linux/net/ipv4/tcp_output.c
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:     Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *              Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *              Florian La Roche, <flla@stud.uni-sb.de>
  13 *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *              Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *              Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *              Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:     Pedro Roque     :       Retransmit queue handled by TCP.
  23 *                              :       Fragmentation on mtu decrease
  24 *                              :       Segment collapse on retransmit
  25 *                              :       AF independence
  26 *
  27 *              Linus Torvalds  :       send_delayed_ack
  28 *              David S. Miller :       Charge memory using the right skb
  29 *                                      during syn/ack processing.
  30 *              David S. Miller :       Output engine completely rewritten.
  31 *              Andrea Arcangeli:       SYNACK carry ts_recent in tsecr.
  32 *              Cacophonix Gaul :       draft-minshall-nagle-01
  33 *              J Hadi Salim    :       ECN support
  34 *
  35 */
  36
  37#define pr_fmt(fmt) "TCP: " fmt
  38
  39#include <net/tcp.h>
  40
  41#include <linux/compiler.h>
  42#include <linux/gfp.h>
  43#include <linux/module.h>
  44
  45/* People can turn this off for buggy TCP's found in printers etc. */
  46int sysctl_tcp_retrans_collapse __read_mostly = 1;
  47
  48/* People can turn this on to work with those rare, broken TCPs that
  49 * interpret the window field as a signed quantity.
  50 */
  51int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
  52
  53/* Default TSQ limit of four TSO segments */
  54int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
  55
  56/* This limits the percentage of the congestion window which we
  57 * will allow a single TSO frame to consume.  Building TSO frames
  58 * which are too large can cause TCP streams to be bursty.
  59 */
  60int sysctl_tcp_tso_win_divisor __read_mostly = 3;
  61
  62/* By default, RFC2861 behavior.  */
  63int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
  64
  65static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  66                           int push_one, gfp_t gfp);
  67
  68/* Account for new data that has been sent to the network. */
  69static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
  70{
  71        struct inet_connection_sock *icsk = inet_csk(sk);
  72        struct tcp_sock *tp = tcp_sk(sk);
  73        unsigned int prior_packets = tp->packets_out;
  74
  75        tcp_advance_send_head(sk, skb);
  76        tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
  77
  78        tp->packets_out += tcp_skb_pcount(skb);
  79        if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  80            icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  81                tcp_rearm_rto(sk);
  82        }
  83
  84        NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  85                      tcp_skb_pcount(skb));
  86}
  87
  88/* SND.NXT, if window was not shrunk.
  89 * If window has been shrunk, what should we make? It is not clear at all.
  90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  92 * invalid. OK, let's make this for now:
  93 */
  94static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  95{
  96        const struct tcp_sock *tp = tcp_sk(sk);
  97
  98        if (!before(tcp_wnd_end(tp), tp->snd_nxt))
  99                return tp->snd_nxt;
 100        else
 101                return tcp_wnd_end(tp);
 102}
 103
 104/* Calculate mss to advertise in SYN segment.
 105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
 106 *
 107 * 1. It is independent of path mtu.
 108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
 109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
 110 *    attached devices, because some buggy hosts are confused by
 111 *    large MSS.
 112 * 4. We do not make 3, we advertise MSS, calculated from first
 113 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
 114 *    This may be overridden via information stored in routing table.
 115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
 116 *    probably even Jumbo".
 117 */
 118static __u16 tcp_advertise_mss(struct sock *sk)
 119{
 120        struct tcp_sock *tp = tcp_sk(sk);
 121        const struct dst_entry *dst = __sk_dst_get(sk);
 122        int mss = tp->advmss;
 123
 124        if (dst) {
 125                unsigned int metric = dst_metric_advmss(dst);
 126
 127                if (metric < mss) {
 128                        mss = metric;
 129                        tp->advmss = mss;
 130                }
 131        }
 132
 133        return (__u16)mss;
 134}
 135
 136/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
 137 * This is the first part of cwnd validation mechanism.
 138 */
 139void tcp_cwnd_restart(struct sock *sk, s32 delta)
 140{
 141        struct tcp_sock *tp = tcp_sk(sk);
 142        u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
 143        u32 cwnd = tp->snd_cwnd;
 144
 145        tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
 146
 147        tp->snd_ssthresh = tcp_current_ssthresh(sk);
 148        restart_cwnd = min(restart_cwnd, cwnd);
 149
 150        while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
 151                cwnd >>= 1;
 152        tp->snd_cwnd = max(cwnd, restart_cwnd);
 153        tp->snd_cwnd_stamp = tcp_time_stamp;
 154        tp->snd_cwnd_used = 0;
 155}
 156
 157/* Congestion state accounting after a packet has been sent. */
 158static void tcp_event_data_sent(struct tcp_sock *tp,
 159                                struct sock *sk)
 160{
 161        struct inet_connection_sock *icsk = inet_csk(sk);
 162        const u32 now = tcp_time_stamp;
 163
 164        if (tcp_packets_in_flight(tp) == 0)
 165                tcp_ca_event(sk, CA_EVENT_TX_START);
 166
 167        tp->lsndtime = now;
 168
 169        /* If it is a reply for ato after last received
 170         * packet, enter pingpong mode.
 171         */
 172        if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
 173                icsk->icsk_ack.pingpong = 1;
 174}
 175
 176/* Account for an ACK we sent. */
 177static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
 178{
 179        tcp_dec_quickack_mode(sk, pkts);
 180        inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
 181}
 182
 183
 184u32 tcp_default_init_rwnd(u32 mss)
 185{
 186        /* Initial receive window should be twice of TCP_INIT_CWND to
 187         * enable proper sending of new unsent data during fast recovery
 188         * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
 189         * limit when mss is larger than 1460.
 190         */
 191        u32 init_rwnd = TCP_INIT_CWND * 2;
 192
 193        if (mss > 1460)
 194                init_rwnd = max((1460 * init_rwnd) / mss, 2U);
 195        return init_rwnd;
 196}
 197
 198/* Determine a window scaling and initial window to offer.
 199 * Based on the assumption that the given amount of space
 200 * will be offered. Store the results in the tp structure.
 201 * NOTE: for smooth operation initial space offering should
 202 * be a multiple of mss if possible. We assume here that mss >= 1.
 203 * This MUST be enforced by all callers.
 204 */
 205void tcp_select_initial_window(int __space, __u32 mss,
 206                               __u32 *rcv_wnd, __u32 *window_clamp,
 207                               int wscale_ok, __u8 *rcv_wscale,
 208                               __u32 init_rcv_wnd)
 209{
 210        unsigned int space = (__space < 0 ? 0 : __space);
 211
 212        /* If no clamp set the clamp to the max possible scaled window */
 213        if (*window_clamp == 0)
 214                (*window_clamp) = (65535 << 14);
 215        space = min(*window_clamp, space);
 216
 217        /* Quantize space offering to a multiple of mss if possible. */
 218        if (space > mss)
 219                space = (space / mss) * mss;
 220
 221        /* NOTE: offering an initial window larger than 32767
 222         * will break some buggy TCP stacks. If the admin tells us
 223         * it is likely we could be speaking with such a buggy stack
 224         * we will truncate our initial window offering to 32K-1
 225         * unless the remote has sent us a window scaling option,
 226         * which we interpret as a sign the remote TCP is not
 227         * misinterpreting the window field as a signed quantity.
 228         */
 229        if (sysctl_tcp_workaround_signed_windows)
 230                (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
 231        else
 232                (*rcv_wnd) = space;
 233
 234        (*rcv_wscale) = 0;
 235        if (wscale_ok) {
 236                /* Set window scaling on max possible window
 237                 * See RFC1323 for an explanation of the limit to 14
 238                 */
 239                space = max_t(u32, space, sysctl_tcp_rmem[2]);
 240                space = max_t(u32, space, sysctl_rmem_max);
 241                space = min_t(u32, space, *window_clamp);
 242                while (space > 65535 && (*rcv_wscale) < 14) {
 243                        space >>= 1;
 244                        (*rcv_wscale)++;
 245                }
 246        }
 247
 248        if (mss > (1 << *rcv_wscale)) {
 249                if (!init_rcv_wnd) /* Use default unless specified otherwise */
 250                        init_rcv_wnd = tcp_default_init_rwnd(mss);
 251                *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
 252        }
 253
 254        /* Set the clamp no higher than max representable value */
 255        (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
 256}
 257EXPORT_SYMBOL(tcp_select_initial_window);
 258
 259/* Chose a new window to advertise, update state in tcp_sock for the
 260 * socket, and return result with RFC1323 scaling applied.  The return
 261 * value can be stuffed directly into th->window for an outgoing
 262 * frame.
 263 */
 264static u16 tcp_select_window(struct sock *sk)
 265{
 266        struct tcp_sock *tp = tcp_sk(sk);
 267        u32 old_win = tp->rcv_wnd;
 268        u32 cur_win = tcp_receive_window(tp);
 269        u32 new_win = __tcp_select_window(sk);
 270
 271        /* Never shrink the offered window */
 272        if (new_win < cur_win) {
 273                /* Danger Will Robinson!
 274                 * Don't update rcv_wup/rcv_wnd here or else
 275                 * we will not be able to advertise a zero
 276                 * window in time.  --DaveM
 277                 *
 278                 * Relax Will Robinson.
 279                 */
 280                if (new_win == 0)
 281                        NET_INC_STATS(sock_net(sk),
 282                                      LINUX_MIB_TCPWANTZEROWINDOWADV);
 283                new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
 284        }
 285        tp->rcv_wnd = new_win;
 286        tp->rcv_wup = tp->rcv_nxt;
 287
 288        /* Make sure we do not exceed the maximum possible
 289         * scaled window.
 290         */
 291        if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
 292                new_win = min(new_win, MAX_TCP_WINDOW);
 293        else
 294                new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
 295
 296        /* RFC1323 scaling applied */
 297        new_win >>= tp->rx_opt.rcv_wscale;
 298
 299        /* If we advertise zero window, disable fast path. */
 300        if (new_win == 0) {
 301                tp->pred_flags = 0;
 302                if (old_win)
 303                        NET_INC_STATS(sock_net(sk),
 304                                      LINUX_MIB_TCPTOZEROWINDOWADV);
 305        } else if (old_win == 0) {
 306                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
 307        }
 308
 309        return new_win;
 310}
 311
 312/* Packet ECN state for a SYN-ACK */
 313static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
 314{
 315        const struct tcp_sock *tp = tcp_sk(sk);
 316
 317        TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
 318        if (!(tp->ecn_flags & TCP_ECN_OK))
 319                TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
 320        else if (tcp_ca_needs_ecn(sk))
 321                INET_ECN_xmit(sk);
 322}
 323
 324/* Packet ECN state for a SYN.  */
 325static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
 326{
 327        struct tcp_sock *tp = tcp_sk(sk);
 328        bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
 329                       tcp_ca_needs_ecn(sk);
 330
 331        if (!use_ecn) {
 332                const struct dst_entry *dst = __sk_dst_get(sk);
 333
 334                if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
 335                        use_ecn = true;
 336        }
 337
 338        tp->ecn_flags = 0;
 339
 340        if (use_ecn) {
 341                TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
 342                tp->ecn_flags = TCP_ECN_OK;
 343                if (tcp_ca_needs_ecn(sk))
 344                        INET_ECN_xmit(sk);
 345        }
 346}
 347
 348static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
 349{
 350        if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
 351                /* tp->ecn_flags are cleared at a later point in time when
 352                 * SYN ACK is ultimatively being received.
 353                 */
 354                TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
 355}
 356
 357static void
 358tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
 359{
 360        if (inet_rsk(req)->ecn_ok)
 361                th->ece = 1;
 362}
 363
 364/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
 365 * be sent.
 366 */
 367static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
 368                         struct tcphdr *th, int tcp_header_len)
 369{
 370        struct tcp_sock *tp = tcp_sk(sk);
 371
 372        if (tp->ecn_flags & TCP_ECN_OK) {
 373                /* Not-retransmitted data segment: set ECT and inject CWR. */
 374                if (skb->len != tcp_header_len &&
 375                    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
 376                        INET_ECN_xmit(sk);
 377                        if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
 378                                tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 379                                th->cwr = 1;
 380                                skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
 381                        }
 382                } else if (!tcp_ca_needs_ecn(sk)) {
 383                        /* ACK or retransmitted segment: clear ECT|CE */
 384                        INET_ECN_dontxmit(sk);
 385                }
 386                if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
 387                        th->ece = 1;
 388        }
 389}
 390
 391/* Constructs common control bits of non-data skb. If SYN/FIN is present,
 392 * auto increment end seqno.
 393 */
 394static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
 395{
 396        skb->ip_summed = CHECKSUM_PARTIAL;
 397        skb->csum = 0;
 398
 399        TCP_SKB_CB(skb)->tcp_flags = flags;
 400        TCP_SKB_CB(skb)->sacked = 0;
 401
 402        tcp_skb_pcount_set(skb, 1);
 403
 404        TCP_SKB_CB(skb)->seq = seq;
 405        if (flags & (TCPHDR_SYN | TCPHDR_FIN))
 406                seq++;
 407        TCP_SKB_CB(skb)->end_seq = seq;
 408}
 409
 410static inline bool tcp_urg_mode(const struct tcp_sock *tp)
 411{
 412        return tp->snd_una != tp->snd_up;
 413}
 414
 415#define OPTION_SACK_ADVERTISE   (1 << 0)
 416#define OPTION_TS               (1 << 1)
 417#define OPTION_MD5              (1 << 2)
 418#define OPTION_WSCALE           (1 << 3)
 419#define OPTION_FAST_OPEN_COOKIE (1 << 8)
 420
 421struct tcp_out_options {
 422        u16 options;            /* bit field of OPTION_* */
 423        u16 mss;                /* 0 to disable */
 424        u8 ws;                  /* window scale, 0 to disable */
 425        u8 num_sack_blocks;     /* number of SACK blocks to include */
 426        u8 hash_size;           /* bytes in hash_location */
 427        __u8 *hash_location;    /* temporary pointer, overloaded */
 428        __u32 tsval, tsecr;     /* need to include OPTION_TS */
 429        struct tcp_fastopen_cookie *fastopen_cookie;    /* Fast open cookie */
 430};
 431
 432/* Write previously computed TCP options to the packet.
 433 *
 434 * Beware: Something in the Internet is very sensitive to the ordering of
 435 * TCP options, we learned this through the hard way, so be careful here.
 436 * Luckily we can at least blame others for their non-compliance but from
 437 * inter-operability perspective it seems that we're somewhat stuck with
 438 * the ordering which we have been using if we want to keep working with
 439 * those broken things (not that it currently hurts anybody as there isn't
 440 * particular reason why the ordering would need to be changed).
 441 *
 442 * At least SACK_PERM as the first option is known to lead to a disaster
 443 * (but it may well be that other scenarios fail similarly).
