linux/net/sunrpc/cache.c
<<
>>
Prefs
   1/*
   2 * net/sunrpc/cache.c
   3 *
   4 * Generic code for various authentication-related caches
   5 * used by sunrpc clients and servers.
   6 *
   7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
   8 *
   9 * Released under terms in GPL version 2.  See COPYING.
  10 *
  11 */
  12
  13#include <linux/types.h>
  14#include <linux/fs.h>
  15#include <linux/file.h>
  16#include <linux/slab.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kmod.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/ctype.h>
  23#include <linux/string_helpers.h>
  24#include <asm/uaccess.h>
  25#include <linux/poll.h>
  26#include <linux/seq_file.h>
  27#include <linux/proc_fs.h>
  28#include <linux/net.h>
  29#include <linux/workqueue.h>
  30#include <linux/mutex.h>
  31#include <linux/pagemap.h>
  32#include <asm/ioctls.h>
  33#include <linux/sunrpc/types.h>
  34#include <linux/sunrpc/cache.h>
  35#include <linux/sunrpc/stats.h>
  36#include <linux/sunrpc/rpc_pipe_fs.h>
  37#include "netns.h"
  38
  39#define  RPCDBG_FACILITY RPCDBG_CACHE
  40
  41static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
  42static void cache_revisit_request(struct cache_head *item);
  43
  44static void cache_init(struct cache_head *h, struct cache_detail *detail)
  45{
  46        time_t now = seconds_since_boot();
  47        INIT_HLIST_NODE(&h->cache_list);
  48        h->flags = 0;
  49        kref_init(&h->ref);
  50        h->expiry_time = now + CACHE_NEW_EXPIRY;
  51        if (now <= detail->flush_time)
  52                /* ensure it isn't already expired */
  53                now = detail->flush_time + 1;
  54        h->last_refresh = now;
  55}
  56
  57struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
  58                                       struct cache_head *key, int hash)
  59{
  60        struct cache_head *new = NULL, *freeme = NULL, *tmp = NULL;
  61        struct hlist_head *head;
  62
  63        head = &detail->hash_table[hash];
  64
  65        read_lock(&detail->hash_lock);
  66
  67        hlist_for_each_entry(tmp, head, cache_list) {
  68                if (detail->match(tmp, key)) {
  69                        if (cache_is_expired(detail, tmp))
  70                                /* This entry is expired, we will discard it. */
  71                                break;
  72                        cache_get(tmp);
  73                        read_unlock(&detail->hash_lock);
  74                        return tmp;
  75                }
  76        }
  77        read_unlock(&detail->hash_lock);
  78        /* Didn't find anything, insert an empty entry */
  79
  80        new = detail->alloc();
  81        if (!new)
  82                return NULL;
  83        /* must fully initialise 'new', else
  84         * we might get lose if we need to
  85         * cache_put it soon.
  86         */
  87        cache_init(new, detail);
  88        detail->init(new, key);
  89
  90        write_lock(&detail->hash_lock);
  91
  92        /* check if entry appeared while we slept */
  93        hlist_for_each_entry(tmp, head, cache_list) {
  94                if (detail->match(tmp, key)) {
  95                        if (cache_is_expired(detail, tmp)) {
  96                                hlist_del_init(&tmp->cache_list);
  97                                detail->entries --;
  98                                freeme = tmp;
  99                                break;
 100                        }
 101                        cache_get(tmp);
 102                        write_unlock(&detail->hash_lock);
 103                        cache_put(new, detail);
 104                        return tmp;
 105                }
 106        }
 107
 108        hlist_add_head(&new->cache_list, head);
 109        detail->entries++;
 110        cache_get(new);
 111        write_unlock(&detail->hash_lock);
 112
 113        if (freeme)
 114                cache_put(freeme, detail);
 115        return new;
 116}
 117EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
 118
 119
 120static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
 121
 122static void cache_fresh_locked(struct cache_head *head, time_t expiry,
 123                               struct cache_detail *detail)
 124{
 125        time_t now = seconds_since_boot();
 126        if (now <= detail->flush_time)
 127                /* ensure it isn't immediately treated as expired */
 128                now = detail->flush_time + 1;
 129        head->expiry_time = expiry;
 130        head->last_refresh = now;
 131        smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
 132        set_bit(CACHE_VALID, &head->flags);
 133}
 134
 135static void cache_fresh_unlocked(struct cache_head *head,
 136                                 struct cache_detail *detail)
 137{
 138        if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
 139                cache_revisit_request(head);
 140                cache_dequeue(detail, head);
 141        }
 142}
 143
 144struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
 145                                       struct cache_head *new, struct cache_head *old, int hash)
 146{
 147        /* The 'old' entry is to be replaced by 'new'.
 148         * If 'old' is not VALID, we update it directly,
 149         * otherwise we need to replace it
 150         */
 151        struct cache_head *tmp;
 152
 153        if (!test_bit(CACHE_VALID, &old->flags)) {
 154                write_lock(&detail->hash_lock);
 155                if (!test_bit(CACHE_VALID, &old->flags)) {
 156                        if (test_bit(CACHE_NEGATIVE, &new->flags))
 157                                set_bit(CACHE_NEGATIVE, &old->flags);
 158                        else
 159                                detail->update(old, new);
 160                        cache_fresh_locked(old, new->expiry_time, detail);
 161                        write_unlock(&detail->hash_lock);
 162                        cache_fresh_unlocked(old, detail);
 163                        return old;
 164                }
 165                write_unlock(&detail->hash_lock);
 166        }
 167        /* We need to insert a new entry */
 168        tmp = detail->alloc();
 169        if (!tmp) {
 170                cache_put(old, detail);
 171                return NULL;
 172        }
 173        cache_init(tmp, detail);
 174        detail->init(tmp, old);
 175
 176        write_lock(&detail->hash_lock);
 177        if (test_bit(CACHE_NEGATIVE, &new->flags))
 178                set_bit(CACHE_NEGATIVE, &tmp->flags);
 179        else
 180                detail->update(tmp, new);
 181        hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
 182        detail->entries++;
 183        cache_get(tmp);
 184        cache_fresh_locked(tmp, new->expiry_time, detail);
 185        cache_fresh_locked(old, 0, detail);
 186        write_unlock(&detail->hash_lock);
 187        cache_fresh_unlocked(tmp, detail);
 188        cache_fresh_unlocked(old, detail);
 189        cache_put(old, detail);
 190        return tmp;
 191}
 192EXPORT_SYMBOL_GPL(sunrpc_cache_update);
 193
 194static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
 195{
 196        if (cd->cache_upcall)
 197                return cd->cache_upcall(cd, h);
 198        return sunrpc_cache_pipe_upcall(cd, h);
 199}
 200
 201static inline int cache_is_valid(struct cache_head *h)
 202{
 203        if (!test_bit(CACHE_VALID, &h->flags))
 204                return -EAGAIN;
 205        else {
 206                /* entry is valid */
 207                if (test_bit(CACHE_NEGATIVE, &h->flags))
 208                        return -ENOENT;
 209                else {
 210                        /*
 211                         * In combination with write barrier in
 212                         * sunrpc_cache_update, ensures that anyone
 213                         * using the cache entry after this sees the
 214                         * updated contents:
 215                         */
 216                        smp_rmb();
 217                        return 0;
 218                }
 219        }
 220}
 221
 222static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
 223{
 224        int rv;
 225
 226        write_lock(&detail->hash_lock);
 227        rv = cache_is_valid(h);
 228        if (rv == -EAGAIN) {
 229                set_bit(CACHE_NEGATIVE, &h->flags);
 230                cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
 231                                   detail);
 232                rv = -ENOENT;
 233        }
 234        write_unlock(&detail->hash_lock);
 235        cache_fresh_unlocked(h, detail);
 236        return rv;
 237}
 238
 239/*
 240 * This is the generic cache management routine for all
 241 * the authentication caches.
