linux/net/sunrpc/sched.c
<<
>>
Prefs
   1/*
   2 * linux/net/sunrpc/sched.c
   3 *
   4 * Scheduling for synchronous and asynchronous RPC requests.
   5 *
   6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
   7 *
   8 * TCP NFS related read + write fixes
   9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  10 */
  11
  12#include <linux/module.h>
  13
  14#include <linux/sched.h>
  15#include <linux/interrupt.h>
  16#include <linux/slab.h>
  17#include <linux/mempool.h>
  18#include <linux/smp.h>
  19#include <linux/spinlock.h>
  20#include <linux/mutex.h>
  21#include <linux/freezer.h>
  22
  23#include <linux/sunrpc/clnt.h>
  24
  25#include "sunrpc.h"
  26
  27#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  28#define RPCDBG_FACILITY         RPCDBG_SCHED
  29#endif
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/sunrpc.h>
  33
  34/*
  35 * RPC slabs and memory pools
  36 */
  37#define RPC_BUFFER_MAXSIZE      (2048)
  38#define RPC_BUFFER_POOLSIZE     (8)
  39#define RPC_TASK_POOLSIZE       (8)
  40static struct kmem_cache        *rpc_task_slabp __read_mostly;
  41static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
  42static mempool_t        *rpc_task_mempool __read_mostly;
  43static mempool_t        *rpc_buffer_mempool __read_mostly;
  44
  45static void                     rpc_async_schedule(struct work_struct *);
  46static void                      rpc_release_task(struct rpc_task *task);
  47static void __rpc_queue_timer_fn(unsigned long ptr);
  48
  49/*
  50 * RPC tasks sit here while waiting for conditions to improve.
  51 */
  52static struct rpc_wait_queue delay_queue;
  53
  54/*
  55 * rpciod-related stuff
  56 */
  57struct workqueue_struct *rpciod_workqueue __read_mostly;
  58struct workqueue_struct *xprtiod_workqueue __read_mostly;
  59
  60/*
  61 * Disable the timer for a given RPC task. Should be called with
  62 * queue->lock and bh_disabled in order to avoid races within
  63 * rpc_run_timer().
  64 */
  65static void
  66__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  67{
  68        if (task->tk_timeout == 0)
  69                return;
  70        dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  71        task->tk_timeout = 0;
  72        list_del(&task->u.tk_wait.timer_list);
  73        if (list_empty(&queue->timer_list.list))
  74                del_timer(&queue->timer_list.timer);
  75}
  76
  77static void
  78rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  79{
  80        queue->timer_list.expires = expires;
  81        mod_timer(&queue->timer_list.timer, expires);
  82}
  83
  84/*
  85 * Set up a timer for the current task.
  86 */
  87static void
  88__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  89{
  90        if (!task->tk_timeout)
  91                return;
  92
  93        dprintk("RPC: %5u setting alarm for %u ms\n",
  94                task->tk_pid, jiffies_to_msecs(task->tk_timeout));
  95
  96        task->u.tk_wait.expires = jiffies + task->tk_timeout;
  97        if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
  98                rpc_set_queue_timer(queue, task->u.tk_wait.expires);
  99        list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
 100}
 101
 102static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
 103{
 104        struct list_head *q = &queue->tasks[queue->priority];
 105        struct rpc_task *task;
 106
 107        if (!list_empty(q)) {
 108                task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 109                if (task->tk_owner == queue->owner)
 110                        list_move_tail(&task->u.tk_wait.list, q);
 111        }
 112}
 113
 114static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 115{
 116        if (queue->priority != priority) {
 117                /* Fairness: rotate the list when changing priority */
 118                rpc_rotate_queue_owner(queue);
 119                queue->priority = priority;
 120        }
 121}
 122
 123static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
 124{
 125        queue->owner = pid;
 126        queue->nr = RPC_BATCH_COUNT;
 127}
 128
 129static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 130{
 131        rpc_set_waitqueue_priority(queue, queue->maxpriority);
 132        rpc_set_waitqueue_owner(queue, 0);
 133}
 134
 135/*
 136 * Add new request to a priority queue.
