linux/net/sched/sch_qfq.c
<<
>>
Prefs
   1/*
   2 * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
   3 *
   4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
   5 * Copyright (c) 2012 Paolo Valente.
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * version 2 as published by the Free Software Foundation.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/bitops.h>
  15#include <linux/errno.h>
  16#include <linux/netdevice.h>
  17#include <linux/pkt_sched.h>
  18#include <net/sch_generic.h>
  19#include <net/pkt_sched.h>
  20#include <net/pkt_cls.h>
  21
  22
  23/*  Quick Fair Queueing Plus
  24    ========================
  25
  26    Sources:
  27
  28    [1] Paolo Valente,
  29    "Reducing the Execution Time of Fair-Queueing Schedulers."
  30    http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
  31
  32    Sources for QFQ:
  33
  34    [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
  35    Packet Scheduling with Tight Bandwidth Distribution Guarantees."
  36
  37    See also:
  38    http://retis.sssup.it/~fabio/linux/qfq/
  39 */
  40
  41/*
  42
  43  QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
  44  classes. Each aggregate is timestamped with a virtual start time S
  45  and a virtual finish time F, and scheduled according to its
  46  timestamps. S and F are computed as a function of a system virtual
  47  time function V. The classes within each aggregate are instead
  48  scheduled with DRR.
  49
  50  To speed up operations, QFQ+ divides also aggregates into a limited
  51  number of groups. Which group a class belongs to depends on the
  52  ratio between the maximum packet length for the class and the weight
  53  of the class. Groups have their own S and F. In the end, QFQ+
  54  schedules groups, then aggregates within groups, then classes within
  55  aggregates. See [1] and [2] for a full description.
  56
  57  Virtual time computations.
  58
  59  S, F and V are all computed in fixed point arithmetic with
  60  FRAC_BITS decimal bits.
  61
  62  QFQ_MAX_INDEX is the maximum index allowed for a group. We need
  63        one bit per index.
  64  QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
  65
  66  The layout of the bits is as below:
  67
  68                   [ MTU_SHIFT ][      FRAC_BITS    ]
  69                   [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
  70                                 ^.__grp->index = 0
  71                                 *.__grp->slot_shift
  72
  73  where MIN_SLOT_SHIFT is derived by difference from the others.
  74
  75  The max group index corresponds to Lmax/w_min, where
  76  Lmax=1<<MTU_SHIFT, w_min = 1 .
  77  From this, and knowing how many groups (MAX_INDEX) we want,
  78  we can derive the shift corresponding to each group.
  79
  80  Because we often need to compute
  81        F = S + len/w_i  and V = V + len/wsum
  82  instead of storing w_i store the value
  83        inv_w = (1<<FRAC_BITS)/w_i
  84  so we can do F = S + len * inv_w * wsum.
  85  We use W_TOT in the formulas so we can easily move between
  86  static and adaptive weight sum.
  87
  88  The per-scheduler-instance data contain all the data structures
  89  for the scheduler: bitmaps and bucket lists.
  90
  91 */
  92
  93/*
  94 * Maximum number of consecutive slots occupied by backlogged classes
  95 * inside a group.
  96 */
  97#define QFQ_MAX_SLOTS   32
  98
  99/*
 100 * Shifts used for aggregate<->group mapping.  We allow class weights that are
 101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
 102 * group with the smallest index that can support the L_i / r_i configured
 103 * for the classes in the aggregate.
 104 *
 105 * grp->index is the index of the group; and grp->slot_shift
 106 * is the shift for the corresponding (scaled) sigma_i.
 107 */
 108#define QFQ_MAX_INDEX           24
 109#define QFQ_MAX_WSHIFT          10
 110
 111#define QFQ_MAX_WEIGHT          (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
 112#define QFQ_MAX_WSUM            (64*QFQ_MAX_WEIGHT)
 113
 114#define FRAC_BITS               30      /* fixed point arithmetic */
 115#define ONE_FP                  (1UL << FRAC_BITS)
 116
 117#define QFQ_MTU_SHIFT           16      /* to support TSO/GSO */
 118#define QFQ_MIN_LMAX            512     /* see qfq_slot_insert */
 119
 120#define QFQ_MAX_AGG_CLASSES     8 /* max num classes per aggregate allowed */
 121
 122/*
 123 * Possible group states.  These values are used as indexes for the bitmaps
 124 * array of struct qfq_queue.
 125 */
 126enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
 127
 128struct qfq_group;
 129
 130struct qfq_aggregate;
 131
 132struct qfq_class {
 133        struct Qdisc_class_common common;
 134
 135        unsigned int refcnt;
 136        unsigned int filter_cnt;
 137
 138        struct gnet_stats_basic_packed bstats;
 139        struct gnet_stats_queue qstats;
 140        struct gnet_stats_rate_est64 rate_est;
 141        struct Qdisc *qdisc;
 142        struct list_head alist;         /* Link for active-classes list. */
 143        struct qfq_aggregate *agg;      /* Parent aggregate. */
 144        int deficit;                    /* DRR deficit counter. */
 145};
 146
 147struct qfq_aggregate {
 148        struct hlist_node next; /* Link for the slot list. */
 149        u64 S, F;               /* flow timestamps (exact) */
 150
 151        /* group we belong to. In principle we would need the index,
 152         * which is log_2(lmax/weight), but we never reference it
 153         * directly, only the group.