 242 * It checks the currency of a cache item and will (later)
 243 * initiate an upcall to fill it if needed.
 244 *
 245 *
 246 * Returns 0 if the cache_head can be used, or cache_puts it and returns
 247 * -EAGAIN if upcall is pending and request has been queued
 248 * -ETIMEDOUT if upcall failed or request could not be queue or
 249 *           upcall completed but item is still invalid (implying that
 250 *           the cache item has been replaced with a newer one).
 251 * -ENOENT if cache entry was negative
 252 */
 253int cache_check(struct cache_detail *detail,
 254                    struct cache_head *h, struct cache_req *rqstp)
 255{
 256        int rv;
 257        long refresh_age, age;
 258
 259        /* First decide return status as best we can */
 260        rv = cache_is_valid(h);
 261
 262        /* now see if we want to start an upcall */
 263        refresh_age = (h->expiry_time - h->last_refresh);
 264        age = seconds_since_boot() - h->last_refresh;
 265
 266        if (rqstp == NULL) {
 267                if (rv == -EAGAIN)
 268                        rv = -ENOENT;
 269        } else if (rv == -EAGAIN ||
 270                   (h->expiry_time != 0 && age > refresh_age/2)) {
 271                dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
 272                                refresh_age, age);
 273                if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
 274                        switch (cache_make_upcall(detail, h)) {
 275                        case -EINVAL:
 276                                rv = try_to_negate_entry(detail, h);
 277                                break;
 278                        case -EAGAIN:
 279                                cache_fresh_unlocked(h, detail);
 280                                break;
 281                        }
 282                }
 283        }
 284
 285        if (rv == -EAGAIN) {
 286                if (!cache_defer_req(rqstp, h)) {
 287                        /*
 288                         * Request was not deferred; handle it as best
 289                         * we can ourselves:
 290                         */
 291                        rv = cache_is_valid(h);
 292                        if (rv == -EAGAIN)
 293                                rv = -ETIMEDOUT;
 294                }
 295        }
 296        if (rv)
 297                cache_put(h, detail);
 298        return rv;
 299}
 300EXPORT_SYMBOL_GPL(cache_check);
 301
 302/*
 303 * caches need to be periodically cleaned.
 304 * For this we maintain a list of cache_detail and
 305 * a current pointer into that list and into the table
 306 * for that entry.
 307 *
 308 * Each time cache_clean is called it finds the next non-empty entry
 309 * in the current table and walks the list in that entry
 310 * looking for entries that can be removed.
 311 *
 312 * An entry gets removed if:
 313 * - The expiry is before current time
 314 * - The last_refresh time is before the flush_time for that cache
 315 *
 316 * later we might drop old entries with non-NEVER expiry if that table
 317 * is getting 'full' for some definition of 'full'
 318 *
 319 * The question of "how often to scan a table" is an interesting one
 320 * and is answered in part by the use of the "nextcheck" field in the
 321 * cache_detail.
 322 * When a scan of a table begins, the nextcheck field is set to a time
 323 * that is well into the future.
 324 * While scanning, if an expiry time is found that is earlier than the
 325 * current nextcheck time, nextcheck is set to that expiry time.
 326 * If the flush_time is ever set to a time earlier than the nextcheck
 327 * time, the nextcheck time is then set to that flush_time.
 328 *
 329 * A table is then only scanned if the current time is at least
 330 * the nextcheck time.
 331 *
 332 */
 333
 334static LIST_HEAD(cache_list);
 335static DEFINE_SPINLOCK(cache_list_lock);
 336static struct cache_detail *current_detail;
 337static int current_index;
 338
 339static void do_cache_clean(struct work_struct *work);
 340static struct delayed_work cache_cleaner;
 341
 342void sunrpc_init_cache_detail(struct cache_detail *cd)
 343{
 344        rwlock_init(&cd->hash_lock);
 345        INIT_LIST_HEAD(&cd->queue);
 346        spin_lock(&cache_list_lock);
 347        cd->nextcheck = 0;
 348        cd->entries = 0;
 349        atomic_set(&cd->readers, 0);
 350        cd->last_close = 0;
 351        cd->last_warn = -1;
 352        list_add(&cd->others, &cache_list);
 353        spin_unlock(&cache_list_lock);
 354
 355        /* start the cleaning process */
 356        schedule_delayed_work(&cache_cleaner, 0);
 357}
 358EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
 359
 360void sunrpc_destroy_cache_detail(struct cache_detail *cd)
 361{
 362        cache_purge(cd);
 363        spin_lock(&cache_list_lock);
 364        write_lock(&cd->hash_lock);
 365        if (cd->entries) {
 366                write_unlock(&cd->hash_lock);
 367                spin_unlock(&cache_list_lock);
 368                goto out;
 369        }
 370        if (current_detail == cd)
 371                current_detail = NULL;
 372        list_del_init(&cd->others);
 373        write_unlock(&cd->hash_lock);
 374        spin_unlock(&cache_list_lock);
 375        if (list_empty(&cache_list)) {
 376                /* module must be being unloaded so its safe to kill the worker */
 377                cancel_delayed_work_sync(&cache_cleaner);
 378        }
 379        return;
 380out:
 381        printk(KERN_ERR "RPC: failed to unregister %s cache\n", cd->name);
 382}
 383EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
 384
 385/* clean cache tries to find something to clean
 386 * and cleans it.
 387 * It returns 1 if it cleaned something,
 388 *            0 if it didn't find anything this time
 389 *           -1 if it fell off the end of the list.
 390 */
 391static int cache_clean(void)
 392{
 393        int rv = 0;
 394        struct list_head *next;
 395
 396        spin_lock(&cache_list_lock);
 397
 398        /* find a suitable table if we don't already have one */
 399        while (current_detail == NULL ||
 400            current_index >= current_detail->hash_size) {
 401                if (current_detail)
 402                        next = current_detail->others.next;
 403                else
 404                        next = cache_list.next;
 405                if (next == &cache_list) {
 406                        current_detail = NULL;
 407                        spin_unlock(&cache_list_lock);
 408                        return -1;
 409                }
 410                current_detail = list_entry(next, struct cache_detail, others);
 411                if (current_detail->nextcheck > seconds_since_boot())
 412                        current_index = current_detail->hash_size;
 413                else {
 414                        current_index = 0;
 415                        current_detail->nextcheck = seconds_since_boot()+30*60;
 416                }
 417        }
 418
 419        /* find a non-empty bucket in the table */
 420        while (current_detail &&
 421               current_index < current_detail->hash_size &&
 422               hlist_empty(&current_detail->hash_table[current_index]))
 423                current_index++;
 424
 425        /* find a cleanable entry in the bucket and clean it, or set to next bucket */
 426
 427        if (current_detail && current_index < current_detail->hash_size) {
 428                struct cache_head *ch = NULL;
 429                struct cache_detail *d;
 430                struct hlist_head *head;
 431                struct hlist_node *tmp;
 432
 433                write_lock(&current_detail->hash_lock);
 434
 435                /* Ok, now to clean this strand */
 436
 437                head = &current_detail->hash_table[current_index];
 438                hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
 439                        if (current_detail->nextcheck > ch->expiry_time)
 440                                current_detail->nextcheck = ch->expiry_time+1;
 441                        if (!cache_is_expired(current_detail, ch))
 442                                continue;
 443
 444                        hlist_del_init(&ch->cache_list);
 445                        current_detail->entries--;
 446                        rv = 1;
 447                        break;
 448                }
 449
 450                write_unlock(&current_detail->hash_lock);
 451                d = current_detail;
 452                if (!ch)
 453                        current_index ++;
 454                spin_unlock(&cache_list_lock);
 455                if (ch) {
 456                        set_bit(CACHE_CLEANED, &ch->flags);
 457                        cache_fresh_unlocked(ch, d);
 458                        cache_put(ch, d);
 459                }
 460        } else
 461                spin_unlock(&cache_list_lock);
 462
 463        return rv;
 464}
 465
 466/*
 467 * We want to regularly clean the cache, so we need to schedule some work ...
