */
2676static struct page *cache_grow_begin(struct kmem_cache *cachep,
2677                                gfp_t flags, int nodeid)
2678{
2679        void *freelist;
2680        size_t offset;
2681        gfp_t local_flags;
2682        int page_node;
2683        struct kmem_cache_node *n;
2684        struct page *page;
2685
2686        /*
2687         * Be lazy and only check for valid flags here,  keeping it out of the
2688         * critical path in kmem_cache_alloc().
2689         */
2690        if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2691                gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2692                flags &= ~GFP_SLAB_BUG_MASK;
2693                pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2694                                invalid_mask, &invalid_mask, flags, &flags);
2695                dump_stack();
2696        }
2697        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2698
2699        check_irq_off();
2700        if (gfpflags_allow_blocking(local_flags))
2701                local_irq_enable();
2702
2703        /*
2704         * Get mem for the objs.  Attempt to allocate a physical page from
2705         * 'nodeid'.
2706         */
2707        page = kmem_getpages(cachep, local_flags, nodeid);
2708        if (!page)
2709                goto failed;
2710
2711        page_node = page_to_nid(page);
2712        n = get_node(cachep, page_node);
2713
2714        /* Get colour for the slab, and cal the next value. */
2715        n->colour_next++;
2716        if (n->colour_next >= cachep->colour)
2717                n->colour_next = 0;
2718
2719        offset = n->colour_next;
2720        if (offset >= cachep->colour)
2721                offset = 0;
2722
2723        offset *= cachep->colour_off;
2724
2725        /* Get slab management. */
2726        freelist = alloc_slabmgmt(cachep, page, offset,
2727                        local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2728        if (OFF_SLAB(cachep) && !freelist)
2729                goto opps1;
2730
2731        slab_map_pages(cachep, page, freelist);
2732
2733        kasan_poison_slab(page);
2734        cache_init_objs(cachep, page);
2735
2736        if (gfpflags_allow_blocking(local_flags))
2737                local_irq_disable();
2738
2739        return page;
2740
2741opps1:
2742        kmem_freepages(cachep, page);
2743failed:
2744        if (gfpflags_allow_blocking(local_flags))
2745                local_irq_disable();
2746        return NULL;
2747}
2748
2749static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2750{
2751        struct kmem_cache_node *n;
2752        void *list = NULL;
2753
2754        check_irq_off();
2755
2756        if (!page)
2757                return;
2758
2759        INIT_LIST_HEAD(&page->lru);
2760        n = get_node(cachep, page_to_nid(page));
2761
2762        spin_lock(&n->list_lock);
2763        if (!page->active)
2764                list_add_tail(&page->lru, &(n->slabs_free));
2765        else
2766                fixup_slab_list(cachep, n, page, &list);
2767        STATS_INC_GROWN(cachep);
2768        n->free_objects += cachep->num - page->active;
2769        spin_unlock(&n->list_lock);
2770
2771        fixup_objfreelist_debug(cachep, &list);
2772}
2773
2774#if DEBUG
2775
2776/*
2777 * Perform extra freeing checks:
2778 * - detect bad pointers.
2779 * - POISON/RED_ZONE checking
2780 */
2781static void kfree_debugcheck(const void *objp)
2782{
2783        if (!virt_addr_valid(objp)) {
2784                pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2785                       (unsigned long)objp);
2786                BUG();
2787        }
2788}
2789
2790static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2791{
2792        unsigned long long redzone1, redzone2;
2793
2794        redzone1 = *dbg_redzone1(cache, obj);
2795        redzone2 = *dbg_redzone2(cache, obj);
2796
2797        /*
2798         * Redzone is ok.
2799         */
2800        if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2801                return;
2802
2803        if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2804                slab_error(cache, "double free detected");
2805        else
2806                slab_error(cache, "memory outside object was overwritten");
2807
2808        pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2809               obj, redzone1, redzone2);
2810}
2811
2812static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2813                                   unsigned long caller)
2814{
2815        unsigned int objnr;
2816        struct page *page;
2817
2818        BUG_ON(virt_to_cache(objp) != cachep);
2819
2820        objp -= obj_offset(cachep);
2821        kfree_debugcheck(objp);
2822        page = virt_to_head_page(objp);
2823
2824        if (cachep->flags & SLAB_RED_ZONE) {
2825                verify_redzone_free(cachep, objp);
2826                *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2827                *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2828        }
2829        if (cachep->flags & SLAB_STORE_USER) {
2830                set_store_user_dirty(cachep);
2831                *dbg_userword(cachep, objp) = (void *)caller;
2832        }
2833
2834        objnr = obj_to_index(cachep, page, objp);
2835
2836        BUG_ON(objnr >= cachep->num);
2837        BUG_ON(objp != index_to_obj(cachep, page, objnr));
2838
2839        if (cachep->flags & SLAB_POISON) {
2840                poison_obj(cachep, objp, POISON_FREE);
2841                slab_kernel_map(cachep, objp, 0, caller);
2842        }
2843        return objp;
2844}
2845
2846#else
2847#define kfree_debugcheck(x) do { } while(0)
2848#define cache_free_debugcheck(x,objp,z) (objp)
2849#endif
2850
2851static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2852                                                void **list)
2853{
2854#if DEBUG
2855        void *next = *list;
2856        void *objp;
2857
2858        while (next) {
2859                objp = next - obj_offset(cachep);
2860                next = *(void **)next;
2861                poison_obj(cachep, objp, POISON_FREE);
2862        }
2863#endif
2864}
2865
2866static inline void fixup_slab_list(struct kmem_cache *cachep,
2867                                struct kmem_cache_node *n, struct page *page,
2868                                void **list)
2869{
2870        /* move slabp to correct slabp list: */
2871        list_del(&page->lru);
2872        if (page->active == cachep->num) {
2873                list_add(&page->lru, &n->slabs_full);
2874                if (OBJFREELIST_SLAB(cachep)) {
2875#if DEBUG
2876                        /* Poisoning will be done without holding the lock */
2877                        if (cachep->flags & SLAB_POISON) {
2878                                void **objp = page->freelist;
2879
2880                                *objp = *list;
2881                                *list = objp;
2882                        }
2883#endif
2884                        page->freelist = NULL;
2885                }
2886        } else
2887                list_add(&page->lru, &n->slabs_partial);
2888}
2889
2890/* Try to find non-pfmemalloc slab if needed */
2891static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2892                                        struct page *page, bool pfmemalloc)
2893{
2894        if (!page)
2895                return NULL;
2896
2897        if (pfmemalloc)
2898                return page;
2899
2900        if (!PageSlabPfmemalloc(page))
2901                return page;
2902
2903        /* No need to keep pfmemalloc slab if we have enough free objects */
2904        if (n->free_objects > n->free_limit) {
2905                ClearPageSlabPfmemalloc(page);
2906                return page;
2907        }
2908
2909        /* Move pfmemalloc slab to the end of list to speed up next search */
2910        list_del(&page->lru);
2911        if (!page->active)
2912                list_add_tail(&page->lru, &n->slabs_free);
2913        else
2914                list_add_tail(&page->lru, &n->slabs_partial);
2915
2916        list_for_each_entry(page, &n->slabs_partial, lru) {
