linux/mm/sparse.c
<<
>>
Prefs
   1/*
   2 * sparse memory mappings.
   3 */
   4#include <linux/mm.h>
   5#include <linux/slab.h>
   6#include <linux/mmzone.h>
   7#include <linux/bootmem.h>
   8#include <linux/compiler.h>
   9#include <linux/highmem.h>
  10#include <linux/export.h>
  11#include <linux/spinlock.h>
  12#include <linux/vmalloc.h>
  13
  14#include "internal.h"
  15#include <asm/dma.h>
  16#include <asm/pgalloc.h>
  17#include <asm/pgtable.h>
  18
  19/*
  20 * Permanent SPARSEMEM data:
  21 *
  22 * 1) mem_section       - memory sections, mem_map's for valid memory
  23 */
  24#ifdef CONFIG_SPARSEMEM_EXTREME
  25struct mem_section *mem_section[NR_SECTION_ROOTS]
  26        ____cacheline_internodealigned_in_smp;
  27#else
  28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
  29        ____cacheline_internodealigned_in_smp;
  30#endif
  31EXPORT_SYMBOL(mem_section);
  32
  33#ifdef NODE_NOT_IN_PAGE_FLAGS
  34/*
  35 * If we did not store the node number in the page then we have to
  36 * do a lookup in the section_to_node_table in order to find which
  37 * node the page belongs to.
  38 */
  39#if MAX_NUMNODES <= 256
  40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
  41#else
  42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
  43#endif
  44
  45int page_to_nid(const struct page *page)
  46{
  47        return section_to_node_table[page_to_section(page)];
  48}
  49EXPORT_SYMBOL(page_to_nid);
  50
  51static void set_section_nid(unsigned long section_nr, int nid)
  52{
  53        section_to_node_table[section_nr] = nid;
  54}
  55#else /* !NODE_NOT_IN_PAGE_FLAGS */
  56static inline void set_section_nid(unsigned long section_nr, int nid)
  57{
  58}
  59#endif
  60
  61#ifdef CONFIG_SPARSEMEM_EXTREME
  62static noinline struct mem_section __ref *sparse_index_alloc(int nid)
  63{
  64        struct mem_section *section = NULL;
  65        unsigned long array_size = SECTIONS_PER_ROOT *
  66                                   sizeof(struct mem_section);
  67
  68        if (slab_is_available()) {
  69                if (node_state(nid, N_HIGH_MEMORY))
  70                        section = kzalloc_node(array_size, GFP_KERNEL, nid);
  71                else
  72                        section = kzalloc(array_size, GFP_KERNEL);
  73        } else {
  74                section = memblock_virt_alloc_node(array_size, nid);
  75        }
  76
  77        return section;
  78}
  79
  80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
  81{
  82        unsigned long root = SECTION_NR_TO_ROOT(section_nr);
  83        struct mem_section *section;
  84
  85        if (mem_section[root])
  86                return -EEXIST;
  87
  88        section = sparse_index_alloc(nid);
  89        if (!section)
  90                return -ENOMEM;
  91
  92        mem_section[root] = section;
  93
  94        return 0;
  95}
  96#else /* !SPARSEMEM_EXTREME */
  97static inline int sparse_index_init(unsigned long section_nr, int nid)
  98{
  99        return 0;
 100}
 101#endif
 102
 103#ifdef CONFIG_SPARSEMEM_EXTREME
 104int __section_nr(struct mem_section* ms)
 105{
 106        unsigned long root_nr;
 107        struct mem_section* root;
 108
 109        for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
 110                root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
 111                if (!root)
 112                        continue;
 113
 114                if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
 115                     break;
 116        }
 117
 118        VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
 119
 120        return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
 121}
 122#else
 123int __section_nr(struct mem_section* ms)
 124{
 125        return (int)(ms - mem_section[0]);
 126}
 127#endif
 128
 129/*
 130 * During early boot, before section_mem_map is used for an actual
 131 * mem_map, we use section_mem_map to store the section's NUMA
 132 * node.  This keeps us from having to use another data structure.  The
 133 * node information is cleared just before we store the real mem_map.