 468 */
 469static void do_cache_clean(struct work_struct *work)
 470{
 471        int delay = 5;
 472        if (cache_clean() == -1)
 473                delay = round_jiffies_relative(30*HZ);
 474
 475        if (list_empty(&cache_list))
 476                delay = 0;
 477
 478        if (delay)
 479                schedule_delayed_work(&cache_cleaner, delay);
 480}
 481
 482
 483/*
 484 * Clean all caches promptly.  This just calls cache_clean
 485 * repeatedly until we are sure that every cache has had a chance to
 486 * be fully cleaned
 487 */
 488void cache_flush(void)
 489{
 490        while (cache_clean() != -1)
 491                cond_resched();
 492        while (cache_clean() != -1)
 493                cond_resched();
 494}
 495EXPORT_SYMBOL_GPL(cache_flush);
 496
 497void cache_purge(struct cache_detail *detail)
 498{
 499        time_t now = seconds_since_boot();
 500        if (detail->flush_time >= now)
 501                now = detail->flush_time + 1;
 502        /* 'now' is the maximum value any 'last_refresh' can have */
 503        detail->flush_time = now;
 504        detail->nextcheck = seconds_since_boot();
 505        cache_flush();
 506}
 507EXPORT_SYMBOL_GPL(cache_purge);
 508
 509
 510/*
 511 * Deferral and Revisiting of Requests.
 512 *
 513 * If a cache lookup finds a pending entry, we
 514 * need to defer the request and revisit it later.
 515 * All deferred requests are stored in a hash table,
 516 * indexed by "struct cache_head *".
 517 * As it may be wasteful to store a whole request
 518 * structure, we allow the request to provide a
 519 * deferred form, which must contain a
 520 * 'struct cache_deferred_req'
 521 * This cache_deferred_req contains a method to allow
 522 * it to be revisited when cache info is available
 523 */
 524
 525#define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
 526#define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
 527
 528#define DFR_MAX 300     /* ??? */
 529
 530static DEFINE_SPINLOCK(cache_defer_lock);
 531static LIST_HEAD(cache_defer_list);
 532static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
 533static int cache_defer_cnt;
 534
 535static void __unhash_deferred_req(struct cache_deferred_req *dreq)
 536{
 537        hlist_del_init(&dreq->hash);
 538        if (!list_empty(&dreq->recent)) {
 539                list_del_init(&dreq->recent);
 540                cache_defer_cnt--;
 541        }
 542}
 543
 544static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
 545{
 546        int hash = DFR_HASH(item);
 547
 548        INIT_LIST_HEAD(&dreq->recent);
 549        hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
 550}
 551
 552static void setup_deferral(struct cache_deferred_req *dreq,
 553                           struct cache_head *item,
 554                           int count_me)
 555{
 556
 557        dreq->item = item;
 558
 559        spin_lock(&cache_defer_lock);
 560
 561        __hash_deferred_req(dreq, item);
 562
 563        if (count_me) {
 564                cache_defer_cnt++;
 565                list_add(&dreq->recent, &cache_defer_list);
 566        }
 567
 568        spin_unlock(&cache_defer_lock);
 569
 570}
 571
 572struct thread_deferred_req {
 573        struct cache_deferred_req handle;
 574        struct completion completion;
 575};
 576
 577static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
 578{
 579        struct thread_deferred_req *dr =
 580                container_of(dreq, struct thread_deferred_req, handle);
 581        complete(&dr->completion);
 582}
 583
 584static void cache_wait_req(struct cache_req *req, struct cache_head *item)
 585{
 586        struct thread_deferred_req sleeper;
 587        struct cache_deferred_req *dreq = &sleeper.handle;
 588
 589        sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
 590        dreq->revisit = cache_restart_thread;
 591
 592        setup_deferral(dreq, item, 0);
 593
 594        if (!test_bit(CACHE_PENDING, &item->flags) ||
 595            wait_for_completion_interruptible_timeout(
 596                    &sleeper.completion, req->thread_wait) <= 0) {
 597                /* The completion wasn't completed, so we need
 598                 * to clean up
 599                 */
 600                spin_lock(&cache_defer_lock);
 601                if (!hlist_unhashed(&sleeper.handle.hash)) {
 602                        __unhash_deferred_req(&sleeper.handle);
 603                        spin_unlock(&cache_defer_lock);
 604                } else {
 605                        /* cache_revisit_request already removed
 606                         * this from the hash table, but hasn't
 607                         * called ->revisit yet.  It will very soon
 608                         * and we need to wait for it.
 609                         */
 610                        spin_unlock(&cache_defer_lock);
 611                        wait_for_completion(&sleeper.completion);
 612                }
 613        }
 614}
 615
 616static void cache_limit_defers(void)
 617{
 618        /* Make sure we haven't exceed the limit of allowed deferred
 619         * requests.
 620         */
 621        struct cache_deferred_req *discard = NULL;
 622
 623        if (cache_defer_cnt <= DFR_MAX)
 624                return;
 625
 626        spin_lock(&cache_defer_lock);
 627
 628        /* Consider removing either the first or the last */
 629        if (cache_defer_cnt > DFR_MAX) {
 630                if (prandom_u32() & 1)
 631                        discard = list_entry(cache_defer_list.next,
 632                                             struct cache_deferred_req, recent);
 633                else
 634                        discard = list_entry(cache_defer_list.prev,
 635                                             struct cache_deferred_req, recent);
 636                __unhash_deferred_req(discard);
 637        }
 638        spin_unlock(&cache_defer_lock);
 639        if (discard)
 640                discard->revisit(discard, 1);
 641}
 642
 643/* Return true if and only if a deferred request is queued. */
 644static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
 645{
 646        struct cache_deferred_req *dreq;
 647
 648        if (req->thread_wait) {
 649                cache_wait_req(req, item);
 650                if (!test_bit(CACHE_PENDING, &item->flags))
 651                        return false;
 652        }
 653        dreq = req->defer(req);
 654        if (dreq == NULL)
 655                return false;
 656        setup_deferral(dreq, item, 1);
 657        if (!test_bit(CACHE_PENDING, &item->flags))
 658                /* Bit could have been cleared before we managed to
 659                 * set up the deferral, so need to revisit just in case
 660                 */
 661                cache_revisit_request(item);
 662
 663        cache_limit_defers();
 664        return true;
 665}
 666
 667static void cache_revisit_request(struct cache_head *item)
 668{
 669        struct cache_deferred_req *dreq;
 670        struct list_head pending;
 671        struct hlist_node *tmp;
 672        int hash = DFR_HASH(item);
 673
 674        INIT_LIST_HEAD(&pending);
 675        spin_lock(&cache_defer_lock);
 676
 677        hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
 678                if (dreq->item == item) {
 679                        __unhash_deferred_req(dreq);
 680                        list_add(&dreq->recent, &pending);
 681                }
 682
 683        spin_unlock(&cache_defer_lock);
 684
 685        while (!list_empty(&pending)) {
 686                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 687                list_del_init(&dreq->recent);
 688                dreq->revisit(dreq, 0);
 689        }
 690}
 691
 692void cache_clean_deferred(void *owner)
 693{
 694        struct cache_deferred_req *dreq, *tmp;
 695        struct list_head pending;
 696
 697
 698        INIT_LIST_HEAD(&pending);
 699        spin_lock(&cache_defer_lock);
 700
 701        list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
 702                if (dreq->owner == owner) {
 703                        __unhash_deferred_req(dreq);
 704                        list_add(&dreq->recent, &pending);
 705                }
 706        }
 707        spin_unlock(&cache_defer_lock);
 708
 709        while (!list_empty(&pending)) {
 710                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 711                list_del_init(&dreq->recent);
 712                dreq->revisit(dreq, 1);
 713        }
 714}
 715
 716/*
 717 * communicate with user-space
 718 *
 719 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
 720 * On read, you get a full request, or block.