 154         */
 155        struct qfq_group *grp;
 156
 157        /* these are copied from the flowset. */
 158        u32     class_weight; /* Weight of each class in this aggregate. */
 159        /* Max pkt size for the classes in this aggregate, DRR quantum. */
 160        int     lmax;
 161
 162        u32     inv_w;      /* ONE_FP/(sum of weights of classes in aggr.). */
 163        u32     budgetmax;  /* Max budget for this aggregate. */
 164        u32     initial_budget, budget;     /* Initial and current budget. */
 165
 166        int               num_classes;  /* Number of classes in this aggr. */
 167        struct list_head  active;       /* DRR queue of active classes. */
 168
 169        struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
 170};
 171
 172struct qfq_group {
 173        u64 S, F;                       /* group timestamps (approx). */
 174        unsigned int slot_shift;        /* Slot shift. */
 175        unsigned int index;             /* Group index. */
 176        unsigned int front;             /* Index of the front slot. */
 177        unsigned long full_slots;       /* non-empty slots */
 178
 179        /* Array of RR lists of active aggregates. */
 180        struct hlist_head slots[QFQ_MAX_SLOTS];
 181};
 182
 183struct qfq_sched {
 184        struct tcf_proto __rcu *filter_list;
 185        struct Qdisc_class_hash clhash;
 186
 187        u64                     oldV, V;        /* Precise virtual times. */
 188        struct qfq_aggregate    *in_serv_agg;   /* Aggregate being served. */
 189        u32                     wsum;           /* weight sum */
 190        u32                     iwsum;          /* inverse weight sum */
 191
 192        unsigned long bitmaps[QFQ_MAX_STATE];       /* Group bitmaps. */
 193        struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
 194        u32 min_slot_shift;     /* Index of the group-0 bit in the bitmaps. */
 195
 196        u32 max_agg_classes;            /* Max number of classes per aggr. */
 197        struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
 198};
 199
 200/*
 201 * Possible reasons why the timestamps of an aggregate are updated
 202 * enqueue: the aggregate switches from idle to active and must scheduled
 203 *          for service
 204 * requeue: the aggregate finishes its budget, so it stops being served and
 205 *          must be rescheduled for service
 206 */
 207enum update_reason {enqueue, requeue};
 208
 209static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
 210{
 211        struct qfq_sched *q = qdisc_priv(sch);
 212        struct Qdisc_class_common *clc;
 213
 214        clc = qdisc_class_find(&q->clhash, classid);
 215        if (clc == NULL)
 216                return NULL;
 217        return container_of(clc, struct qfq_class, common);
 218}
 219
 220static void qfq_purge_queue(struct qfq_class *cl)
 221{
 222        unsigned int len = cl->qdisc->q.qlen;
 223        unsigned int backlog = cl->qdisc->qstats.backlog;
 224
 225        qdisc_reset(cl->qdisc);
 226        qdisc_tree_reduce_backlog(cl->qdisc, len, backlog);
 227}
 228
 229static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
 230        [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
 231        [TCA_QFQ_LMAX] = { .type = NLA_U32 },
 232};
 233
 234/*
 235 * Calculate a flow index, given its weight and maximum packet length.
 236 * index = log_2(maxlen/weight) but we need to apply the scaling.
 237 * This is used only once at flow creation.
 238 */
 239static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
 240{
 241        u64 slot_size = (u64)maxlen * inv_w;
 242        unsigned long size_map;
 243        int index = 0;
 244
 245        size_map = slot_size >> min_slot_shift;
 246        if (!size_map)
 247                goto out;
 248
 249        index = __fls(size_map) + 1;    /* basically a log_2 */
 250        index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
 251
 252        if (index < 0)
 253                index = 0;
 254out:
 255        pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
 256                 (unsigned long) ONE_FP/inv_w, maxlen, index);
 257
 258        return index;
 259}
 260
 261static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
 262static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
 263                             enum update_reason);
 264
 265static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
 266                         u32 lmax, u32 weight)
 267{
 268        INIT_LIST_HEAD(&agg->active);
 269        hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
 270
 271        agg->lmax = lmax;
 272        agg->class_weight = weight;
 273}
 274
 275static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
 276                                          u32 lmax, u32 weight)
 277{
 278        struct qfq_aggregate *agg;
 279
 280        hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
 281                if (agg->lmax == lmax && agg->class_weight == weight)
 282                        return agg;
 283
 284        return NULL;
 285}
 286
 287
 288/* Update aggregate as a function of the new number of classes. */
 289static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
 290                           int new_num_classes)
 291{
 292        u32 new_agg_weight;
 293
 294        if (new_num_classes == q->max_agg_classes)
 295                hlist_del_init(&agg->nonfull_next);
 296
 297        if (agg->num_classes > new_num_classes &&
 298            new_num_classes == q->max_agg_classes - 1) /* agg no more full */
 299                hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
 300
 301        /* The next assignment may let
 302         * agg->initial_budget > agg->budgetmax
 303         * hold, we will take it into account in charge_actual_service().
 304         */
 305        agg->budgetmax = new_num_classes * agg->lmax;
 306        new_agg_weight = agg->class_weight * new_num_classes;
 307        agg->inv_w = ONE_FP/new_agg_weight;
 308
 309        if (agg->grp == NULL) {
 310                int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
 311                                       q->min_slot_shift);
 312                agg->grp = &q->groups[i];
 313        }
 314
 315        q->wsum +=
 316                (int) agg->class_weight * (new_num_classes - agg->num_classes);
 317        q->iwsum = ONE_FP / q->wsum;
 318
 319        agg->num_classes = new_num_classes;
 320}
 321
 322/* Add class to aggregate. */
 323static void qfq_add_to_agg(struct qfq_sched *q,
 324                           struct qfq_aggregate *agg,
 325                           struct qfq_class *cl)
 326{
 327        cl->agg = agg;
 328
 329        qfq_update_agg(q, agg, agg->num_classes+1);
 330        if (cl->qdisc->q.qlen > 0) { /* adding an active class */
 331                list_add_tail(&cl->alist, &agg->active);
 332                if (list_first_entry(&agg->active, struct qfq_class, alist) ==
 333                    cl && q->in_serv_agg != agg) /* agg was inactive */
 334                        qfq_activate_agg(q, agg, enqueue); /* schedule agg */
 335        }
 336}
 337
 338static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
 339
 340static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
 341{
 342        hlist_del_init(&agg->nonfull_next);
 343        q->wsum -= agg->class_weight;
 344        if (q->wsum != 0)
 345                q->iwsum = ONE_FP / q->wsum;
 346
 347        if (q->in_serv_agg == agg)
 348                q->in_serv_agg = qfq_choose_next_agg(q);
 349        kfree(agg);
 350}
 351
