linux/net/openvswitch/actions.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2007-2014 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16 * 02110-1301, USA
  17 */
  18
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include <linux/skbuff.h>
  22#include <linux/in.h>
  23#include <linux/ip.h>
  24#include <linux/openvswitch.h>
  25#include <linux/netfilter_ipv6.h>
  26#include <linux/sctp.h>
  27#include <linux/tcp.h>
  28#include <linux/udp.h>
  29#include <linux/in6.h>
  30#include <linux/if_arp.h>
  31#include <linux/if_vlan.h>
  32
  33#include <net/dst.h>
  34#include <net/ip.h>
  35#include <net/ipv6.h>
  36#include <net/ip6_fib.h>
  37#include <net/checksum.h>
  38#include <net/dsfield.h>
  39#include <net/mpls.h>
  40#include <net/sctp/checksum.h>
  41
  42#include "datapath.h"
  43#include "flow.h"
  44#include "conntrack.h"
  45#include "vport.h"
  46
  47static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
  48                              struct sw_flow_key *key,
  49                              const struct nlattr *attr, int len);
  50
  51struct deferred_action {
  52        struct sk_buff *skb;
  53        const struct nlattr *actions;
  54
  55        /* Store pkt_key clone when creating deferred action. */
  56        struct sw_flow_key pkt_key;
  57};
  58
  59#define MAX_L2_LEN      (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
  60struct ovs_frag_data {
  61        unsigned long dst;
  62        struct vport *vport;
  63        struct ovs_skb_cb cb;
  64        __be16 inner_protocol;
  65        __u16 vlan_tci;
  66        __be16 vlan_proto;
  67        unsigned int l2_len;
  68        u8 l2_data[MAX_L2_LEN];
  69};
  70
  71static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
  72
  73#define DEFERRED_ACTION_FIFO_SIZE 10
  74struct action_fifo {
  75        int head;
  76        int tail;
  77        /* Deferred action fifo queue storage. */
  78        struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
  79};
  80
  81static struct action_fifo __percpu *action_fifos;
  82static DEFINE_PER_CPU(int, exec_actions_level);
  83
  84static void action_fifo_init(struct action_fifo *fifo)
  85{
  86        fifo->head = 0;
  87        fifo->tail = 0;
  88}
  89
  90static bool action_fifo_is_empty(const struct action_fifo *fifo)
  91{
  92        return (fifo->head == fifo->tail);
  93}
  94
  95static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
  96{
  97        if (action_fifo_is_empty(fifo))
  98                return NULL;
  99
 100        return &fifo->fifo[fifo->tail++];
 101}
 102
 103static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
 104{
 105        if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
 106                return NULL;
 107
 108        return &fifo->fifo[fifo->head++];
 109}
 110
 111/* Return true if fifo is not full */
 112static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
 113                                                    const struct sw_flow_key *key,
 114                                                    const struct nlattr *attr)
 115{
 116        struct action_fifo *fifo;
 117        struct deferred_action *da;
 118
 119        fifo = this_cpu_ptr(action_fifos);
 120        da = action_fifo_put(fifo);
 121        if (da) {
 122                da->skb = skb;
 123                da->actions = attr;
 124                da->pkt_key = *key;
 125        }
 126
 127        return da;
 128}
 129
 130static void invalidate_flow_key(struct sw_flow_key *key)
 131{
 132        key->eth.type = htons(0);
 133}
 134
 135static bool is_flow_key_valid(const struct sw_flow_key *key)
 136{
 137        return !!key->eth.type;
 138}
 139
 140static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
 141                             __be16 ethertype)
 142{
 143        if (skb->ip_summed == CHECKSUM_COMPLETE) {
 144                __be16 diff[] = { ~(hdr->h_proto), ethertype };
 145
 146                skb->csum = ~csum_partial((char *)diff, sizeof(diff),
 147                                        ~skb->csum);
 148        }
 149
 150        hdr->h_proto = ethertype;
 151}
 152
 153static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 154                     const struct ovs_action_push_mpls *mpls)
 155{
 156        __be32 *new_mpls_lse;
 157
 158        /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
 159        if (skb->encapsulation)
 160                return -ENOTSUPP;
 161
 162        if (skb_cow_head(skb, MPLS_HLEN) < 0)
 163                return -ENOMEM;
 164
 165        skb_push(skb, MPLS_HLEN);
 166        memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
 167                skb->mac_len);
 168        skb_reset_mac_header(skb);
 169
 170        new_mpls_lse = (__be32 *)skb_mpls_header(skb);
 171        *new_mpls_lse = mpls->mpls_lse;
 172
 173        skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
 174
 175        update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
 176        if (!skb->inner_protocol)
 177                skb_set_inner_protocol(skb, skb->protocol);
 178        skb->protocol = mpls->mpls_ethertype;
 179
 180        invalidate_flow_key(key);
 181        return 0;
 182}
 183
 184static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 185                    const __be16 ethertype)
 186{
 187        struct ethhdr *hdr;
 188        int err;
 189
 190        err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
 191        if (unlikely(err))
 192                return err;
 193
 194        skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
 195
 196        memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
 197                skb->mac_len);
 198
 199        __skb_pull(skb, MPLS_HLEN);
 200        skb_reset_mac_header(skb);
 201
 202        /* skb_mpls_header() is used to locate the ethertype
 203         * field correctly in the presence of VLAN tags.