 444 */
 445static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
 446                              struct tcp_out_options *opts)
 447{
 448        u16 options = opts->options;    /* mungable copy */
 449
 450        if (unlikely(OPTION_MD5 & options)) {
 451                *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 452                               (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
 453                /* overload cookie hash location */
 454                opts->hash_location = (__u8 *)ptr;
 455                ptr += 4;
 456        }
 457
 458        if (unlikely(opts->mss)) {
 459                *ptr++ = htonl((TCPOPT_MSS << 24) |
 460                               (TCPOLEN_MSS << 16) |
 461                               opts->mss);
 462        }
 463
 464        if (likely(OPTION_TS & options)) {
 465                if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 466                        *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
 467                                       (TCPOLEN_SACK_PERM << 16) |
 468                                       (TCPOPT_TIMESTAMP << 8) |
 469                                       TCPOLEN_TIMESTAMP);
 470                        options &= ~OPTION_SACK_ADVERTISE;
 471                } else {
 472                        *ptr++ = htonl((TCPOPT_NOP << 24) |
 473                                       (TCPOPT_NOP << 16) |
 474                                       (TCPOPT_TIMESTAMP << 8) |
 475                                       TCPOLEN_TIMESTAMP);
 476                }
 477                *ptr++ = htonl(opts->tsval);
 478                *ptr++ = htonl(opts->tsecr);
 479        }
 480
 481        if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 482                *ptr++ = htonl((TCPOPT_NOP << 24) |
 483                               (TCPOPT_NOP << 16) |
 484                               (TCPOPT_SACK_PERM << 8) |
 485                               TCPOLEN_SACK_PERM);
 486        }
 487
 488        if (unlikely(OPTION_WSCALE & options)) {
 489                *ptr++ = htonl((TCPOPT_NOP << 24) |
 490                               (TCPOPT_WINDOW << 16) |
 491                               (TCPOLEN_WINDOW << 8) |
 492                               opts->ws);
 493        }
 494
 495        if (unlikely(opts->num_sack_blocks)) {
 496                struct tcp_sack_block *sp = tp->rx_opt.dsack ?
 497                        tp->duplicate_sack : tp->selective_acks;
 498                int this_sack;
 499
 500                *ptr++ = htonl((TCPOPT_NOP  << 24) |
 501                               (TCPOPT_NOP  << 16) |
 502                               (TCPOPT_SACK <<  8) |
 503                               (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
 504                                                     TCPOLEN_SACK_PERBLOCK)));
 505
 506                for (this_sack = 0; this_sack < opts->num_sack_blocks;
 507                     ++this_sack) {
 508                        *ptr++ = htonl(sp[this_sack].start_seq);
 509                        *ptr++ = htonl(sp[this_sack].end_seq);
 510                }
 511
 512                tp->rx_opt.dsack = 0;
 513        }
 514
 515        if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
 516                struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
 517                u8 *p = (u8 *)ptr;
 518                u32 len; /* Fast Open option length */
 519
 520                if (foc->exp) {
 521                        len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
 522                        *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
 523                                     TCPOPT_FASTOPEN_MAGIC);
 524                        p += TCPOLEN_EXP_FASTOPEN_BASE;
 525                } else {
 526                        len = TCPOLEN_FASTOPEN_BASE + foc->len;
 527                        *p++ = TCPOPT_FASTOPEN;
 528                        *p++ = len;
 529                }
 530
 531                memcpy(p, foc->val, foc->len);
 532                if ((len & 3) == 2) {
 533                        p[foc->len] = TCPOPT_NOP;
 534                        p[foc->len + 1] = TCPOPT_NOP;
 535                }
 536                ptr += (len + 3) >> 2;
 537        }
 538}
 539
 540/* Compute TCP options for SYN packets. This is not the final
 541 * network wire format yet.
 542 */
 543static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
 544                                struct tcp_out_options *opts,
 545                                struct tcp_md5sig_key **md5)
 546{
 547        struct tcp_sock *tp = tcp_sk(sk);
 548        unsigned int remaining = MAX_TCP_OPTION_SPACE;
 549        struct tcp_fastopen_request *fastopen = tp->fastopen_req;
 550
 551#ifdef CONFIG_TCP_MD5SIG
 552        *md5 = tp->af_specific->md5_lookup(sk, sk);
 553        if (*md5) {
 554                opts->options |= OPTION_MD5;
 555                remaining -= TCPOLEN_MD5SIG_ALIGNED;
 556        }
 557#else
 558        *md5 = NULL;
 559#endif
 560
 561        /* We always get an MSS option.  The option bytes which will be seen in
 562         * normal data packets should timestamps be used, must be in the MSS
 563         * advertised.  But we subtract them from tp->mss_cache so that
 564         * calculations in tcp_sendmsg are simpler etc.  So account for this
 565         * fact here if necessary.  If we don't do this correctly, as a
 566         * receiver we won't recognize data packets as being full sized when we
 567         * should, and thus we won't abide by the delayed ACK rules correctly.
 568         * SACKs don't matter, we never delay an ACK when we have any of those
 569         * going out.  */
 570        opts->mss = tcp_advertise_mss(sk);
 571        remaining -= TCPOLEN_MSS_ALIGNED;
 572
 573        if (likely(sysctl_tcp_timestamps && !*md5)) {
 574                opts->options |= OPTION_TS;
 575                opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
 576                opts->tsecr = tp->rx_opt.ts_recent;
 577                remaining -= TCPOLEN_TSTAMP_ALIGNED;
 578        }
 579        if (likely(sysctl_tcp_window_scaling)) {
 580                opts->ws = tp->rx_opt.rcv_wscale;
 581                opts->options |= OPTION_WSCALE;
 582                remaining -= TCPOLEN_WSCALE_ALIGNED;
 583        }
 584        if (likely(sysctl_tcp_sack)) {
 585                opts->options |= OPTION_SACK_ADVERTISE;
 586                if (unlikely(!(OPTION_TS & opts->options)))
 587                        remaining -= TCPOLEN_SACKPERM_ALIGNED;
 588        }
 589
 590        if (fastopen && fastopen->cookie.len >= 0) {
 591                u32 need = fastopen->cookie.len;
 592
 593                need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 594                                               TCPOLEN_FASTOPEN_BASE;
 595                need = (need + 3) & ~3U;  /* Align to 32 bits */
 596                if (remaining >= need) {
 597                        opts->options |= OPTION_FAST_OPEN_COOKIE;
 598                        opts->fastopen_cookie = &fastopen->cookie;
 599                        remaining -= need;
 600                        tp->syn_fastopen = 1;
 601                        tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
 602                }
 603        }
 604
 605        return MAX_TCP_OPTION_SPACE - remaining;
 606}
 607
 608/* Set up TCP options for SYN-ACKs. */
 609static unsigned int tcp_synack_options(struct request_sock *req,
 610                                       unsigned int mss, struct sk_buff *skb,
 611                                       struct tcp_out_options *opts,
 612                                       const struct tcp_md5sig_key *md5,
 613                                       struct tcp_fastopen_cookie *foc)
 614{
 615        struct inet_request_sock *ireq = inet_rsk(req);
 616        unsigned int remaining = MAX_TCP_OPTION_SPACE;
 617
 618#ifdef CONFIG_TCP_MD5SIG
 619        if (md5) {
 620                opts->options |= OPTION_MD5;
 621                remaining -= TCPOLEN_MD5SIG_ALIGNED;
 622
 623                /* We can't fit any SACK blocks in a packet with MD5 + TS
 624                 * options. There was discussion about disabling SACK
 625                 * rather than TS in order to fit in better with old,
 626                 * buggy kernels, but that was deemed to be unnecessary.
 627                 */
 628                ireq->tstamp_ok &= !ireq->sack_ok;
 629        }
 630#endif
 631
 632        /* We always send an MSS option. */
 633        opts->mss = mss;
 634        remaining -= TCPOLEN_MSS_ALIGNED;
 635
 636        if (likely(ireq->wscale_ok)) {
 637                opts->ws = ireq->rcv_wscale;
 638                opts->options |= OPTION_WSCALE;
 639                remaining -= TCPOLEN_WSCALE_ALIGNED;
 640        }
 641        if (likely(ireq->tstamp_ok)) {
 642                opts->options |= OPTION_TS;
 643                opts->tsval = tcp_skb_timestamp(skb);
 644                opts->tsecr = req->ts_recent;
 645                remaining -= TCPOLEN_TSTAMP_ALIGNED;
 646        }
 647        if (likely(ireq->sack_ok)) {
 648                opts->options |= OPTION_SACK_ADVERTISE;
 649                if (unlikely(!ireq->tstamp_ok))
 650                        remaining -= TCPOLEN_SACKPERM_ALIGNED;
 651        }
 652        if (foc != NULL && foc->len >= 0) {
 653                u32 need = foc->len;
 654
 655                need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 656                                   TCPOLEN_FASTOPEN_BASE;
 657                need = (need + 3) & ~3U;  /* Align to 32 bits */
 658                if (remaining >= need) {
 659                        opts->options |= OPTION_FAST_OPEN_COOKIE;
 660                        opts->fastopen_cookie = foc;
 661                        remaining -= need;
 662                }
 663        }
 664
 665        return MAX_TCP_OPTION_SPACE - remaining;
 666}
 667
 668/* Compute TCP options for ESTABLISHED sockets. This is not the
 669 * final wire format yet.
 670 */
 671static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
 672                                        struct tcp_out_options *opts,
 673                                        struct tcp_md5sig_key **md5)
 674{
 675        struct tcp_sock *tp = tcp_sk(sk);
 676        unsigned int size = 0;
 677        unsigned int eff_sacks;
 678
 679        opts->options = 0;
 680
 681#ifdef CONFIG_TCP_MD5SIG
 682        *md5 = tp->af_specific->md5_lookup(sk, sk);
 683        if (unlikely(*md5)) {
 684                opts->options |= OPTION_MD5;
 685                size += TCPOLEN_MD5SIG_ALIGNED;
 686        }
 687#else
 688        *md5 = NULL;
 689#endif
 690
 691        if (likely(tp->rx_opt.tstamp_ok)) {
 692                opts->options |= OPTION_TS;
 693                opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
 694                opts->tsecr = tp->rx_opt.ts_recent;
 695                size += TCPOLEN_TSTAMP_ALIGNED;
 696        }
 697
 698        eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
 699        if (unlikely(eff_sacks)) {
 700                const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 701                opts->num_sack_blocks =
 702                        min_t(unsigned int, eff_sacks,
 703                              (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
 704                              TCPOLEN_SACK_PERBLOCK);
 705                size += TCPOLEN_SACK_BASE_ALIGNED +
 706                        opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
 707        }
 708
 709        return size;
 710}
 711
 712
 713/* TCP SMALL QUEUES (TSQ)
 714 *
 715 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
 716 * to reduce RTT and bufferbloat.
 717 * We do this using a special skb destructor (tcp_wfree).
 718 *
 719 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
 720 * needs to be reallocated in a driver.
 721 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
 722 *
 723 * Since transmit from skb destructor is forbidden, we use a tasklet
 724 * to process all sockets that eventually need to send more skbs.
 725 * We use one tasklet per cpu, with its own queue of sockets.
 726 */
 727struct tsq_tasklet {
 728        struct tasklet_struct   tasklet;
 729        struct list_head        head; /* queue of tcp sockets */
 730};
 731static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
 732
 733static void tcp_tsq_handler(struct sock *sk)
 734{
 735        if ((1 << sk->sk_state) &
 736            (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
 737             TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
 738                tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
 739                               0, GFP_ATOMIC);
 740}
 741/*
 742 * One tasklet per cpu tries to send more skbs.
 743 * We run in tasklet context but need to disable irqs when
 744 * transferring tsq->head because tcp_wfree() might
 745 * interrupt us (non NAPI drivers)
 746 */
 747static void tcp_tasklet_func(unsigned long data)
 748{
 749        struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
 750        LIST_HEAD(list);
 751        unsigned long flags;
 752        struct list_head *q, *n;
 753        struct tcp_sock *tp;
 754        struct sock *sk;
 755
 756        local_irq_save(flags);
 757        list_splice_init(&tsq->head, &list);
 758        local_irq_restore(flags);
 759
 760        list_for_each_safe(q, n, &list) {
 761                tp = list_entry(q, struct tcp_sock, tsq_node);
 762                list_del(&tp->tsq_node);
 763
 764                sk = (struct sock *)tp;
 765                bh_lock_sock(sk);
 766
 767                if (!sock_owned_by_user(sk)) {
 768                        tcp_tsq_handler(sk);
 769                } else {
 770                        /* defer the work to tcp_release_cb() */
 771                        set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
 772                }
 773                bh_unlock_sock(sk);
 774
 775                clear_bit(TSQ_QUEUED, &tp->tsq_flags);
 776                sk_free(sk);
 777        }
 778}
 779
 780#define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |           \
 781                          (1UL << TCP_WRITE_TIMER_DEFERRED) |   \
 782                          (1UL << TCP_DELACK_TIMER_DEFERRED) |  \
 783                          (1UL << TCP_MTU_REDUCED_DEFERRED))
 784/**
 785 * tcp_release_cb - tcp release_sock() callback
 786 * @sk: socket
 787 *
 788 * called from release_sock() to perform protocol dependent
 789 * actions before socket release.
 790 */
 791void tcp_release_cb(struct sock *sk)
 792{
 793        struct tcp_sock *tp = tcp_sk(sk);
 794        unsigned long flags, nflags;
 795
 796        /* perform an atomic operation only if at least one flag is set */
 797        do {
 798                flags = tp->tsq_flags;
 799                if (!(flags & TCP_DEFERRED_ALL))
 800                        return;
 801                nflags = flags & ~TCP_DEFERRED_ALL;
 802        } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
 803
 804        if (flags & (1UL << TCP_TSQ_DEFERRED))
 805                tcp_tsq_handler(sk);
 806
 807        /* Here begins the tricky part :
 808         * We are called from release_sock() with :
 809         * 1) BH disabled
 810         * 2) sk_lock.slock spinlock held
 811         * 3) socket owned by us (sk->sk_lock.owned == 1)
 812         *
 813         * But following code is meant to be called from BH handlers,
 814         * so we should keep BH disabled, but early release socket ownership
 815         */
 816        sock_release_ownership(sk);
 817
 818        if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
 819                tcp_write_timer_handler(sk);
 820                __sock_put(sk);
 821        }
 822        if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
 823                tcp_delack_timer_handler(sk);
 824                __sock_put(sk);
 825        }
 826        if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
 827                inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
 828                __sock_put(sk);
 829        }
 830}
 831EXPORT_SYMBOL(tcp_release_cb);
 832
 833void __init tcp_tasklet_init(void)
 834{
 835        int i;
 836
 837        for_each_possible_cpu(i) {
 838                struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
 839
 840                INIT_LIST_HEAD(&tsq->head);
 841                tasklet_init(&tsq->tasklet,
 842                             tcp_tasklet_func,
 843                             (unsigned long)tsq);
 844        }
 845}
 846
 847/*
 848 * Write buffer destructor automatically called from kfree_skb.