 352/* Deschedule class from within its parent aggregate. */
 353static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
 354{
 355        struct qfq_aggregate *agg = cl->agg;
 356
 357
 358        list_del(&cl->alist); /* remove from RR queue of the aggregate */
 359        if (list_empty(&agg->active)) /* agg is now inactive */
 360                qfq_deactivate_agg(q, agg);
 361}
 362
 363/* Remove class from its parent aggregate. */
 364static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
 365{
 366        struct qfq_aggregate *agg = cl->agg;
 367
 368        cl->agg = NULL;
 369        if (agg->num_classes == 1) { /* agg being emptied, destroy it */
 370                qfq_destroy_agg(q, agg);
 371                return;
 372        }
 373        qfq_update_agg(q, agg, agg->num_classes-1);
 374}
 375
 376/* Deschedule class and remove it from its parent aggregate. */
 377static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
 378{
 379        if (cl->qdisc->q.qlen > 0) /* class is active */
 380                qfq_deactivate_class(q, cl);
 381
 382        qfq_rm_from_agg(q, cl);
 383}
 384
 385/* Move class to a new aggregate, matching the new class weight and/or lmax */
 386static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
 387                           u32 lmax)
 388{
 389        struct qfq_sched *q = qdisc_priv(sch);
 390        struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
 391
 392        if (new_agg == NULL) { /* create new aggregate */
 393                new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
 394                if (new_agg == NULL)
 395                        return -ENOBUFS;
 396                qfq_init_agg(q, new_agg, lmax, weight);
 397        }
 398        qfq_deact_rm_from_agg(q, cl);
 399        qfq_add_to_agg(q, new_agg, cl);
 400
 401        return 0;
 402}
 403
 404static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
 405                            struct nlattr **tca, unsigned long *arg)
 406{
 407        struct qfq_sched *q = qdisc_priv(sch);
 408        struct qfq_class *cl = (struct qfq_class *)*arg;
 409        bool existing = false;
 410        struct nlattr *tb[TCA_QFQ_MAX + 1];
 411        struct qfq_aggregate *new_agg = NULL;
 412        u32 weight, lmax, inv_w;
 413        int err;
 414        int delta_w;
 415
 416        if (tca[TCA_OPTIONS] == NULL) {
 417                pr_notice("qfq: no options\n");
 418                return -EINVAL;
 419        }
 420
 421        err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
 422        if (err < 0)
 423                return err;
 424
 425        if (tb[TCA_QFQ_WEIGHT]) {
 426                weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
 427                if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
 428                        pr_notice("qfq: invalid weight %u\n", weight);
 429                        return -EINVAL;
 430                }
 431        } else
 432                weight = 1;
 433
 434        if (tb[TCA_QFQ_LMAX]) {
 435                lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
 436                if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
 437                        pr_notice("qfq: invalid max length %u\n", lmax);
 438                        return -EINVAL;
 439                }
 440        } else
 441                lmax = psched_mtu(qdisc_dev(sch));
 442
 443        inv_w = ONE_FP / weight;
 444        weight = ONE_FP / inv_w;
 445
 446        if (cl != NULL &&
 447            lmax == cl->agg->lmax &&
 448            weight == cl->agg->class_weight)
 449                return 0; /* nothing to change */
 450
 451        delta_w = weight - (cl ? cl->agg->class_weight : 0);
 452
 453        if (q->wsum + delta_w > QFQ_MAX_WSUM) {
 454                pr_notice("qfq: total weight out of range (%d + %u)\n",
 455                          delta_w, q->wsum);
 456                return -EINVAL;
 457        }
 458
 459        if (cl != NULL) { /* modify existing class */
 460                if (tca[TCA_RATE]) {
 461                        err = gen_replace_estimator(&cl->bstats, NULL,
 462                                                    &cl->rate_est,
 463                                                    NULL,
 464                                                    qdisc_root_sleeping_running(sch),
 465                                                    tca[TCA_RATE]);
 466                        if (err)
 467                                return err;
 468                }
 469                existing = true;
 470                goto set_change_agg;
 471        }
 472
 473        /* create and init new class */
 474        cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
 475        if (cl == NULL)
 476                return -ENOBUFS;
 477
 478        cl->refcnt = 1;
 479        cl->common.classid = classid;
 480        cl->deficit = lmax;
 481
 482        cl->qdisc = qdisc_create_dflt(sch->dev_queue,
 483                                      &pfifo_qdisc_ops, classid);
 484        if (cl->qdisc == NULL)
 485                cl->qdisc = &noop_qdisc;
 486
 487        if (tca[TCA_RATE]) {
 488                err = gen_new_estimator(&cl->bstats, NULL,
 489                                        &cl->rate_est,
 490                                        NULL,
 491                                        qdisc_root_sleeping_running(sch),
 492                                        tca[TCA_RATE]);
 493                if (err)
 494                        goto destroy_class;
 495        }
 496
 497        sch_tree_lock(sch);
 498        qdisc_class_hash_insert(&q->clhash, &cl->common);
 499        sch_tree_unlock(sch);
 500
 501        qdisc_class_hash_grow(sch, &q->clhash);
 502
 503set_change_agg:
 504        sch_tree_lock(sch);
 505        new_agg = qfq_find_agg(q, lmax, weight);
 506        if (new_agg == NULL) { /* create new aggregate */
 507                sch_tree_unlock(sch);
 508                new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
 509                if (new_agg == NULL) {
 510                        err = -ENOBUFS;
 511                        gen_kill_estimator(&cl->bstats, &cl->rate_est);
 512                        goto destroy_class;
 513                }
 514                sch_tree_lock(sch);
 515                qfq_init_agg(q, new_agg, lmax, weight);
 516        }
 517        if (existing)
 518                qfq_deact_rm_from_agg(q, cl);
 519        qfq_add_to_agg(q, new_agg, cl);
 520        sch_tree_unlock(sch);
 521
 522        *arg = (unsigned long)cl;
 523        return 0;
 524
 525destroy_class:
 526        qdisc_destroy(cl->qdisc);
 527        kfree(cl);
 528        return err;
 529}
 530
 531static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
 532{
 533        struct qfq_sched *q = qdisc_priv(sch);
 534
 535        qfq_rm_from_agg(q, cl);
 536        gen_kill_estimator(&cl->bstats, &cl->rate_est);
 537        qdisc_destroy(cl->qdisc);
 538        kfree(cl);
 539}
 540
 541static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
 542{
 543        struct qfq_sched *q = qdisc_priv(sch);
 544        struct qfq_class *cl = (struct qfq_class *)arg;
 545
 546        if (cl->filter_cnt > 0)
 547                return -EBUSY;
 548
 549        sch_tree_lock(sch);
 550
 551        qfq_purge_queue(cl);
 552        qdisc_class_hash_remove(&q->clhash, &cl->common);
 553
 554        BUG_ON(--cl->refcnt == 0);
 555        /*
 556         * This shouldn't happen: we "hold" one cops->get() when called
 557         * from tc_ctl_tclass; the destroy method is done from cops->put().