 204         */
 205        hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
 206        update_ethertype(skb, hdr, ethertype);
 207        if (eth_p_mpls(skb->protocol))
 208                skb->protocol = ethertype;
 209
 210        invalidate_flow_key(key);
 211        return 0;
 212}
 213
 214static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
 215                    const __be32 *mpls_lse, const __be32 *mask)
 216{
 217        __be32 *stack;
 218        __be32 lse;
 219        int err;
 220
 221        err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
 222        if (unlikely(err))
 223                return err;
 224
 225        stack = (__be32 *)skb_mpls_header(skb);
 226        lse = OVS_MASKED(*stack, *mpls_lse, *mask);
 227        if (skb->ip_summed == CHECKSUM_COMPLETE) {
 228                __be32 diff[] = { ~(*stack), lse };
 229
 230                skb->csum = ~csum_partial((char *)diff, sizeof(diff),
 231                                          ~skb->csum);
 232        }
 233
 234        *stack = lse;
 235        flow_key->mpls.top_lse = lse;
 236        return 0;
 237}
 238
 239static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 240{
 241        int err;
 242
 243        err = skb_vlan_pop(skb);
 244        if (skb_vlan_tag_present(skb))
 245                invalidate_flow_key(key);
 246        else
 247                key->eth.tci = 0;
 248        return err;
 249}
 250
 251static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
 252                     const struct ovs_action_push_vlan *vlan)
 253{
 254        if (skb_vlan_tag_present(skb))
 255                invalidate_flow_key(key);
 256        else
 257                key->eth.tci = vlan->vlan_tci;
 258        return skb_vlan_push(skb, vlan->vlan_tpid,
 259                             ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
 260}
 261
 262/* 'src' is already properly masked. */
 263static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
 264{
 265        u16 *dst = (u16 *)dst_;
 266        const u16 *src = (const u16 *)src_;
 267        const u16 *mask = (const u16 *)mask_;
 268
 269        OVS_SET_MASKED(dst[0], src[0], mask[0]);
 270        OVS_SET_MASKED(dst[1], src[1], mask[1]);
 271        OVS_SET_MASKED(dst[2], src[2], mask[2]);
 272}
 273
 274static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
 275                        const struct ovs_key_ethernet *key,
 276                        const struct ovs_key_ethernet *mask)
 277{
 278        int err;
 279
 280        err = skb_ensure_writable(skb, ETH_HLEN);
 281        if (unlikely(err))
 282                return err;
 283
 284        skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 285
 286        ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
 287                               mask->eth_src);
 288        ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
 289                               mask->eth_dst);
 290
 291        skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 292
 293        ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
 294        ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
 295        return 0;
 296}
 297
 298static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
 299                                  __be32 addr, __be32 new_addr)
 300{
 301        int transport_len = skb->len - skb_transport_offset(skb);
 302
 303        if (nh->frag_off & htons(IP_OFFSET))
 304                return;
 305
 306        if (nh->protocol == IPPROTO_TCP) {
 307                if (likely(transport_len >= sizeof(struct tcphdr)))
 308                        inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
 309                                                 addr, new_addr, true);
 310        } else if (nh->protocol == IPPROTO_UDP) {
 311                if (likely(transport_len >= sizeof(struct udphdr))) {
 312                        struct udphdr *uh = udp_hdr(skb);
 313
 314                        if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 315                                inet_proto_csum_replace4(&uh->check, skb,
 316                                                         addr, new_addr, true);
 317                                if (!uh->check)
 318                                        uh->check = CSUM_MANGLED_0;
 319                        }
 320                }
 321        }
 322}
 323
 324static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
 325                        __be32 *addr, __be32 new_addr)
 326{
 327        update_ip_l4_checksum(skb, nh, *addr, new_addr);
 328        csum_replace4(&nh->check, *addr, new_addr);
 329        skb_clear_hash(skb);
 330        *addr = new_addr;
 331}
 332
 333static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
 334                                 __be32 addr[4], const __be32 new_addr[4])
 335{
 336        int transport_len = skb->len - skb_transport_offset(skb);
 337
 338        if (l4_proto == NEXTHDR_TCP) {
 339                if (likely(transport_len >= sizeof(struct tcphdr)))
 340                        inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