 849 * We can't xmit new skbs from this context, as we might already
 850 * hold qdisc lock.
 851 */
 852void tcp_wfree(struct sk_buff *skb)
 853{
 854        struct sock *sk = skb->sk;
 855        struct tcp_sock *tp = tcp_sk(sk);
 856        int wmem;
 857
 858        /* Keep one reference on sk_wmem_alloc.
 859         * Will be released by sk_free() from here or tcp_tasklet_func()
 860         */
 861        wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
 862
 863        /* If this softirq is serviced by ksoftirqd, we are likely under stress.
 864         * Wait until our queues (qdisc + devices) are drained.
 865         * This gives :
 866         * - less callbacks to tcp_write_xmit(), reducing stress (batches)
 867         * - chance for incoming ACK (processed by another cpu maybe)
 868         *   to migrate this flow (skb->ooo_okay will be eventually set)
 869         */
 870        if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
 871                goto out;
 872
 873        if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
 874            !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
 875                unsigned long flags;
 876                struct tsq_tasklet *tsq;
 877
 878                /* queue this socket to tasklet queue */
 879                local_irq_save(flags);
 880                tsq = this_cpu_ptr(&tsq_tasklet);
 881                list_add(&tp->tsq_node, &tsq->head);
 882                tasklet_schedule(&tsq->tasklet);
 883                local_irq_restore(flags);
 884                return;
 885        }
 886out:
 887        sk_free(sk);
 888}
 889
 890/* This routine actually transmits TCP packets queued in by
 891 * tcp_do_sendmsg().  This is used by both the initial
 892 * transmission and possible later retransmissions.
 893 * All SKB's seen here are completely headerless.  It is our
 894 * job to build the TCP header, and pass the packet down to
 895 * IP so it can do the same plus pass the packet off to the
 896 * device.
 897 *
 898 * We are working here with either a clone of the original
 899 * SKB, or a fresh unique copy made by the retransmit engine.
 900 */
 901static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
 902                            gfp_t gfp_mask)
 903{
 904        const struct inet_connection_sock *icsk = inet_csk(sk);
 905        struct inet_sock *inet;
 906        struct tcp_sock *tp;
 907        struct tcp_skb_cb *tcb;
 908        struct tcp_out_options opts;
 909        unsigned int tcp_options_size, tcp_header_size;
 910        struct tcp_md5sig_key *md5;
 911        struct tcphdr *th;
 912        int err;
 913
 914        BUG_ON(!skb || !tcp_skb_pcount(skb));
 915        tp = tcp_sk(sk);
 916
 917        if (clone_it) {
 918                skb_mstamp_get(&skb->skb_mstamp);
 919                TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
 920                        - tp->snd_una;
 921
 922                if (unlikely(skb_cloned(skb)))
 923                        skb = pskb_copy(skb, gfp_mask);
 924                else
 925                        skb = skb_clone(skb, gfp_mask);
 926                if (unlikely(!skb))
 927                        return -ENOBUFS;
 928        }
 929
 930        inet = inet_sk(sk);
 931        tcb = TCP_SKB_CB(skb);
 932        memset(&opts, 0, sizeof(opts));
 933
 934        if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
 935                tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
 936        else
 937                tcp_options_size = tcp_established_options(sk, skb, &opts,
 938                                                           &md5);
 939        tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
 940
 941        /* if no packet is in qdisc/device queue, then allow XPS to select
 942         * another queue. We can be called from tcp_tsq_handler()
 943         * which holds one reference to sk_wmem_alloc.
 944         *
 945         * TODO: Ideally, in-flight pure ACK packets should not matter here.
 946         * One way to get this would be to set skb->truesize = 2 on them.
 947         */
 948        skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
 949
 950        skb_push(skb, tcp_header_size);
 951        skb_reset_transport_header(skb);
 952
 953        skb_orphan(skb);
 954        skb->sk = sk;
 955        skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
 956        skb_set_hash_from_sk(skb, sk);
 957        atomic_add(skb->truesize, &sk->sk_wmem_alloc);
 958
 959        /* Build TCP header and checksum it. */
 960        th = (struct tcphdr *)skb->data;
 961        th->source              = inet->inet_sport;
 962        th->dest                = inet->inet_dport;
 963        th->seq                 = htonl(tcb->seq);
 964        th->ack_seq             = htonl(tp->rcv_nxt);
 965        *(((__be16 *)th) + 6)   = htons(((tcp_header_size >> 2) << 12) |
 966                                        tcb->tcp_flags);
 967
 968        th->check               = 0;
 969        th->urg_ptr             = 0;
 970
 971        /* The urg_mode check is necessary during a below snd_una win probe */
 972        if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
 973                if (before(tp->snd_up, tcb->seq + 0x10000)) {
 974                        th->urg_ptr = htons(tp->snd_up - tcb->seq);
 975                        th->urg = 1;
 976                } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
 977                        th->urg_ptr = htons(0xFFFF);
 978                        th->urg = 1;
 979                }
 980        }
 981
 982        tcp_options_write((__be32 *)(th + 1), tp, &opts);
 983        skb_shinfo(skb)->gso_type = sk->sk_gso_type;
 984        if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
 985                th->window      = htons(tcp_select_window(sk));
 986                tcp_ecn_send(sk, skb, th, tcp_header_size);
 987        } else {
 988                /* RFC1323: The window in SYN & SYN/ACK segments
 989                 * is never scaled.
 990                 */
 991                th->window      = htons(min(tp->rcv_wnd, 65535U));
 992        }
 993#ifdef CONFIG_TCP_MD5SIG
 994        /* Calculate the MD5 hash, as we have all we need now */
 995        if (md5) {
 996                sk_nocaps_add(sk, NETIF_F_GSO_MASK);
 997                tp->af_specific->calc_md5_hash(opts.hash_location,
 998                                               md5, sk, skb);
 999        }
1000#endif
1001
1002        icsk->icsk_af_ops->send_check(sk, skb);
1003
1004        if (likely(tcb->tcp_flags & TCPHDR_ACK))
1005                tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1006
1007        if (skb->len != tcp_header_size) {
1008                tcp_event_data_sent(tp, sk);
1009                tp->data_segs_out += tcp_skb_pcount(skb);
1010        }
1011
1012        if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1013                TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1014                              tcp_skb_pcount(skb));
1015
1016        tp->segs_out += tcp_skb_pcount(skb);
1017        /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1018        skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1019        skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1020
1021        /* Our usage of tstamp should remain private */
1022        skb->tstamp.tv64 = 0;
1023
1024        /* Cleanup our debris for IP stacks */
1025        memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1026                               sizeof(struct inet6_skb_parm)));
1027
1028        err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1029
1030        if (likely(err <= 0))
1031                return err;
1032
1033        tcp_enter_cwr(sk);
1034
1035        return net_xmit_eval(err);
1036}
1037
1038/* This routine just queues the buffer for sending.
1039 *
1040 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1041 * otherwise socket can stall.
1042 */
1043static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1044{
1045        struct tcp_sock *tp = tcp_sk(sk);
1046
1047        /* Advance write_seq and place onto the write_queue. */
1048        tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1049        __skb_header_release(skb);
1050        tcp_add_write_queue_tail(sk, skb);
1051        sk->sk_wmem_queued += skb->truesize;
1052        sk_mem_charge(sk, skb->truesize);
1053}
1054
1055/* Initialize TSO segments for a packet. */
1056static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1057{
1058        if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1059                /* Avoid the costly divide in the normal
1060                 * non-TSO case.
1061                 */
1062                tcp_skb_pcount_set(skb, 1);
1063                TCP_SKB_CB(skb)->tcp_gso_size = 0;
1064        } else {
1065                tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1066                TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1067        }
1068}
1069
1070/* When a modification to fackets out becomes necessary, we need to check
1071 * skb is counted to fackets_out or not.
1072 */
1073static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1074                                   int decr)
1075{
1076        struct tcp_sock *tp = tcp_sk(sk);
1077
1078        if (!tp->sacked_out || tcp_is_reno(tp))
1079                return;
1080
1081        if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1082                tp->fackets_out -= decr;
1083}
1084
1085/* Pcount in the middle of the write queue got changed, we need to do various
1086 * tweaks to fix counters
1087 */
1088static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1089{
1090        struct tcp_sock *tp = tcp_sk(sk);
1091
1092        tp->packets_out -= decr;
1093
1094        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1095                tp->sacked_out -= decr;
1096        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1097                tp->retrans_out -= decr;
1098        if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1099                tp->lost_out -= decr;
1100
1101        /* Reno case is special. Sigh... */
1102        if (tcp_is_reno(tp) && decr > 0)
1103                tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1104
1105        tcp_adjust_fackets_out(sk, skb, decr);
1106
1107        if (tp->lost_skb_hint &&
1108            before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1109            (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1110                tp->lost_cnt_hint -= decr;
1111
1112        tcp_verify_left_out(tp);
1113}
1114
1115static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1116{
1117        return TCP_SKB_CB(skb)->txstamp_ack ||
1118                (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1119}
1120
1121static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1122{
1123        struct skb_shared_info *shinfo = skb_shinfo(skb);
1124
1125        if (unlikely(tcp_has_tx_tstamp(skb)) &&
1126            !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1127                struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1128                u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1129
1130                shinfo->tx_flags &= ~tsflags;
1131                shinfo2->tx_flags |= tsflags;
1132                swap(shinfo->tskey, shinfo2->tskey);
1133                TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1134                TCP_SKB_CB(skb)->txstamp_ack = 0;
1135        }
1136}
1137
1138static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1139{
1140        TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1141        TCP_SKB_CB(skb)->eor = 0;
1142}
1143
1144/* Function to create two new TCP segments.  Shrinks the given segment
1145 * to the specified size and appends a new segment with the rest of the
1146 * packet to the list.  This won't be called frequently, I hope.
1147 * Remember, these are still headerless SKBs at this point.
1148 */
1149int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1150                 unsigned int mss_now, gfp_t gfp)
1151{
1152        struct tcp_sock *tp = tcp_sk(sk);
1153        struct sk_buff *buff;
1154        int nsize, old_factor;
1155        int nlen;
1156        u8 flags;
1157
1158        if (WARN_ON(len > skb->len))
1159                return -EINVAL;
1160
1161        nsize = skb_headlen(skb) - len;
1162        if (nsize < 0)
1163                nsize = 0;
1164
1165        if (skb_unclone(skb, gfp))
1166                return -ENOMEM;
1167
1168        /* Get a new skb... force flag on. */
1169        buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1170        if (!buff)
1171                return -ENOMEM; /* We'll just try again later. */
1172
1173        sk->sk_wmem_queued += buff->truesize;
1174        sk_mem_charge(sk, buff->truesize);
1175        nlen = skb->len - len - nsize;
1176        buff->truesize += nlen;
1177        skb->truesize -= nlen;
1178
1179        /* Correct the sequence numbers. */
1180        TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1181        TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1182        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1183
1184        /* PSH and FIN should only be set in the second packet. */
1185        flags = TCP_SKB_CB(skb)->tcp_flags;
1186        TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1187        TCP_SKB_CB(buff)->tcp_flags = flags;
1188        TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1189        tcp_skb_fragment_eor(skb, buff);
1190
1191        if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1192                /* Copy and checksum data tail into the new buffer. */
1193                buff->csum = csum_partial_copy_nocheck(skb->data + len,
1194                                                       skb_put(buff, nsize),
1195                                                       nsize, 0);
1196
1197                skb_trim(skb, len);
1198
1199                skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1200        } else {
1201                skb->ip_summed = CHECKSUM_PARTIAL;
1202                skb_split(skb, buff, len);
1203        }
1204
1205        buff->ip_summed = skb->ip_summed;
1206
1207        buff->tstamp = skb->tstamp;
1208        tcp_fragment_tstamp(skb, buff);
1209
1210        old_factor = tcp_skb_pcount(skb);
1211
1212        /* Fix up tso_factor for both original and new SKB.  */
1213        tcp_set_skb_tso_segs(skb, mss_now);
1214        tcp_set_skb_tso_segs(buff, mss_now);
1215
1216        /* If this packet has been sent out already, we must
1217         * adjust the various packet counters.
1218         */
1219        if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1220                int diff = old_factor - tcp_skb_pcount(skb) -
1221                        tcp_skb_pcount(buff);
1222
1223                if (diff)
1224                        tcp_adjust_pcount(sk, skb, diff);
1225        }
1226
1227        /* Link BUFF into the send queue. */
1228        __skb_header_release(buff);
1229        tcp_insert_write_queue_after(skb, buff, sk);
1230
1231        return 0;
1232}
1233
1234/* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1235 * eventually). The difference is that pulled data not copied, but
1236 * immediately discarded.