 721 * On write, an update request is processed.
 722 * Poll works if anything to read, and always allows write.
 723 *
 724 * Implemented by linked list of requests.  Each open file has
 725 * a ->private that also exists in this list.  New requests are added
 726 * to the end and may wakeup and preceding readers.
 727 * New readers are added to the head.  If, on read, an item is found with
 728 * CACHE_UPCALLING clear, we free it from the list.
 729 *
 730 */
 731
 732static DEFINE_SPINLOCK(queue_lock);
 733static DEFINE_MUTEX(queue_io_mutex);
 734
 735struct cache_queue {
 736        struct list_head        list;
 737        int                     reader; /* if 0, then request */
 738};
 739struct cache_request {
 740        struct cache_queue      q;
 741        struct cache_head       *item;
 742        char                    * buf;
 743        int                     len;
 744        int                     readers;
 745};
 746struct cache_reader {
 747        struct cache_queue      q;
 748        int                     offset; /* if non-0, we have a refcnt on next request */
 749};
 750
 751static int cache_request(struct cache_detail *detail,
 752                               struct cache_request *crq)
 753{
 754        char *bp = crq->buf;
 755        int len = PAGE_SIZE;
 756
 757        detail->cache_request(detail, crq->item, &bp, &len);
 758        if (len < 0)
 759                return -EAGAIN;
 760        return PAGE_SIZE - len;
 761}
 762
 763static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
 764                          loff_t *ppos, struct cache_detail *cd)
 765{
 766        struct cache_reader *rp = filp->private_data;
 767        struct cache_request *rq;
 768        struct inode *inode = file_inode(filp);
 769        int err;
 770
 771        if (count == 0)
 772                return 0;
 773
 774        inode_lock(inode); /* protect against multiple concurrent
 775                              * readers on this file */
 776 again:
 777        spin_lock(&queue_lock);
 778        /* need to find next request */
 779        while (rp->q.list.next != &cd->queue &&
 780               list_entry(rp->q.list.next, struct cache_queue, list)
 781               ->reader) {
 782                struct list_head *next = rp->q.list.next;
 783                list_move(&rp->q.list, next);
 784        }
 785        if (rp->q.list.next == &cd->queue) {
 786                spin_unlock(&queue_lock);
 787                inode_unlock(inode);
 788                WARN_ON_ONCE(rp->offset);
 789                return 0;
 790        }
 791        rq = container_of(rp->q.list.next, struct cache_request, q.list);
 792        WARN_ON_ONCE(rq->q.reader);
 793        if (rp->offset == 0)
 794                rq->readers++;
 795        spin_unlock(&queue_lock);
 796
 797        if (rq->len == 0) {
 798                err = cache_request(cd, rq);
 799                if (err < 0)
 800                        goto out;
 801                rq->len = err;
 802        }
 803
 804        if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
 805                err = -EAGAIN;
 806                spin_lock(&queue_lock);
 807                list_move(&rp->q.list, &rq->q.list);
 808                spin_unlock(&queue_lock);
 809        } else {
 810                if (rp->offset + count > rq->len)
 811                        count = rq->len - rp->offset;
 812                err = -EFAULT;
 813                if (copy_to_user(buf, rq->buf + rp->offset, count))
 814                        goto out;
 815                rp->offset += count;
 816                if (rp->offset >= rq->len) {
 817                        rp->offset = 0;
 818                        spin_lock(&queue_lock);
 819                        list_move(&rp->q.list, &rq->q.list);
 820                        spin_unlock(&queue_lock);
 821                }
 822                err = 0;
 823        }
 824 out:
 825        if (rp->offset == 0) {
 826                /* need to release rq */
 827                spin_lock(&queue_lock);
 828                rq->readers--;
 829                if (rq->readers == 0 &&
 830                    !test_bit(CACHE_PENDING, &rq->item->flags)) {
 831                        list_del(&rq->q.list);
 832                        spin_unlock(&queue_lock);
 833                        cache_put(rq->item, cd);
 834                        kfree(rq->buf);
 835                        kfree(rq);
 836                } else
 837                        spin_unlock(&queue_lock);
 838        }
 839        if (err == -EAGAIN)
 840                goto again;
 841        inode_unlock(inode);
 842        return err ? err :  count;
 843}
 844
 845static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
 846                                 size_t count, struct cache_detail *cd)
 847{
 848        ssize_t ret;
 849
 850        if (count == 0)
 851                return -EINVAL;
 852        if (copy_from_user(kaddr, buf, count))
 853                return -EFAULT;
 854        kaddr[count] = '\0';
 855        ret = cd->cache_parse(cd, kaddr, count);
 856        if (!ret)
 857                ret = count;
 858        return ret;
 859}
 860
 861static ssize_t cache_slow_downcall(const char __user *buf,
 862                                   size_t count, struct cache_detail *cd)
 863{
 864        static char write_buf[8192]; /* protected by queue_io_mutex */
 865        ssize_t ret = -EINVAL;
 866
 867        if (count >= sizeof(write_buf))
 868                goto out;
 869        mutex_lock(&queue_io_mutex);
 870        ret = cache_do_downcall(write_buf, buf, count, cd);
 871        mutex_unlock(&queue_io_mutex);
 872out:
 873        return ret;
 874}
 875
 876static ssize_t cache_downcall(struct address_space *mapping,
 877                              const char __user *buf,
 878                              size_t count, struct cache_detail *cd)
 879{
 880        struct page *page;
 881        char *kaddr;
 882        ssize_t ret = -ENOMEM;
 883
 884        if (count >= PAGE_SIZE)
 885                goto out_slow;
 886
 887        page = find_or_create_page(mapping, 0, GFP_KERNEL);
 888        if (!page)
 889                goto out_slow;
 890
 891        kaddr = kmap(page);
 892        ret = cache_do_downcall(kaddr, buf, count, cd);
 893        kunmap(page);
 894        unlock_page(page);
 895        put_page(page);
 896        return ret;
 897out_slow:
 898        return cache_slow_downcall(buf, count, cd);
 899}
 900
 901static ssize_t cache_write(struct file *filp, const char __user *buf,
 902                           size_t count, loff_t *ppos,
 903                           struct cache_detail *cd)
 904{
 905        struct address_space *mapping = filp->f_mapping;
 906        struct inode *inode = file_inode(filp);
 907        ssize_t ret = -EINVAL;
 908
 909        if (!cd->cache_parse)
 910                goto out;
 911
 912        inode_lock(inode);
 913        ret = cache_downcall(mapping, buf, count, cd);
 914        inode_unlock(inode);
 915out:
 916        return ret;
 917}
 918
 919static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
 920
 921static unsigned int cache_poll(struct file *filp, poll_table *wait,
 922                               struct cache_detail *cd)
 923{
 924        unsigned int mask;
 925        struct cache_reader *rp = filp->private_data;
 926        struct cache_queue *cq;
 927
 928        poll_wait(filp, &queue_wait, wait);
 929
 930        /* alway allow write */