 341                                                  addr, new_addr, true);
 342        } else if (l4_proto == NEXTHDR_UDP) {
 343                if (likely(transport_len >= sizeof(struct udphdr))) {
 344                        struct udphdr *uh = udp_hdr(skb);
 345
 346                        if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 347                                inet_proto_csum_replace16(&uh->check, skb,
 348                                                          addr, new_addr, true);
 349                                if (!uh->check)
 350                                        uh->check = CSUM_MANGLED_0;
 351                        }
 352                }
 353        } else if (l4_proto == NEXTHDR_ICMP) {
 354                if (likely(transport_len >= sizeof(struct icmp6hdr)))
 355                        inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
 356                                                  skb, addr, new_addr, true);
 357        }
 358}
 359
 360static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
 361                           const __be32 mask[4], __be32 masked[4])
 362{
 363        masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
 364        masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
 365        masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
 366        masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
 367}
 368
 369static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
 370                          __be32 addr[4], const __be32 new_addr[4],
 371                          bool recalculate_csum)
 372{
 373        if (recalculate_csum)
 374                update_ipv6_checksum(skb, l4_proto, addr, new_addr);
 375
 376        skb_clear_hash(skb);
 377        memcpy(addr, new_addr, sizeof(__be32[4]));
 378}
 379
 380static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
 381{
 382        /* Bits 21-24 are always unmasked, so this retains their values. */
 383        OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
 384        OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
 385        OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
 386}
 387
 388static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
 389                       u8 mask)
 390{
 391        new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
 392
 393        csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
 394        nh->ttl = new_ttl;
 395}
 396
 397static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
 398                    const struct ovs_key_ipv4 *key,
 399                    const struct ovs_key_ipv4 *mask)
 400{
 401        struct iphdr *nh;
 402        __be32 new_addr;
 403        int err;
 404
 405        err = skb_ensure_writable(skb, skb_network_offset(skb) +
 406                                  sizeof(struct iphdr));
 407        if (unlikely(err))
 408                return err;
 409
 410        nh = ip_hdr(skb);
 411
 412        /* Setting an IP addresses is typically only a side effect of
 413         * matching on them in the current userspace implementation, so it
 414         * makes sense to check if the value actually changed.
 415         */
 416        if (mask->ipv4_src) {
 417                new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
 418
 419                if (unlikely(new_addr != nh->saddr)) {
 420                        set_ip_addr(skb, nh, &nh->saddr, new_addr);
 421                        flow_key->ipv4.addr.src = new_addr;
 422                }
 423        }
 424        if (mask->ipv4_dst) {
 425                new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
 426
 427                if (unlikely(new_addr != nh->daddr)) {
 428                        set_ip_addr(skb, nh, &nh->daddr, new_addr);
 429                        flow_key->ipv4.addr.dst = new_addr;
 430                }
 431        }
 432        if (mask->ipv4_tos) {
 433                ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
 434                flow_key->ip.tos = nh->tos;
 435        }
 436        if (mask->ipv4_ttl) {
 437                set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
 438                flow_key->ip.ttl = nh->ttl;
 439        }
 440
 441        return 0;
 442}
 443
 444static bool is_ipv6_mask_nonzero(const __be32 addr[4])
 445{
 446        return !!(addr[0] | addr[1] | addr[2] | addr[3]);
 447}
 448
 449static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
 450                    const struct ovs_key_ipv6 *key,
 451                    const struct ovs_key_ipv6 *mask)
 452{
 453        struct ipv6hdr *nh;
 454        int err;
 455
 456        err = skb_ensure_writable(skb, skb_network_offset(skb) +
 457                                  sizeof(struct ipv6hdr));
 458        if (unlikely(err))
 459                return err;
 460
 461        nh = ipv6_hdr(skb);
 462
 463        /* Setting an IP addresses is typically only a side effect of
 464         * matching on them in the current userspace implementation, so it
 465         * makes sense to check if the value actually changed.