1237 */
1238static void __pskb_trim_head(struct sk_buff *skb, int len)
1239{
1240        struct skb_shared_info *shinfo;
1241        int i, k, eat;
1242
1243        eat = min_t(int, len, skb_headlen(skb));
1244        if (eat) {
1245                __skb_pull(skb, eat);
1246                len -= eat;
1247                if (!len)
1248                        return;
1249        }
1250        eat = len;
1251        k = 0;
1252        shinfo = skb_shinfo(skb);
1253        for (i = 0; i < shinfo->nr_frags; i++) {
1254                int size = skb_frag_size(&shinfo->frags[i]);
1255
1256                if (size <= eat) {
1257                        skb_frag_unref(skb, i);
1258                        eat -= size;
1259                } else {
1260                        shinfo->frags[k] = shinfo->frags[i];
1261                        if (eat) {
1262                                shinfo->frags[k].page_offset += eat;
1263                                skb_frag_size_sub(&shinfo->frags[k], eat);
1264                                eat = 0;
1265                        }
1266                        k++;
1267                }
1268        }
1269        shinfo->nr_frags = k;
1270
1271        skb_reset_tail_pointer(skb);
1272        skb->data_len -= len;
1273        skb->len = skb->data_len;
1274}
1275
1276/* Remove acked data from a packet in the transmit queue. */
1277int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1278{
1279        if (skb_unclone(skb, GFP_ATOMIC))
1280                return -ENOMEM;
1281
1282        __pskb_trim_head(skb, len);
1283
1284        TCP_SKB_CB(skb)->seq += len;
1285        skb->ip_summed = CHECKSUM_PARTIAL;
1286
1287        skb->truesize        -= len;
1288        sk->sk_wmem_queued   -= len;
1289        sk_mem_uncharge(sk, len);
1290        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1291
1292        /* Any change of skb->len requires recalculation of tso factor. */
1293        if (tcp_skb_pcount(skb) > 1)
1294                tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1295
1296        return 0;
1297}
1298
1299/* Calculate MSS not accounting any TCP options.  */
1300static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1301{
1302        const struct tcp_sock *tp = tcp_sk(sk);
1303        const struct inet_connection_sock *icsk = inet_csk(sk);
1304        int mss_now;
1305
1306        /* Calculate base mss without TCP options:
1307           It is MMS_S - sizeof(tcphdr) of rfc1122
1308         */
1309        mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1310
1311        /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1312        if (icsk->icsk_af_ops->net_frag_header_len) {
1313                const struct dst_entry *dst = __sk_dst_get(sk);
1314
1315                if (dst && dst_allfrag(dst))
1316                        mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1317        }
1318
1319        /* Clamp it (mss_clamp does not include tcp options) */
1320        if (mss_now > tp->rx_opt.mss_clamp)
1321                mss_now = tp->rx_opt.mss_clamp;
1322
1323        /* Now subtract optional transport overhead */
1324        mss_now -= icsk->icsk_ext_hdr_len;
1325
1326        /* Then reserve room for full set of TCP options and 8 bytes of data */
1327        if (mss_now < 48)
1328                mss_now = 48;
1329        return mss_now;
1330}
1331
1332/* Calculate MSS. Not accounting for SACKs here.  */
1333int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1334{
1335        /* Subtract TCP options size, not including SACKs */
1336        return __tcp_mtu_to_mss(sk, pmtu) -
1337               (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1338}
1339
1340/* Inverse of above */
1341int tcp_mss_to_mtu(struct sock *sk, int mss)
1342{
1343        const struct tcp_sock *tp = tcp_sk(sk);
1344        const struct inet_connection_sock *icsk = inet_csk(sk);
1345        int mtu;
1346
1347        mtu = mss +
1348              tp->tcp_header_len +
1349              icsk->icsk_ext_hdr_len +
1350              icsk->icsk_af_ops->net_header_len;
1351
1352        /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1353        if (icsk->icsk_af_ops->net_frag_header_len) {
1354                const struct dst_entry *dst = __sk_dst_get(sk);
1355
1356                if (dst && dst_allfrag(dst))
1357                        mtu += icsk->icsk_af_ops->net_frag_header_len;
1358        }
1359        return mtu;
1360}
1361
1362/* MTU probing init per socket */
1363void tcp_mtup_init(struct sock *sk)
1364{
1365        struct tcp_sock *tp = tcp_sk(sk);
1366        struct inet_connection_sock *icsk = inet_csk(sk);
1367        struct net *net = sock_net(sk);
1368
1369        icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1370        icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1371                               icsk->icsk_af_ops->net_header_len;
1372        icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1373        icsk->icsk_mtup.probe_size = 0;
1374        if (icsk->icsk_mtup.enabled)
1375                icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1376}
1377EXPORT_SYMBOL(tcp_mtup_init);
1378
1379/* This function synchronize snd mss to current pmtu/exthdr set.
1380
1381   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1382   for TCP options, but includes only bare TCP header.
1383
1384   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1385   It is minimum of user_mss and mss received with SYN.
1386   It also does not include TCP options.
1387
1388   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1389
1390   tp->mss_cache is current effective sending mss, including
1391   all tcp options except for SACKs. It is evaluated,
1392   taking into account current pmtu, but never exceeds
1393   tp->rx_opt.mss_clamp.
1394
1395   NOTE1. rfc1122 clearly states that advertised MSS
1396   DOES NOT include either tcp or ip options.
1397
1398   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1399   are READ ONLY outside this function.         --ANK (980731)
1400 */
1401unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1402{
1403        struct tcp_sock *tp = tcp_sk(sk);
1404        struct inet_connection_sock *icsk = inet_csk(sk);
1405        int mss_now;
1406
1407        if (icsk->icsk_mtup.search_high > pmtu)
1408                icsk->icsk_mtup.search_high = pmtu;
1409
1410        mss_now = tcp_mtu_to_mss(sk, pmtu);
1411        mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1412
1413        /* And store cached results */
1414        icsk->icsk_pmtu_cookie = pmtu;
1415        if (icsk->icsk_mtup.enabled)
1416                mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1417        tp->mss_cache = mss_now;
1418
1419        return mss_now;
1420}
1421EXPORT_SYMBOL(tcp_sync_mss);
1422
1423/* Compute the current effective MSS, taking SACKs and IP options,
1424 * and even PMTU discovery events into account.
1425 */
1426unsigned int tcp_current_mss(struct sock *sk)
1427{
1428        const struct tcp_sock *tp = tcp_sk(sk);
1429        const struct dst_entry *dst = __sk_dst_get(sk);
1430        u32 mss_now;
1431        unsigned int header_len;
1432        struct tcp_out_options opts;
1433        struct tcp_md5sig_key *md5;
1434
1435        mss_now = tp->mss_cache;
1436
1437        if (dst) {
1438                u32 mtu = dst_mtu(dst);
1439                if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1440                        mss_now = tcp_sync_mss(sk, mtu);
1441        }
1442
1443        header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1444                     sizeof(struct tcphdr);
1445        /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1446         * some common options. If this is an odd packet (because we have SACK
1447         * blocks etc) then our calculated header_len will be different, and
1448         * we have to adjust mss_now correspondingly */
1449        if (header_len != tp->tcp_header_len) {
1450                int delta = (int) header_len - tp->tcp_header_len;
1451                mss_now -= delta;
1452        }
1453
1454        return mss_now;
1455}
1456
1457/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1458 * As additional protections, we do not touch cwnd in retransmission phases,
1459 * and if application hit its sndbuf limit recently.
1460 */
1461static void tcp_cwnd_application_limited(struct sock *sk)
1462{
1463        struct tcp_sock *tp = tcp_sk(sk);
1464
1465        if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1466            sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1467                /* Limited by application or receiver window. */
1468                u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1469                u32 win_used = max(tp->snd_cwnd_used, init_win);
1470                if (win_used < tp->snd_cwnd) {
1471                        tp->snd_ssthresh = tcp_current_ssthresh(sk);
1472                        tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1473                }
1474                tp->snd_cwnd_used = 0;
1475        }
1476        tp->snd_cwnd_stamp = tcp_time_stamp;
1477}
1478
1479static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1480{
1481        struct tcp_sock *tp = tcp_sk(sk);
1482
1483        /* Track the maximum number of outstanding packets in each
1484         * window, and remember whether we were cwnd-limited then.
1485         */
1486        if (!before(tp->snd_una, tp->max_packets_seq) ||
1487            tp->packets_out > tp->max_packets_out) {
1488                tp->max_packets_out = tp->packets_out;
1489                tp->max_packets_seq = tp->snd_nxt;
1490                tp->is_cwnd_limited = is_cwnd_limited;
1491        }
1492
1493        if (tcp_is_cwnd_limited(sk)) {
1494                /* Network is feed fully. */
1495                tp->snd_cwnd_used = 0;
1496                tp->snd_cwnd_stamp = tcp_time_stamp;
1497        } else {
1498                /* Network starves. */
1499                if (tp->packets_out > tp->snd_cwnd_used)
1500                        tp->snd_cwnd_used = tp->packets_out;
1501
1502                if (sysctl_tcp_slow_start_after_idle &&
1503                    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1504                        tcp_cwnd_application_limited(sk);
1505        }
1506}
1507
1508/* Minshall's variant of the Nagle send check. */
1509static bool tcp_minshall_check(const struct tcp_sock *tp)
1510{
1511        return after(tp->snd_sml, tp->snd_una) &&
1512                !after(tp->snd_sml, tp->snd_nxt);
1513}
1514
1515/* Update snd_sml if this skb is under mss
1516 * Note that a TSO packet might end with a sub-mss segment
1517 * The test is really :
1518 * if ((skb->len % mss) != 0)
1519 *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1520 * But we can avoid doing the divide again given we already have
1521 *  skb_pcount = skb->len / mss_now
1522 */
1523static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1524                                const struct sk_buff *skb)
1525{
1526        if (skb->len < tcp_skb_pcount(skb) * mss_now)
1527                tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1528}
1529
1530/* Return false, if packet can be sent now without violation Nagle's rules:
1531 * 1. It is full sized. (provided by caller in %partial bool)
1532 * 2. Or it contains FIN. (already checked by caller)
1533 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1534 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1535 *    With Minshall's modification: all sent small packets are ACKed.
1536 */
1537static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1538                            int nonagle)
1539{
1540        return partial &&
1541                ((nonagle & TCP_NAGLE_CORK) ||
1542                 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1543}
1544
1545/* Return how many segs we'd like on a TSO packet,
1546 * to send one TSO packet per ms
1547 */
1548static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1549{
1550        u32 bytes, segs;
1551
1552        bytes = min(sk->sk_pacing_rate >> 10,
1553                    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1554
1555        /* Goal is to send at least one packet per ms,
1556         * not one big TSO packet every 100 ms.
1557         * This preserves ACK clocking and is consistent
1558         * with tcp_tso_should_defer() heuristic.
1559         */
1560        segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1561
1562        return min_t(u32, segs, sk->sk_gso_max_segs);
1563}
1564
1565/* Returns the portion of skb which can be sent right away */
1566static unsigned int tcp_mss_split_point(const struct sock *sk,
1567                                        const struct sk_buff *skb,
1568                                        unsigned int mss_now,
1569                                        unsigned int max_segs,
1570                                        int nonagle)
1571{
1572        const struct tcp_sock *tp = tcp_sk(sk);
1573        u32 partial, needed, window, max_len;
1574
1575        window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1576        max_len = mss_now * max_segs;
1577
1578        if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1579                return max_len;
1580
1581        needed = min(skb->len, window);
1582
1583        if (max_len <= needed)
1584                return max_len;
1585
1586        partial = needed % mss_now;
1587        /* If last segment is not a full MSS, check if Nagle rules allow us
1588         * to include this last segment in this skb.
1589         * Otherwise, we'll split the skb at last MSS boundary
1590         */
1591        if (tcp_nagle_check(partial != 0, tp, nonagle))
1592                return needed - partial;
1593
1594        return needed;
1595}
1596
1597/* Can at least one segment of SKB be sent right now, according to the
1598 * congestion window rules?  If so, return how many segments are allowed.
1599 */
1600static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1601                                         const struct sk_buff *skb)
1602{
1603        u32 in_flight, cwnd, halfcwnd;
1604
1605        /* Don't be strict about the congestion window for the final FIN.  */
1606        if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1607            tcp_skb_pcount(skb) == 1)
1608                return 1;
1609
1610        in_flight = tcp_packets_in_flight(tp);
1611        cwnd = tp->snd_cwnd;
1612        if (in_flight >= cwnd)
1613                return 0;
1614
1615        /* For better scheduling, ensure we have at least
1616         * 2 GSO packets in flight.
1617         */
1618        halfcwnd = max(cwnd >> 1, 1U);
1619        return min(halfcwnd, cwnd - in_flight);
1620}
1621
1622/* Initialize TSO state of a skb.
1623 * This must be invoked the first time we consider transmitting
1624 * SKB onto the wire.
1625 */
1626static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1627{
1628        int tso_segs = tcp_skb_pcount(skb);
1629
1630        if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1631                tcp_set_skb_tso_segs(skb, mss_now);
1632                tso_segs = tcp_skb_pcount(skb);
1633        }
1634        return tso_segs;
1635}
1636
1637
1638/* Return true if the Nagle test allows this packet to be
1639 * sent now.
1640 */
1641static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1642                                  unsigned int cur_mss, int nonagle)
1643{
1644        /* Nagle rule does not apply to frames, which sit in the middle of the
1645         * write_queue (they have no chances to get new data).
1646         *
1647         * This is implemented in the callers, where they modify the 'nonagle'
1648         * argument based upon the location of SKB in the send queue.
1649         */
1650        if (nonagle & TCP_NAGLE_PUSH)
1651                return true;
1652
1653        /* Don't use the nagle rule for urgent data (or for the final FIN). */
1654        if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1655                return true;
1656
1657        if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1658                return true;
1659
1660        return false;
1661}
1662
1663/* Does at least the first segment of SKB fit into the send window? */
1664static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1665                             const struct sk_buff *skb,
1666                             unsigned int cur_mss)
1667{
1668        u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1669
1670        if (skb->len > cur_mss)
1671                end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1672
1673        return !after(end_seq, tcp_wnd_end(tp));
1674}
1675
1676/* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1677 * should be put on the wire right now.  If so, it returns the number of
1678 * packets allowed by the congestion window.
1679 */
1680static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1681                                 unsigned int cur_mss, int nonagle)
1682{
1683        const struct tcp_sock *tp = tcp_sk(sk);
1684        unsigned int cwnd_quota;
1685
1686        tcp_init_tso_segs(skb, cur_mss);
1687
1688        if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1689                return 0;
1690
1691        cwnd_quota = tcp_cwnd_test(tp, skb);
1692        if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1693                cwnd_quota = 0;
1694
1695        return cwnd_quota;
1696}
1697
1698/* Test if sending is allowed right now. */
1699bool tcp_may_send_now(struct sock *sk)
1700{
1701        const struct tcp_sock *tp = tcp_sk(sk);
1702        struct sk_buff *skb = tcp_send_head(sk);
1703
1704        return skb &&
1705                tcp_snd_test(sk, skb, tcp_current_mss(sk),
1706                             (tcp_skb_is_last(sk, skb) ?
1707                              tp->nonagle : TCP_NAGLE_PUSH));
1708}
1709
1710/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1711 * which is put after SKB on the list.  It is very much like
1712 * tcp_fragment() except that it may make several kinds of assumptions
1713 * in order to speed up the splitting operation.  In particular, we
1714 * know that all the data is in scatter-gather pages, and that the
1715 * packet has never been sent out before (and thus is not cloned).
1716 */
1717static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1718                        unsigned int mss_now, gfp_t gfp)
1719{
1720        struct sk_buff *buff;
1721        int nlen = skb->len - len;
1722        u8 flags;
1723
1724        /* All of a TSO frame must be composed of paged data.  */
1725        if (skb->len != skb->data_len)
1726                return tcp_fragment(sk, skb, len, mss_now, gfp);
1727
1728        buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1729        if (unlikely(!buff))
1730                return -ENOMEM;
1731
1732        sk->sk_wmem_queued += buff->truesize;
1733        sk_mem_charge(sk, buff->truesize);
1734        buff->truesize += nlen;
1735        skb->truesize -= nlen;
1736
1737        /* Correct the sequence numbers. */
1738        TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1739        TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1740        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1741
1742        /* PSH and FIN should only be set in the second packet. */
1743        flags = TCP_SKB_CB(skb)->tcp_flags;
1744        TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1745        TCP_SKB_CB(buff)->tcp_flags = flags;
1746
1747        /* This packet was never sent out yet, so no SACK bits. */
1748        TCP_SKB_CB(buff)->sacked = 0;
1749
1750        tcp_skb_fragment_eor(skb, buff);
1751
1752        buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1753        skb_split(skb, buff, len);
1754        tcp_fragment_tstamp(skb, buff);
1755
1756        /* Fix up tso_factor for both original and new SKB.  */
1757        tcp_set_skb_tso_segs(skb, mss_now);
1758        tcp_set_skb_tso_segs(buff, mss_now);
1759
1760        /* Link BUFF into the send queue. */
1761        __skb_header_release(buff);
1762        tcp_insert_write_queue_after(skb, buff, sk);
1763
1764        return 0;
1765}
1766
1767/* Try to defer sending, if possible, in order to minimize the amount
1768 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1769 *
1770 * This algorithm is from John Heffner.