 134 */
 135static inline unsigned long sparse_encode_early_nid(int nid)
 136{
 137        return (nid << SECTION_NID_SHIFT);
 138}
 139
 140static inline int sparse_early_nid(struct mem_section *section)
 141{
 142        return (section->section_mem_map >> SECTION_NID_SHIFT);
 143}
 144
 145/* Validate the physical addressing limitations of the model */
 146void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
 147                                                unsigned long *end_pfn)
 148{
 149        unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
 150
 151        /*
 152         * Sanity checks - do not allow an architecture to pass
 153         * in larger pfns than the maximum scope of sparsemem:
 154         */
 155        if (*start_pfn > max_sparsemem_pfn) {
 156                mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
 157                        "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
 158                        *start_pfn, *end_pfn, max_sparsemem_pfn);
 159                WARN_ON_ONCE(1);
 160                *start_pfn = max_sparsemem_pfn;
 161                *end_pfn = max_sparsemem_pfn;
 162        } else if (*end_pfn > max_sparsemem_pfn) {
 163                mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
 164                        "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
 165                        *start_pfn, *end_pfn, max_sparsemem_pfn);
 166                WARN_ON_ONCE(1);
 167                *end_pfn = max_sparsemem_pfn;
 168        }
 169}
 170
 171/* Record a memory area against a node. */
 172void __init memory_present(int nid, unsigned long start, unsigned long end)
 173{
 174        unsigned long pfn;
 175
 176        start &= PAGE_SECTION_MASK;
 177        mminit_validate_memmodel_limits(&start, &end);
 178        for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
 179                unsigned long section = pfn_to_section_nr(pfn);
 180                struct mem_section *ms;
 181
 182                sparse_index_init(section, nid);
 183                set_section_nid(section, nid);
 184
 185                ms = __nr_to_section(section);
 186                if (!ms->section_mem_map)
 187                        ms->section_mem_map = sparse_encode_early_nid(nid) |
 188                                                        SECTION_MARKED_PRESENT;
 189        }
 190}
 191
 192/*
 193 * Only used by the i386 NUMA architecures, but relatively
 194 * generic code.
 195 */
 196unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
 197                                                     unsigned long end_pfn)
 198{
 199        unsigned long pfn;
 200        unsigned long nr_pages = 0;
 201
 202        mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
 203        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 204                if (nid != early_pfn_to_nid(pfn))
 205                        continue;
 206
 207                if (pfn_present(pfn))
 208                        nr_pages += PAGES_PER_SECTION;
 209        }
 210
 211        return nr_pages * sizeof(struct page);
 212}
 213
 214/*
 215 * Subtle, we encode the real pfn into the mem_map such that
 216 * the identity pfn - section_mem_map will return the actual
 217 * physical page frame number.
 218 */
 219static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
 220{
 221        return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
 222}
 223
 224/*
 225 * Decode mem_map from the coded memmap
 226 */
 227struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
 228{
 229        /* mask off the extra low bits of information */
 230        coded_mem_map &= SECTION_MAP_MASK;
 231        return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
 232}
 233
 234static int __meminit sparse_init_one_section(struct mem_section *ms,
 235                unsigned long pnum, struct page *mem_map,
 236                unsigned long *pageblock_bitmap)
 237{
 238        if (!present_section(ms))
 239                return -EINVAL;
 240
 241        ms->section_mem_map &= ~SECTION_MAP_MASK;
 242        ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
 243                                                        SECTION_HAS_MEM_MAP;
 244        ms->pageblock_flags = pageblock_bitmap;
 245
 246        return 1;
 247}
 248
 249unsigned long usemap_size(void)
 250{
 251        unsigned long size_bytes;
 252        size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
 253        size_bytes = roundup(size_bytes, sizeof(unsigned long));
 254        return size_bytes;
 255}
 256
 257#ifdef CONFIG_MEMORY_HOTPLUG
 258static unsigned long *__kmalloc_section_usemap(void)
 259{
 260        return kmalloc(usemap_size(), GFP_KERNEL);
 261}
 262#endif /* CONFIG_MEMORY_HOTPLUG */
 263
 264#ifdef CONFIG_MEMORY_HOTREMOVE
 265static unsigned long * __init
 266sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
 267                                         unsigned long size)
 268{
 269        unsigned long goal, limit;
 270        unsigned long *p;
 271        int nid;
 272        /*
 273         * A page may contain usemaps for other sections preventing the
 274         * page being freed and making a section unremovable while
 275         * other sections referencing the usemap remain active. Similarly,
 276         * a pgdat can prevent a section being removed. If section A
 277         * contains a pgdat and section B contains the usemap, both
 278         * sections become inter-dependent. This allocates usemaps
 279         * from the same section as the pgdat where possible to avoid
 280         * this problem.