 466         */
 467        if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
 468                __be32 *saddr = (__be32 *)&nh->saddr;
 469                __be32 masked[4];
 470
 471                mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
 472
 473                if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
 474                        set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
 475                                      true);
 476                        memcpy(&flow_key->ipv6.addr.src, masked,
 477                               sizeof(flow_key->ipv6.addr.src));
 478                }
 479        }
 480        if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
 481                unsigned int offset = 0;
 482                int flags = IP6_FH_F_SKIP_RH;
 483                bool recalc_csum = true;
 484                __be32 *daddr = (__be32 *)&nh->daddr;
 485                __be32 masked[4];
 486
 487                mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
 488
 489                if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
 490                        if (ipv6_ext_hdr(nh->nexthdr))
 491                                recalc_csum = (ipv6_find_hdr(skb, &offset,
 492                                                             NEXTHDR_ROUTING,
 493                                                             NULL, &flags)
 494                                               != NEXTHDR_ROUTING);
 495
 496                        set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
 497                                      recalc_csum);
 498                        memcpy(&flow_key->ipv6.addr.dst, masked,
 499                               sizeof(flow_key->ipv6.addr.dst));
 500                }
 501        }
 502        if (mask->ipv6_tclass) {
 503                ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
 504                flow_key->ip.tos = ipv6_get_dsfield(nh);
 505        }
 506        if (mask->ipv6_label) {
 507                set_ipv6_fl(nh, ntohl(key->ipv6_label),
 508                            ntohl(mask->ipv6_label));
 509                flow_key->ipv6.label =
 510                    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 511        }
 512        if (mask->ipv6_hlimit) {
 513                OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
 514                               mask->ipv6_hlimit);
 515                flow_key->ip.ttl = nh->hop_limit;
 516        }
 517        return 0;
 518}
 519
 520/* Must follow skb_ensure_writable() since that can move the skb data. */
 521static void set_tp_port(struct sk_buff *skb, __be16 *port,
 522                        __be16 new_port, __sum16 *check)
 523{
 524        inet_proto_csum_replace2(check, skb, *port, new_port, false);
 525        *port = new_port;
 526}
 527
 528static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 529                   const struct ovs_key_udp *key,
 530                   const struct ovs_key_udp *mask)
 531{
 532        struct udphdr *uh;
 533        __be16 src, dst;
 534        int err;
 535
 536        err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 537                                  sizeof(struct udphdr));
 538        if (unlikely(err))
 539                return err;
 540
 541        uh = udp_hdr(skb);
 542        /* Either of the masks is non-zero, so do not bother checking them. */
 543        src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
 544        dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
 545
 546        if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
 547                if (likely(src != uh->source)) {
 548                        set_tp_port(skb, &uh->source, src, &uh->check);
 549                        flow_key->tp.src = src;
 550                }
 551                if (likely(dst != uh->dest)) {
 552                        set_tp_port(skb, &uh->dest, dst, &uh->check);
 553                        flow_key->tp.dst = dst;
 554                }
 555
 556                if (unlikely(!uh->check))
 557                        uh->check = CSUM_MANGLED_0;
 558        } else {
 559                uh->source = src;
 560                uh->dest = dst;
 561                flow_key->tp.src = src;
 562                flow_key->tp.dst = dst;
 563        }
 564
 565        skb_clear_hash(skb);
 566
 567        return 0;
 568}
 569
 570static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 571                   const struct ovs_key_tcp *key,
 572                   const struct ovs_key_tcp *mask)
 573{
 574        struct tcphdr *th;
 575        __be16 src, dst;
 576        int err;
 577
 578        err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 579                                  sizeof(struct tcphdr));
 580        if (unlikely(err))
 581                return err;
 582
 583        th = tcp_hdr(skb);
 584        src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
 585        if (likely(src != th->source)) {
 586                set_tp_port(skb, &th->source, src, &th->check);
 587                flow_key->tp.src = src;
 588        }
 589        dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
 590        if (likely(dst != th->dest)) {
 591                set_tp_port(skb, &th->dest, dst, &th->check);
 592                flow_key->tp.dst = dst;
 593        }
 594        skb_clear_hash(skb);
 595
 596        return 0;
 597}
 598
 599static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 600                    const struct ovs_key_sctp *key,
 601                    const struct ovs_key_sctp *mask)
 602{
 603        unsigned int sctphoff = skb_transport_offset(skb);
 604        struct sctphdr *sh;
 605        __le32 old_correct_csum, new_csum, old_csum;
 606        int err;
 607
 608        err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
 609        if (unlikely(err))
 610                return err;
 611
 612        sh = sctp_hdr(skb);
 613        old_csum = sh->checksum;
 614        old_correct_csum = sctp_compute_cksum(skb, sctphoff);
 615
 616        sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
 617        sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
 618
 619        new_csum = sctp_compute_cksum(skb, sctphoff);
 620
 621        /* Carry any checksum errors through. */
 622        sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
 623
 624        skb_clear_hash(skb);
 625        flow_key->tp.src = sh->source;
 626        flow_key->tp.dst = sh->dest;
 627
 628        return 0;
 629}
 630
 631static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 632{
 633        struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
 634        struct vport *vport = data->vport;
 635
 636        if (skb_cow_head(skb, data->l2_len) < 0) {
 637                kfree_skb(skb);
 638                return -ENOMEM;
 639        }
 640
 641        __skb_dst_copy(skb, data->dst);
 642        *OVS_CB(skb) = data->cb;
 643        skb->inner_protocol = data->inner_protocol;
 644        skb->vlan_tci = data->vlan_tci;
 645        skb->vlan_proto = data->vlan_proto;
 646
 647        /* Reconstruct the MAC header.  */
 648        skb_push(skb, data->l2_len);
 649        memcpy(skb->data, &data->l2_data, data->l2_len);
 650        skb_postpush_rcsum(skb, skb->data, data->l2_len);
 651        skb_reset_mac_header(skb);
 652
 653        ovs_vport_send(vport, skb);
 654        return 0;
 655}
 656
 657static unsigned int
 658ovs_dst_get_mtu(const struct dst_entry *dst)
 659{
 660        return dst->dev->mtu;
 661}
 662
 663static struct dst_ops ovs_dst_ops = {
 664        .family = AF_UNSPEC,
 665        .mtu = ovs_dst_get_mtu,
 666};
 667
 668/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
 669 * ovs_vport_output(), which is called once per fragmented packet.