 558         */
 559
 560        sch_tree_unlock(sch);
 561        return 0;
 562}
 563
 564static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
 565{
 566        struct qfq_class *cl = qfq_find_class(sch, classid);
 567
 568        if (cl != NULL)
 569                cl->refcnt++;
 570
 571        return (unsigned long)cl;
 572}
 573
 574static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
 575{
 576        struct qfq_class *cl = (struct qfq_class *)arg;
 577
 578        if (--cl->refcnt == 0)
 579                qfq_destroy_class(sch, cl);
 580}
 581
 582static struct tcf_proto __rcu **qfq_tcf_chain(struct Qdisc *sch,
 583                                              unsigned long cl)
 584{
 585        struct qfq_sched *q = qdisc_priv(sch);
 586
 587        if (cl)
 588                return NULL;
 589
 590        return &q->filter_list;
 591}
 592
 593static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
 594                                  u32 classid)
 595{
 596        struct qfq_class *cl = qfq_find_class(sch, classid);
 597
 598        if (cl != NULL)
 599                cl->filter_cnt++;
 600
 601        return (unsigned long)cl;
 602}
 603
 604static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
 605{
 606        struct qfq_class *cl = (struct qfq_class *)arg;
 607
 608        cl->filter_cnt--;
 609}
 610
 611static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
 612                           struct Qdisc *new, struct Qdisc **old)
 613{
 614        struct qfq_class *cl = (struct qfq_class *)arg;
 615
 616        if (new == NULL) {
 617                new = qdisc_create_dflt(sch->dev_queue,
 618                                        &pfifo_qdisc_ops, cl->common.classid);
 619                if (new == NULL)
 620                        new = &noop_qdisc;
 621        }
 622
 623        *old = qdisc_replace(sch, new, &cl->qdisc);
 624        return 0;
 625}
 626
 627static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
 628{
 629        struct qfq_class *cl = (struct qfq_class *)arg;
 630
 631        return cl->qdisc;
 632}
 633
 634static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
 635                          struct sk_buff *skb, struct tcmsg *tcm)
 636{
 637        struct qfq_class *cl = (struct qfq_class *)arg;
 638        struct nlattr *nest;
 639
 640        tcm->tcm_parent = TC_H_ROOT;
 641        tcm->tcm_handle = cl->common.classid;
 642        tcm->tcm_info   = cl->qdisc->handle;
 643
 644        nest = nla_nest_start(skb, TCA_OPTIONS);
 645        if (nest == NULL)
 646                goto nla_put_failure;
 647        if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
 648            nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
 649                goto nla_put_failure;
 650        return nla_nest_end(skb, nest);
 651
 652nla_put_failure:
 653        nla_nest_cancel(skb, nest);
 654        return -EMSGSIZE;
 655}
 656
 657static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
 658                                struct gnet_dump *d)
 659{
 660        struct qfq_class *cl = (struct qfq_class *)arg;
 661        struct tc_qfq_stats xstats;
 662
 663        memset(&xstats, 0, sizeof(xstats));
 664
 665        xstats.weight = cl->agg->class_weight;
 666        xstats.lmax = cl->agg->lmax;
 667
 668        if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch),
 669                                  d, NULL, &cl->bstats) < 0 ||
 670            gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
 671            gnet_stats_copy_queue(d, NULL,
 672                                  &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
 673                return -1;
 674
 675        return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
 676}
 677
 678static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
 679{
 680        struct qfq_sched *q = qdisc_priv(sch);
 681        struct qfq_class *cl;
 682        unsigned int i;
 683
 684        if (arg->stop)
 685                return;
 686
 687        for (i = 0; i < q->clhash.hashsize; i++) {
 688                hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
 689                        if (arg->count < arg->skip) {
 690                                arg->count++;
 691                                continue;
 692                        }
 693                        if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
 694                                arg->stop = 1;
 695                                return;
 696                        }
 697                        arg->count++;
 698                }
 699        }
 700}
 701
 702static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
 703                                      int *qerr)
 704{
 705        struct qfq_sched *q = qdisc_priv(sch);
 706        struct qfq_class *cl;
 707        struct tcf_result res;
 708        struct tcf_proto *fl;
 709        int result;
 710
 711        if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
 712                pr_debug("qfq_classify: found %d\n", skb->priority);
 713                cl = qfq_find_class(sch, skb->priority);
 714                if (cl != NULL)
 715                        return cl;
 716        }
 717
 718        *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 719        fl = rcu_dereference_bh(q->filter_list);
 720        result = tc_classify(skb, fl, &res, false);
 721        if (result >= 0) {
 722#ifdef CONFIG_NET_CLS_ACT
 723                switch (result) {
 724                case TC_ACT_QUEUED:
 725                case TC_ACT_STOLEN:
 726                        *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
 727                case TC_ACT_SHOT:
 728                        return NULL;
 729                }
 730#endif
 731                cl = (struct qfq_class *)res.class;
 732                if (cl == NULL)
 733                        cl = qfq_find_class(sch, res.classid);
 734                return cl;
 735        }
 736
 737        return NULL;
 738}
 739
 740/* Generic comparison function, handling wraparound. */
 741static inline int qfq_gt(u64 a, u64 b)
 742{
 743        return (s64)(a - b) > 0;
 744}
 745
 746/* Round a precise timestamp to its slotted value. */
 747static inline u64 qfq_round_down(u64 ts, unsigned int shift)
 748{
 749        return ts & ~((1ULL << shift) - 1);
 750}
 751
 752/* return the pointer to the group with lowest index in the bitmap */
 753static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
 754                                        unsigned long bitmap)
 755{
 756        int index = __ffs(bitmap);
 757        return &q->groups[index];
 758}
 759/* Calculate a mask to mimic what would be ffs_from(). */
 760static inline unsigned long mask_from(unsigned long bitmap, int from)
 761{
 762        return bitmap & ~((1UL << from) - 1);
 763}
 764
 765/*
 766 * The state computation relies on ER=0, IR=1, EB=2, IB=3
 767 * First compute eligibility comparing grp->S, q->V,
 768 * then check if someone is blocking us and possibly add EB
 769 */
 770static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
 771{
 772        /* if S > V we are not eligible */
 773        unsigned int state = qfq_gt(grp->S, q->V);
 774        unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
 775        struct qfq_group *next;
 776
 777        if (mask) {
 778                next = qfq_ffs(q, mask);
 779                if (qfq_gt(grp->F, next->F))
 780                        state |= EB;
 781        }
 782
 783        return state;
 784}
 785
 786
 787/*
 788 * In principle
 789 *      q->bitmaps[dst] |= q->bitmaps[src] & mask;
 790 *      q->bitmaps[src] &= ~mask;
 791 * but we should make sure that src != dst
 792 */
 793static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
 794                                   int src, int dst)
 795{
 796        q->bitmaps[dst] |= q->bitmaps[src] & mask;
 797        q->bitmaps[src] &= ~mask;
 798}
 799
 800static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
 801{
 802        unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
 803        struct qfq_group *next;
 804
 805        if (mask) {
 806                next = qfq_ffs(q, mask);
 807                if (!qfq_gt(next->F, old_F))
 808                        return;
 809        }
 810
 811        mask = (1UL << index) - 1;
 812        qfq_move_groups(q, mask, EB, ER);
 813        qfq_move_groups(q, mask, IB, IR);
 814}
 815
 816/*
 817 * perhaps
 818 *
 819        old_V ^= q->V;
 820        old_V >>= q->min_slot_shift;
 821        if (old_V) {
 822                ...