 931        mask = POLLOUT | POLLWRNORM;
 932
 933        if (!rp)
 934                return mask;
 935
 936        spin_lock(&queue_lock);
 937
 938        for (cq= &rp->q; &cq->list != &cd->queue;
 939             cq = list_entry(cq->list.next, struct cache_queue, list))
 940                if (!cq->reader) {
 941                        mask |= POLLIN | POLLRDNORM;
 942                        break;
 943                }
 944        spin_unlock(&queue_lock);
 945        return mask;
 946}
 947
 948static int cache_ioctl(struct inode *ino, struct file *filp,
 949                       unsigned int cmd, unsigned long arg,
 950                       struct cache_detail *cd)
 951{
 952        int len = 0;
 953        struct cache_reader *rp = filp->private_data;
 954        struct cache_queue *cq;
 955
 956        if (cmd != FIONREAD || !rp)
 957                return -EINVAL;
 958
 959        spin_lock(&queue_lock);
 960
 961        /* only find the length remaining in current request,
 962         * or the length of the next request
 963         */
 964        for (cq= &rp->q; &cq->list != &cd->queue;
 965             cq = list_entry(cq->list.next, struct cache_queue, list))
 966                if (!cq->reader) {
 967                        struct cache_request *cr =
 968                                container_of(cq, struct cache_request, q);
 969                        len = cr->len - rp->offset;
 970                        break;
 971                }
 972        spin_unlock(&queue_lock);
 973
 974        return put_user(len, (int __user *)arg);
 975}
 976
 977static int cache_open(struct inode *inode, struct file *filp,
 978                      struct cache_detail *cd)
 979{
 980        struct cache_reader *rp = NULL;
 981
 982        if (!cd || !try_module_get(cd->owner))
 983                return -EACCES;
 984        nonseekable_open(inode, filp);
 985        if (filp->f_mode & FMODE_READ) {
 986                rp = kmalloc(sizeof(*rp), GFP_KERNEL);
 987                if (!rp) {
 988                        module_put(cd->owner);
 989                        return -ENOMEM;
 990                }
 991                rp->offset = 0;
 992                rp->q.reader = 1;
 993                atomic_inc(&cd->readers);
 994                spin_lock(&queue_lock);
 995                list_add(&rp->q.list, &cd->queue);
 996                spin_unlock(&queue_lock);
 997        }
 998        filp->private_data = rp;
 999        return 0;
1000}
1001
1002static int cache_release(struct inode *inode, struct file *filp,
1003                         struct cache_detail *cd)
1004{
1005        struct cache_reader *rp = filp->private_data;
1006
1007        if (rp) {
1008                spin_lock(&queue_lock);
1009                if (rp->offset) {
1010                        struct cache_queue *cq;
1011                        for (cq= &rp->q; &cq->list != &cd->queue;
1012                             cq = list_entry(cq->list.next, struct cache_queue, list))
1013                                if (!cq->reader) {
1014                                        container_of(cq, struct cache_request, q)
1015                                                ->readers--;
1016                                        break;
1017                                }
1018                        rp->offset = 0;
1019                }
1020                list_del(&rp->q.list);
1021                spin_unlock(&queue_lock);
1022
1023                filp->private_data = NULL;
1024                kfree(rp);
1025
1026                cd->last_close = seconds_since_boot();
1027                atomic_dec(&cd->readers);
1028        }
1029        module_put(cd->owner);
1030        return 0;
1031}
1032
1033
1034
1035static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1036{
1037        struct cache_queue *cq, *tmp;
1038        struct cache_request *cr;
1039        struct list_head dequeued;
1040
1041        INIT_LIST_HEAD(&dequeued);
1042        spin_lock(&queue_lock);
1043        list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1044                if (!cq->reader) {
1045                        cr = container_of(cq, struct cache_request, q);
1046                        if (cr->item != ch)
1047                                continue;
1048                        if (test_bit(CACHE_PENDING, &ch->flags))
1049                                /* Lost a race and it is pending again */
1050                                break;
1051                        if (cr->readers != 0)
1052                                continue;
1053                        list_move(&cr->q.list, &dequeued);
1054                }
1055        spin_unlock(&queue_lock);
1056        while (!list_empty(&dequeued)) {
1057                cr = list_entry(dequeued.next, struct cache_request, q.list);
1058                list_del(&cr->q.list);
1059                cache_put(cr->item, detail);
1060                kfree(cr->buf);
1061                kfree(cr);
1062        }
1063}
1064
1065/*
1066 * Support routines for text-based upcalls.
1067 * Fields are separated by spaces.
1068 * Fields are either mangled to quote space tab newline slosh with slosh
1069 * or a hexified with a leading \x
1070 * Record is terminated with newline.
1071 *
1072 */
1073
1074void qword_add(char **bpp, int *lp, char *str)
1075{
1076        char *bp = *bpp;
1077        int len = *lp;
1078        int ret;
1079
1080        if (len < 0) return;
1081
1082        ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1083        if (ret >= len) {
1084                bp += len;
1085                len = -1;
1086        } else {
1087                bp += ret;
1088                len -= ret;
1089                *bp++ = ' ';
1090                len--;
1091        }
1092        *bpp = bp;
1093        *lp = len;
1094}
1095EXPORT_SYMBOL_GPL(qword_add);
1096
1097void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1098{
1099        char *bp = *bpp;
1100        int len = *lp;
1101
1102        if (len < 0) return;
1103
1104        if (len > 2) {
1105                *bp++ = '\\';
1106                *bp++ = 'x';
1107                len -= 2;
1108                while (blen && len >= 2) {
1109                        bp = hex_byte_pack(bp, *buf++);
1110                        len -= 2;
1111                        blen--;
1112                }
1113        }
1114        if (blen || len<1) len = -1;
1115        else {
1116                *bp++ = ' ';
1117                len--;
1118        }
1119        *bpp = bp;
1120        *lp = len;
1121}
1122EXPORT_SYMBOL_GPL(qword_addhex);
1123
1124static void warn_no_listener(struct cache_detail *detail)
1125{
1126        if (detail->last_warn != detail->last_close) {
1127                detail->last_warn = detail->last_close;
1128                if (detail->warn_no_listener)
1129                        detail->warn_no_listener(detail, detail->last_close != 0);
1130        }
1131}
1132
1133static bool cache_listeners_exist(struct cache_detail *detail)
1134{
1135        if (atomic_read(&detail->readers))
1136                return true;
1137        if (detail->last_close == 0)
1138                /* This cache was never opened */
1139                return false;
1140        if (detail->last_close < seconds_since_boot() - 30)
1141                /*
1142                 * We allow for the possibility that someone might
1143                 * restart a userspace daemon without restarting the
1144                 * server; but after 30 seconds, we give up.