 670 */
 671static void prepare_frag(struct vport *vport, struct sk_buff *skb)
 672{
 673        unsigned int hlen = skb_network_offset(skb);
 674        struct ovs_frag_data *data;
 675
 676        data = this_cpu_ptr(&ovs_frag_data_storage);
 677        data->dst = skb->_skb_refdst;
 678        data->vport = vport;
 679        data->cb = *OVS_CB(skb);
 680        data->inner_protocol = skb->inner_protocol;
 681        data->vlan_tci = skb->vlan_tci;
 682        data->vlan_proto = skb->vlan_proto;
 683        data->l2_len = hlen;
 684        memcpy(&data->l2_data, skb->data, hlen);
 685
 686        memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 687        skb_pull(skb, hlen);
 688}
 689
 690static void ovs_fragment(struct net *net, struct vport *vport,
 691                         struct sk_buff *skb, u16 mru, __be16 ethertype)
 692{
 693        if (skb_network_offset(skb) > MAX_L2_LEN) {
 694                OVS_NLERR(1, "L2 header too long to fragment");
 695                goto err;
 696        }
 697
 698        if (ethertype == htons(ETH_P_IP)) {
 699                struct dst_entry ovs_dst;
 700                unsigned long orig_dst;
 701
 702                prepare_frag(vport, skb);
 703                dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
 704                         DST_OBSOLETE_NONE, DST_NOCOUNT);
 705                ovs_dst.dev = vport->dev;
 706
 707                orig_dst = skb->_skb_refdst;
 708                skb_dst_set_noref(skb, &ovs_dst);
 709                IPCB(skb)->frag_max_size = mru;
 710
 711                ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
 712                refdst_drop(orig_dst);
 713        } else if (ethertype == htons(ETH_P_IPV6)) {
 714                const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
 715                unsigned long orig_dst;
 716                struct rt6_info ovs_rt;
 717
 718                if (!v6ops) {
 719                        goto err;
 720                }
 721
 722                prepare_frag(vport, skb);
 723                memset(&ovs_rt, 0, sizeof(ovs_rt));
 724                dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
 725                         DST_OBSOLETE_NONE, DST_NOCOUNT);
 726                ovs_rt.dst.dev = vport->dev;
 727
 728                orig_dst = skb->_skb_refdst;
 729                skb_dst_set_noref(skb, &ovs_rt.dst);
 730                IP6CB(skb)->frag_max_size = mru;
 731
 732                v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
 733                refdst_drop(orig_dst);
 734        } else {
 735                WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
 736                          ovs_vport_name(vport), ntohs(ethertype), mru,
 737                          vport->dev->mtu);
 738                goto err;
 739        }
 740
 741        return;
 742err:
 743        kfree_skb(skb);
 744}
 745
 746static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
 747                      struct sw_flow_key *key)
 748{
 749        struct vport *vport = ovs_vport_rcu(dp, out_port);
 750
 751        if (likely(vport)) {
 752                u16 mru = OVS_CB(skb)->mru;
 753                u32 cutlen = OVS_CB(skb)->cutlen;
 754
 755                if (unlikely(cutlen > 0)) {
 756                        if (skb->len - cutlen > ETH_HLEN)
 757                                pskb_trim(skb, skb->len - cutlen);
 758                        else
 759                                pskb_trim(skb, ETH_HLEN);
 760                }
 761
 762                if (likely(!mru || (skb->len <= mru + ETH_HLEN))) {
 763                        ovs_vport_send(vport, skb);
 764                } else if (mru <= vport->dev->mtu) {
 765                        struct net *net = read_pnet(&dp->net);
 766                        __be16 ethertype = key->eth.type;
 767
 768                        if (!is_flow_key_valid(key)) {
 769                                if (eth_p_mpls(skb->protocol))
 770                                        ethertype = skb->inner_protocol;
 771                                else
 772                                        ethertype = vlan_get_protocol(skb);
 773                        }
 774
 775                        ovs_fragment(net, vport, skb, mru, ethertype);
 776                } else {
 777                        kfree_skb(skb);
 778                }
 779        } else {
 780                kfree_skb(skb);
 781        }
 782}
 783
 784static int output_userspace(struct datapath *dp, struct sk_buff *skb,
 785                            struct sw_flow_key *key, const struct nlattr *attr,
 786                            const struct nlattr *actions, int actions_len,
 787                            uint32_t cutlen)
 788{
 789        struct dp_upcall_info upcall;
 790        const struct nlattr *a;
 791        int rem;
 792
 793        memset(&upcall, 0, sizeof(upcall));
 794        upcall.cmd = OVS_PACKET_CMD_ACTION;
 795        upcall.mru = OVS_CB(skb)->mru;
 796