2917                if (!PageSlabPfmemalloc(page))
2918                        return page;
2919        }
2920
2921        list_for_each_entry(page, &n->slabs_free, lru) {
2922                if (!PageSlabPfmemalloc(page))
2923                        return page;
2924        }
2925
2926        return NULL;
2927}
2928
2929static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2930{
2931        struct page *page;
2932
2933        page = list_first_entry_or_null(&n->slabs_partial,
2934                        struct page, lru);
2935        if (!page) {
2936                n->free_touched = 1;
2937                page = list_first_entry_or_null(&n->slabs_free,
2938                                struct page, lru);
2939        }
2940
2941        if (sk_memalloc_socks())
2942                return get_valid_first_slab(n, page, pfmemalloc);
2943
2944        return page;
2945}
2946
2947static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2948                                struct kmem_cache_node *n, gfp_t flags)
2949{
2950        struct page *page;
2951        void *obj;
2952        void *list = NULL;
2953
2954        if (!gfp_pfmemalloc_allowed(flags))
2955                return NULL;
2956
2957        spin_lock(&n->list_lock);
2958        page = get_first_slab(n, true);
2959        if (!page) {
2960                spin_unlock(&n->list_lock);
2961                return NULL;
2962        }
2963
2964        obj = slab_get_obj(cachep, page);
2965        n->free_objects--;
2966
2967        fixup_slab_list(cachep, n, page, &list);
2968
2969        spin_unlock(&n->list_lock);
2970        fixup_objfreelist_debug(cachep, &list);
2971
2972        return obj;
2973}
2974
2975/*
2976 * Slab list should be fixed up by fixup_slab_list() for existing slab
2977 * or cache_grow_end() for new slab
2978 */
2979static __always_inline int alloc_block(struct kmem_cache *cachep,
2980                struct array_cache *ac, struct page *page, int batchcount)
2981{
2982        /*
2983         * There must be at least one object available for
2984         * allocation.
2985         */
2986        BUG_ON(page->active >= cachep->num);
2987
2988        while (page->active < cachep->num && batchcount--) {
2989                STATS_INC_ALLOCED(cachep);
2990                STATS_INC_ACTIVE(cachep);
2991                STATS_SET_HIGH(cachep);
2992
2993                ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2994        }
2995
2996        return batchcount;
2997}
2998
2999static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3000{
3001        int batchcount;
3002        struct kmem_cache_node *n;
3003        struct array_cache *ac, *shared;
3004        int node;
3005        void *list = NULL;
3006        struct page *page;
3007
3008        check_irq_off();
3009        node = numa_mem_id();
3010
3011        ac = cpu_cache_get(cachep);
3012        batchcount = ac->batchcount;
3013        if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3014                /*
3015                 * If there was little recent activity on this cache, then
3016                 * perform only a partial refill.  Otherwise we could generate
3017                 * refill bouncing.
3018                 */
3019                batchcount = BATCHREFILL_LIMIT;
3020        }
3021        n = get_node(cachep, node);
3022
3023        BUG_ON(ac->avail > 0 || !n);
3024        shared = READ_ONCE(n->shared);
3025        if (!n->free_objects && (!shared || !shared->avail))
3026                goto direct_grow;
3027
3028        spin_lock(&n->list_lock);
3029        shared = READ_ONCE(n->shared);
3030
3031        /* See if we can refill from the shared array */
3032        if (shared && transfer_objects(ac, shared, batchcount)) {
3033                shared->touched = 1;
3034                goto alloc_done;
3035        }
3036
3037        while (batchcount > 0) {
3038                /* Get slab alloc is to come from. */
3039                page = get_first_slab(n, false);
3040                if (!page)
3041                        goto must_grow;
3042
3043                check_spinlock_acquired(cachep);
3044
3045                batchcount = alloc_block(cachep, ac, page, batchcount);
3046                fixup_slab_list(cachep, n, page, &list);
3047        }
3048
3049must_grow:
3050        n->free_objects -= ac->avail;
3051alloc_done:
3052        spin_unlock(&n->list_lock);
3053        fixup_objfreelist_debug(cachep, &list);
3054
3055direct_grow:
3056        if (unlikely(!ac->avail)) {
3057                /* Check if we can use obj in pfmemalloc slab */
3058                if (sk_memalloc_socks()) {
3059                        void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3060
3061                        if (obj)
3062                                return obj;
3063                }
3064
3065                page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3066
3067                /*
3068                 * cache_grow_begin() can reenable interrupts,
3069                 * then ac could change.
3070                 */
3071                ac = cpu_cache_get(cachep);
3072                if (!ac->avail && page)
3073                        alloc_block(cachep, ac, page, batchcount);
3074                cache_grow_end(cachep, page);
3075
3076                if (!ac->avail)
3077                        return NULL;
3078        }
3079        ac->touched = 1;
3080
3081        return ac->entry[--ac->avail];
3082}
3083
3084static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3085                                                gfp_t flags)
3086{
3087        might_sleep_if(gfpflags_allow_blocking(flags));
3088}
3089
3090#if DEBUG
3091static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3092                                gfp_t flags, void *objp, unsigned long caller)
3093{
3094        if (!objp)
3095                return objp;
3096        if (cachep->flags & SLAB_POISON) {
3097                check_poison_obj(cachep, objp);
3098                slab_kernel_map(cachep, objp, 1, 0);
3099                poison_obj(cachep, objp, POISON_INUSE);
3100        }
3101        if (cachep->flags & SLAB_STORE_USER)
3102                *dbg_userword(cachep, objp) = (void *)caller;
3103
3104        if (cachep->flags & SLAB_RED_ZONE) {
3105                if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3106                                *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3107                        slab_error(cachep, "double free, or memory outside object was overwritten");
3108                        pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3109                               objp, *dbg_redzone1(cachep, objp),
3110                               *dbg_redzone2(cachep, objp));
3111                }
3112                *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3113                *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3114        }
3115
3116        objp += obj_offset(cachep);
3117        if (cachep->ctor && cachep->flags & SLAB_POISON)
3118                cachep->ctor(objp);
3119        if (ARCH_SLAB_MINALIGN &&
3120            ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3121                pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3122                       objp, (int)ARCH_SLAB_MINALIGN);
3123        }
3124        return objp;
3125}
3126#else
3127#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3128#endif
3129
3130static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3131{
3132        void *objp;
3133        struct array_cache *ac;
3134
3135        check_irq_off();
3136
3137        ac = cpu_cache_get(cachep);
3138        if (likely(ac->avail)) {
3139                ac->touched = 1;
3140                objp = ac->entry[--ac->avail];
3141
3142                STATS_INC_ALLOCHIT(cachep);
3143                goto out;
3144        }
3145
3146        STATS_INC_ALLOCMISS(cachep);
3147        objp = cache_alloc_refill(cachep, flags);
3148        /*
3149         * the 'ac' may be updated by cache_alloc_refill(),
3150         * and kmemleak_erase() requires its correct value.