 137 */
 138static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
 139                struct rpc_task *task,
 140                unsigned char queue_priority)
 141{
 142        struct list_head *q;
 143        struct rpc_task *t;
 144
 145        INIT_LIST_HEAD(&task->u.tk_wait.links);
 146        if (unlikely(queue_priority > queue->maxpriority))
 147                queue_priority = queue->maxpriority;
 148        if (queue_priority > queue->priority)
 149                rpc_set_waitqueue_priority(queue, queue_priority);
 150        q = &queue->tasks[queue_priority];
 151        list_for_each_entry(t, q, u.tk_wait.list) {
 152                if (t->tk_owner == task->tk_owner) {
 153                        list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
 154                        return;
 155                }
 156        }
 157        list_add_tail(&task->u.tk_wait.list, q);
 158}
 159
 160/*
 161 * Add new request to wait queue.
 162 *
 163 * Swapper tasks always get inserted at the head of the queue.
 164 * This should avoid many nasty memory deadlocks and hopefully
 165 * improve overall performance.
 166 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 167 */
 168static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
 169                struct rpc_task *task,
 170                unsigned char queue_priority)
 171{
 172        WARN_ON_ONCE(RPC_IS_QUEUED(task));
 173        if (RPC_IS_QUEUED(task))
 174                return;
 175
 176        if (RPC_IS_PRIORITY(queue))
 177                __rpc_add_wait_queue_priority(queue, task, queue_priority);
 178        else if (RPC_IS_SWAPPER(task))
 179                list_add(&task->u.tk_wait.list, &queue->tasks[0]);
 180        else
 181                list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 182        task->tk_waitqueue = queue;
 183        queue->qlen++;
 184        /* barrier matches the read in rpc_wake_up_task_queue_locked() */
 185        smp_wmb();
 186        rpc_set_queued(task);
 187
 188        dprintk("RPC: %5u added to queue %p \"%s\"\n",
 189                        task->tk_pid, queue, rpc_qname(queue));
 190}
 191
 192/*
 193 * Remove request from a priority queue.
 194 */
 195static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 196{
 197        struct rpc_task *t;
 198
 199        if (!list_empty(&task->u.tk_wait.links)) {
 200                t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
 201                list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
 202                list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
 203        }
 204}
 205
 206/*
 207 * Remove request from queue.
 208 * Note: must be called with spin lock held.
 209 */
 210static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 211{
 212        __rpc_disable_timer(queue, task);
 213        if (RPC_IS_PRIORITY(queue))
 214                __rpc_remove_wait_queue_priority(task);
 215        list_del(&task->u.tk_wait.list);
 216        queue->qlen--;
 217        dprintk("RPC: %5u removed from queue %p \"%s\"\n",
 218                        task->tk_pid, queue, rpc_qname(queue));
 219}
 220
 221static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
 222{
 223        int i;
 224
 225        spin_lock_init(&queue->lock);
 226        for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 227                INIT_LIST_HEAD(&queue->tasks[i]);
 228        queue->maxpriority = nr_queues - 1;
 229        rpc_reset_waitqueue_priority(queue);
 230        queue->qlen = 0;
 231        setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
 232        INIT_LIST_HEAD(&queue->timer_list.list);
 233        rpc_assign_waitqueue_name(queue, qname);
 234}
 235
 236void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 237{
 238        __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
 239}
 240EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
 241
 242void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 243{
 244        __rpc_init_priority_wait_queue(queue, qname, 1);
 245}
 246EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
 247
 248void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
 249{
 250        del_timer_sync(&queue->timer_list.timer);
 251}
 252EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
 253
 254static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
 255{
 256        freezable_schedule_unsafe();
 257        if (signal_pending_state(mode, current))
 258                return -ERESTARTSYS;
 259        return 0;
 260}
 261
 262#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
 263static void rpc_task_set_debuginfo(struct rpc_task *task)
 264{
 265        static atomic_t rpc_pid;
 266
 267        task->tk_pid = atomic_inc_return(&rpc_pid);
 268}
 269#else
 270static inline void rpc_task_set_debuginfo(struct rpc_task *task)
 271{
 272}
 273#endif
 274
 275static void rpc_set_active(struct rpc_task *task)
 276{
 277        trace_rpc_task_begin(task->tk_client, task, NULL);
 278
 279        rpc_task_set_debuginfo(task);
 280        set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 281}
 282
 283/*
 284 * Mark an RPC call as having completed by clearing the 'active' bit
 285 * and then waking up all tasks that were sleeping.