 797        for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
 798                 a = nla_next(a, &rem)) {
 799                switch (nla_type(a)) {
 800                case OVS_USERSPACE_ATTR_USERDATA:
 801                        upcall.userdata = a;
 802                        break;
 803
 804                case OVS_USERSPACE_ATTR_PID:
 805                        upcall.portid = nla_get_u32(a);
 806                        break;
 807
 808                case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
 809                        /* Get out tunnel info. */
 810                        struct vport *vport;
 811
 812                        vport = ovs_vport_rcu(dp, nla_get_u32(a));
 813                        if (vport) {
 814                                int err;
 815
 816                                err = dev_fill_metadata_dst(vport->dev, skb);
 817                                if (!err)
 818                                        upcall.egress_tun_info = skb_tunnel_info(skb);
 819                        }
 820
 821                        break;
 822                }
 823
 824                case OVS_USERSPACE_ATTR_ACTIONS: {
 825                        /* Include actions. */
 826                        upcall.actions = actions;
 827                        upcall.actions_len = actions_len;
 828                        break;
 829                }
 830
 831                } /* End of switch. */
 832        }
 833
 834        return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
 835}
 836
 837static int sample(struct datapath *dp, struct sk_buff *skb,
 838                  struct sw_flow_key *key, const struct nlattr *attr,
 839                  const struct nlattr *actions, int actions_len)
 840{
 841        const struct nlattr *acts_list = NULL;
 842        const struct nlattr *a;
 843        int rem;
 844        u32 cutlen = 0;
 845
 846        for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
 847                 a = nla_next(a, &rem)) {
 848                u32 probability;
 849
 850                switch (nla_type(a)) {
 851                case OVS_SAMPLE_ATTR_PROBABILITY:
 852                        probability = nla_get_u32(a);
 853                        if (!probability || prandom_u32() > probability)
 854                                return 0;
 855                        break;
 856
 857                case OVS_SAMPLE_ATTR_ACTIONS:
 858                        acts_list = a;
 859                        break;
 860                }
 861        }
 862
 863        rem = nla_len(acts_list);
 864        a = nla_data(acts_list);
 865
 866        /* Actions list is empty, do nothing */
 867        if (unlikely(!rem))
 868                return 0;
 869
 870        /* The only known usage of sample action is having a single user-space
 871         * action, or having a truncate action followed by a single user-space
 872         * action. Treat this usage as a special case.
 873         * The output_userspace() should clone the skb to be sent to the
 874         * user space. This skb will be consumed by its caller.
 875         */
 876        if (unlikely(nla_type(a) == OVS_ACTION_ATTR_TRUNC)) {
 877                struct ovs_action_trunc *trunc = nla_data(a);
 878
 879                if (skb->len > trunc->max_len)
 880                        cutlen = skb->len - trunc->max_len;
 881
 882                a = nla_next(a, &rem);
 883        }
 884
 885        if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
 886                   nla_is_last(a, rem)))
 887                return output_userspace(dp, skb, key, a, actions,
 888                                        actions_len, cutlen);
 889
 890        skb = skb_clone(skb, GFP_ATOMIC);
 891        if (!skb)
 892                /* Skip the sample action when out of memory. */
 893                return 0;
 894
 895        if (!add_deferred_actions(skb, key, a)) {
 896                if (net_ratelimit())
 897                        pr_warn("%s: deferred actions limit reached, dropping sample action\n",
 898                                ovs_dp_name(dp));
 899
 900                kfree_skb(skb);
 901        }
 902        return 0;
 903}
 904
 905static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
 906                         const struct nlattr *attr)
 907{
 908        struct ovs_action_hash *hash_act = nla_data(attr);
 909        u32 hash = 0;
 910
 911        /* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
 912        hash = skb_get_hash(skb);
 913        hash = jhash_1word(hash, hash_act->hash_basis);
 914        if (!hash)
 915                hash = 0x1;
 916
 917        key->ovs_flow_hash = hash;
 918}
 919
 920static int execute_set_action(struct sk_buff *skb,
 921                              struct sw_flow_key *flow_key,
 922                              const struct nlattr *a)
 923{
 924        /* Only tunnel set execution is supported without a mask. */
 925        if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