 281         */
 282        goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
 283        limit = goal + (1UL << PA_SECTION_SHIFT);
 284        nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
 285again:
 286        p = memblock_virt_alloc_try_nid_nopanic(size,
 287                                                SMP_CACHE_BYTES, goal, limit,
 288                                                nid);
 289        if (!p && limit) {
 290                limit = 0;
 291                goto again;
 292        }
 293        return p;
 294}
 295
 296static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 297{
 298        unsigned long usemap_snr, pgdat_snr;
 299        static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
 300        static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
 301        struct pglist_data *pgdat = NODE_DATA(nid);
 302        int usemap_nid;
 303
 304        usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
 305        pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
 306        if (usemap_snr == pgdat_snr)
 307                return;
 308
 309        if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
 310                /* skip redundant message */
 311                return;
 312
 313        old_usemap_snr = usemap_snr;
 314        old_pgdat_snr = pgdat_snr;
 315
 316        usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
 317        if (usemap_nid != nid) {
 318                pr_info("node %d must be removed before remove section %ld\n",
 319                        nid, usemap_snr);
 320                return;
 321        }
 322        /*
 323         * There is a circular dependency.
 324         * Some platforms allow un-removable section because they will just
 325         * gather other removable sections for dynamic partitioning.
 326         * Just notify un-removable section's number here.
 327         */
 328        pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
 329                usemap_snr, pgdat_snr, nid);
 330}
 331#else
 332static unsigned long * __init
 333sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
 334                                         unsigned long size)
 335{
 336        return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
 337}
 338
 339static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 340{
 341}
 342#endif /* CONFIG_MEMORY_HOTREMOVE */
 343
 344static void __init sparse_early_usemaps_alloc_node(void *data,
 345                                 unsigned long pnum_begin,
 346                                 unsigned long pnum_end,
 347                                 unsigned long usemap_count, int nodeid)
 348{
 349        void *usemap;
 350        unsigned long pnum;
 351        unsigned long **usemap_map = (unsigned long **)data;
 352        int size = usemap_size();
 353
 354        usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
 355                                                          size * usemap_count);
 356        if (!usemap) {
 357                pr_warn("%s: allocation failed\n", __func__);
 358                return;
 359        }
 360
 361        for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
 362                if (!present_section_nr(pnum))
 363                        continue;
 364                usemap_map[pnum] = usemap;
 365                usemap += size;
 366                check_usemap_section_nr(nodeid, usemap_map[pnum]);
 367        }
 368}
 369
 370#ifndef CONFIG_SPARSEMEM_VMEMMAP
 371struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
 372{
 373        struct page *map;
 374        unsigned long size;
 375
 376        map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
 377        if (map)
 378                return map;
 379
 380        size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
 381        map = memblock_virt_alloc_try_nid(size,
 382                                          PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
 383                                          BOOTMEM_ALLOC_ACCESSIBLE, nid);
 384        return map;
 385}
 386void __init sparse_mem_maps_populate_node(struct page **map_map,
 387                                          unsigned long pnum_begin,
 388                                          unsigned long pnum_end,
 389                                          unsigned long map_count, int nodeid)
 390{
 391        void *map;
 392        unsigned long pnum;
 393        unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
 394
 395        map = alloc_remap(nodeid, size * map_count);
 396        if (map) {
 397                for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
 398                        if (!present_section_nr(pnum))
 399                                continue;
 400                        map_map[pnum] = map;
 401                        map += size;
 402                }
 403                return;
 404        }
 405
 406        size = PAGE_ALIGN(size);
 407        map = memblock_virt_alloc_try_nid(size * map_count,
 408                                          PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