3151         */
3152        ac = cpu_cache_get(cachep);
3153
3154out:
3155        /*
3156         * To avoid a false negative, if an object that is in one of the
3157         * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3158         * treat the array pointers as a reference to the object.
3159         */
3160        if (objp)
3161                kmemleak_erase(&ac->entry[ac->avail]);
3162        return objp;
3163}
3164
3165#ifdef CONFIG_NUMA
3166/*
3167 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3168 *
3169 * If we are in_interrupt, then process context, including cpusets and
3170 * mempolicy, may not apply and should not be used for allocation policy.
3171 */
3172static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3173{
3174        int nid_alloc, nid_here;
3175
3176        if (in_interrupt() || (flags & __GFP_THISNODE))
3177                return NULL;
3178        nid_alloc = nid_here = numa_mem_id();
3179        if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3180                nid_alloc = cpuset_slab_spread_node();
3181        else if (current->mempolicy)
3182                nid_alloc = mempolicy_slab_node();
3183        if (nid_alloc != nid_here)
3184                return ____cache_alloc_node(cachep, flags, nid_alloc);
3185        return NULL;
3186}
3187
3188/*
3189 * Fallback function if there was no memory available and no objects on a
3190 * certain node and fall back is permitted. First we scan all the
3191 * available node for available objects. If that fails then we
3192 * perform an allocation without specifying a node. This allows the page
3193 * allocator to do its reclaim / fallback magic. We then insert the
3194 * slab into the proper nodelist and then allocate from it.
3195 */
3196static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3197{
3198        struct zonelist *zonelist;
3199        struct zoneref *z;
3200        struct zone *zone;
3201        enum zone_type high_zoneidx = gfp_zone(flags);
3202        void *obj = NULL;
3203        struct page *page;
3204        int nid;
3205        unsigned int cpuset_mems_cookie;
3206
3207        if (flags & __GFP_THISNODE)
3208                return NULL;
3209
3210retry_cpuset:
3211        cpuset_mems_cookie = read_mems_allowed_begin();
3212        zonelist = node_zonelist(mempolicy_slab_node(), flags);
3213
3214retry:
3215        /*
3216         * Look through allowed nodes for objects available
3217         * from existing per node queues.
3218         */
3219        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3220                nid = zone_to_nid(zone);
3221
3222                if (cpuset_zone_allowed(zone, flags) &&
3223                        get_node(cache, nid) &&
3224                        get_node(cache, nid)->free_objects) {
3225                                obj = ____cache_alloc_node(cache,
3226                                        gfp_exact_node(flags), nid);
3227                                if (obj)
3228                                        break;
3229                }
3230        }
3231
3232        if (!obj) {
3233                /*
3234                 * This allocation will be performed within the constraints
3235                 * of the current cpuset / memory policy requirements.
3236                 * We may trigger various forms of reclaim on the allowed
3237                 * set and go into memory reserves if necessary.
3238                 */
3239                page = cache_grow_begin(cache, flags, numa_mem_id());
3240                cache_grow_end(cache, page);
3241                if (page) {
3242                        nid = page_to_nid(page);
3243                        obj = ____cache_alloc_node(cache,
3244                                gfp_exact_node(flags), nid);
3245
3246                        /*
3247                         * Another processor may allocate the objects in
3248                         * the slab since we are not holding any locks.
3249                         */
3250                        if (!obj)
3251                                goto retry;
3252                }
3253        }
3254
3255        if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3256                goto retry_cpuset;
3257        return obj;
3258}
3259
3260/*
3261 * A interface to enable slab creation on nodeid
3262 */
3263static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3264                                int nodeid)
3265{
3266        struct page *page;
3267        struct kmem_cache_node *n;
3268        void *obj = NULL;
3269        void *list = NULL;
3270
3271        VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3272        n = get_node(cachep, nodeid);
3273        BUG_ON(!n);
3274
3275        check_irq_off();
3276        spin_lock(&n->list_lock);
3277        page = get_first_slab(n, false);
3278        if (!page)
3279                goto must_grow;
3280
3281        check_spinlock_acquired_node(cachep, nodeid);
3282
3283        STATS_INC_NODEALLOCS(cachep);
3284        STATS_INC_ACTIVE(cachep);
3285        STATS_SET_HIGH(cachep);
3286
3287        BUG_ON(page->active == cachep->num);
3288
3289        obj = slab_get_obj(cachep, page);
3290        n->free_objects--;
3291
3292        fixup_slab_list(cachep, n, page, &list);
3293
3294        spin_unlock(&n->list_lock);
3295        fixup_objfreelist_debug(cachep, &list);
3296        return obj;
3297
3298must_grow:
3299        spin_unlock(&n->list_lock);
3300        page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3301        if (page) {
3302                /* This slab isn't counted yet so don't update free_objects */
3303                obj = slab_get_obj(cachep, page);
3304        }
3305        cache_grow_end(cachep, page);
3306
3307        return obj ? obj : fallback_alloc(cachep, flags);
3308}
3309
3310static __always_inline void *
3311slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3312                   unsigned long caller)
3313{
3314        unsigned long save_flags;
3315        void *ptr;
3316        int slab_node = numa_mem_id();
3317
3318        flags &= gfp_allowed_mask;
3319        cachep = slab_pre_alloc_hook(cachep, flags);
3320        if (unlikely(!cachep))
3321                return NULL;
3322
3323        cache_alloc_debugcheck_before(cachep, flags);
3324        local_irq_save(save_flags);
3325
3326        if (nodeid == NUMA_NO_NODE)
3327                nodeid = slab_node;
3328
3329        if (unlikely(!get_node(cachep, nodeid))) {
3330                /* Node not bootstrapped yet */
3331                ptr = fallback_alloc(cachep, flags);
3332                goto out;
3333        }
3334
3335        if (nodeid == slab_node) {
3336                /*
3337                 * Use the locally cached objects if possible.
3338                 * However ____cache_alloc does not allow fallback
3339                 * to other nodes. It may fail while we still have
3340                 * objects on other nodes available.
3341                 */
3342                ptr = ____cache_alloc(cachep, flags);
3343                if (ptr)
3344                        goto out;
3345        }
3346        /* ___cache_alloc_node can fall back to other nodes */
3347        ptr = ____cache_alloc_node(cachep, flags, nodeid);
3348  out:
3349        local_irq_restore(save_flags);
3350        ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3351
3352        if (unlikely(flags & __GFP_ZERO) && ptr)
3353                memset(ptr, 0, cachep->object_size);
3354
3355        slab_post_alloc_hook(cachep, flags, 1, &ptr);
3356        return ptr;
3357}
3358
3359static __always_inline void *
3360__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3361{
3362        void *objp;
3363
3364        if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3365                objp = alternate_node_alloc(cache, flags);
3366                if (objp)
3367                        goto out;
3368        }
3369        objp = ____cache_alloc(cache, flags);
3370
3371        /*
3372         * We may just have run out of memory on the local node.