 926                struct ovs_tunnel_info *tun = nla_data(a);
 927
 928                skb_dst_drop(skb);
 929                dst_hold((struct dst_entry *)tun->tun_dst);
 930                skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
 931                return 0;
 932        }
 933
 934        return -EINVAL;
 935}
 936
 937/* Mask is at the midpoint of the data. */
 938#define get_mask(a, type) ((const type)nla_data(a) + 1)
 939
 940static int execute_masked_set_action(struct sk_buff *skb,
 941                                     struct sw_flow_key *flow_key,
 942                                     const struct nlattr *a)
 943{
 944        int err = 0;
 945
 946        switch (nla_type(a)) {
 947        case OVS_KEY_ATTR_PRIORITY:
 948                OVS_SET_MASKED(skb->priority, nla_get_u32(a),
 949                               *get_mask(a, u32 *));
 950                flow_key->phy.priority = skb->priority;
 951                break;
 952
 953        case OVS_KEY_ATTR_SKB_MARK:
 954                OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
 955                flow_key->phy.skb_mark = skb->mark;
 956                break;
 957
 958        case OVS_KEY_ATTR_TUNNEL_INFO:
 959                /* Masked data not supported for tunnel. */
 960                err = -EINVAL;
 961                break;
 962
 963        case OVS_KEY_ATTR_ETHERNET:
 964                err = set_eth_addr(skb, flow_key, nla_data(a),
 965                                   get_mask(a, struct ovs_key_ethernet *));
 966                break;
 967
 968        case OVS_KEY_ATTR_IPV4:
 969                err = set_ipv4(skb, flow_key, nla_data(a),
 970                               get_mask(a, struct ovs_key_ipv4 *));
 971                break;
 972
 973        case OVS_KEY_ATTR_IPV6:
 974                err = set_ipv6(skb, flow_key, nla_data(a),
 975                               get_mask(a, struct ovs_key_ipv6 *));
 976                break;
 977
 978        case OVS_KEY_ATTR_TCP:
 979                err = set_tcp(skb, flow_key, nla_data(a),
 980                              get_mask(a, struct ovs_key_tcp *));
 981                break;
 982
 983        case OVS_KEY_ATTR_UDP:
 984                err = set_udp(skb, flow_key, nla_data(a),
 985                              get_mask(a, struct ovs_key_udp *));
 986                break;
 987
 988        case OVS_KEY_ATTR_SCTP:
 989                err = set_sctp(skb, flow_key, nla_data(a),
 990                               get_mask(a, struct ovs_key_sctp *));
 991                break;
 992
 993        case OVS_KEY_ATTR_MPLS:
 994                err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
 995                                                                    __be32 *));
 996                break;
 997
 998        case OVS_KEY_ATTR_CT_STATE:
 999        case OVS_KEY_ATTR_CT_ZONE:
1000        case OVS_KEY_ATTR_CT_MARK:
1001        case OVS_KEY_ATTR_CT_LABELS:
1002                err = -EINVAL;
1003                break;
1004        }
1005
1006        return err;
1007}
1008
1009static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1010                          struct sw_flow_key *key,
1011                          const struct nlattr *a, int rem)
1012{
1013        struct deferred_action *da;
1014
1015        if (!is_flow_key_valid(key)) {
1016                int err;
1017
1018                err = ovs_flow_key_update(skb, key);
1019                if (err)
1020                        return err;
1021        }
1022        BUG_ON(!is_flow_key_valid(key));
1023
1024        if (!nla_is_last(a, rem)) {
1025                /* Recirc action is the not the last action
1026                 * of the action list, need to clone the skb.
1027                 */
1028                skb = skb_clone(skb, GFP_ATOMIC);
1029
1030                /* Skip the recirc action when out of memory, but
1031                 * continue on with the rest of the action list.
1032                 */
1033                if (!skb)
1034                        return 0;
1035        }
1036
1037        da = add_deferred_actions(skb, key, NULL);
1038        if (da) {
1039                da->pkt_key.recirc_id = nla_get_u32(a);
1040        } else {
1041                kfree_skb(skb);
1042
1043                if (net_ratelimit())
1044                        pr_warn("%s: deferred action limit reached, drop recirc action\n",
1045                                ovs_dp_name(dp));
1046        }
1047
1048        return 0;
1049}
1050
1051/* Execute a list of actions against 'skb'. */
1052static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1053                              struct sw_flow_key *key,
1054                              const struct nlattr *attr, int len)
1055{
1056        /* Every output action needs a separate clone of 'skb', but the common
1057         * case is just a single output action, so that doing a clone and
1058         * then freeing the original skbuff is wasteful.  So the following code
1059         * is slightly obscure just to avoid that.