 823        }
 824 *
 825 */
 826static void qfq_make_eligible(struct qfq_sched *q)
 827{
 828        unsigned long vslot = q->V >> q->min_slot_shift;
 829        unsigned long old_vslot = q->oldV >> q->min_slot_shift;
 830
 831        if (vslot != old_vslot) {
 832                unsigned long mask;
 833                int last_flip_pos = fls(vslot ^ old_vslot);
 834
 835                if (last_flip_pos > 31) /* higher than the number of groups */
 836                        mask = ~0UL;    /* make all groups eligible */
 837                else
 838                        mask = (1UL << last_flip_pos) - 1;
 839
 840                qfq_move_groups(q, mask, IR, ER);
 841                qfq_move_groups(q, mask, IB, EB);
 842        }
 843}
 844
 845/*
 846 * The index of the slot in which the input aggregate agg is to be
 847 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
 848 * and not a '-1' because the start time of the group may be moved
 849 * backward by one slot after the aggregate has been inserted, and
 850 * this would cause non-empty slots to be right-shifted by one
 851 * position.
 852 *
 853 * QFQ+ fully satisfies this bound to the slot index if the parameters
 854 * of the classes are not changed dynamically, and if QFQ+ never
 855 * happens to postpone the service of agg unjustly, i.e., it never
 856 * happens that the aggregate becomes backlogged and eligible, or just
 857 * eligible, while an aggregate with a higher approximated finish time
 858 * is being served. In particular, in this case QFQ+ guarantees that
 859 * the timestamps of agg are low enough that the slot index is never
 860 * higher than 2. Unfortunately, QFQ+ cannot provide the same
 861 * guarantee if it happens to unjustly postpone the service of agg, or
 862 * if the parameters of some class are changed.
 863 *
 864 * As for the first event, i.e., an out-of-order service, the
 865 * upper bound to the slot index guaranteed by QFQ+ grows to
 866 * 2 +
 867 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
 868 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
 869 *
 870 * The following function deals with this problem by backward-shifting
 871 * the timestamps of agg, if needed, so as to guarantee that the slot
 872 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
 873 * cause the service of other aggregates to be postponed, yet the
 874 * worst-case guarantees of these aggregates are not violated.  In
 875 * fact, in case of no out-of-order service, the timestamps of agg
 876 * would have been even lower than they are after the backward shift,
 877 * because QFQ+ would have guaranteed a maximum value equal to 2 for
 878 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
 879 * service is postponed because of the backward-shift would have
 880 * however waited for the service of agg before being served.
 881 *
 882 * The other event that may cause the slot index to be higher than 2
 883 * for agg is a recent change of the parameters of some class. If the
 884 * weight of a class is increased or the lmax (max_pkt_size) of the
 885 * class is decreased, then a new aggregate with smaller slot size
 886 * than the original parent aggregate of the class may happen to be
 887 * activated. The activation of this aggregate should be properly
 888 * delayed to when the service of the class has finished in the ideal
 889 * system tracked by QFQ+. If the activation of the aggregate is not
 890 * delayed to this reference time instant, then this aggregate may be
 891 * unjustly served before other aggregates waiting for service. This
 892 * may cause the above bound to the slot index to be violated for some
 893 * of these unlucky aggregates.
 894 *
 895 * Instead of delaying the activation of the new aggregate, which is
 896 * quite complex, the above-discussed capping of the slot index is
 897 * used to handle also the consequences of a change of the parameters
 898 * of a class.
 899 */
 900static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
 901                            u64 roundedS)
 902{
 903        u64 slot = (roundedS - grp->S) >> grp->slot_shift;
 904        unsigned int i; /* slot index in the bucket list */
 905
 906        if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
 907                u64 deltaS = roundedS - grp->S -
 908                        ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
 909                agg->S -= deltaS;
 910                agg->F -= deltaS;
 911                slot = QFQ_MAX_SLOTS - 2;
 912        }
 913
 914        i = (grp->front + slot) % QFQ_MAX_SLOTS;
 915
 916        hlist_add_head(&agg->next, &grp->slots[i]);
 917        __set_bit(slot, &grp->full_slots);
 918}
 919
 920/* Maybe introduce hlist_first_entry?? */
 921static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
 922{
 923        return hlist_entry(grp->slots[grp->front].first,
 924                           struct qfq_aggregate, next);
 925}
 926
 927/*
 928 * remove the entry from the slot
 929 */
 930static void qfq_front_slot_remove(struct qfq_group *grp)
 931{
 932        struct qfq_aggregate *agg = qfq_slot_head(grp);
 933
 934        BUG_ON(!agg);
 935        hlist_del(&agg->next);
 936        if (hlist_empty(&grp->slots[grp->front]))
 937                __clear_bit(0, &grp->full_slots);
 938}
 939
 940/*
 941 * Returns the first aggregate in the first non-empty bucket of the
 942 * group. As a side effect, adjusts the bucket list so the first
 943 * non-empty bucket is at position 0 in full_slots.
 944 */
 945static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
 946{
 947        unsigned int i;
 948
 949        pr_debug("qfq slot_scan: grp %u full %#lx\n",
 950                 grp->index, grp->full_slots);
 951
 952        if (grp->full_slots == 0)
 953                return NULL;
 954
 955        i = __ffs(grp->full_slots);  /* zero based */
 956        if (i > 0) {
 957                grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
 958                grp->full_slots >>= i;
 959        }
 960
 961        return qfq_slot_head(grp);
 962}
 963
 964/*
 965 * adjust the bucket list. When the start time of a group decreases,
 966 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
 967 * move the objects. The mask of occupied slots must be shifted
 968 * because we use ffs() to find the first non-empty slot.
 969 * This covers decreases in the group's start time, but what about
 970 * increases of the start time ?