3373         * ____cache_alloc_node() knows how to locate memory on other nodes
3374         */
3375        if (!objp)
3376                objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3377
3378  out:
3379        return objp;
3380}
3381#else
3382
3383static __always_inline void *
3384__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3385{
3386        return ____cache_alloc(cachep, flags);
3387}
3388
3389#endif /* CONFIG_NUMA */
3390
3391static __always_inline void *
3392slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3393{
3394        unsigned long save_flags;
3395        void *objp;
3396
3397        flags &= gfp_allowed_mask;
3398        cachep = slab_pre_alloc_hook(cachep, flags);
3399        if (unlikely(!cachep))
3400                return NULL;
3401
3402        cache_alloc_debugcheck_before(cachep, flags);
3403        local_irq_save(save_flags);
3404        objp = __do_cache_alloc(cachep, flags);
3405        local_irq_restore(save_flags);
3406        objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3407        prefetchw(objp);
3408
3409        if (unlikely(flags & __GFP_ZERO) && objp)
3410                memset(objp, 0, cachep->object_size);
3411
3412        slab_post_alloc_hook(cachep, flags, 1, &objp);
3413        return objp;
3414}
3415
3416/*
3417 * Caller needs to acquire correct kmem_cache_node's list_lock
3418 * @list: List of detached free slabs should be freed by caller
3419 */
3420static void free_block(struct kmem_cache *cachep, void **objpp,
3421                        int nr_objects, int node, struct list_head *list)
3422{
3423        int i;
3424        struct kmem_cache_node *n = get_node(cachep, node);
3425        struct page *page;
3426
3427        n->free_objects += nr_objects;
3428
3429        for (i = 0; i < nr_objects; i++) {
3430                void *objp;
3431                struct page *page;
3432
3433                objp = objpp[i];
3434
3435                page = virt_to_head_page(objp);
3436                list_del(&page->lru);
3437                check_spinlock_acquired_node(cachep, node);
3438                slab_put_obj(cachep, page, objp);
3439                STATS_DEC_ACTIVE(cachep);
3440
3441                /* fixup slab chains */
3442                if (page->active == 0)
3443                        list_add(&page->lru, &n->slabs_free);
3444                else {
3445                        /* Unconditionally move a slab to the end of the
3446                         * partial list on free - maximum time for the
3447                         * other objects to be freed, too.
3448                         */
3449                        list_add_tail(&page->lru, &n->slabs_partial);
3450                }
3451        }
3452
3453        while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3454                n->free_objects -= cachep->num;
3455
3456                page = list_last_entry(&n->slabs_free, struct page, lru);
3457                list_move(&page->lru, list);
3458        }
3459}
3460
3461static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3462{
3463        int batchcount;
3464        struct kmem_cache_node *n;
3465        int node = numa_mem_id();
3466        LIST_HEAD(list);
3467
3468        batchcount = ac->batchcount;
3469
3470        check_irq_off();
3471        n = get_node(cachep, node);
3472        spin_lock(&n->list_lock);
3473        if (n->shared) {
3474                struct array_cache *shared_array = n->shared;
3475                int max = shared_array->limit - shared_array->avail;
3476                if (max) {
3477                        if (batchcount > max)
3478                                batchcount = max;
3479                        memcpy(&(shared_array->entry[shared_array->avail]),
3480                               ac->entry, sizeof(void *) * batchcount);
3481                        shared_array->avail += batchcount;
3482                        goto free_done;
3483                }
3484        }
3485
3486        free_block(cachep, ac->entry, batchcount, node, &list);
3487free_done:
3488#if STATS
3489        {
3490                int i = 0;
3491                struct page *page;
3492
3493                list_for_each_entry(page, &n->slabs_free, lru) {
3494                        BUG_ON(page->active);
3495
3496                        i++;
3497                }
3498                STATS_SET_FREEABLE(cachep, i);
3499        }
3500#endif
3501        spin_unlock(&n->list_lock);
3502        slabs_destroy(cachep, &list);
3503        ac->avail -= batchcount;
3504        memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3505}
3506
3507/*
3508 * Release an obj back to its cache. If the obj has a constructed state, it must
3509 * be in this state _before_ it is released.  Called with disabled ints.
3510 */
3511static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3512                                unsigned long caller)
3513{
3514        /* Put the object into the quarantine, don't touch it for now. */
3515        if (kasan_slab_free(cachep, objp))
3516                return;
3517
3518        ___cache_free(cachep, objp, caller);
3519}
3520
3521void ___cache_free(struct kmem_cache *cachep, void *objp,
3522                unsigned long caller)
3523{
3524        struct array_cache *ac = cpu_cache_get(cachep);
3525
3526        check_irq_off();
3527        kmemleak_free_recursive(objp, cachep->flags);
3528        objp = cache_free_debugcheck(cachep, objp, caller);
3529
3530        kmemcheck_slab_free(cachep, objp, cachep->object_size);
3531
3532        /*
3533         * Skip calling cache_free_alien() when the platform is not numa.
3534         * This will avoid cache misses that happen while accessing slabp (which
3535         * is per page memory  reference) to get nodeid. Instead use a global
3536         * variable to skip the call, which is mostly likely to be present in
3537         * the cache.
3538         */
3539        if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3540                return;
3541
3542        if (ac->avail < ac->limit) {
3543                STATS_INC_FREEHIT(cachep);
3544        } else {
3545                STATS_INC_FREEMISS(cachep);
3546                cache_flusharray(cachep, ac);
3547        }
3548
3549        if (sk_memalloc_socks()) {
3550                struct page *page = virt_to_head_page(objp);
3551
3552                if (unlikely(PageSlabPfmemalloc(page))) {
3553                        cache_free_pfmemalloc(cachep, page, objp);
3554                        return;
3555                }
3556        }
3557
3558        ac->entry[ac->avail++] = objp;
3559}
3560
3561/**
3562 * kmem_cache_alloc - Allocate an object
3563 * @cachep: The cache to allocate from.
3564 * @flags: See kmalloc().
3565 *
3566 * Allocate an object from this cache.  The flags are only relevant
3567 * if the cache has no available objects.