1771 */
1772static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1773                                 bool *is_cwnd_limited, u32 max_segs)
1774{
1775        const struct inet_connection_sock *icsk = inet_csk(sk);
1776        u32 age, send_win, cong_win, limit, in_flight;
1777        struct tcp_sock *tp = tcp_sk(sk);
1778        struct skb_mstamp now;
1779        struct sk_buff *head;
1780        int win_divisor;
1781
1782        if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1783                goto send_now;
1784
1785        if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1786                goto send_now;
1787
1788        /* Avoid bursty behavior by allowing defer
1789         * only if the last write was recent.
1790         */
1791        if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1792                goto send_now;
1793
1794        in_flight = tcp_packets_in_flight(tp);
1795
1796        BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1797
1798        send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1799
1800        /* From in_flight test above, we know that cwnd > in_flight.  */
1801        cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1802
1803        limit = min(send_win, cong_win);
1804
1805        /* If a full-sized TSO skb can be sent, do it. */
1806        if (limit >= max_segs * tp->mss_cache)
1807                goto send_now;
1808
1809        /* Middle in queue won't get any more data, full sendable already? */
1810        if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1811                goto send_now;
1812
1813        win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1814        if (win_divisor) {
1815                u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1816
1817                /* If at least some fraction of a window is available,
1818                 * just use it.
1819                 */
1820                chunk /= win_divisor;
1821                if (limit >= chunk)
1822                        goto send_now;
1823        } else {
1824                /* Different approach, try not to defer past a single
1825                 * ACK.  Receiver should ACK every other full sized
1826                 * frame, so if we have space for more than 3 frames
1827                 * then send now.
1828                 */
1829                if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1830                        goto send_now;
1831        }
1832
1833        head = tcp_write_queue_head(sk);
1834        skb_mstamp_get(&now);
1835        age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1836        /* If next ACK is likely to come too late (half srtt), do not defer */
1837        if (age < (tp->srtt_us >> 4))
1838                goto send_now;
1839
1840        /* Ok, it looks like it is advisable to defer. */
1841
1842        if (cong_win < send_win && cong_win <= skb->len)
1843                *is_cwnd_limited = true;
1844
1845        return true;
1846
1847send_now:
1848        return false;
1849}
1850
1851static inline void tcp_mtu_check_reprobe(struct sock *sk)
1852{
1853        struct inet_connection_sock *icsk = inet_csk(sk);
1854        struct tcp_sock *tp = tcp_sk(sk);
1855        struct net *net = sock_net(sk);
1856        u32 interval;
1857        s32 delta;
1858
1859        interval = net->ipv4.sysctl_tcp_probe_interval;
1860        delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1861        if (unlikely(delta >= interval * HZ)) {
1862                int mss = tcp_current_mss(sk);
1863
1864                /* Update current search range */
1865                icsk->icsk_mtup.probe_size = 0;
1866                icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1867                        sizeof(struct tcphdr) +
1868                        icsk->icsk_af_ops->net_header_len;
1869                icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1870
1871                /* Update probe time stamp */
1872                icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1873        }
1874}
1875
1876/* Create a new MTU probe if we are ready.
1877 * MTU probe is regularly attempting to increase the path MTU by
1878 * deliberately sending larger packets.  This discovers routing
1879 * changes resulting in larger path MTUs.
1880 *
1881 * Returns 0 if we should wait to probe (no cwnd available),
1882 *         1 if a probe was sent,
1883 *         -1 otherwise
1884 */
1885static int tcp_mtu_probe(struct sock *sk)
1886{
1887        struct tcp_sock *tp = tcp_sk(sk);
1888        struct inet_connection_sock *icsk = inet_csk(sk);
1889        struct sk_buff *skb, *nskb, *next;
1890        struct net *net = sock_net(sk);
1891        int len;
1892        int probe_size;
1893        int size_needed;
1894        int copy;
1895        int mss_now;
1896        int interval;
1897
1898        /* Not currently probing/verifying,
1899         * not in recovery,
1900         * have enough cwnd, and
1901         * not SACKing (the variable headers throw things off) */
1902        if (!icsk->icsk_mtup.enabled ||
1903            icsk->icsk_mtup.probe_size ||
1904            inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1905            tp->snd_cwnd < 11 ||
1906            tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1907                return -1;
1908
1909        /* Use binary search for probe_size between tcp_mss_base,
1910         * and current mss_clamp. if (search_high - search_low)
1911         * smaller than a threshold, backoff from probing.
1912         */
1913        mss_now = tcp_current_mss(sk);
1914        probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1915                                    icsk->icsk_mtup.search_low) >> 1);
1916        size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1917        interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1918        /* When misfortune happens, we are reprobing actively,
1919         * and then reprobe timer has expired. We stick with current
1920         * probing process by not resetting search range to its orignal.
1921         */
1922        if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1923                interval < net->ipv4.sysctl_tcp_probe_threshold) {
1924                /* Check whether enough time has elaplased for
1925                 * another round of probing.
1926                 */
1927                tcp_mtu_check_reprobe(sk);
1928                return -1;
1929        }
1930
1931        /* Have enough data in the send queue to probe? */
1932        if (tp->write_seq - tp->snd_nxt < size_needed)
1933                return -1;
1934
1935        if (tp->snd_wnd < size_needed)
1936                return -1;
1937        if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1938                return 0;
1939
1940        /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1941        if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1942                if (!tcp_packets_in_flight(tp))
1943                        return -1;
1944                else
1945                        return 0;
1946        }
1947
1948        /* We're allowed to probe.  Build it now. */
1949        nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1950        if (!nskb)
1951                return -1;
1952        sk->sk_wmem_queued += nskb->truesize;
1953        sk_mem_charge(sk, nskb->truesize);
1954
1955        skb = tcp_send_head(sk);
1956
1957        TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1958        TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1959        TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1960        TCP_SKB_CB(nskb)->sacked = 0;
1961        nskb->csum = 0;
1962        nskb->ip_summed = skb->ip_summed;
1963
1964        tcp_insert_write_queue_before(nskb, skb, sk);
1965
1966        len = 0;
1967        tcp_for_write_queue_from_safe(skb, next, sk) {
1968                copy = min_t(int, skb->len, probe_size - len);
1969                if (nskb->ip_summed) {
1970                        skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1971                } else {
1972                        __wsum csum = skb_copy_and_csum_bits(skb, 0,
1973                                                             skb_put(nskb, copy),
1974                                                             copy, 0);
1975                        nskb->csum = csum_block_add(nskb->csum, csum, len);
1976                }
1977
1978                if (skb->len <= copy) {
1979                        /* We've eaten all the data from this skb.
1980                         * Throw it away. */
1981                        TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1982                        tcp_unlink_write_queue(skb, sk);
1983                        sk_wmem_free_skb(sk, skb);
1984                } else {
1985                        TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1986                                                   ~(TCPHDR_FIN|TCPHDR_PSH);
1987                        if (!skb_shinfo(skb)->nr_frags) {
1988                                skb_pull(skb, copy);
1989                                if (skb->ip_summed != CHECKSUM_PARTIAL)
1990                                        skb->csum = csum_partial(skb->data,
1991                                                                 skb->len, 0);
1992                        } else {
1993                                __pskb_trim_head(skb, copy);
1994                                tcp_set_skb_tso_segs(skb, mss_now);
1995                        }
1996                        TCP_SKB_CB(skb)->seq += copy;
1997                }
1998
1999                len += copy;
2000
2001                if (len >= probe_size)
2002                        break;
2003        }
2004        tcp_init_tso_segs(nskb, nskb->len);
2005
2006        /* We're ready to send.  If this fails, the probe will
2007         * be resegmented into mss-sized pieces by tcp_write_xmit().
2008         */
2009        if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2010                /* Decrement cwnd here because we are sending
2011                 * effectively two packets. */
2012                tp->snd_cwnd--;
2013                tcp_event_new_data_sent(sk, nskb);
2014
2015                icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2016                tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2017                tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2018
2019                return 1;
2020        }
2021
2022        return -1;
2023}
2024
2025/* This routine writes packets to the network.  It advances the
2026 * send_head.  This happens as incoming acks open up the remote
2027 * window for us.
2028 *
2029 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2030 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2031 * account rare use of URG, this is not a big flaw.
2032 *
2033 * Send at most one packet when push_one > 0. Temporarily ignore
2034 * cwnd limit to force at most one packet out when push_one == 2.
2035
2036 * Returns true, if no segments are in flight and we have queued segments,
2037 * but cannot send anything now because of SWS or another problem.
2038 */
2039static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2040                           int push_one, gfp_t gfp)
2041{
2042        struct tcp_sock *tp = tcp_sk(sk);
2043        struct sk_buff *skb;
2044        unsigned int tso_segs, sent_pkts;
2045        int cwnd_quota;
2046        int result;
2047        bool is_cwnd_limited = false;
2048        u32 max_segs;
2049
2050        sent_pkts = 0;
2051
2052        if (!push_one) {
2053                /* Do MTU probing. */
2054                result = tcp_mtu_probe(sk);
2055                if (!result) {
2056                        return false;
2057                } else if (result > 0) {
2058                        sent_pkts = 1;
2059                }
2060        }
2061
2062        max_segs = tcp_tso_autosize(sk, mss_now);
2063        while ((skb = tcp_send_head(sk))) {
2064                unsigned int limit;
2065
2066                tso_segs = tcp_init_tso_segs(skb, mss_now);
2067                BUG_ON(!tso_segs);
2068
2069                if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2070                        /* "skb_mstamp" is used as a start point for the retransmit timer */
2071                        skb_mstamp_get(&skb->skb_mstamp);
2072                        goto repair; /* Skip network transmission */
2073                }
2074
2075                cwnd_quota = tcp_cwnd_test(tp, skb);
2076                if (!cwnd_quota) {
2077                        if (push_one == 2)
2078                                /* Force out a loss probe pkt. */
2079                                cwnd_quota = 1;
2080                        else
2081                                break;
2082                }
2083
2084                if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2085                        break;
2086
2087                if (tso_segs == 1) {
2088                        if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2089                                                     (tcp_skb_is_last(sk, skb) ?
2090                                                      nonagle : TCP_NAGLE_PUSH))))
2091                                break;
2092                } else {
2093                        if (!push_one &&
2094                            tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2095                                                 max_segs))
2096                                break;
2097                }
2098
2099                limit = mss_now;
2100                if (tso_segs > 1 && !tcp_urg_mode(tp))
2101                        limit = tcp_mss_split_point(sk, skb, mss_now,
2102                                                    min_t(unsigned int,
2103                                                          cwnd_quota,
2104                                                          max_segs),
2105                                                    nonagle);
2106
2107                if (skb->len > limit &&
2108                    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2109                        break;
2110
2111                /* TCP Small Queues :
2112                 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2113                 * This allows for :
2114                 *  - better RTT estimation and ACK scheduling
2115                 *  - faster recovery
2116                 *  - high rates
2117                 * Alas, some drivers / subsystems require a fair amount
2118                 * of queued bytes to ensure line rate.
2119                 * One example is wifi aggregation (802.11 AMPDU)
2120                 */
2121                limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2122                limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2123
2124                if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2125                        set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2126                        /* It is possible TX completion already happened
2127                         * before we set TSQ_THROTTLED, so we must
2128                         * test again the condition.
2129                         */
2130                        smp_mb__after_atomic();
2131                        if (atomic_read(&sk->sk_wmem_alloc) > limit)
2132                                break;
2133                }
2134
2135                if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2136                        break;
2137
2138repair:
2139                /* Advance the send_head.  This one is sent out.
2140                 * This call will increment packets_out.
2141                 */
2142                tcp_event_new_data_sent(sk, skb);
2143
2144                tcp_minshall_update(tp, mss_now, skb);
2145                sent_pkts += tcp_skb_pcount(skb);
2146
2147                if (push_one)
2148                        break;
2149        }
2150
2151        if (likely(sent_pkts)) {
2152                if (tcp_in_cwnd_reduction(sk))
2153                        tp->prr_out += sent_pkts;
2154
2155                /* Send one loss probe per tail loss episode. */
2156                if (push_one != 2)
2157                        tcp_schedule_loss_probe(sk);
2158                is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2159                tcp_cwnd_validate(sk, is_cwnd_limited);
2160                return false;
2161        }
2162        return !tp->packets_out && tcp_send_head(sk);
2163}
2164
2165bool tcp_schedule_loss_probe(struct sock *sk)
2166{
2167        struct inet_connection_sock *icsk = inet_csk(sk);
2168        struct tcp_sock *tp = tcp_sk(sk);
2169        u32 timeout, tlp_time_stamp, rto_time_stamp;
2170        u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2171
2172        if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2173                return false;
2174        /* No consecutive loss probes. */
2175        if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2176                tcp_rearm_rto(sk);
2177                return false;
2178        }
2179        /* Don't do any loss probe on a Fast Open connection before 3WHS
2180         * finishes.
2181         */
2182        if (tp->fastopen_rsk)
2183                return false;
2184
2185        /* TLP is only scheduled when next timer event is RTO. */
2186        if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2187                return false;
2188
2189        /* Schedule a loss probe in 2*RTT for SACK capable connections
2190         * in Open state, that are either limited by cwnd or application.
2191         */
2192        if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2193            !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2194                return false;
2195
2196        if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2197             tcp_send_head(sk))
2198                return false;
2199
2200        /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2201         * for delayed ack when there's one outstanding packet. If no RTT
2202         * sample is available then probe after TCP_TIMEOUT_INIT.
2203         */
2204        timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2205        if (tp->packets_out == 1)
2206                timeout = max_t(u32, timeout,
2207                                (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2208        timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2209
2210        /* If RTO is shorter, just schedule TLP in its place. */
2211        tlp_time_stamp = tcp_time_stamp + timeout;
2212        rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2213        if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2214                s32 delta = rto_time_stamp - tcp_time_stamp;
2215                if (delta > 0)
2216                        timeout = delta;
2217        }
2218
2219        inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2220                                  TCP_RTO_MAX);
2221        return true;
2222}
2223
2224/* Thanks to skb fast clones, we can detect if a prior transmit of
2225 * a packet is still in a qdisc or driver queue.