 971 * Here too we should make sure that i is less than 32
 972 */
 973static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
 974{
 975        unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
 976
 977        grp->full_slots <<= i;
 978        grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
 979}
 980
 981static void qfq_update_eligible(struct qfq_sched *q)
 982{
 983        struct qfq_group *grp;
 984        unsigned long ineligible;
 985
 986        ineligible = q->bitmaps[IR] | q->bitmaps[IB];
 987        if (ineligible) {
 988                if (!q->bitmaps[ER]) {
 989                        grp = qfq_ffs(q, ineligible);
 990                        if (qfq_gt(grp->S, q->V))
 991                                q->V = grp->S;
 992                }
 993                qfq_make_eligible(q);
 994        }
 995}
 996
 997/* Dequeue head packet of the head class in the DRR queue of the aggregate. */
 998static void agg_dequeue(struct qfq_aggregate *agg,
 999                        struct qfq_class *cl, unsigned int len)
1000{
1001        qdisc_dequeue_peeked(cl->qdisc);
1002
1003        cl->deficit -= (int) len;
1004
1005        if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
1006                list_del(&cl->alist);
1007        else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
1008                cl->deficit += agg->lmax;
1009                list_move_tail(&cl->alist, &agg->active);
1010        }
1011}
1012
1013static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1014                                           struct qfq_class **cl,
1015                                           unsigned int *len)
1016{
1017        struct sk_buff *skb;
1018
1019        *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1020        skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1021        if (skb == NULL)
1022                WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1023        else
1024                *len = qdisc_pkt_len(skb);
1025
1026        return skb;
1027}
1028
1029/* Update F according to the actual service received by the aggregate. */
1030static inline void charge_actual_service(struct qfq_aggregate *agg)
1031{
1032        /* Compute the service received by the aggregate, taking into
1033         * account that, after decreasing the number of classes in
1034         * agg, it may happen that
1035         * agg->initial_budget - agg->budget > agg->bugdetmax
1036         */
1037        u32 service_received = min(agg->budgetmax,
1038                                   agg->initial_budget - agg->budget);
1039
1040        agg->F = agg->S + (u64)service_received * agg->inv_w;
1041}
1042
1043/* Assign a reasonable start time for a new aggregate in group i.
1044 * Admissible values for \hat(F) are multiples of \sigma_i
1045 * no greater than V+\sigma_i . Larger values mean that
1046 * we had a wraparound so we consider the timestamp to be stale.
1047 *
1048 * If F is not stale and F >= V then we set S = F.
1049 * Otherwise we should assign S = V, but this may violate
1050 * the ordering in EB (see [2]). So, if we have groups in ER,
1051 * set S to the F_j of the first group j which would be blocking us.
1052 * We are guaranteed not to move S backward because
1053 * otherwise our group i would still be blocked.
1054 */
1055static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1056{
1057        unsigned long mask;
1058        u64 limit, roundedF;
1059        int slot_shift = agg->grp->slot_shift;
1060
1061        roundedF = qfq_round_down(agg->F, slot_shift);
1062        limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1063
1064        if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1065                /* timestamp was stale */
1066                mask = mask_from(q->bitmaps[ER], agg->grp->index);
1067                if (mask) {
1068                        struct qfq_group *next = qfq_ffs(q, mask);
1069                        if (qfq_gt(roundedF, next->F)) {
1070                                if (qfq_gt(limit, next->F))
1071                                        agg->S = next->F;
1072                                else /* preserve timestamp correctness */
1073                                        agg->S = limit;
1074                                return;
1075                        }
1076                }
1077                agg->S = q->V;
1078        } else  /* timestamp is not stale */
1079                agg->S = agg->F;
1080}
1081
1082/* Update the timestamps of agg before scheduling/rescheduling it for
1083 * service.  In particular, assign to agg->F its maximum possible
1084 * value, i.e., the virtual finish time with which the aggregate
1085 * should be labeled if it used all its budget once in service.
1086 */
1087static inline void
1088qfq_update_agg_ts(struct qfq_sched *q,
1089                    struct qfq_aggregate *agg, enum update_reason reason)
1090{
1091        if (reason != requeue)
1092                qfq_update_start(q, agg);
1093        else /* just charge agg for the service received */
1094                agg->S = agg->F;
1095
1096        agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1097}
1098
1099static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1100
1101static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1102{
1103        struct qfq_sched *q = qdisc_priv(sch);
1104        struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1105        struct qfq_class *cl;
1106        struct sk_buff *skb = NULL;
1107        /* next-packet len, 0 means no more active classes in in-service agg */
1108        unsigned int len = 0;
1109
1110        if (in_serv_agg == NULL)
1111                return NULL;
1112
1113        if (!list_empty(&in_serv_agg->active))
1114                skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1115
1116        /*
1117         * If there are no active classes in the in-service aggregate,
1118         * or if the aggregate has not enough budget to serve its next
1119         * class, then choose the next aggregate to serve.
1120         */
1121        if (len == 0 || in_serv_agg->budget < len) {
1122                charge_actual_service(in_serv_agg);
1123
1124                /* recharge the budget of the aggregate */
1125                in_serv_agg->initial_budget = in_serv_agg->budget =
1126                        in_serv_agg->budgetmax;
1127
1128                if (!list_empty(&in_serv_agg->active)) {
1129                        /*
1130                         * Still active: reschedule for
1131                         * service. Possible optimization: if no other
1132                         * aggregate is active, then there is no point
1133                         * in rescheduling this aggregate, and we can
1134                         * just keep it as the in-service one. This
1135                         * should be however a corner case, and to
1136                         * handle it, we would need to maintain an
1137                         * extra num_active_aggs field.
1138                        */
1139                        qfq_update_agg_ts(q, in_serv_agg, requeue);
1140                        qfq_schedule_agg(q, in_serv_agg);
1141                } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1142                        q->in_serv_agg = NULL;
1143                        return NULL;
1144                }
1145
1146                /*
1147                 * If we get here, there are other aggregates queued:
1148                 * choose the new aggregate to serve.
1149                 */
1150                in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1151                skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1152        }
1153        if (!skb)
1154                return NULL;
1155
1156        qdisc_qstats_backlog_dec(sch, skb);
1157        sch->q.qlen--;
1158        qdisc_bstats_update(sch, skb);
1159
1160        agg_dequeue(in_serv_agg, cl, len);
1161        /* If lmax is lowered, through qfq_change_class, for a class
1162         * owning pending packets with larger size than the new value
1163         * of lmax, then the following condition may hold.