3568 */
3569void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3570{
3571        void *ret = slab_alloc(cachep, flags, _RET_IP_);
3572
3573        kasan_slab_alloc(cachep, ret, flags);
3574        trace_kmem_cache_alloc(_RET_IP_, ret,
3575                               cachep->object_size, cachep->size, flags);
3576
3577        return ret;
3578}
3579EXPORT_SYMBOL(kmem_cache_alloc);
3580
3581static __always_inline void
3582cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3583                                  size_t size, void **p, unsigned long caller)
3584{
3585        size_t i;
3586
3587        for (i = 0; i < size; i++)
3588                p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3589}
3590
3591int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3592                          void **p)
3593{
3594        size_t i;
3595
3596        s = slab_pre_alloc_hook(s, flags);
3597        if (!s)
3598                return 0;
3599
3600        cache_alloc_debugcheck_before(s, flags);
3601
3602        local_irq_disable();
3603        for (i = 0; i < size; i++) {
3604                void *objp = __do_cache_alloc(s, flags);
3605
3606                if (unlikely(!objp))
3607                        goto error;
3608                p[i] = objp;
3609        }
3610        local_irq_enable();
3611
3612        cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3613
3614        /* Clear memory outside IRQ disabled section */
3615        if (unlikely(flags & __GFP_ZERO))
3616                for (i = 0; i < size; i++)
3617                        memset(p[i], 0, s->object_size);
3618
3619        slab_post_alloc_hook(s, flags, size, p);
3620        /* FIXME: Trace call missing. Christoph would like a bulk variant */
3621        return size;
3622error:
3623        local_irq_enable();
3624        cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3625        slab_post_alloc_hook(s, flags, i, p);
3626        __kmem_cache_free_bulk(s, i, p);
3627        return 0;
3628}
3629EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3630
3631#ifdef CONFIG_TRACING
3632void *
3633kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3634{
3635        void *ret;
3636
3637        ret = slab_alloc(cachep, flags, _RET_IP_);
3638
3639        kasan_kmalloc(cachep, ret, size, flags);
3640        trace_kmalloc(_RET_IP_, ret,
3641                      size, cachep->size, flags);
3642        return ret;
3643}
3644EXPORT_SYMBOL(kmem_cache_alloc_trace);
3645#endif
3646
3647#ifdef CONFIG_NUMA
3648/**
3649 * kmem_cache_alloc_node - Allocate an object on the specified node
3650 * @cachep: The cache to allocate from.
3651 * @flags: See kmalloc().
3652 * @nodeid: node number of the target node.
3653 *
3654 * Identical to kmem_cache_alloc but it will allocate memory on the given
3655 * node, which can improve the performance for cpu bound structures.
3656 *
3657 * Fallback to other node is possible if __GFP_THISNODE is not set.
3658 */
3659void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3660{
3661        void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3662
3663        kasan_slab_alloc(cachep, ret, flags);
3664        trace_kmem_cache_alloc_node(_RET_IP_, ret,
3665                                    cachep->object_size, cachep->size,
3666                                    flags, nodeid);
3667
3668        return ret;
3669}
3670EXPORT_SYMBOL(kmem_cache_alloc_node);
3671
3672#ifdef CONFIG_TRACING
3673void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3674                                  gfp_t flags,
3675                                  int nodeid,
3676                                  size_t size)
3677{
3678        void *ret;
3679
3680        ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3681
3682        kasan_kmalloc(cachep, ret, size, flags);
3683        trace_kmalloc_node(_RET_IP_, ret,
3684                           size, cachep->size,
3685                           flags, nodeid);
3686        return ret;
3687}
3688EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3689#endif
3690
3691static __always_inline void *
3692__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3693{
3694        struct kmem_cache *cachep;
3695        void *ret;
3696
3697        cachep = kmalloc_slab(size, flags);
3698        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3699                return cachep;
3700        ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3701        kasan_kmalloc(cachep, ret, size, flags);
3702
3703        return ret;
3704}
3705
3706void *__kmalloc_node(size_t size, gfp_t flags, int node)
3707{
3708        return __do_kmalloc_node(size, flags, node, _RET_IP_);
3709}
3710EXPORT_SYMBOL(__kmalloc_node);
3711
3712void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3713                int node, unsigned long caller)
3714{
3715        return __do_kmalloc_node(size, flags, node, caller);
3716}
3717EXPORT_SYMBOL(__kmalloc_node_track_caller);
3718#endif /* CONFIG_NUMA */
3719
3720/**
3721 * __do_kmalloc - allocate memory
3722 * @size: how many bytes of memory are required.
3723 * @flags: the type of memory to allocate (see kmalloc).
3724 * @caller: function caller for debug tracking of the caller
3725 */
3726static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3727                                          unsigned long caller)
3728{
3729        struct kmem_cache *cachep;
3730        void *ret;
3731
3732        cachep = kmalloc_slab(size, flags);
3733        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3734                return cachep;
3735        ret = slab_alloc(cachep, flags, caller);
3736
3737        kasan_kmalloc(cachep, ret, size, flags);
3738        trace_kmalloc(caller, ret,
3739                      size, cachep->size, flags);
3740
3741        return ret;
3742}
3743
3744void *__kmalloc(size_t size, gfp_t flags)
3745{
3746        return __do_kmalloc(size, flags, _RET_IP_);
3747}
3748EXPORT_SYMBOL(__kmalloc);
3749
3750void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3751{
3752        return __do_kmalloc(size, flags, caller);
3753}
3754EXPORT_SYMBOL(__kmalloc_track_caller);
3755
3756/**
3757 * kmem_cache_free - Deallocate an object
3758 * @cachep: The cache the allocation was from.
3759 * @objp: The previously allocated object.
3760 *
3761 * Free an object which was previously allocated from this
3762 * cache.
3763 */
3764void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3765{
3766        unsigned long flags;
3767        cachep = cache_from_obj(cachep, objp);
3768        if (!cachep)
3769                return;
3770
3771        local_irq_save(flags);
3772        debug_check_no_locks_freed(objp, cachep->object_size);
3773        if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3774                debug_check_no_obj_freed(objp, cachep->object_size);
3775        __cache_free(cachep, objp, _RET_IP_);
3776        local_irq_restore(flags);
3777
3778        trace_kmem_cache_free(_RET_IP_, objp);
3779}
3780EXPORT_SYMBOL(kmem_cache_free);
3781
3782void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3783{
3784        struct kmem_cache *s;
3785        size_t i;
3786
3787        local_irq_disable();
3788        for (i = 0; i < size; i++) {
3789                void *objp = p[i];
3790
3791                if (!orig_s) /* called via kfree_bulk */
3792                        s = virt_to_cache(objp);
3793                else
3794                        s = cache_from_obj(orig_s, objp);
3795
3796                debug_check_no_locks_freed(objp, s->object_size);
3797                if (!(s->flags & SLAB_DEBUG_OBJECTS))
3798                        debug_check_no_obj_freed(objp, s->object_size);
3799
3800                __cache_free(s, objp, _RET_IP_);
3801        }
3802        local_irq_enable();
3803
3804        /* FIXME: add tracing */
3805}
3806EXPORT_SYMBOL(kmem_cache_free_bulk);
3807
3808/**
3809 * kfree - free previously allocated memory
3810 * @objp: pointer returned by kmalloc.
3811 *
3812 * If @objp is NULL, no operation is performed.
3813 *
3814 * Don't free memory not originally allocated by kmalloc()
3815 * or you will run into trouble.