2226 * In this case, there is very little point doing a retransmit !
2227 */
2228static bool skb_still_in_host_queue(const struct sock *sk,
2229                                    const struct sk_buff *skb)
2230{
2231        if (unlikely(skb_fclone_busy(sk, skb))) {
2232                NET_INC_STATS(sock_net(sk),
2233                              LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2234                return true;
2235        }
2236        return false;
2237}
2238
2239/* When probe timeout (PTO) fires, try send a new segment if possible, else
2240 * retransmit the last segment.
2241 */
2242void tcp_send_loss_probe(struct sock *sk)
2243{
2244        struct tcp_sock *tp = tcp_sk(sk);
2245        struct sk_buff *skb;
2246        int pcount;
2247        int mss = tcp_current_mss(sk);
2248
2249        skb = tcp_send_head(sk);
2250        if (skb) {
2251                if (tcp_snd_wnd_test(tp, skb, mss)) {
2252                        pcount = tp->packets_out;
2253                        tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2254                        if (tp->packets_out > pcount)
2255                                goto probe_sent;
2256                        goto rearm_timer;
2257                }
2258                skb = tcp_write_queue_prev(sk, skb);
2259        } else {
2260                skb = tcp_write_queue_tail(sk);
2261        }
2262
2263        /* At most one outstanding TLP retransmission. */
2264        if (tp->tlp_high_seq)
2265                goto rearm_timer;
2266
2267        /* Retransmit last segment. */
2268        if (WARN_ON(!skb))
2269                goto rearm_timer;
2270
2271        if (skb_still_in_host_queue(sk, skb))
2272                goto rearm_timer;
2273
2274        pcount = tcp_skb_pcount(skb);
2275        if (WARN_ON(!pcount))
2276                goto rearm_timer;
2277
2278        if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2279                if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2280                                          GFP_ATOMIC)))
2281                        goto rearm_timer;
2282                skb = tcp_write_queue_next(sk, skb);
2283        }
2284
2285        if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2286                goto rearm_timer;
2287
2288        if (__tcp_retransmit_skb(sk, skb, 1))
2289                goto rearm_timer;
2290
2291        /* Record snd_nxt for loss detection. */
2292        tp->tlp_high_seq = tp->snd_nxt;
2293
2294probe_sent:
2295        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2296        /* Reset s.t. tcp_rearm_rto will restart timer from now */
2297        inet_csk(sk)->icsk_pending = 0;
2298rearm_timer:
2299        tcp_rearm_rto(sk);
2300}
2301
2302/* Push out any pending frames which were held back due to
2303 * TCP_CORK or attempt at coalescing tiny packets.
2304 * The socket must be locked by the caller.
2305 */
2306void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2307                               int nonagle)
2308{
2309        /* If we are closed, the bytes will have to remain here.
2310         * In time closedown will finish, we empty the write queue and
2311         * all will be happy.
2312         */
2313        if (unlikely(sk->sk_state == TCP_CLOSE))
2314                return;
2315
2316        if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2317                           sk_gfp_mask(sk, GFP_ATOMIC)))
2318                tcp_check_probe_timer(sk);
2319}
2320
2321/* Send _single_ skb sitting at the send head. This function requires
2322 * true push pending frames to setup probe timer etc.
2323 */
2324void tcp_push_one(struct sock *sk, unsigned int mss_now)
2325{
2326        struct sk_buff *skb = tcp_send_head(sk);
2327
2328        BUG_ON(!skb || skb->len < mss_now);
2329
2330        tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2331}
2332
2333/* This function returns the amount that we can raise the
2334 * usable window based on the following constraints
2335 *
2336 * 1. The window can never be shrunk once it is offered (RFC 793)
2337 * 2. We limit memory per socket
2338 *
2339 * RFC 1122:
2340 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2341 *  RECV.NEXT + RCV.WIN fixed until:
2342 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2343 *
2344 * i.e. don't raise the right edge of the window until you can raise
2345 * it at least MSS bytes.
2346 *
2347 * Unfortunately, the recommended algorithm breaks header prediction,
2348 * since header prediction assumes th->window stays fixed.
2349 *
2350 * Strictly speaking, keeping th->window fixed violates the receiver
2351 * side SWS prevention criteria. The problem is that under this rule
2352 * a stream of single byte packets will cause the right side of the
2353 * window to always advance by a single byte.
2354 *
2355 * Of course, if the sender implements sender side SWS prevention
2356 * then this will not be a problem.
2357 *
2358 * BSD seems to make the following compromise:
2359 *
2360 *      If the free space is less than the 1/4 of the maximum
2361 *      space available and the free space is less than 1/2 mss,
2362 *      then set the window to 0.
2363 *      [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2364 *      Otherwise, just prevent the window from shrinking
2365 *      and from being larger than the largest representable value.
2366 *
2367 * This prevents incremental opening of the window in the regime
2368 * where TCP is limited by the speed of the reader side taking
2369 * data out of the TCP receive queue. It does nothing about
2370 * those cases where the window is constrained on the sender side
2371 * because the pipeline is full.
2372 *
2373 * BSD also seems to "accidentally" limit itself to windows that are a
2374 * multiple of MSS, at least until the free space gets quite small.
2375 * This would appear to be a side effect of the mbuf implementation.
2376 * Combining these two algorithms results in the observed behavior
2377 * of having a fixed window size at almost all times.
2378 *
2379 * Below we obtain similar behavior by forcing the offered window to
2380 * a multiple of the mss when it is feasible to do so.
2381 *
2382 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2383 * Regular options like TIMESTAMP are taken into account.
2384 */
2385u32 __tcp_select_window(struct sock *sk)
2386{
2387        struct inet_connection_sock *icsk = inet_csk(sk);
2388        struct tcp_sock *tp = tcp_sk(sk);
2389        /* MSS for the peer's data.  Previous versions used mss_clamp
2390         * here.  I don't know if the value based on our guesses
2391         * of peer's MSS is better for the performance.  It's more correct
2392         * but may be worse for the performance because of rcv_mss
2393         * fluctuations.  --SAW  1998/11/1
2394         */
2395        int mss = icsk->icsk_ack.rcv_mss;
2396        int free_space = tcp_space(sk);
2397        int allowed_space = tcp_full_space(sk);
2398        int full_space = min_t(int, tp->window_clamp, allowed_space);
2399        int window;
2400
2401        if (mss > full_space)
2402                mss = full_space;
2403
2404        if (free_space < (full_space >> 1)) {
2405                icsk->icsk_ack.quick = 0;
2406
2407                if (tcp_under_memory_pressure(sk))
2408                        tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2409                                               4U * tp->advmss);
2410
2411                /* free_space might become our new window, make sure we don't
2412                 * increase it due to wscale.
2413                 */
2414                free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2415
2416                /* if free space is less than mss estimate, or is below 1/16th
2417                 * of the maximum allowed, try to move to zero-window, else
2418                 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2419                 * new incoming data is dropped due to memory limits.
2420                 * With large window, mss test triggers way too late in order
2421                 * to announce zero window in time before rmem limit kicks in.
2422                 */
2423                if (free_space < (allowed_space >> 4) || free_space < mss)
2424                        return 0;
2425        }
2426
2427        if (free_space > tp->rcv_ssthresh)
2428                free_space = tp->rcv_ssthresh;
2429
2430        /* Don't do rounding if we are using window scaling, since the
2431         * scaled window will not line up with the MSS boundary anyway.
2432         */
2433        window = tp->rcv_wnd;
2434        if (tp->rx_opt.rcv_wscale) {
2435                window = free_space;
2436
2437                /* Advertise enough space so that it won't get scaled away.
2438                 * Import case: prevent zero window announcement if
2439                 * 1<<rcv_wscale > mss.
2440                 */
2441                if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2442                        window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2443                                  << tp->rx_opt.rcv_wscale);
2444        } else {
2445                /* Get the largest window that is a nice multiple of mss.
2446                 * Window clamp already applied above.
2447                 * If our current window offering is within 1 mss of the
2448                 * free space we just keep it. This prevents the divide
2449                 * and multiply from happening most of the time.
2450                 * We also don't do any window rounding when the free space
2451                 * is too small.
2452                 */
2453                if (window <= free_space - mss || window > free_space)
2454                        window = (free_space / mss) * mss;
2455                else if (mss == full_space &&
2456                         free_space > window + (full_space >> 1))
2457                        window = free_space;
2458        }
2459
2460        return window;
2461}
2462
2463void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2464                             const struct sk_buff *next_skb)
2465{
2466        if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2467                const struct skb_shared_info *next_shinfo =
2468                        skb_shinfo(next_skb);
2469                struct skb_shared_info *shinfo = skb_shinfo(skb);
2470
2471                shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2472                shinfo->tskey = next_shinfo->tskey;
2473                TCP_SKB_CB(skb)->txstamp_ack |=
2474                        TCP_SKB_CB(next_skb)->txstamp_ack;
2475        }
2476}
2477
2478/* Collapses two adjacent SKB's during retransmission. */
2479static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2480{
2481        struct tcp_sock *tp = tcp_sk(sk);
2482        struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2483        int skb_size, next_skb_size;
2484
2485        skb_size = skb->len;
2486        next_skb_size = next_skb->len;
2487
2488        BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2489
2490        tcp_highest_sack_combine(sk, next_skb, skb);
2491
2492        tcp_unlink_write_queue(next_skb, sk);
2493
2494        skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2495                                  next_skb_size);
2496
2497        if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2498                skb->ip_summed = CHECKSUM_PARTIAL;
2499
2500        if (skb->ip_summed != CHECKSUM_PARTIAL)
2501                skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2502
2503        /* Update sequence range on original skb. */
2504        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2505
2506        /* Merge over control information. This moves PSH/FIN etc. over */
2507        TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2508
2509        /* All done, get rid of second SKB and account for it so
2510         * packet counting does not break.
2511         */
2512        TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2513        TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2514
2515        /* changed transmit queue under us so clear hints */
2516        tcp_clear_retrans_hints_partial(tp);
2517        if (next_skb == tp->retransmit_skb_hint)
2518                tp->retransmit_skb_hint = skb;
2519
2520        tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2521
2522        tcp_skb_collapse_tstamp(skb, next_skb);
2523
2524        sk_wmem_free_skb(sk, next_skb);
2525}
2526
2527/* Check if coalescing SKBs is legal. */
2528static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2529{
2530        if (tcp_skb_pcount(skb) > 1)
2531                return false;
2532        /* TODO: SACK collapsing could be used to remove this condition */
2533        if (skb_shinfo(skb)->nr_frags != 0)
2534                return false;
2535        if (skb_cloned(skb))
2536                return false;
2537        if (skb == tcp_send_head(sk))
2538                return false;
2539        /* Some heurestics for collapsing over SACK'd could be invented */
2540        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2541                return false;
2542
2543        return true;
2544}
2545
2546/* Collapse packets in the retransmit queue to make to create
2547 * less packets on the wire. This is only done on retransmission.
2548 */
2549static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2550                                     int space)
2551{
2552        struct tcp_sock *tp = tcp_sk(sk);
2553        struct sk_buff *skb = to, *tmp;
2554        bool first = true;
2555
2556        if (!sysctl_tcp_retrans_collapse)
2557                return;
2558        if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2559                return;
2560
2561        tcp_for_write_queue_from_safe(skb, tmp, sk) {
2562                if (!tcp_can_collapse(sk, skb))
2563                        break;
2564
2565                if (!tcp_skb_can_collapse_to(to))
2566                        break;
2567
2568                space -= skb->len;
2569
2570                if (first) {
2571                        first = false;
2572                        continue;
2573                }
2574
2575                if (space < 0)
2576                        break;
2577                /* Punt if not enough space exists in the first SKB for
2578                 * the data in the second
2579                 */
2580                if (skb->len > skb_availroom(to))
2581                        break;
2582
2583                if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2584                        break;
2585
2586                tcp_collapse_retrans(sk, to);
2587        }
2588}
2589
2590/* This retransmits one SKB.  Policy decisions and retransmit queue
2591 * state updates are done by the caller.  Returns non-zero if an
2592 * error occurred which prevented the send.
2593 */
2594int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2595{
2596        struct inet_connection_sock *icsk = inet_csk(sk);
2597        struct tcp_sock *tp = tcp_sk(sk);
2598        unsigned int cur_mss;
2599        int diff, len, err;
2600
2601
2602        /* Inconclusive MTU probe */
2603        if (icsk->icsk_mtup.probe_size)
2604                icsk->icsk_mtup.probe_size = 0;
2605
2606        /* Do not sent more than we queued. 1/4 is reserved for possible
2607         * copying overhead: fragmentation, tunneling, mangling etc.
2608         */
2609        if (atomic_read(&sk->sk_wmem_alloc) >
2610            min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2611                  sk->sk_sndbuf))
2612                return -EAGAIN;
2613
2614        if (skb_still_in_host_queue(sk, skb))
2615                return -EBUSY;
2616
2617        if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2618                if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2619                        BUG();
2620                if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2621                        return -ENOMEM;
2622        }
2623
2624        if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2625                return -EHOSTUNREACH; /* Routing failure or similar. */
2626
2627        cur_mss = tcp_current_mss(sk);
2628
2629        /* If receiver has shrunk his window, and skb is out of
2630         * new window, do not retransmit it. The exception is the
2631         * case, when window is shrunk to zero. In this case
2632         * our retransmit serves as a zero window probe.
2633         */
2634        if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2635            TCP_SKB_CB(skb)->seq != tp->snd_una)
2636                return -EAGAIN;
2637
2638        len = cur_mss * segs;
2639        if (skb->len > len) {
2640                if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2641                        return -ENOMEM; /* We'll try again later. */
2642        } else {
2643                if (skb_unclone(skb, GFP_ATOMIC))
2644                        return -ENOMEM;
2645
2646                diff = tcp_skb_pcount(skb);
2647                tcp_set_skb_tso_segs(skb, cur_mss);
2648                diff -= tcp_skb_pcount(skb);
2649                if (diff)
2650                        tcp_adjust_pcount(sk, skb, diff);
2651                if (skb->len < cur_mss)
2652                        tcp_retrans_try_collapse(sk, skb, cur_mss);
2653        }
2654
2655        /* RFC3168, section 6.1.1.1. ECN fallback */
2656        if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2657                tcp_ecn_clear_syn(sk, skb);
2658
2659        /* make sure skb->data is aligned on arches that require it
2660         * and check if ack-trimming & collapsing extended the headroom
2661         * beyond what csum_start can cover.