1145                 */
1146                 return false;
1147        return true;
1148}
1149
1150/*
1151 * register an upcall request to user-space and queue it up for read() by the
1152 * upcall daemon.
1153 *
1154 * Each request is at most one page long.
1155 */
1156int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1157{
1158
1159        char *buf;
1160        struct cache_request *crq;
1161        int ret = 0;
1162
1163        if (!detail->cache_request)
1164                return -EINVAL;
1165
1166        if (!cache_listeners_exist(detail)) {
1167                warn_no_listener(detail);
1168                return -EINVAL;
1169        }
1170        if (test_bit(CACHE_CLEANED, &h->flags))
1171                /* Too late to make an upcall */
1172                return -EAGAIN;
1173
1174        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1175        if (!buf)
1176                return -EAGAIN;
1177
1178        crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1179        if (!crq) {
1180                kfree(buf);
1181                return -EAGAIN;
1182        }
1183
1184        crq->q.reader = 0;
1185        crq->buf = buf;
1186        crq->len = 0;
1187        crq->readers = 0;
1188        spin_lock(&queue_lock);
1189        if (test_bit(CACHE_PENDING, &h->flags)) {
1190                crq->item = cache_get(h);
1191                list_add_tail(&crq->q.list, &detail->queue);
1192        } else
1193                /* Lost a race, no longer PENDING, so don't enqueue */
1194                ret = -EAGAIN;
1195        spin_unlock(&queue_lock);
1196        wake_up(&queue_wait);
1197        if (ret == -EAGAIN) {
1198                kfree(buf);
1199                kfree(crq);
1200        }
1201        return ret;
1202}
1203EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1204
1205/*
1206 * parse a message from user-space and pass it
1207 * to an appropriate cache
1208 * Messages are, like requests, separated into fields by
1209 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1210 *
1211 * Message is
1212 *   reply cachename expiry key ... content....
1213 *
1214 * key and content are both parsed by cache
1215 */
1216
1217int qword_get(char **bpp, char *dest, int bufsize)
1218{
1219        /* return bytes copied, or -1 on error */
1220        char *bp = *bpp;
1221        int len = 0;
1222
1223        while (*bp == ' ') bp++;
1224
1225        if (bp[0] == '\\' && bp[1] == 'x') {
1226                /* HEX STRING */
1227                bp += 2;
1228                while (len < bufsize - 1) {
1229                        int h, l;
1230
1231                        h = hex_to_bin(bp[0]);
1232                        if (h < 0)
1233                                break;
1234
1235                        l = hex_to_bin(bp[1]);
1236                        if (l < 0)
1237                                break;
1238
1239                        *dest++ = (h << 4) | l;
1240                        bp += 2;
1241                        len++;
1242                }
1243        } else {
1244                /* text with \nnn octal quoting */
1245                while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1246                        if (*bp == '\\' &&
1247                            isodigit(bp[1]) && (bp[1] <= '3') &&
1248                            isodigit(bp[2]) &&
1249                            isodigit(bp[3])) {
1250                                int byte = (*++bp -'0');
1251                                bp++;
1252                                byte = (byte << 3) | (*bp++ - '0');
1253                                byte = (byte << 3) | (*bp++ - '0');
1254                                *dest++ = byte;
1255                                len++;
1256                        } else {
1257                                *dest++ = *bp++;
1258                                len++;
1259                        }
1260                }
1261        }
1262
1263        if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1264                return -1;
1265        while (*bp == ' ') bp++;
1266        *bpp = bp;
1267        *dest = '\0';
1268        return len;
1269}
1270EXPORT_SYMBOL_GPL(qword_get);
1271
1272
1273/*
1274 * support /proc/sunrpc/cache/$CACHENAME/content
1275 * as a seqfile.
1276 * We call ->cache_show passing NULL for the item to
1277 * get a header, then pass each real item in the cache
1278 */
1279
1280void *cache_seq_start(struct seq_file *m, loff_t *pos)
1281        __acquires(cd->hash_lock)
1282{
1283        loff_t n = *pos;
1284        unsigned int hash, entry;
1285        struct cache_head *ch;
1286        struct cache_detail *cd = m->private;
1287
1288        read_lock(&cd->hash_lock);
1289        if (!n--)
1290                return SEQ_START_TOKEN;
1291        hash = n >> 32;
1292        entry = n & ((1LL<<32) - 1);
1293
1294        hlist_for_each_entry(ch, &cd->hash_table[hash], cache_list)
1295                if (!entry--)
1296                        return ch;
1297        n &= ~((1LL<<32) - 1);
1298        do {
1299                hash++;
1300                n += 1LL<<32;
1301        } while(hash < cd->hash_size &&
1302                hlist_empty(&cd->hash_table[hash]));
1303        if (hash >= cd->hash_size)
1304                return NULL;
1305        *pos = n+1;
1306        return hlist_entry_safe(cd->hash_table[hash].first,
1307                                struct cache_head, cache_list);
1308}
1309EXPORT_SYMBOL_GPL(cache_seq_start);
1310
1311void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1312{
1313        struct cache_head *ch = p;
1314        int hash = (*pos >> 32);
1315        struct cache_detail *cd = m->private;
1316
1317        if (p == SEQ_START_TOKEN)
1318                hash = 0;
1319        else if (ch->cache_list.next == NULL) {
1320                hash++;
1321                *pos += 1LL<<32;
1322        } else {
1323                ++*pos;
1324                return hlist_entry_safe(ch->cache_list.next,
1325                                        struct cache_head, cache_list);
1326        }
1327        *pos &= ~((1LL<<32) - 1);
1328        while (hash < cd->hash_size &&
1329               hlist_empty(&cd->hash_table[hash])) {
1330                hash++;
1331                *pos += 1LL<<32;
1332        }
1333        if (hash >= cd->hash_size)
1334                return NULL;
1335        ++*pos;
1336        return hlist_entry_safe(cd->hash_table[hash].first,
1337                                struct cache_head, cache_list);
1338}
1339EXPORT_SYMBOL_GPL(cache_seq_next);
1340
1341void cache_seq_stop(struct seq_file *m, void *p)
1342        __releases(cd->hash_lock)
1343{
1344        struct cache_detail *cd = m->private;
1345        read_unlock(&cd->hash_lock);
1346}
1347EXPORT_SYMBOL_GPL(cache_seq_stop);
1348
1349static int c_show(struct seq_file *m, void *p)
1350{
1351        struct cache_head *cp = p;
1352        struct cache_detail *cd = m->private;
1353
1354        if (p == SEQ_START_TOKEN)
1355                return cd->cache_show(m, cd, NULL);
1356
1357        ifdebug(CACHE)
1358                seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1359                           convert_to_wallclock(cp->expiry_time),
1360                           atomic_read(&cp->ref.refcount), cp->flags);
1361        cache_get(cp);
1362        if (cache_check(cd, cp, NULL))
1363                /* cache_check does a cache_put on failure */
1364                seq_printf(m, "# ");
1365        else {
1366                if (cache_is_expired(cd, cp))
1367                        seq_printf(m, "# ");
1368                cache_put(cp, cd);
1369        }
1370
1371        return cd->cache_show(m, cd, cp);
1372}
1373
1374static const struct seq_operations cache_content_op = {
1375        .start  = cache_seq_start,
1376        .next   = cache_seq_next,
1377        .stop   = cache_seq_stop,
1378        .show   = c_show,
1379};
1380
1381static int content_open(struct inode *inode, struct file *file,