3816 */
3817void kfree(const void *objp)
3818{
3819        struct kmem_cache *c;
3820        unsigned long flags;
3821
3822        trace_kfree(_RET_IP_, objp);
3823
3824        if (unlikely(ZERO_OR_NULL_PTR(objp)))
3825                return;
3826        local_irq_save(flags);
3827        kfree_debugcheck(objp);
3828        c = virt_to_cache(objp);
3829        debug_check_no_locks_freed(objp, c->object_size);
3830
3831        debug_check_no_obj_freed(objp, c->object_size);
3832        __cache_free(c, (void *)objp, _RET_IP_);
3833        local_irq_restore(flags);
3834}
3835EXPORT_SYMBOL(kfree);
3836
3837/*
3838 * This initializes kmem_cache_node or resizes various caches for all nodes.
3839 */
3840static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3841{
3842        int ret;
3843        int node;
3844        struct kmem_cache_node *n;
3845
3846        for_each_online_node(node) {
3847                ret = setup_kmem_cache_node(cachep, node, gfp, true);
3848                if (ret)
3849                        goto fail;
3850
3851        }
3852
3853        return 0;
3854
3855fail:
3856        if (!cachep->list.next) {
3857                /* Cache is not active yet. Roll back what we did */
3858                node--;
3859                while (node >= 0) {
3860                        n = get_node(cachep, node);
3861                        if (n) {
3862                                kfree(n->shared);
3863                                free_alien_cache(n->alien);
3864                                kfree(n);
3865                                cachep->node[node] = NULL;
3866                        }
3867                        node--;
3868                }
3869        }
3870        return -ENOMEM;
3871}
3872
3873/* Always called with the slab_mutex held */
3874static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3875                                int batchcount, int shared, gfp_t gfp)
3876{
3877        struct array_cache __percpu *cpu_cache, *prev;
3878        int cpu;
3879
3880        cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3881        if (!cpu_cache)
3882                return -ENOMEM;
3883
3884        prev = cachep->cpu_cache;
3885        cachep->cpu_cache = cpu_cache;
3886        kick_all_cpus_sync();
3887
3888        check_irq_on();
3889        cachep->batchcount = batchcount;
3890        cachep->limit = limit;
3891        cachep->shared = shared;
3892
3893        if (!prev)
3894                goto setup_node;
3895
3896        for_each_online_cpu(cpu) {
3897                LIST_HEAD(list);
3898                int node;
3899                struct kmem_cache_node *n;
3900                struct array_cache *ac = per_cpu_ptr(prev, cpu);
3901
3902                node = cpu_to_mem(cpu);
3903                n = get_node(cachep, node);
3904                spin_lock_irq(&n->list_lock);
3905                free_block(cachep, ac->entry, ac->avail, node, &list);
3906                spin_unlock_irq(&n->list_lock);
3907                slabs_destroy(cachep, &list);
3908        }
3909        free_percpu(prev);
3910
3911setup_node:
3912        return setup_kmem_cache_nodes(cachep, gfp);
3913}
3914
3915static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3916                                int batchcount, int shared, gfp_t gfp)
3917{
3918        int ret;
3919        struct kmem_cache *c;
3920
3921        ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3922
3923        if (slab_state < FULL)
3924                return ret;
3925
3926        if ((ret < 0) || !is_root_cache(cachep))
3927                return ret;
3928
3929        lockdep_assert_held(&slab_mutex);
3930        for_each_memcg_cache(c, cachep) {
3931                /* return value determined by the root cache only */
3932                __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3933        }
3934
3935        return ret;
3936}
3937
3938/* Called with slab_mutex held always */
3939static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3940{
3941        int err;
3942        int limit = 0;
3943        int shared = 0;
3944        int batchcount = 0;
3945
3946        err = cache_random_seq_create(cachep, cachep->num, gfp);
3947        if (err)
3948                goto end;
3949
3950        if (!is_root_cache(cachep)) {
3951                struct kmem_cache *root = memcg_root_cache(cachep);
3952                limit = root->limit;
3953                shared = root->shared;
3954                batchcount = root->batchcount;
3955        }
3956
3957        if (limit && shared && batchcount)
3958                goto skip_setup;
3959        /*
3960         * The head array serves three purposes:
3961         * - create a LIFO ordering, i.e. return objects that are cache-warm
3962         * - reduce the number of spinlock operations.
3963         * - reduce the number of linked list operations on the slab and
3964         *   bufctl chains: array operations are cheaper.
3965         * The numbers are guessed, we should auto-tune as described by
3966         * Bonwick.
3967         */
3968        if (cachep->size > 131072)
3969                limit = 1;
3970        else if (cachep->size > PAGE_SIZE)
3971                limit = 8;
3972        else if (cachep->size > 1024)
3973                limit = 24;
3974        else if (cachep->size > 256)
3975                limit = 54;
3976        else
3977                limit = 120;
3978
3979        /*
3980         * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3981         * allocation behaviour: Most allocs on one cpu, most free operations
3982         * on another cpu. For these cases, an efficient object passing between
3983         * cpus is necessary. This is provided by a shared array. The array
3984         * replaces Bonwick's magazine layer.
3985         * On uniprocessor, it's functionally equivalent (but less efficient)
3986         * to a larger limit. Thus disabled by default.
3987         */
3988        shared = 0;
3989        if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3990                shared = 8;
3991
3992#if DEBUG
3993        /*
3994         * With debugging enabled, large batchcount lead to excessively long
3995         * periods with disabled local interrupts. Limit the batchcount
3996         */
3997        if (limit > 32)
3998                limit = 32;
3999#endif
4000        batchcount = (limit + 1) / 2;
4001skip_setup:
4002        err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4003end:
4004        if (err)
4005                pr_err("enable_cpucache failed for %s, error %d\n",
4006                       cachep->name, -err);
4007        return err;
4008}
4009
4010/*
4011 * Drain an array if it contains any elements taking the node lock only if
4012 * necessary. Note that the node listlock also protects the array_cache
4013 * if drain_array() is used on the shared array.
4014 */
4015static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4016                         struct array_cache *ac, int node)
4017{
4018        LIST_HEAD(list);
4019
4020        /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4021        check_mutex_acquired();
4022
4023        if (!ac || !ac->avail)
4024                return;
4025
4026        if (ac->touched) {
4027                ac->touched = 0;
4028                return;
4029        }
4030
4031        spin_lock_irq(&n->list_lock);
4032        drain_array_locked(cachep, ac, node, false, &list);
4033        spin_unlock_irq(&n->list_lock);
4034
4035        slabs_destroy(cachep, &list);
4036}
4037
4038/**
4039 * cache_reap - Reclaim memory from caches.
4040 * @w: work descriptor
4041 *
4042 * Called from workqueue/eventd every few seconds.
4043 * Purpose:
4044 * - clear the per-cpu caches for this CPU.
4045 * - return freeable pages to the main free memory pool.
4046 *
4047 * If we cannot acquire the cache chain mutex then just give up - we'll try
4048 * again on the next iteration.