2662         */
2663        if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2664                     skb_headroom(skb) >= 0xFFFF)) {
2665                struct sk_buff *nskb;
2666
2667                skb_mstamp_get(&skb->skb_mstamp);
2668                nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2669                err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2670                             -ENOBUFS;
2671        } else {
2672                err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2673        }
2674
2675        if (likely(!err)) {
2676                segs = tcp_skb_pcount(skb);
2677
2678                TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2679                /* Update global TCP statistics. */
2680                TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2681                if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2682                        __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2683                tp->total_retrans += segs;
2684        }
2685        return err;
2686}
2687
2688int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2689{
2690        struct tcp_sock *tp = tcp_sk(sk);
2691        int err = __tcp_retransmit_skb(sk, skb, segs);
2692
2693        if (err == 0) {
2694#if FASTRETRANS_DEBUG > 0
2695                if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2696                        net_dbg_ratelimited("retrans_out leaked\n");
2697                }
2698#endif
2699                TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2700                tp->retrans_out += tcp_skb_pcount(skb);
2701
2702                /* Save stamp of the first retransmit. */
2703                if (!tp->retrans_stamp)
2704                        tp->retrans_stamp = tcp_skb_timestamp(skb);
2705
2706        } else if (err != -EBUSY) {
2707                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2708        }
2709
2710        if (tp->undo_retrans < 0)
2711                tp->undo_retrans = 0;
2712        tp->undo_retrans += tcp_skb_pcount(skb);
2713        return err;
2714}
2715
2716/* Check if we forward retransmits are possible in the current
2717 * window/congestion state.
2718 */
2719static bool tcp_can_forward_retransmit(struct sock *sk)
2720{
2721        const struct inet_connection_sock *icsk = inet_csk(sk);
2722        const struct tcp_sock *tp = tcp_sk(sk);
2723
2724        /* Forward retransmissions are possible only during Recovery. */
2725        if (icsk->icsk_ca_state != TCP_CA_Recovery)
2726                return false;
2727
2728        /* No forward retransmissions in Reno are possible. */
2729        if (tcp_is_reno(tp))
2730                return false;
2731
2732        /* Yeah, we have to make difficult choice between forward transmission
2733         * and retransmission... Both ways have their merits...
2734         *
2735         * For now we do not retransmit anything, while we have some new
2736         * segments to send. In the other cases, follow rule 3 for
2737         * NextSeg() specified in RFC3517.
2738         */
2739
2740        if (tcp_may_send_now(sk))
2741                return false;
2742
2743        return true;
2744}
2745
2746/* This gets called after a retransmit timeout, and the initially
2747 * retransmitted data is acknowledged.  It tries to continue
2748 * resending the rest of the retransmit queue, until either
2749 * we've sent it all or the congestion window limit is reached.
2750 * If doing SACK, the first ACK which comes back for a timeout
2751 * based retransmit packet might feed us FACK information again.
2752 * If so, we use it to avoid unnecessarily retransmissions.
2753 */
2754void tcp_xmit_retransmit_queue(struct sock *sk)
2755{
2756        const struct inet_connection_sock *icsk = inet_csk(sk);
2757        struct tcp_sock *tp = tcp_sk(sk);
2758        struct sk_buff *skb;
2759        struct sk_buff *hole = NULL;
2760        u32 max_segs, last_lost;
2761        int mib_idx;
2762        int fwd_rexmitting = 0;
2763
2764        if (!tp->packets_out)
2765                return;
2766
2767        if (!tp->lost_out)
2768                tp->retransmit_high = tp->snd_una;
2769
2770        if (tp->retransmit_skb_hint) {
2771                skb = tp->retransmit_skb_hint;
2772                last_lost = TCP_SKB_CB(skb)->end_seq;
2773                if (after(last_lost, tp->retransmit_high))
2774                        last_lost = tp->retransmit_high;
2775        } else {
2776                skb = tcp_write_queue_head(sk);
2777                last_lost = tp->snd_una;
2778        }
2779
2780        max_segs = tcp_tso_autosize(sk, tcp_current_mss(sk));
2781        tcp_for_write_queue_from(skb, sk) {
2782                __u8 sacked = TCP_SKB_CB(skb)->sacked;
2783                int segs;
2784
2785                if (skb == tcp_send_head(sk))
2786                        break;
2787                /* we could do better than to assign each time */
2788                if (!hole)
2789                        tp->retransmit_skb_hint = skb;
2790
2791                segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2792                if (segs <= 0)
2793                        return;
2794                /* In case tcp_shift_skb_data() have aggregated large skbs,
2795                 * we need to make sure not sending too bigs TSO packets
2796                 */
2797                segs = min_t(int, segs, max_segs);
2798
2799                if (fwd_rexmitting) {
2800begin_fwd:
2801                        if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2802                                break;
2803                        mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2804
2805                } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2806                        tp->retransmit_high = last_lost;
2807                        if (!tcp_can_forward_retransmit(sk))
2808                                break;
2809                        /* Backtrack if necessary to non-L'ed skb */
2810                        if (hole) {
2811                                skb = hole;
2812                                hole = NULL;
2813                        }
2814                        fwd_rexmitting = 1;
2815                        goto begin_fwd;
2816
2817                } else if (!(sacked & TCPCB_LOST)) {
2818                        if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2819                                hole = skb;
2820                        continue;
2821
2822                } else {
2823                        last_lost = TCP_SKB_CB(skb)->end_seq;
2824                        if (icsk->icsk_ca_state != TCP_CA_Loss)
2825                                mib_idx = LINUX_MIB_TCPFASTRETRANS;
2826                        else
2827                                mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2828                }
2829
2830                if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2831                        continue;
2832
2833                if (tcp_retransmit_skb(sk, skb, segs))
2834                        return;
2835
2836                NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2837
2838                if (tcp_in_cwnd_reduction(sk))
2839                        tp->prr_out += tcp_skb_pcount(skb);
2840
2841                if (skb == tcp_write_queue_head(sk))
2842                        inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2843                                                  inet_csk(sk)->icsk_rto,
2844                                                  TCP_RTO_MAX);
2845        }
2846}
2847
2848/* We allow to exceed memory limits for FIN packets to expedite
2849 * connection tear down and (memory) recovery.
2850 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2851 * or even be forced to close flow without any FIN.
2852 * In general, we want to allow one skb per socket to avoid hangs
2853 * with edge trigger epoll()
2854 */
2855void sk_forced_mem_schedule(struct sock *sk, int size)
2856{
2857        int amt;
2858
2859        if (size <= sk->sk_forward_alloc)
2860                return;
2861        amt = sk_mem_pages(size);
2862        sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2863        sk_memory_allocated_add(sk, amt);
2864
2865        if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2866                mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2867}
2868
2869/* Send a FIN. The caller locks the socket for us.
2870 * We should try to send a FIN packet really hard, but eventually give up.
2871 */
2872void tcp_send_fin(struct sock *sk)
2873{
2874        struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2875        struct tcp_sock *tp = tcp_sk(sk);
2876
2877        /* Optimization, tack on the FIN if we have one skb in write queue and
2878         * this skb was not yet sent, or we are under memory pressure.
2879         * Note: in the latter case, FIN packet will be sent after a timeout,
2880         * as TCP stack thinks it has already been transmitted.
2881         */
2882        if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2883coalesce:
2884                TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2885                TCP_SKB_CB(tskb)->end_seq++;
2886                tp->write_seq++;
2887                if (!tcp_send_head(sk)) {
2888                        /* This means tskb was already sent.
2889                         * Pretend we included the FIN on previous transmit.
2890                         * We need to set tp->snd_nxt to the value it would have
2891                         * if FIN had been sent. This is because retransmit path
2892                         * does not change tp->snd_nxt.
2893                         */
2894                        tp->snd_nxt++;
2895                        return;
2896                }
2897        } else {
2898                skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2899                if (unlikely(!skb)) {
2900                        if (tskb)
2901                                goto coalesce;
2902                        return;
2903                }
2904                skb_reserve(skb, MAX_TCP_HEADER);
2905                sk_forced_mem_schedule(sk, skb->truesize);
2906                /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2907                tcp_init_nondata_skb(skb, tp->write_seq,
2908                                     TCPHDR_ACK | TCPHDR_FIN);
2909                tcp_queue_skb(sk, skb);
2910        }
2911        __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2912}
2913
2914/* We get here when a process closes a file descriptor (either due to
2915 * an explicit close() or as a byproduct of exit()'ing) and there
2916 * was unread data in the receive queue.  This behavior is recommended
2917 * by RFC 2525, section 2.17.  -DaveM
2918 */
2919void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2920{
2921        struct sk_buff *skb;
2922
2923        /* NOTE: No TCP options attached and we never retransmit this. */
2924        skb = alloc_skb(MAX_TCP_HEADER, priority);
2925        if (!skb) {
2926                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2927                return;
2928        }
2929
2930        /* Reserve space for headers and prepare control bits. */
2931        skb_reserve(skb, MAX_TCP_HEADER);
2932        tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2933                             TCPHDR_ACK | TCPHDR_RST);
2934        skb_mstamp_get(&skb->skb_mstamp);
2935        /* Send it off. */
2936        if (tcp_transmit_skb(sk, skb, 0, priority))
2937                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2938
2939        TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2940}
2941
2942/* Send a crossed SYN-ACK during socket establishment.
2943 * WARNING: This routine must only be called when we have already sent
2944 * a SYN packet that crossed the incoming SYN that caused this routine
2945 * to get called. If this assumption fails then the initial rcv_wnd
2946 * and rcv_wscale values will not be correct.
2947 */
2948int tcp_send_synack(struct sock *sk)
2949{
2950        struct sk_buff *skb;
2951
2952        skb = tcp_write_queue_head(sk);
2953        if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2954                pr_debug("%s: wrong queue state\n", __func__);
2955                return -EFAULT;
2956        }
2957        if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2958                if (skb_cloned(skb)) {
2959                        struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2960                        if (!nskb)
2961                                return -ENOMEM;
2962                        tcp_unlink_write_queue(skb, sk);
2963                        __skb_header_release(nskb);
2964                        __tcp_add_write_queue_head(sk, nskb);
2965                        sk_wmem_free_skb(sk, skb);
2966                        sk->sk_wmem_queued += nskb->truesize;
2967                        sk_mem_charge(sk, nskb->truesize);
2968                        skb = nskb;
2969                }
2970
2971                TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2972                tcp_ecn_send_synack(sk, skb);
2973        }
2974        return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2975}
2976
2977/**
2978 * tcp_make_synack - Prepare a SYN-ACK.
2979 * sk: listener socket
2980 * dst: dst entry attached to the SYNACK
2981 * req: request_sock pointer
2982 *
2983 * Allocate one skb and build a SYNACK packet.
2984 * @dst is consumed : Caller should not use it again.
2985 */
2986struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
2987                                struct request_sock *req,
2988                                struct tcp_fastopen_cookie *foc,
2989                                enum tcp_synack_type synack_type)
2990{
2991        struct inet_request_sock *ireq = inet_rsk(req);
2992        const struct tcp_sock *tp = tcp_sk(sk);
2993        struct tcp_md5sig_key *md5 = NULL;
2994        struct tcp_out_options opts;
2995        struct sk_buff *skb;
2996        int tcp_header_size;
2997        struct tcphdr *th;
2998        u16 user_mss;
2999        int mss;
3000
3001        skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3002        if (unlikely(!skb)) {
3003                dst_release(dst);
3004                return NULL;
3005        }
3006        /* Reserve space for headers. */
3007        skb_reserve(skb, MAX_TCP_HEADER);
3008
3009        switch (synack_type) {
3010        case TCP_SYNACK_NORMAL:
3011                skb_set_owner_w(skb, req_to_sk(req));
3012                break;
3013        case TCP_SYNACK_COOKIE:
3014                /* Under synflood, we do not attach skb to a socket,
3015                 * to avoid false sharing.
3016                 */
3017                break;
3018        case TCP_SYNACK_FASTOPEN:
3019                /* sk is a const pointer, because we want to express multiple
3020                 * cpu might call us concurrently.
3021                 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3022                 */
3023                skb_set_owner_w(skb, (struct sock *)sk);
3024                break;
3025        }
3026        skb_dst_set(skb, dst);
3027
3028        mss = dst_metric_advmss(dst);
3029        user_mss = READ_ONCE(tp->rx_opt.user_mss);
3030        if (user_mss && user_mss < mss)
3031                mss = user_mss;
3032
3033        memset(&opts, 0, sizeof(opts));
3034#ifdef CONFIG_SYN_COOKIES
3035        if (unlikely(req->cookie_ts))
3036                skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3037        else
3038#endif
3039        skb_mstamp_get(&skb->skb_mstamp);
3040
3041#ifdef CONFIG_TCP_MD5SIG
3042        rcu_read_lock();
3043        md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3044#endif
3045        skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3046        tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3047                          sizeof(*th);
3048
3049        skb_push(skb, tcp_header_size);
3050        skb_reset_transport_header(skb);
3051
3052        th = (struct tcphdr *)skb->data;
3053        memset(th, 0, sizeof(struct tcphdr));
3054        th->syn = 1;
3055        th->ack = 1;
3056        tcp_ecn_make_synack(req, th);
3057        th->source = htons(ireq->ir_num);
3058        th->dest = ireq->ir_rmt_port;
3059        /* Setting of flags are superfluous here for callers (and ECE is
3060         * not even correctly set)
3061         */
3062        tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3063                             TCPHDR_SYN | TCPHDR_ACK);
3064
3065        th->seq = htonl(TCP_SKB_CB(skb)->seq);
3066        /* XXX data is queued and acked as is. No buffer/window check */
3067        th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3068
3069        /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3070        th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3071        tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3072        th->doff = (tcp_header_size >> 2);
3073        __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3074
3075#ifdef CONFIG_TCP_MD5SIG
3076        /* Okay, we have all we need - do the md5 hash if needed */
3077        if (md5)
3078                tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3079                                               md5, req_to_sk(req), skb);
3080        rcu_read_unlock();
3081#endif
3082
3083        /* Do not fool tcpdump (if any), clean our debris */
3084        skb->tstamp.tv64 = 0;
3085        return skb;
3086}
3087EXPORT_SYMBOL(tcp_make_synack);
3088
3089static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3090{
3091        struct inet_connection_sock *icsk = inet_csk(sk);
3092        const struct tcp_congestion_ops *ca;
3093        u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3094
3095        if (ca_key == TCP_CA_UNSPEC)
3096                return;
3097
3098        rcu_read_lock();
3099        ca = tcp_ca_find_key(ca_key);
3100        if (likely(ca && try_module_get(ca->owner))) {
3101                module_put(icsk->icsk_ca_ops->owner);
3102                icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3103                icsk->icsk_ca_ops = ca;
3104        }
3105        rcu_read_unlock();
3106}
3107
3108/* Do all connect socket setups that can be done AF independent. */
3109static void tcp_connect_init(struct sock *sk)
3110{
3111        const struct dst_entry *dst = __sk_dst_get(sk);
3112        struct tcp_sock *tp = tcp_sk(sk);
3113        __u8 rcv_wscale;
3114
3115        /* We'll fix this up when we get a response from the other end.