1382                        struct cache_detail *cd)
1383{
1384        struct seq_file *seq;
1385        int err;
1386
1387        if (!cd || !try_module_get(cd->owner))
1388                return -EACCES;
1389
1390        err = seq_open(file, &cache_content_op);
1391        if (err) {
1392                module_put(cd->owner);
1393                return err;
1394        }
1395
1396        seq = file->private_data;
1397        seq->private = cd;
1398        return 0;
1399}
1400
1401static int content_release(struct inode *inode, struct file *file,
1402                struct cache_detail *cd)
1403{
1404        int ret = seq_release(inode, file);
1405        module_put(cd->owner);
1406        return ret;
1407}
1408
1409static int open_flush(struct inode *inode, struct file *file,
1410                        struct cache_detail *cd)
1411{
1412        if (!cd || !try_module_get(cd->owner))
1413                return -EACCES;
1414        return nonseekable_open(inode, file);
1415}
1416
1417static int release_flush(struct inode *inode, struct file *file,
1418                        struct cache_detail *cd)
1419{
1420        module_put(cd->owner);
1421        return 0;
1422}
1423
1424static ssize_t read_flush(struct file *file, char __user *buf,
1425                          size_t count, loff_t *ppos,
1426                          struct cache_detail *cd)
1427{
1428        char tbuf[22];
1429        unsigned long p = *ppos;
1430        size_t len;
1431
1432        snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1433        len = strlen(tbuf);
1434        if (p >= len)
1435                return 0;
1436        len -= p;
1437        if (len > count)
1438                len = count;
1439        if (copy_to_user(buf, (void*)(tbuf+p), len))
1440                return -EFAULT;
1441        *ppos += len;
1442        return len;
1443}
1444
1445static ssize_t write_flush(struct file *file, const char __user *buf,
1446                           size_t count, loff_t *ppos,
1447                           struct cache_detail *cd)
1448{
1449        char tbuf[20];
1450        char *bp, *ep;
1451        time_t then, now;
1452
1453        if (*ppos || count > sizeof(tbuf)-1)
1454                return -EINVAL;
1455        if (copy_from_user(tbuf, buf, count))
1456                return -EFAULT;
1457        tbuf[count] = 0;
1458        simple_strtoul(tbuf, &ep, 0);
1459        if (*ep && *ep != '\n')
1460                return -EINVAL;
1461
1462        bp = tbuf;
1463        then = get_expiry(&bp);
1464        now = seconds_since_boot();
1465        cd->nextcheck = now;
1466        /* Can only set flush_time to 1 second beyond "now", or
1467         * possibly 1 second beyond flushtime.  This is because
1468         * flush_time never goes backwards so it mustn't get too far
1469         * ahead of time.
1470         */
1471        if (then >= now) {
1472                /* Want to flush everything, so behave like cache_purge() */
1473                if (cd->flush_time >= now)
1474                        now = cd->flush_time + 1;
1475                then = now;
1476        }
1477
1478        cd->flush_time = then;
1479        cache_flush();
1480
1481        *ppos += count;
1482        return count;
1483}
1484
1485static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1486                                 size_t count, loff_t *ppos)
1487{
1488        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1489
1490        return cache_read(filp, buf, count, ppos, cd);
1491}
1492
1493static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1494                                  size_t count, loff_t *ppos)
1495{
1496        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1497
1498        return cache_write(filp, buf, count, ppos, cd);
1499}
1500
1501static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1502{
1503        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1504
1505        return cache_poll(filp, wait, cd);
1506}
1507
1508static long cache_ioctl_procfs(struct file *filp,
1509                               unsigned int cmd, unsigned long arg)
1510{
1511        struct inode *inode = file_inode(filp);
1512        struct cache_detail *cd = PDE_DATA(inode);
1513
1514        return cache_ioctl(inode, filp, cmd, arg, cd);
1515}
1516
1517static int cache_open_procfs(struct inode *inode, struct file *filp)
1518{
1519        struct cache_detail *cd = PDE_DATA(inode);
1520
1521        return cache_open(inode, filp, cd);
1522}
1523
1524static int cache_release_procfs(struct inode *inode, struct file *filp)
1525{
1526        struct cache_detail *cd = PDE_DATA(inode);
1527
1528        return cache_release(inode, filp, cd);
1529}
1530
1531static const struct file_operations cache_file_operations_procfs = {
1532        .owner          = THIS_MODULE,
1533        .llseek         = no_llseek,
1534        .read           = cache_read_procfs,
1535        .write          = cache_write_procfs,
1536        .poll           = cache_poll_procfs,
1537        .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1538        .open           = cache_open_procfs,
1539        .release        = cache_release_procfs,
1540};
1541
1542static int content_open_procfs(struct inode *inode, struct file *filp)
1543{
1544        struct cache_detail *cd = PDE_DATA(inode);
1545
1546        return content_open(inode, filp, cd);
1547}
1548
1549static int content_release_procfs(struct inode *inode, struct file *filp)
1550{
1551        struct cache_detail *cd = PDE_DATA(inode);
1552
1553        return content_release(inode, filp, cd);
1554}
1555
1556static const struct file_operations content_file_operations_procfs = {
1557        .open           = content_open_procfs,
1558        .read           = seq_read,
1559        .llseek         = seq_lseek,
1560        .release        = content_release_procfs,
1561};
1562
1563static int open_flush_procfs(struct inode *inode, struct file *filp)
1564{
1565        struct cache_detail *cd = PDE_DATA(inode);
1566
1567        return open_flush(inode, filp, cd);
1568}
1569
1570static int release_flush_procfs(struct inode *inode, struct file *filp)
1571{
1572        struct cache_detail *cd = PDE_DATA(inode);
1573
1574        return release_flush(inode, filp, cd);
1575}
1576
1577static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1578                            size_t count, loff_t *ppos)
1579{
1580        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1581
1582        return read_flush(filp, buf, count, ppos, cd);
1583}
1584
1585static ssize_t write_flush_procfs(struct file *filp,
1586                                  const char __user *buf,
1587                                  size_t count, loff_t *ppos)
1588{
1589        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1590
1591        return write_flush(filp, buf, count, ppos, cd);
1592}
1593
1594static const struct file_operations cache_flush_operations_procfs = {
1595        .open           = open_flush_procfs,
1596        .read           = read_flush_procfs,
1597        .write          = write_flush_procfs,
1598        .release        = release_flush_procfs,
1599        .llseek         = no_llseek,
1600};
1601
1602static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1603{
1604        struct sunrpc_net *sn;
1605
1606        if (cd->u.procfs.proc_ent == NULL)
1607                return;
1608        if (cd->u.procfs.flush_ent)
1609                remove_proc_entry("flush", cd->u.procfs.proc_ent);
1610        if (cd->u.procfs.channel_ent)
1611                remove_proc_entry("channel", cd->u.procfs.proc_ent);
1612        if (cd->u.procfs.content_ent)
1613                remove_proc_entry("content", cd->u.procfs.proc_ent);
1614        cd->u.procfs.proc_ent = NULL;
1615        sn = net_generic(net, sunrpc_net_id);
1616        remove_proc_entry(cd->name, sn->proc_net_rpc);
1617}
1618
1619#ifdef CONFIG_PROC_FS
1620static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1621{
1622        struct proc_dir_entry *p;