4049 */
4050static void cache_reap(struct work_struct *w)
4051{
4052        struct kmem_cache *searchp;
4053        struct kmem_cache_node *n;
4054        int node = numa_mem_id();
4055        struct delayed_work *work = to_delayed_work(w);
4056
4057        if (!mutex_trylock(&slab_mutex))
4058                /* Give up. Setup the next iteration. */
4059                goto out;
4060
4061        list_for_each_entry(searchp, &slab_caches, list) {
4062                check_irq_on();
4063
4064                /*
4065                 * We only take the node lock if absolutely necessary and we
4066                 * have established with reasonable certainty that
4067                 * we can do some work if the lock was obtained.
4068                 */
4069                n = get_node(searchp, node);
4070
4071                reap_alien(searchp, n);
4072
4073                drain_array(searchp, n, cpu_cache_get(searchp), node);
4074
4075                /*
4076                 * These are racy checks but it does not matter
4077                 * if we skip one check or scan twice.
4078                 */
4079                if (time_after(n->next_reap, jiffies))
4080                        goto next;
4081
4082                n->next_reap = jiffies + REAPTIMEOUT_NODE;
4083
4084                drain_array(searchp, n, n->shared, node);
4085
4086                if (n->free_touched)
4087                        n->free_touched = 0;
4088                else {
4089                        int freed;
4090
4091                        freed = drain_freelist(searchp, n, (n->free_limit +
4092                                5 * searchp->num - 1) / (5 * searchp->num));
4093                        STATS_ADD_REAPED(searchp, freed);
4094                }
4095next:
4096                cond_resched();
4097        }
4098        check_irq_on();
4099        mutex_unlock(&slab_mutex);
4100        next_reap_node();
4101out:
4102        /* Set up the next iteration */
4103        schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4104}
4105
4106#ifdef CONFIG_SLABINFO
4107void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4108{
4109        struct page *page;
4110        unsigned long active_objs;
4111        unsigned long num_objs;
4112        unsigned long active_slabs = 0;
4113        unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4114        const char *name;
4115        char *error = NULL;
4116        int node;
4117        struct kmem_cache_node *n;
4118
4119        active_objs = 0;
4120        num_slabs = 0;
4121        for_each_kmem_cache_node(cachep, node, n) {
4122
4123                check_irq_on();
4124                spin_lock_irq(&n->list_lock);
4125
4126                list_for_each_entry(page, &n->slabs_full, lru) {
4127                        if (page->active != cachep->num && !error)
4128                                error = "slabs_full accounting error";
4129                        active_objs += cachep->num;
4130                        active_slabs++;
4131                }
4132                list_for_each_entry(page, &n->slabs_partial, lru) {
4133                        if (page->active == cachep->num && !error)
4134                                error = "slabs_partial accounting error";
4135                        if (!page->active && !error)
4136                                error = "slabs_partial accounting error";
4137                        active_objs += page->active;
4138                        active_slabs++;
4139                }
4140                list_for_each_entry(page, &n->slabs_free, lru) {
4141                        if (page->active && !error)
4142                                error = "slabs_free accounting error";
4143                        num_slabs++;
4144                }
4145                free_objects += n->free_objects;
4146                if (n->shared)
4147                        shared_avail += n->shared->avail;
4148
4149                spin_unlock_irq(&n->list_lock);
4150        }
4151        num_slabs += active_slabs;
4152        num_objs = num_slabs * cachep->num;
4153        if (num_objs - active_objs != free_objects && !error)
4154                error = "free_objects accounting error";
4155
4156        name = cachep->name;
4157        if (error)
4158                pr_err("slab: cache %s error: %s\n", name, error);
4159
4160        sinfo->active_objs = active_objs;
4161        sinfo->num_objs = num_objs;
4162        sinfo->active_slabs = active_slabs;
4163        sinfo->num_slabs = num_slabs;
4164        sinfo->shared_avail = shared_avail;
4165        sinfo->limit = cachep->limit;
4166        sinfo->batchcount = cachep->batchcount;
4167        sinfo->shared = cachep->shared;
4168        sinfo->objects_per_slab = cachep->num;
4169        sinfo->cache_order = cachep->gfporder;
4170}
4171
4172void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4173{
4174#if STATS
4175        {                       /* node stats */
4176                unsigned long high = cachep->high_mark;
4177                unsigned long allocs = cachep->num_allocations;
4178                unsigned long grown = cachep->grown;
4179                unsigned long reaped = cachep->reaped;
4180                unsigned long errors = cachep->errors;
4181                unsigned long max_freeable = cachep->max_freeable;
4182                unsigned long node_allocs = cachep->node_allocs;
4183                unsigned long node_frees = cachep->node_frees;
4184                unsigned long overflows = cachep->node_overflow;
4185
4186                seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4187                           allocs, high, grown,
4188                           reaped, errors, max_freeable, node_allocs,
4189                           node_frees, overflows);
4190        }
4191        /* cpu stats */
4192        {
4193                unsigned long allochit = atomic_read(&cachep->allochit);
4194                unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4195                unsigned long freehit = atomic_read(&cachep->freehit);
4196                unsigned long freemiss = atomic_read(&cachep->freemiss);
4197
4198                seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4199                           allochit, allocmiss, freehit, freemiss);
4200        }
4201#endif
4202}
4203
4204#define MAX_SLABINFO_WRITE 128
4205/**
4206 * slabinfo_write - Tuning for the slab allocator
4207 * @file: unused
4208 * @buffer: user buffer
4209 * @count: data length
4210 * @ppos: unused
4211 */
4212ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4213                       size_t count, loff_t *ppos)
4214{
4215        char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4216        int limit, batchcount, shared, res;
4217        struct kmem_cache *cachep;
4218
4219        if (count > MAX_SLABINFO_WRITE)
4220                return -EINVAL;
4221        if (copy_from_user(&kbuf, buffer, count))
4222                return -EFAULT;
4223        kbuf[MAX_SLABINFO_WRITE] = '\0';
4224
4225        tmp = strchr(kbuf, ' ');
4226        if (!tmp)
4227                return -EINVAL;
4228        *tmp = '\0';
4229        tmp++;
4230        if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4231                return -EINVAL;
4232
4233        /* Find the cache in the chain of caches. */
4234        mutex_lock(&slab_mutex);
4235        res = -EINVAL;
4236        list_for_each_entry(cachep, &slab_caches, list) {
4237                if (!strcmp(cachep->name, kbuf)) {
4238                        if (limit < 1 || batchcount < 1 ||
4239                                        batchcount > limit || shared < 0) {
4240                                res = 0;
4241                        } else {
4242                                res = do_tune_cpucache(cachep, limit,
4243                                                       batchcount, shared,
4244                                                       GFP_KERNEL);
4245                        }
4246                        break;
4247                }
4248        }
4249        mutex_unlock(&slab_mutex);
4250        if (res >= 0)
4251                res = count;
4252        return res;
4253}
4254
4255#ifdef CONFIG_DEBUG_SLAB_LEAK
4256
4257static inline int add_caller(unsigned long *n, unsigned long v)
4258{
4259        unsigned long *p;
4260        int l;
4261        if (!v)
4262                return 1;
4263        l = n[1];
4264        p = n + 2;
4265        while (l) {
4266                int i = l/2;
4267                unsigned long *q = p + 2 * i;
4268                if (*q == v) {
4269                        q[1]++;
4270                        return 1;
4271                }
4272                if (*q > v) {
4273                        l = i;
4274                } else {
4275                        p = q + 2;
4276                        l -= i + 1;
4277                }
4278        }
4279        if (++n[1] == n[0])
4280                return 0;
4281        memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4282        p[0] = v;
4283        p[1] = 1;
4284        return 1;
4285}
4286
4287static void handle_slab(unsigned long *n, struct kmem_cache *c,
4288                                                struct page *page)
4289{
4290        void *p;
4291        int i, j;
4292        unsigned long v;
4293
4294        if (n[0] == n[1])
4295                return;
4296        for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4297                bool active = true;
4298
4299                for (j = page->active; j < c->num; j++) {
4300                        if (get_free_obj(page, j) == i) {
4301                                active = false;
4302                                break;
4303                        }
4304                }
4305
4306                if (!active)
4307                        continue;
4308
4309                /*
4310                 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4311                 * mapping is established when actual object allocation and
4312                 * we could mistakenly access the unmapped object in the cpu
4313                 * cache.