 409                                          BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
 410        if (map) {
 411                for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
 412                        if (!present_section_nr(pnum))
 413                                continue;
 414                        map_map[pnum] = map;
 415                        map += size;
 416                }
 417                return;
 418        }
 419
 420        /* fallback */
 421        for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
 422                struct mem_section *ms;
 423
 424                if (!present_section_nr(pnum))
 425                        continue;
 426                map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
 427                if (map_map[pnum])
 428                        continue;
 429                ms = __nr_to_section(pnum);
 430                pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
 431                       __func__);
 432                ms->section_mem_map = 0;
 433        }
 434}
 435#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 436
 437#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 438static void __init sparse_early_mem_maps_alloc_node(void *data,
 439                                 unsigned long pnum_begin,
 440                                 unsigned long pnum_end,
 441                                 unsigned long map_count, int nodeid)
 442{
 443        struct page **map_map = (struct page **)data;
 444        sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
 445                                         map_count, nodeid);
 446}
 447#else
 448static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
 449{
 450        struct page *map;
 451        struct mem_section *ms = __nr_to_section(pnum);
 452        int nid = sparse_early_nid(ms);
 453
 454        map = sparse_mem_map_populate(pnum, nid);
 455        if (map)
 456                return map;
 457
 458        pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
 459               __func__);
 460        ms->section_mem_map = 0;
 461        return NULL;
 462}
 463#endif
 464
 465void __weak __meminit vmemmap_populate_print_last(void)
 466{
 467}
 468
 469/**
 470 *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
 471 *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
 472 */
 473static void __init alloc_usemap_and_memmap(void (*alloc_func)
 474                                        (void *, unsigned long, unsigned long,
 475                                        unsigned long, int), void *data)
 476{
 477        unsigned long pnum;
 478        unsigned long map_count;
 479        int nodeid_begin = 0;
 480        unsigned long pnum_begin = 0;
 481
 482        for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
 483                struct mem_section *ms;
 484
 485                if (!present_section_nr(pnum))
 486                        continue;
 487                ms = __nr_to_section(pnum);
 488                nodeid_begin = sparse_early_nid(ms);
 489                pnum_begin = pnum;
 490                break;
 491        }
 492        map_count = 1;
 493        for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
 494                struct mem_section *ms;
 495                int nodeid;
 496
 497                if (!present_section_nr(pnum))
 498                        continue;
 499                ms = __nr_to_section(pnum);
 500                nodeid = sparse_early_nid(ms);
 501                if (nodeid == nodeid_begin) {
 502                        map_count++;
 503                        continue;
 504                }
 505                /* ok, we need to take cake of from pnum_begin to pnum - 1*/
 506                alloc_func(data, pnum_begin, pnum,
 507                                                map_count, nodeid_begin);
 508                /* new start, update count etc*/
 509                nodeid_begin = nodeid;
 510                pnum_begin = pnum;
 511                map_count = 1;
 512        }
 513        /* ok, last chunk */
 514        alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
 515                                                map_count, nodeid_begin);
 516}
 517
 518/*
 519 * Allocate the accumulated non-linear sections, allocate a mem_map
 520 * for each and record the physical to section mapping.
 521 */
 522void __init sparse_init(void)
 523{
 524        unsigned long pnum;
 525        struct page *map;
 526        unsigned long *usemap;
 527        unsigned long **usemap_map;
 528        int size;
 529#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 530        int size2;
 531        struct page **map_map;
 532#endif
 533
 534        /* see include/linux/mmzone.h 'struct mem_section' definition */
 535        BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
 536
 537        /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
 538        set_pageblock_order();
 539
 540        /*
 541         * map is using big page (aka 2M in x86 64 bit)
 542         * usemap is less one page (aka 24 bytes)
 543         * so alloc 2M (with 2M align) and 24 bytes in turn will
 544         * make next 2M slip to one more 2M later.