1623        struct sunrpc_net *sn;
1624
1625        sn = net_generic(net, sunrpc_net_id);
1626        cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1627        if (cd->u.procfs.proc_ent == NULL)
1628                goto out_nomem;
1629        cd->u.procfs.channel_ent = NULL;
1630        cd->u.procfs.content_ent = NULL;
1631
1632        p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1633                             cd->u.procfs.proc_ent,
1634                             &cache_flush_operations_procfs, cd);
1635        cd->u.procfs.flush_ent = p;
1636        if (p == NULL)
1637                goto out_nomem;
1638
1639        if (cd->cache_request || cd->cache_parse) {
1640                p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1641                                     cd->u.procfs.proc_ent,
1642                                     &cache_file_operations_procfs, cd);
1643                cd->u.procfs.channel_ent = p;
1644                if (p == NULL)
1645                        goto out_nomem;
1646        }
1647        if (cd->cache_show) {
1648                p = proc_create_data("content", S_IFREG|S_IRUSR,
1649                                cd->u.procfs.proc_ent,
1650                                &content_file_operations_procfs, cd);
1651                cd->u.procfs.content_ent = p;
1652                if (p == NULL)
1653                        goto out_nomem;
1654        }
1655        return 0;
1656out_nomem:
1657        remove_cache_proc_entries(cd, net);
1658        return -ENOMEM;
1659}
1660#else /* CONFIG_PROC_FS */
1661static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1662{
1663        return 0;
1664}
1665#endif
1666
1667void __init cache_initialize(void)
1668{
1669        INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1670}
1671
1672int cache_register_net(struct cache_detail *cd, struct net *net)
1673{
1674        int ret;
1675
1676        sunrpc_init_cache_detail(cd);
1677        ret = create_cache_proc_entries(cd, net);
1678        if (ret)
1679                sunrpc_destroy_cache_detail(cd);
1680        return ret;
1681}
1682EXPORT_SYMBOL_GPL(cache_register_net);
1683
1684void cache_unregister_net(struct cache_detail *cd, struct net *net)
1685{
1686        remove_cache_proc_entries(cd, net);
1687        sunrpc_destroy_cache_detail(cd);
1688}
1689EXPORT_SYMBOL_GPL(cache_unregister_net);
1690
1691struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1692{
1693        struct cache_detail *cd;
1694        int i;
1695
1696        cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1697        if (cd == NULL)
1698                return ERR_PTR(-ENOMEM);
1699
1700        cd->hash_table = kzalloc(cd->hash_size * sizeof(struct hlist_head),
1701                                 GFP_KERNEL);
1702        if (cd->hash_table == NULL) {
1703                kfree(cd);
1704                return ERR_PTR(-ENOMEM);
1705        }
1706
1707        for (i = 0; i < cd->hash_size; i++)
1708                INIT_HLIST_HEAD(&cd->hash_table[i]);
1709        cd->net = net;
1710        return cd;
1711}
1712EXPORT_SYMBOL_GPL(cache_create_net);
1713
1714void cache_destroy_net(struct cache_detail *cd, struct net *net)
1715{
1716        kfree(cd->hash_table);
1717        kfree(cd);
1718}
1719EXPORT_SYMBOL_GPL(cache_destroy_net);
1720
1721static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1722                                 size_t count, loff_t *ppos)
1723{
1724        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1725
1726        return cache_read(filp, buf, count, ppos, cd);
1727}
1728
1729static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1730                                  size_t count, loff_t *ppos)
1731{
1732        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1733
1734        return cache_write(filp, buf, count, ppos, cd);
1735}
1736
1737static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1738{
1739        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1740
1741        return cache_poll(filp, wait, cd);
1742}
1743
1744static long cache_ioctl_pipefs(struct file *filp,
1745                              unsigned int cmd, unsigned long arg)
1746{
1747        struct inode *inode = file_inode(filp);
1748        struct cache_detail *cd = RPC_I(inode)->private;
1749
1750        return cache_ioctl(inode, filp, cmd, arg, cd);
1751}
1752
1753static int cache_open_pipefs(struct inode *inode, struct file *filp)
1754{
1755        struct cache_detail *cd = RPC_I(inode)->private;
1756
1757        return cache_open(inode, filp, cd);
1758}
1759
1760static int cache_release_pipefs(struct inode *inode, struct file *filp)
1761{
1762        struct cache_detail *cd = RPC_I(inode)->private;
1763
1764        return cache_release(inode, filp, cd);
1765}
1766
1767const struct file_operations cache_file_operations_pipefs = {
1768        .owner          = THIS_MODULE,
1769        .llseek         = no_llseek,
1770        .read           = cache_read_pipefs,
1771        .write          = cache_write_pipefs,
1772        .poll           = cache_poll_pipefs,
1773        .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1774        .open           = cache_open_pipefs,
1775        .release        = cache_release_pipefs,
1776};
1777
1778static int content_open_pipefs(struct inode *inode, struct file *filp)
1779{
1780        struct cache_detail *cd = RPC_I(inode)->private;
1781
1782        return content_open(inode, filp, cd);
1783}
1784
1785static int content_release_pipefs(struct inode *inode, struct file *filp)
1786{
1787        struct cache_detail *cd = RPC_I(inode)->private;
1788
1789        return content_release(inode, filp, cd);
1790}
1791
1792const struct file_operations content_file_operations_pipefs = {
1793        .open           = content_open_pipefs,
1794        .read           = seq_read,
1795        .llseek         = seq_lseek,
1796        .release        = content_release_pipefs,
1797};
1798
1799static int open_flush_pipefs(struct inode *inode, struct file *filp)
1800{
1801        struct cache_detail *cd = RPC_I(inode)->private;
1802
1803        return open_flush(inode, filp, cd);
1804}
1805
1806static int release_flush_pipefs(struct inode *inode, struct file *filp)
1807{
1808        struct cache_detail *cd = RPC_I(inode)->private;
1809
1810        return release_flush(inode, filp, cd);
1811}
1812
1813static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1814                            size_t count, loff_t *ppos)
1815{
1816        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1817
1818        return read_flush(filp, buf, count, ppos, cd);
1819}
1820
1821static ssize_t write_flush_pipefs(struct file *filp,
1822                                  const char __user *buf,
1823                                  size_t count, loff_t *ppos)
1824{
1825        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1826
1827        return write_flush(filp, buf, count, ppos, cd);
1828}
1829
1830const struct file_operations cache_flush_operations_pipefs = {
1831        .open           = open_flush_pipefs,
1832        .read           = read_flush_pipefs,
1833        .write          = write_flush_pipefs,
1834        .release        = release_flush_pipefs,
1835        .llseek         = no_llseek,
1836};
1837
1838int sunrpc_cache_register_pipefs(struct dentry *parent,
1839                                 const char *name, umode_t umode,
1840                                 struct cache_detail *cd)
1841{
1842        struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1843        if (IS_ERR(dir))
1844                return PTR_ERR(dir);
1845        cd->u.pipefs.dir = dir;
1846        return 0;
1847}
1848EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1849
1850void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1851{
1852        rpc_remove_cache_dir(cd->u.pipefs.dir);
1853        cd->u.pipefs.dir = NULL;
1854}
1855EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1856
1857