4314                 */
4315                if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4316                        continue;
4317
4318                if (!add_caller(n, v))
4319                        return;
4320        }
4321}
4322
4323static void show_symbol(struct seq_file *m, unsigned long address)
4324{
4325#ifdef CONFIG_KALLSYMS
4326        unsigned long offset, size;
4327        char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4328
4329        if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4330                seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4331                if (modname[0])
4332                        seq_printf(m, " [%s]", modname);
4333                return;
4334        }
4335#endif
4336        seq_printf(m, "%p", (void *)address);
4337}
4338
4339static int leaks_show(struct seq_file *m, void *p)
4340{
4341        struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4342        struct page *page;
4343        struct kmem_cache_node *n;
4344        const char *name;
4345        unsigned long *x = m->private;
4346        int node;
4347        int i;
4348
4349        if (!(cachep->flags & SLAB_STORE_USER))
4350                return 0;
4351        if (!(cachep->flags & SLAB_RED_ZONE))
4352                return 0;
4353
4354        /*
4355         * Set store_user_clean and start to grab stored user information
4356         * for all objects on this cache. If some alloc/free requests comes
4357         * during the processing, information would be wrong so restart
4358         * whole processing.
4359         */
4360        do {
4361                set_store_user_clean(cachep);
4362                drain_cpu_caches(cachep);
4363
4364                x[1] = 0;
4365
4366                for_each_kmem_cache_node(cachep, node, n) {
4367
4368                        check_irq_on();
4369                        spin_lock_irq(&n->list_lock);
4370
4371                        list_for_each_entry(page, &n->slabs_full, lru)
4372                                handle_slab(x, cachep, page);
4373                        list_for_each_entry(page, &n->slabs_partial, lru)
4374                                handle_slab(x, cachep, page);
4375                        spin_unlock_irq(&n->list_lock);
4376                }
4377        } while (!is_store_user_clean(cachep));
4378
4379        name = cachep->name;
4380        if (x[0] == x[1]) {
4381                /* Increase the buffer size */
4382                mutex_unlock(&slab_mutex);
4383                m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4384                if (!m->private) {
4385                        /* Too bad, we are really out */
4386                        m->private = x;
4387                        mutex_lock(&slab_mutex);
4388                        return -ENOMEM;
4389                }
4390                *(unsigned long *)m->private = x[0] * 2;
4391                kfree(x);
4392                mutex_lock(&slab_mutex);
4393                /* Now make sure this entry will be retried */
4394                m->count = m->size;
4395                return 0;
4396        }
4397        for (i = 0; i < x[1]; i++) {
4398                seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4399                show_symbol(m, x[2*i+2]);
4400                seq_putc(m, '\n');
4401        }
4402
4403        return 0;
4404}
4405
4406static const struct seq_operations slabstats_op = {
4407        .start = slab_start,
4408        .next = slab_next,
4409        .stop = slab_stop,
4410        .show = leaks_show,
4411};
4412
4413static int slabstats_open(struct inode *inode, struct file *file)
4414{
4415        unsigned long *n;
4416
4417        n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4418        if (!n)
4419                return -ENOMEM;
4420
4421        *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4422
4423        return 0;
4424}
4425
4426static const struct file_operations proc_slabstats_operations = {
4427        .open           = slabstats_open,
4428        .read           = seq_read,
4429        .llseek         = seq_lseek,
4430        .release        = seq_release_private,
4431};
4432#endif
4433
4434static int __init slab_proc_init(void)
4435{
4436#ifdef CONFIG_DEBUG_SLAB_LEAK
4437        proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4438#endif
4439        return 0;
4440}
4441module_init(slab_proc_init);
4442#endif
4443
4444#ifdef CONFIG_HARDENED_USERCOPY
4445/*
4446 * Rejects objects that are incorrectly sized.
4447 *
4448 * Returns NULL if check passes, otherwise const char * to name of cache
4449 * to indicate an error.
4450 */
4451const char *__check_heap_object(const void *ptr, unsigned long n,
4452                                struct page *page)
4453{
4454        struct kmem_cache *cachep;
4455        unsigned int objnr;
4456        unsigned long offset;
4457
4458        /* Find and validate object. */
4459        cachep = page->slab_cache;
4460        objnr = obj_to_index(cachep, page, (void *)ptr);
4461        BUG_ON(objnr >= cachep->num);
4462
4463        /* Find offset within object. */
4464        offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4465
4466        /* Allow address range falling entirely within object size. */
4467        if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4468                return NULL;
4469
4470        return cachep->name;
4471}
4472#endif /* CONFIG_HARDENED_USERCOPY */
4473
4474/**
4475 * ksize - get the actual amount of memory allocated for a given object
4476 * @objp: Pointer to the object
4477 *
4478 * kmalloc may internally round up allocations and return more memory
4479 * than requested. ksize() can be used to determine the actual amount of
4480 * memory allocated. The caller may use this additional memory, even though
4481 * a smaller amount of memory was initially specified with the kmalloc call.
4482 * The caller must guarantee that objp points to a valid object previously
4483 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4484 * must not be freed during the duration of the call.
4485 */
4486size_t ksize(const void *objp)
4487{
4488        size_t size;
4489
4490        BUG_ON(!objp);
4491        if (unlikely(objp == ZERO_SIZE_PTR))
4492                return 0;
4493
4494        size = virt_to_cache(objp)->object_size;
4495        /* We assume that ksize callers could use the whole allocated area,
4496         * so we need to unpoison this area.
4497         */
4498        kasan_unpoison_shadow(objp, size);
4499
4500        return size;
4501}
4502EXPORT_SYMBOL(ksize);
4503