1060         */
1061        int prev_port = -1;
1062        const struct nlattr *a;
1063        int rem;
1064
1065        for (a = attr, rem = len; rem > 0;
1066             a = nla_next(a, &rem)) {
1067                int err = 0;
1068
1069                if (unlikely(prev_port != -1)) {
1070                        struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
1071
1072                        if (out_skb)
1073                                do_output(dp, out_skb, prev_port, key);
1074
1075                        OVS_CB(skb)->cutlen = 0;
1076                        prev_port = -1;
1077                }
1078
1079                switch (nla_type(a)) {
1080                case OVS_ACTION_ATTR_OUTPUT:
1081                        prev_port = nla_get_u32(a);
1082                        break;
1083
1084                case OVS_ACTION_ATTR_TRUNC: {
1085                        struct ovs_action_trunc *trunc = nla_data(a);
1086
1087                        if (skb->len > trunc->max_len)
1088                                OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1089                        break;
1090                }
1091
1092                case OVS_ACTION_ATTR_USERSPACE:
1093                        output_userspace(dp, skb, key, a, attr,
1094                                                     len, OVS_CB(skb)->cutlen);
1095                        OVS_CB(skb)->cutlen = 0;
1096                        break;
1097
1098                case OVS_ACTION_ATTR_HASH:
1099                        execute_hash(skb, key, a);
1100                        break;
1101
1102                case OVS_ACTION_ATTR_PUSH_MPLS:
1103                        err = push_mpls(skb, key, nla_data(a));
1104                        break;
1105
1106                case OVS_ACTION_ATTR_POP_MPLS:
1107                        err = pop_mpls(skb, key, nla_get_be16(a));
1108                        break;
1109
1110                case OVS_ACTION_ATTR_PUSH_VLAN:
1111                        err = push_vlan(skb, key, nla_data(a));
1112                        break;
1113
1114                case OVS_ACTION_ATTR_POP_VLAN:
1115                        err = pop_vlan(skb, key);
1116                        break;
1117
1118                case OVS_ACTION_ATTR_RECIRC:
1119                        err = execute_recirc(dp, skb, key, a, rem);
1120                        if (nla_is_last(a, rem)) {
1121                                /* If this is the last action, the skb has
1122                                 * been consumed or freed.
1123                                 * Return immediately.
1124                                 */
1125                                return err;
1126                        }
1127                        break;
1128
1129                case OVS_ACTION_ATTR_SET:
1130                        err = execute_set_action(skb, key, nla_data(a));
1131                        break;
1132
1133                case OVS_ACTION_ATTR_SET_MASKED:
1134                case OVS_ACTION_ATTR_SET_TO_MASKED:
1135                        err = execute_masked_set_action(skb, key, nla_data(a));
1136                        break;
1137
1138                case OVS_ACTION_ATTR_SAMPLE:
1139                        err = sample(dp, skb, key, a, attr, len);
1140                        break;
1141
1142                case OVS_ACTION_ATTR_CT:
1143                        if (!is_flow_key_valid(key)) {
1144                                err = ovs_flow_key_update(skb, key);
1145                                if (err)
1146                                        return err;
1147                        }
1148
1149                        err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1150                                             nla_data(a));
1151
1152                        /* Hide stolen IP fragments from user space. */
1153                        if (err)
1154                                return err == -EINPROGRESS ? 0 : err;
1155                        break;
1156                }
1157
1158                if (unlikely(err)) {
1159                        kfree_skb(skb);
1160                        return err;
1161                }
1162        }
1163
1164        if (prev_port != -1)
1165                do_output(dp, skb, prev_port, key);
1166        else
1167                consume_skb(skb);
1168
1169        return 0;
1170}
1171
1172static void process_deferred_actions(struct datapath *dp)
1173{
1174        struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1175
1176        /* Do not touch the FIFO in case there is no deferred actions. */
1177        if (action_fifo_is_empty(fifo))
1178                return;
1179
1180        /* Finishing executing all deferred actions. */
1181        do {
1182                struct deferred_action *da = action_fifo_get(fifo);
1183                struct sk_buff *skb = da->skb;
1184                struct sw_flow_key *key = &da->pkt_key;
1185                const struct nlattr *actions = da->actions;
1186
1187                if (actions)
1188                        do_execute_actions(dp, skb, key, actions,
1189                                           nla_len(actions));
1190                else
1191                        ovs_dp_process_packet(skb, key);
1192        } while (!action_fifo_is_empty(fifo));
1193
1194        /* Reset FIFO for the next packet.  */
1195        action_fifo_init(fifo);
1196}
1197
1198/* Execute a list of actions against 'skb'. */
1199int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1200                        const struct sw_flow_actions *acts,
1201                        struct sw_flow_key *key)
1202{
1203        static const int ovs_recursion_limit = 5;
1204        int err, level;
1205
1206        level = __this_cpu_inc_return(exec_actions_level);
1207        if (unlikely(level > ovs_recursion_limit)) {
1208                net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1209                                     ovs_dp_name(dp));
1210                kfree_skb(skb);
1211                err = -ENETDOWN;
1212                goto out;
1213        }
1214
1215        err = do_execute_actions(dp, skb, key,
1216                                 acts->actions, acts->actions_len);
1217
1218        if (level == 1)
1219                process_deferred_actions(dp);
1220
1221out:
1222        __this_cpu_dec(exec_actions_level);
1223        return err;
1224}
1225
1226int action_fifos_init(void)
1227{
1228        action_fifos = alloc_percpu(struct action_fifo);
1229        if (!action_fifos)
1230                return -ENOMEM;
1231
1232        return 0;
1233}
1234
1235void action_fifos_exit(void)
1236{
1237        free_percpu(action_fifos);
1238}
1239