1164         */
1165        if (unlikely(in_serv_agg->budget < len))
1166                in_serv_agg->budget = 0;
1167        else
1168                in_serv_agg->budget -= len;
1169
1170        q->V += (u64)len * q->iwsum;
1171        pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1172                 len, (unsigned long long) in_serv_agg->F,
1173                 (unsigned long long) q->V);
1174
1175        return skb;
1176}
1177
1178static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1179{
1180        struct qfq_group *grp;
1181        struct qfq_aggregate *agg, *new_front_agg;
1182        u64 old_F;
1183
1184        qfq_update_eligible(q);
1185        q->oldV = q->V;
1186
1187        if (!q->bitmaps[ER])
1188                return NULL;
1189
1190        grp = qfq_ffs(q, q->bitmaps[ER]);
1191        old_F = grp->F;
1192
1193        agg = qfq_slot_head(grp);
1194
1195        /* agg starts to be served, remove it from schedule */
1196        qfq_front_slot_remove(grp);
1197
1198        new_front_agg = qfq_slot_scan(grp);
1199
1200        if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1201                __clear_bit(grp->index, &q->bitmaps[ER]);
1202        else {
1203                u64 roundedS = qfq_round_down(new_front_agg->S,
1204                                              grp->slot_shift);
1205                unsigned int s;
1206
1207                if (grp->S == roundedS)
1208                        return agg;
1209                grp->S = roundedS;
1210                grp->F = roundedS + (2ULL << grp->slot_shift);
1211                __clear_bit(grp->index, &q->bitmaps[ER]);
1212                s = qfq_calc_state(q, grp);
1213                __set_bit(grp->index, &q->bitmaps[s]);
1214        }
1215
1216        qfq_unblock_groups(q, grp->index, old_F);
1217
1218        return agg;
1219}
1220
1221static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1222                       struct sk_buff **to_free)
1223{
1224        struct qfq_sched *q = qdisc_priv(sch);
1225        struct qfq_class *cl;
1226        struct qfq_aggregate *agg;
1227        int err = 0;
1228
1229        cl = qfq_classify(skb, sch, &err);
1230        if (cl == NULL) {
1231                if (err & __NET_XMIT_BYPASS)
1232                        qdisc_qstats_drop(sch);
1233                kfree_skb(skb);
1234                return err;
1235        }
1236        pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1237
1238        if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1239                pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1240                         cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1241                err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1242                                     qdisc_pkt_len(skb));
1243                if (err) {
1244                        cl->qstats.drops++;
1245                        return qdisc_drop(skb, sch, to_free);
1246                }
1247        }
1248
1249        err = qdisc_enqueue(skb, cl->qdisc, to_free);
1250        if (unlikely(err != NET_XMIT_SUCCESS)) {
1251                pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1252                if (net_xmit_drop_count(err)) {
1253                        cl->qstats.drops++;
1254                        qdisc_qstats_drop(sch);
1255                }
1256                return err;
1257        }
1258
1259        bstats_update(&cl->bstats, skb);
1260        qdisc_qstats_backlog_inc(sch, skb);
1261        ++sch->q.qlen;
1262
1263        agg = cl->agg;
1264        /* if the queue was not empty, then done here */
1265        if (cl->qdisc->q.qlen != 1) {
1266                if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1267                    list_first_entry(&agg->active, struct qfq_class, alist)
1268                    == cl && cl->deficit < qdisc_pkt_len(skb))
1269                        list_move_tail(&cl->alist, &agg->active);
1270
1271                return err;
1272        }
1273
1274        /* schedule class for service within the aggregate */
1275        cl->deficit = agg->lmax;
1276        list_add_tail(&cl->alist, &agg->active);
1277
1278        if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1279            q->in_serv_agg == agg)
1280                return err; /* non-empty or in service, nothing else to do */
1281
1282        qfq_activate_agg(q, agg, enqueue);
1283
1284        return err;
1285}
1286
1287/*
1288 * Schedule aggregate according to its timestamps.
1289 */
1290static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1291{
1292        struct qfq_group *grp = agg->grp;
1293        u64 roundedS;
1294        int s;
1295
1296        roundedS = qfq_round_down(agg->S, grp->slot_shift);
1297
1298        /*
1299         * Insert agg in the correct bucket.
1300         * If agg->S >= grp->S we don't need to adjust the
1301         * bucket list and simply go to the insertion phase.
1302         * Otherwise grp->S is decreasing, we must make room
1303         * in the bucket list, and also recompute the group state.
1304         * Finally, if there were no flows in this group and nobody
1305         * was in ER make sure to adjust V.
1306         */
1307        if (grp->full_slots) {
1308                if (!qfq_gt(grp->S, agg->S))
1309                        goto skip_update;
1310
1311                /* create a slot for this agg->S */
1312                qfq_slot_rotate(grp, roundedS);
1313                /* group was surely ineligible, remove */
1314                __clear_bit(grp->index, &q->bitmaps[IR]);
1315                __clear_bit(grp->index, &q->bitmaps[IB]);
1316        } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1317                   q->in_serv_agg == NULL)
1318                q->V = roundedS;
1319
1320        grp->S = roundedS;
1321        grp->F = roundedS + (2ULL << grp->slot_shift);
1322        s = qfq_calc_state(q, grp);
1323        __set_bit(grp->index, &q->bitmaps[s]);
1324
1325        pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1326                 s, q->bitmaps[s],
1327                 (unsigned long long) agg->S,
1328                 (unsigned long long) agg->F,
1329                 (unsigned long long) q->V);
1330
1331skip_update:
1332        qfq_slot_insert(grp, agg, roundedS);
1333}
1334
1335
1336/* Update agg ts and schedule agg for service */
1337static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1338                             enum update_reason reason)
1339{
1340        agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1341
1342        qfq_update_agg_ts(q, agg, reason);
1343        if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1344                q->in_serv_agg = agg; /* start serving this aggregate */
1345                 /* update V: to be in service, agg must be eligible */
1346                q->oldV = q->V = agg->S;
1347        } else if (agg != q->in_serv_agg)
1348                qfq_schedule_agg(q, agg);
1349}
1350
1351static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1352                            struct qfq_aggregate *agg)
1353{
1354        unsigned int i, offset;
1355        u64 roundedS;
1356
1357        roundedS = qfq_round_down(agg->S, grp->slot_shift);
1358        offset = (roundedS - grp->S) >> grp->slot_shift;
1359
1360        i = (grp->front + offset) % QFQ_MAX_SLOTS;
1361
1362        hlist_del(&agg->next);
1363        if (hlist_empty(&grp->slots[i]))
1364                __clear_bit(offset, &grp->full_slots);
1365}
1366
1367/*
1368 * Called to forcibly deschedule an aggregate.  If the aggregate is
1369 * not in the front bucket, or if the latter has other aggregates in
1370 * the front bucket, we can simply remove the aggregate with no other
1371 * side effects.