 286 */
 287static int rpc_complete_task(struct rpc_task *task)
 288{
 289        void *m = &task->tk_runstate;
 290        wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
 291        struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
 292        unsigned long flags;
 293        int ret;
 294
 295        trace_rpc_task_complete(task->tk_client, task, NULL);
 296
 297        spin_lock_irqsave(&wq->lock, flags);
 298        clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 299        ret = atomic_dec_and_test(&task->tk_count);
 300        if (waitqueue_active(wq))
 301                __wake_up_locked_key(wq, TASK_NORMAL, &k);
 302        spin_unlock_irqrestore(&wq->lock, flags);
 303        return ret;
 304}
 305
 306/*
 307 * Allow callers to wait for completion of an RPC call
 308 *
 309 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 310 * to enforce taking of the wq->lock and hence avoid races with
 311 * rpc_complete_task().
 312 */
 313int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
 314{
 315        if (action == NULL)
 316                action = rpc_wait_bit_killable;
 317        return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 318                        action, TASK_KILLABLE);
 319}
 320EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
 321
 322/*
 323 * Make an RPC task runnable.
 324 *
 325 * Note: If the task is ASYNC, and is being made runnable after sitting on an
 326 * rpc_wait_queue, this must be called with the queue spinlock held to protect
 327 * the wait queue operation.
 328 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
 329 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
 330 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
 331 * the RPC_TASK_RUNNING flag.
 332 */
 333static void rpc_make_runnable(struct workqueue_struct *wq,
 334                struct rpc_task *task)
 335{
 336        bool need_wakeup = !rpc_test_and_set_running(task);
 337
 338        rpc_clear_queued(task);
 339        if (!need_wakeup)
 340                return;
 341        if (RPC_IS_ASYNC(task)) {
 342                INIT_WORK(&task->u.tk_work, rpc_async_schedule);
 343                queue_work(wq, &task->u.tk_work);
 344        } else
 345                wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 346}
 347
 348/*
 349 * Prepare for sleeping on a wait queue.
 350 * By always appending tasks to the list we ensure FIFO behavior.
 351 * NB: An RPC task will only receive interrupt-driven events as long
 352 * as it's on a wait queue.
 353 */
 354static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
 355                struct rpc_task *task,
 356                rpc_action action,
 357                unsigned char queue_priority)
 358{
 359        dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
 360                        task->tk_pid, rpc_qname(q), jiffies);
 361
 362        trace_rpc_task_sleep(task->tk_client, task, q);
 363
 364        __rpc_add_wait_queue(q, task, queue_priority);
 365
 366        WARN_ON_ONCE(task->tk_callback != NULL);
 367        task->tk_callback = action;
 368        __rpc_add_timer(q, task);
 369}
 370
 371void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 372                                rpc_action action)
 373{
 374        /* We shouldn't ever put an inactive task to sleep */
 375        WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
 376        if (!RPC_IS_ACTIVATED(task)) {
 377                task->tk_status = -EIO;
 378                rpc_put_task_async(task);
 379                return;
 380        }
 381
 382        /*
 383         * Protect the queue operations.
 384         */
 385        spin_lock_bh(&q->lock);
 386        __rpc_sleep_on_priority(q, task, action, task->tk_priority);
 387        spin_unlock_bh(&q->lock);
 388}
 389EXPORT_SYMBOL_GPL(rpc_sleep_on);
 390
 391void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
 392                rpc_action action, int priority)
 393{
 394        /* We shouldn't ever put an inactive task to sleep */
 395        WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
 396        if (!RPC_IS_ACTIVATED(task)) {
 397                task->tk_status = -EIO;
 398                rpc_put_task_async(task);
 399                return;
 400        }
 401
 402        /*
 403         * Protect the queue operations.
 404         */
 405        spin_lock_bh(&q->lock);
 406        __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
 407        spin_unlock_bh(&q->lock);
 408}
 409EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
 410
 411/**
 412 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
 413 * @wq: workqueue on which to run task
 414 * @queue: wait queue
 415 * @task: task to be woken up
 416 *
 417 * Caller must hold queue->lock, and have cleared the task queued flag.