 545         * then in big system, the memory will have a lot of holes...
 546         * here try to allocate 2M pages continuously.
 547         *
 548         * powerpc need to call sparse_init_one_section right after each
 549         * sparse_early_mem_map_alloc, so allocate usemap_map at first.
 550         */
 551        size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
 552        usemap_map = memblock_virt_alloc(size, 0);
 553        if (!usemap_map)
 554                panic("can not allocate usemap_map\n");
 555        alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
 556                                                        (void *)usemap_map);
 557
 558#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 559        size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
 560        map_map = memblock_virt_alloc(size2, 0);
 561        if (!map_map)
 562                panic("can not allocate map_map\n");
 563        alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
 564                                                        (void *)map_map);
 565#endif
 566
 567        for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
 568                if (!present_section_nr(pnum))
 569                        continue;
 570
 571                usemap = usemap_map[pnum];
 572                if (!usemap)
 573                        continue;
 574
 575#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 576                map = map_map[pnum];
 577#else
 578                map = sparse_early_mem_map_alloc(pnum);
 579#endif
 580                if (!map)
 581                        continue;
 582
 583                sparse_init_one_section(__nr_to_section(pnum), pnum, map,
 584                                                                usemap);
 585        }
 586
 587        vmemmap_populate_print_last();
 588
 589#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 590        memblock_free_early(__pa(map_map), size2);
 591#endif
 592        memblock_free_early(__pa(usemap_map), size);
 593}
 594
 595#ifdef CONFIG_MEMORY_HOTPLUG
 596#ifdef CONFIG_SPARSEMEM_VMEMMAP
 597static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
 598{
 599        /* This will make the necessary allocations eventually. */
 600        return sparse_mem_map_populate(pnum, nid);
 601}
 602static void __kfree_section_memmap(struct page *memmap)
 603{
 604        unsigned long start = (unsigned long)memmap;
 605        unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
 606
 607        vmemmap_free(start, end);
 608}
 609#ifdef CONFIG_MEMORY_HOTREMOVE
 610static void free_map_bootmem(struct page *memmap)
 611{
 612        unsigned long start = (unsigned long)memmap;
 613        unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
 614
 615        vmemmap_free(start, end);
 616}
 617#endif /* CONFIG_MEMORY_HOTREMOVE */
 618#else
 619static struct page *__kmalloc_section_memmap(void)
 620{
 621        struct page *page, *ret;
 622        unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
 623
 624        page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
 625        if (page)
 626                goto got_map_page;
 627
 628        ret = vmalloc(memmap_size);
 629        if (ret)
 630                goto got_map_ptr;
 631
 632        return NULL;
 633got_map_page:
 634        ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
 635got_map_ptr:
 636
 637        return ret;
 638}
 639
 640static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
 641{
 642        return __kmalloc_section_memmap();
 643}
 644
 645static void __kfree_section_memmap(struct page *memmap)
 646{
 647        if (is_vmalloc_addr(memmap))
 648                vfree(memmap);
 649        else
 650                free_pages((unsigned long)memmap,
 651                           get_order(sizeof(struct page) * PAGES_PER_SECTION));
 652}
 653
 654#ifdef CONFIG_MEMORY_HOTREMOVE
 655static void free_map_bootmem(struct page *memmap)
 656{
 657        unsigned long maps_section_nr, removing_section_nr, i;
 658        unsigned long magic, nr_pages;
 659        struct page *page = virt_to_page(memmap);
 660
 661        nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
 662                >> PAGE_SHIFT;
 663
 664        for (i = 0; i < nr_pages; i++, page++) {
 665                magic = (unsigned long) page->lru.next;
 666
 667                BUG_ON(magic == NODE_INFO);
 668
 669                maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
 670                removing_section_nr = page->private;
 671
 672                /*
 673                 * When this function is called, the removing section is
 674                 * logical offlined state. This means all pages are isolated
 675                 * from page allocator. If removing section's memmap is placed
 676                 * on the same section, it must not be freed.
 677                 * If it is freed, page allocator may allocate it which will
 678                 * be removed physically soon.