1372 * Otherwise we must propagate the event up.
1373 */
1374static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1375{
1376        struct qfq_group *grp = agg->grp;
1377        unsigned long mask;
1378        u64 roundedS;
1379        int s;
1380
1381        if (agg == q->in_serv_agg) {
1382                charge_actual_service(agg);
1383                q->in_serv_agg = qfq_choose_next_agg(q);
1384                return;
1385        }
1386
1387        agg->F = agg->S;
1388        qfq_slot_remove(q, grp, agg);
1389
1390        if (!grp->full_slots) {
1391                __clear_bit(grp->index, &q->bitmaps[IR]);
1392                __clear_bit(grp->index, &q->bitmaps[EB]);
1393                __clear_bit(grp->index, &q->bitmaps[IB]);
1394
1395                if (test_bit(grp->index, &q->bitmaps[ER]) &&
1396                    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1397                        mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1398                        if (mask)
1399                                mask = ~((1UL << __fls(mask)) - 1);
1400                        else
1401                                mask = ~0UL;
1402                        qfq_move_groups(q, mask, EB, ER);
1403                        qfq_move_groups(q, mask, IB, IR);
1404                }
1405                __clear_bit(grp->index, &q->bitmaps[ER]);
1406        } else if (hlist_empty(&grp->slots[grp->front])) {
1407                agg = qfq_slot_scan(grp);
1408                roundedS = qfq_round_down(agg->S, grp->slot_shift);
1409                if (grp->S != roundedS) {
1410                        __clear_bit(grp->index, &q->bitmaps[ER]);
1411                        __clear_bit(grp->index, &q->bitmaps[IR]);
1412                        __clear_bit(grp->index, &q->bitmaps[EB]);
1413                        __clear_bit(grp->index, &q->bitmaps[IB]);
1414                        grp->S = roundedS;
1415                        grp->F = roundedS + (2ULL << grp->slot_shift);
1416                        s = qfq_calc_state(q, grp);
1417                        __set_bit(grp->index, &q->bitmaps[s]);
1418                }
1419        }
1420}
1421
1422static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1423{
1424        struct qfq_sched *q = qdisc_priv(sch);
1425        struct qfq_class *cl = (struct qfq_class *)arg;
1426
1427        if (cl->qdisc->q.qlen == 0)
1428                qfq_deactivate_class(q, cl);
1429}
1430
1431static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1432{
1433        struct qfq_sched *q = qdisc_priv(sch);
1434        struct qfq_group *grp;
1435        int i, j, err;
1436        u32 max_cl_shift, maxbudg_shift, max_classes;
1437
1438        err = qdisc_class_hash_init(&q->clhash);
1439        if (err < 0)
1440                return err;
1441
1442        if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1443                max_classes = QFQ_MAX_AGG_CLASSES;
1444        else
1445                max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1446        /* max_cl_shift = floor(log_2(max_classes)) */
1447        max_cl_shift = __fls(max_classes);
1448        q->max_agg_classes = 1<<max_cl_shift;
1449
1450        /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1451        maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1452        q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1453
1454        for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1455                grp = &q->groups[i];
1456                grp->index = i;
1457                grp->slot_shift = q->min_slot_shift + i;
1458                for (j = 0; j < QFQ_MAX_SLOTS; j++)
1459                        INIT_HLIST_HEAD(&grp->slots[j]);
1460        }
1461
1462        INIT_HLIST_HEAD(&q->nonfull_aggs);
1463
1464        return 0;
1465}
1466
1467static void qfq_reset_qdisc(struct Qdisc *sch)
1468{
1469        struct qfq_sched *q = qdisc_priv(sch);
1470        struct qfq_class *cl;
1471        unsigned int i;
1472
1473        for (i = 0; i < q->clhash.hashsize; i++) {
1474                hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1475                        if (cl->qdisc->q.qlen > 0)
1476                                qfq_deactivate_class(q, cl);
1477
1478                        qdisc_reset(cl->qdisc);
1479                }
1480        }
1481        sch->qstats.backlog = 0;
1482        sch->q.qlen = 0;
1483}
1484
1485static void qfq_destroy_qdisc(struct Qdisc *sch)
1486{
1487        struct qfq_sched *q = qdisc_priv(sch);
1488        struct qfq_class *cl;
1489        struct hlist_node *next;
1490        unsigned int i;
1491
1492        tcf_destroy_chain(&q->filter_list);
1493
1494        for (i = 0; i < q->clhash.hashsize; i++) {
1495                hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1496                                          common.hnode) {
1497                        qfq_destroy_class(sch, cl);
1498                }
1499        }
1500        qdisc_class_hash_destroy(&q->clhash);
1501}
1502
1503static const struct Qdisc_class_ops qfq_class_ops = {
1504        .change         = qfq_change_class,
1505        .delete         = qfq_delete_class,
1506        .get            = qfq_get_class,
1507        .put            = qfq_put_class,
1508        .tcf_chain      = qfq_tcf_chain,
1509        .bind_tcf       = qfq_bind_tcf,
1510        .unbind_tcf     = qfq_unbind_tcf,
1511        .graft          = qfq_graft_class,
1512        .leaf           = qfq_class_leaf,
1513        .qlen_notify    = qfq_qlen_notify,
1514        .dump           = qfq_dump_class,
1515        .dump_stats     = qfq_dump_class_stats,
1516        .walk           = qfq_walk,
1517};
1518
1519static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1520        .cl_ops         = &qfq_class_ops,
1521        .id             = "qfq",
1522        .priv_size      = sizeof(struct qfq_sched),
1523        .enqueue        = qfq_enqueue,
1524        .dequeue        = qfq_dequeue,
1525        .peek           = qdisc_peek_dequeued,
1526        .init           = qfq_init_qdisc,
1527        .reset          = qfq_reset_qdisc,
1528        .destroy        = qfq_destroy_qdisc,
1529        .owner          = THIS_MODULE,
1530};
1531
1532static int __init qfq_init(void)
1533{
1534        return register_qdisc(&qfq_qdisc_ops);
1535}
1536
1537static void __exit qfq_exit(void)
1538{
1539        unregister_qdisc(&qfq_qdisc_ops);
1540}
1541
1542module_init(qfq_init);
1543module_exit(qfq_exit);
1544MODULE_LICENSE("GPL");
1545