3116         * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3117         */
3118        tp->tcp_header_len = sizeof(struct tcphdr) +
3119                (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3120
3121#ifdef CONFIG_TCP_MD5SIG
3122        if (tp->af_specific->md5_lookup(sk, sk))
3123                tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3124#endif
3125
3126        /* If user gave his TCP_MAXSEG, record it to clamp */
3127        if (tp->rx_opt.user_mss)
3128                tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3129        tp->max_window = 0;
3130        tcp_mtup_init(sk);
3131        tcp_sync_mss(sk, dst_mtu(dst));
3132
3133        tcp_ca_dst_init(sk, dst);
3134
3135        if (!tp->window_clamp)
3136                tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3137        tp->advmss = dst_metric_advmss(dst);
3138        if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3139                tp->advmss = tp->rx_opt.user_mss;
3140
3141        tcp_initialize_rcv_mss(sk);
3142
3143        /* limit the window selection if the user enforce a smaller rx buffer */
3144        if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3145            (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3146                tp->window_clamp = tcp_full_space(sk);
3147
3148        tcp_select_initial_window(tcp_full_space(sk),
3149                                  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3150                                  &tp->rcv_wnd,
3151                                  &tp->window_clamp,
3152                                  sysctl_tcp_window_scaling,
3153                                  &rcv_wscale,
3154                                  dst_metric(dst, RTAX_INITRWND));
3155
3156        tp->rx_opt.rcv_wscale = rcv_wscale;
3157        tp->rcv_ssthresh = tp->rcv_wnd;
3158
3159        sk->sk_err = 0;
3160        sock_reset_flag(sk, SOCK_DONE);
3161        tp->snd_wnd = 0;
3162        tcp_init_wl(tp, 0);
3163        tp->snd_una = tp->write_seq;
3164        tp->snd_sml = tp->write_seq;
3165        tp->snd_up = tp->write_seq;
3166        tp->snd_nxt = tp->write_seq;
3167
3168        if (likely(!tp->repair))
3169                tp->rcv_nxt = 0;
3170        else
3171                tp->rcv_tstamp = tcp_time_stamp;
3172        tp->rcv_wup = tp->rcv_nxt;
3173        tp->copied_seq = tp->rcv_nxt;
3174
3175        inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3176        inet_csk(sk)->icsk_retransmits = 0;
3177        tcp_clear_retrans(tp);
3178}
3179
3180static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3181{
3182        struct tcp_sock *tp = tcp_sk(sk);
3183        struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3184
3185        tcb->end_seq += skb->len;
3186        __skb_header_release(skb);
3187        __tcp_add_write_queue_tail(sk, skb);
3188        sk->sk_wmem_queued += skb->truesize;
3189        sk_mem_charge(sk, skb->truesize);
3190        tp->write_seq = tcb->end_seq;
3191        tp->packets_out += tcp_skb_pcount(skb);
3192}
3193
3194/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3195 * queue a data-only packet after the regular SYN, such that regular SYNs
3196 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3197 * only the SYN sequence, the data are retransmitted in the first ACK.
3198 * If cookie is not cached or other error occurs, falls back to send a
3199 * regular SYN with Fast Open cookie request option.
3200 */
3201static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3202{
3203        struct tcp_sock *tp = tcp_sk(sk);
3204        struct tcp_fastopen_request *fo = tp->fastopen_req;
3205        int syn_loss = 0, space, err = 0;
3206        unsigned long last_syn_loss = 0;
3207        struct sk_buff *syn_data;
3208
3209        tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3210        tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3211                               &syn_loss, &last_syn_loss);
3212        /* Recurring FO SYN losses: revert to regular handshake temporarily */
3213        if (syn_loss > 1 &&
3214            time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3215                fo->cookie.len = -1;
3216                goto fallback;
3217        }
3218
3219        if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3220                fo->cookie.len = -1;
3221        else if (fo->cookie.len <= 0)
3222                goto fallback;
3223
3224        /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3225         * user-MSS. Reserve maximum option space for middleboxes that add
3226         * private TCP options. The cost is reduced data space in SYN :(
3227         */
3228        if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3229                tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3230        space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3231                MAX_TCP_OPTION_SPACE;
3232
3233        space = min_t(size_t, space, fo->size);
3234
3235        /* limit to order-0 allocations */
3236        space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3237
3238        syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3239        if (!syn_data)
3240                goto fallback;
3241        syn_data->ip_summed = CHECKSUM_PARTIAL;
3242        memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3243        if (space) {
3244                int copied = copy_from_iter(skb_put(syn_data, space), space,
3245                                            &fo->data->msg_iter);
3246                if (unlikely(!copied)) {
3247                        kfree_skb(syn_data);
3248                        goto fallback;
3249                }
3250                if (copied != space) {
3251                        skb_trim(syn_data, copied);
3252                        space = copied;
3253                }
3254        }
3255        /* No more data pending in inet_wait_for_connect() */
3256        if (space == fo->size)
3257                fo->data = NULL;
3258        fo->copied = space;
3259
3260        tcp_connect_queue_skb(sk, syn_data);
3261
3262        err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3263
3264        syn->skb_mstamp = syn_data->skb_mstamp;
3265
3266        /* Now full SYN+DATA was cloned and sent (or not),
3267         * remove the SYN from the original skb (syn_data)
3268         * we keep in write queue in case of a retransmit, as we
3269         * also have the SYN packet (with no data) in the same queue.
3270         */
3271        TCP_SKB_CB(syn_data)->seq++;
3272        TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3273        if (!err) {
3274                tp->syn_data = (fo->copied > 0);
3275                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3276                goto done;
3277        }
3278
3279fallback:
3280        /* Send a regular SYN with Fast Open cookie request option */
3281        if (fo->cookie.len > 0)
3282                fo->cookie.len = 0;
3283        err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3284        if (err)
3285                tp->syn_fastopen = 0;
3286done:
3287        fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3288        return err;
3289}
3290
3291/* Build a SYN and send it off. */
3292int tcp_connect(struct sock *sk)
3293{
3294        struct tcp_sock *tp = tcp_sk(sk);
3295        struct sk_buff *buff;
3296        int err;
3297
3298        tcp_connect_init(sk);
3299
3300        if (unlikely(tp->repair)) {
3301                tcp_finish_connect(sk, NULL);
3302                return 0;
3303        }
3304
3305        buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3306        if (unlikely(!buff))
3307                return -ENOBUFS;
3308
3309        tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3310        tp->retrans_stamp = tcp_time_stamp;
3311        tcp_connect_queue_skb(sk, buff);
3312        tcp_ecn_send_syn(sk, buff);
3313
3314        /* Send off SYN; include data in Fast Open. */
3315        err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3316              tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3317        if (err == -ECONNREFUSED)
3318                return err;
3319
3320        /* We change tp->snd_nxt after the tcp_transmit_skb() call
3321         * in order to make this packet get counted in tcpOutSegs.
3322         */
3323        tp->snd_nxt = tp->write_seq;
3324        tp->pushed_seq = tp->write_seq;
3325        TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3326
3327        /* Timer for repeating the SYN until an answer. */
3328        inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3329                                  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3330        return 0;
3331}
3332EXPORT_SYMBOL(tcp_connect);
3333
3334/* Send out a delayed ack, the caller does the policy checking
3335 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3336 * for details.
3337 */
3338void tcp_send_delayed_ack(struct sock *sk)
3339{
3340        struct inet_connection_sock *icsk = inet_csk(sk);
3341        int ato = icsk->icsk_ack.ato;
3342        unsigned long timeout;
3343
3344        tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3345
3346        if (ato > TCP_DELACK_MIN) {
3347                const struct tcp_sock *tp = tcp_sk(sk);
3348                int max_ato = HZ / 2;
3349
3350                if (icsk->icsk_ack.pingpong ||
3351                    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3352                        max_ato = TCP_DELACK_MAX;
3353
3354                /* Slow path, intersegment interval is "high". */
3355
3356                /* If some rtt estimate is known, use it to bound delayed ack.
3357                 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3358                 * directly.
3359                 */
3360                if (tp->srtt_us) {
3361                        int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3362                                        TCP_DELACK_MIN);
3363
3364                        if (rtt < max_ato)
3365                                max_ato = rtt;
3366                }
3367
3368                ato = min(ato, max_ato);
3369        }
3370
3371        /* Stay within the limit we were given */
3372        timeout = jiffies + ato;
3373
3374        /* Use new timeout only if there wasn't a older one earlier. */
3375        if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3376                /* If delack timer was blocked or is about to expire,
3377                 * send ACK now.
3378                 */
3379                if (icsk->icsk_ack.blocked ||
3380                    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3381                        tcp_send_ack(sk);
3382                        return;
3383                }
3384
3385                if (!time_before(timeout, icsk->icsk_ack.timeout))
3386                        timeout = icsk->icsk_ack.timeout;
3387        }
3388        icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3389        icsk->icsk_ack.timeout = timeout;
3390        sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3391}
3392
3393/* This routine sends an ack and also updates the window. */
3394void tcp_send_ack(struct sock *sk)
3395{
3396        struct sk_buff *buff;
3397
3398        /* If we have been reset, we may not send again. */
3399        if (sk->sk_state == TCP_CLOSE)
3400                return;
3401
3402        tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3403
3404        /* We are not putting this on the write queue, so
3405         * tcp_transmit_skb() will set the ownership to this
3406         * sock.
3407         */
3408        buff = alloc_skb(MAX_TCP_HEADER,
3409                         sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3410        if (unlikely(!buff)) {
3411                inet_csk_schedule_ack(sk);
3412                inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3413                inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3414                                          TCP_DELACK_MAX, TCP_RTO_MAX);
3415                return;
3416        }
3417
3418        /* Reserve space for headers and prepare control bits. */
3419        skb_reserve(buff, MAX_TCP_HEADER);
3420        tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3421
3422        /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3423         * too much.
3424         * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3425         * We also avoid tcp_wfree() overhead (cache line miss accessing
3426         * tp->tsq_flags) by using regular sock_wfree()
3427         */
3428        skb_set_tcp_pure_ack(buff);
3429
3430        /* Send it off, this clears delayed acks for us. */
3431        skb_mstamp_get(&buff->skb_mstamp);
3432        tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3433}
3434EXPORT_SYMBOL_GPL(tcp_send_ack);
3435
3436/* This routine sends a packet with an out of date sequence
3437 * number. It assumes the other end will try to ack it.
3438 *
3439 * Question: what should we make while urgent mode?
3440 * 4.4BSD forces sending single byte of data. We cannot send
3441 * out of window data, because we have SND.NXT==SND.MAX...
3442 *
3443 * Current solution: to send TWO zero-length segments in urgent mode:
3444 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3445 * out-of-date with SND.UNA-1 to probe window.
3446 */
3447static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3448{
3449        struct tcp_sock *tp = tcp_sk(sk);
3450        struct sk_buff *skb;
3451
3452        /* We don't queue it, tcp_transmit_skb() sets ownership. */
3453        skb = alloc_skb(MAX_TCP_HEADER,
3454                        sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3455        if (!skb)
3456                return -1;
3457
3458        /* Reserve space for headers and set control bits. */
3459        skb_reserve(skb, MAX_TCP_HEADER);
3460        /* Use a previous sequence.  This should cause the other
3461         * end to send an ack.  Don't queue or clone SKB, just
3462         * send it.
3463         */
3464        tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3465        skb_mstamp_get(&skb->skb_mstamp);
3466        NET_INC_STATS(sock_net(sk), mib);
3467        return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3468}
3469
3470void tcp_send_window_probe(struct sock *sk)
3471{
3472        if (sk->sk_state == TCP_ESTABLISHED) {
3473                tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3474                tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3475        }
3476}
3477
3478/* Initiate keepalive or window probe from timer. */
3479int tcp_write_wakeup(struct sock *sk, int mib)
3480{
3481        struct tcp_sock *tp = tcp_sk(sk);
3482        struct sk_buff *skb;
3483
3484        if (sk->sk_state == TCP_CLOSE)
3485                return -1;
3486
3487        skb = tcp_send_head(sk);
3488        if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3489                int err;
3490                unsigned int mss = tcp_current_mss(sk);
3491                unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3492
3493                if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3494                        tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3495
3496                /* We are probing the opening of a window
3497                 * but the window size is != 0
3498                 * must have been a result SWS avoidance ( sender )
3499                 */
3500                if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3501                    skb->len > mss) {
3502                        seg_size = min(seg_size, mss);
3503                        TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3504                        if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3505                                return -1;
3506                } else if (!tcp_skb_pcount(skb))
3507                        tcp_set_skb_tso_segs(skb, mss);
3508
3509                TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3510                err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3511                if (!err)
3512                        tcp_event_new_data_sent(sk, skb);
3513                return err;
3514        } else {
3515                if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3516                        tcp_xmit_probe_skb(sk, 1, mib);
3517                return tcp_xmit_probe_skb(sk, 0, mib);
3518        }
3519}
3520
3521/* A window probe timeout has occurred.  If window is not closed send
3522 * a partial packet else a zero probe.
3523 */
3524void tcp_send_probe0(struct sock *sk)
3525{
3526        struct inet_connection_sock *icsk = inet_csk(sk);
3527        struct tcp_sock *tp = tcp_sk(sk);
3528        struct net *net = sock_net(sk);
3529        unsigned long probe_max;
3530        int err;
3531
3532        err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3533
3534        if (tp->packets_out || !tcp_send_head(sk)) {
3535                /* Cancel probe timer, if it is not required. */
3536                icsk->icsk_probes_out = 0;
3537                icsk->icsk_backoff = 0;
3538                return;
3539        }
3540
3541        if (err <= 0) {
3542                if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3543                        icsk->icsk_backoff++;
3544                icsk->icsk_probes_out++;
3545                probe_max = TCP_RTO_MAX;
3546        } else {
3547                /* If packet was not sent due to local congestion,
3548                 * do not backoff and do not remember icsk_probes_out.
3549                 * Let local senders to fight for local resources.
3550                 *
3551                 * Use accumulated backoff yet.
3552                 */
3553                if (!icsk->icsk_probes_out)
3554                        icsk->icsk_probes_out = 1;
3555                probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3556        }
3557        inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3558                                  tcp_probe0_when(sk, probe_max),
3559                                  TCP_RTO_MAX);
3560}
3561
3562int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3563{
3564        const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3565        struct flowi fl;
3566        int res;
3567
3568        tcp_rsk(req)->txhash = net_tx_rndhash();
3569        res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3570        if (!res) {
3571                __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3572                __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3573                if (unlikely(tcp_passive_fastopen(sk)))
3574                        tcp_sk(sk)->total_retrans++;
3575        }
3576        return res;
3577}
3578EXPORT_SYMBOL(tcp_rtx_synack);
3579