 679                 */
 680                if (maps_section_nr != removing_section_nr)
 681                        put_page_bootmem(page);
 682        }
 683}
 684#endif /* CONFIG_MEMORY_HOTREMOVE */
 685#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 686
 687/*
 688 * returns the number of sections whose mem_maps were properly
 689 * set.  If this is <=0, then that means that the passed-in
 690 * map was not consumed and must be freed.
 691 */
 692int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
 693{
 694        unsigned long section_nr = pfn_to_section_nr(start_pfn);
 695        struct pglist_data *pgdat = zone->zone_pgdat;
 696        struct mem_section *ms;
 697        struct page *memmap;
 698        unsigned long *usemap;
 699        unsigned long flags;
 700        int ret;
 701
 702        /*
 703         * no locking for this, because it does its own
 704         * plus, it does a kmalloc
 705         */
 706        ret = sparse_index_init(section_nr, pgdat->node_id);
 707        if (ret < 0 && ret != -EEXIST)
 708                return ret;
 709        memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
 710        if (!memmap)
 711                return -ENOMEM;
 712        usemap = __kmalloc_section_usemap();
 713        if (!usemap) {
 714                __kfree_section_memmap(memmap);
 715                return -ENOMEM;
 716        }
 717
 718        pgdat_resize_lock(pgdat, &flags);
 719
 720        ms = __pfn_to_section(start_pfn);
 721        if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
 722                ret = -EEXIST;
 723                goto out;
 724        }
 725
 726        memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
 727
 728        ms->section_mem_map |= SECTION_MARKED_PRESENT;
 729
 730        ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
 731
 732out:
 733        pgdat_resize_unlock(pgdat, &flags);
 734        if (ret <= 0) {
 735                kfree(usemap);
 736                __kfree_section_memmap(memmap);
 737        }
 738        return ret;
 739}
 740
 741#ifdef CONFIG_MEMORY_HOTREMOVE
 742#ifdef CONFIG_MEMORY_FAILURE
 743static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
 744{
 745        int i;
 746
 747        if (!memmap)
 748                return;
 749
 750        for (i = 0; i < nr_pages; i++) {
 751                if (PageHWPoison(&memmap[i])) {
 752                        atomic_long_sub(1, &num_poisoned_pages);
 753                        ClearPageHWPoison(&memmap[i]);
 754                }
 755        }
 756}
 757#else
 758static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
 759{
 760}
 761#endif
 762
 763static void free_section_usemap(struct page *memmap, unsigned long *usemap)
 764{
 765        struct page *usemap_page;
 766
 767        if (!usemap)
 768                return;
 769
 770        usemap_page = virt_to_page(usemap);
 771        /*
 772         * Check to see if allocation came from hot-plug-add
 773         */
 774        if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
 775                kfree(usemap);
 776                if (memmap)
 777                        __kfree_section_memmap(memmap);
 778                return;
 779        }
 780
 781        /*
 782         * The usemap came from bootmem. This is packed with other usemaps
 783         * on the section which has pgdat at boot time. Just keep it as is now.
 784         */
 785
 786        if (memmap)
 787                free_map_bootmem(memmap);
 788}
 789
 790void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
 791                unsigned long map_offset)
 792{
 793        struct page *memmap = NULL;
 794        unsigned long *usemap = NULL, flags;
 795        struct pglist_data *pgdat = zone->zone_pgdat;
 796
 797        pgdat_resize_lock(pgdat, &flags);
 798        if (ms->section_mem_map) {
 799                usemap = ms->pageblock_flags;
 800                memmap = sparse_decode_mem_map(ms->section_mem_map,
 801                                                __section_nr(ms));
 802                ms->section_mem_map = 0;
 803                ms->pageblock_flags = NULL;
 804        }
 805        pgdat_resize_unlock(pgdat, &flags);
 806
 807        clear_hwpoisoned_pages(memmap + map_offset,
 808                        PAGES_PER_SECTION - map_offset);
 809        free_section_usemap(memmap, usemap);
 810}
 811#endif /* CONFIG_MEMORY_HOTREMOVE */
 812#endif /* CONFIG_MEMORY_HOTPLUG */
 813