 418 */
 419static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
 420                struct rpc_wait_queue *queue,
 421                struct rpc_task *task)
 422{
 423        dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
 424                        task->tk_pid, jiffies);
 425
 426        /* Has the task been executed yet? If not, we cannot wake it up! */
 427        if (!RPC_IS_ACTIVATED(task)) {
 428                printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 429                return;
 430        }
 431
 432        trace_rpc_task_wakeup(task->tk_client, task, queue);
 433
 434        __rpc_remove_wait_queue(queue, task);
 435
 436        rpc_make_runnable(wq, task);
 437
 438        dprintk("RPC:       __rpc_wake_up_task done\n");
 439}
 440
 441/*
 442 * Wake up a queued task while the queue lock is being held
 443 */
 444static void rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
 445                struct rpc_wait_queue *queue, struct rpc_task *task)
 446{
 447        if (RPC_IS_QUEUED(task)) {
 448                smp_rmb();
 449                if (task->tk_waitqueue == queue)
 450                        __rpc_do_wake_up_task_on_wq(wq, queue, task);
 451        }
 452}
 453
 454/*
 455 * Wake up a queued task while the queue lock is being held
 456 */
 457static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
 458{
 459        rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
 460}
 461
 462/*
 463 * Wake up a task on a specific queue
 464 */
 465void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 466{
 467        spin_lock_bh(&queue->lock);
 468        rpc_wake_up_task_queue_locked(queue, task);
 469        spin_unlock_bh(&queue->lock);
 470}
 471EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
 472
 473/*
 474 * Wake up the next task on a priority queue.
 475 */
 476static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
 477{
 478        struct list_head *q;
 479        struct rpc_task *task;
 480
 481        /*
 482         * Service a batch of tasks from a single owner.
 483         */
 484        q = &queue->tasks[queue->priority];
 485        if (!list_empty(q)) {
 486                task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 487                if (queue->owner == task->tk_owner) {
 488                        if (--queue->nr)
 489                                goto out;
 490                        list_move_tail(&task->u.tk_wait.list, q);
 491                }
 492                /*
 493                 * Check if we need to switch queues.
 494                 */
 495                goto new_owner;
 496        }
 497
 498        /*
 499         * Service the next queue.
 500         */
 501        do {
 502                if (q == &queue->tasks[0])
 503                        q = &queue->tasks[queue->maxpriority];
 504                else
 505                        q = q - 1;
 506                if (!list_empty(q)) {
 507                        task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 508                        goto new_queue;
 509                }
 510        } while (q != &queue->tasks[queue->priority]);
 511
 512        rpc_reset_waitqueue_priority(queue);
 513        return NULL;
 514
 515new_queue:
 516        rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 517new_owner:
 518        rpc_set_waitqueue_owner(queue, task->tk_owner);
 519out:
 520        return task;
 521}
 522
 523static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
 524{
 525        if (RPC_IS_PRIORITY(queue))
 526                return __rpc_find_next_queued_priority(queue);
 527        if (!list_empty(&queue->tasks[0]))
 528                return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
 529        return NULL;
 530}
 531
 532/*
 533 * Wake up the first task on the wait queue.
 534 */
 535struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
 536                struct rpc_wait_queue *queue,
 537                bool (*func)(struct rpc_task *, void *), void *data)
 538{
 539        struct rpc_task *task = NULL;
 540
 541        dprintk("RPC:       wake_up_first(%p \"%s\")\n",
 542                        queue, rpc_qname(queue));
 543        spin_lock_bh(&queue->lock);
 544        task = __rpc_find_next_queued(queue);
 545        if (task != NULL) {
 546                if (func(task, data))
 547                        rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
 548                else
 549                        task = NULL;
 550        }
 551        spin_unlock_bh(&queue->lock);
 552
 553        return task;
 554}
 555
 556/*
 557 * Wake up the first task on the wait queue.
 558 */
 559struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
 560                bool (*func)(struct rpc_task *, void *), void *data)
 561{
 562        return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
 563}
 564EXPORT_SYMBOL_GPL(rpc_wake_up_first);
 565
 566static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
 567{
 568        return true;
 569}
 570
 571/*
 572 * Wake up the next task on the wait queue.
 573*/
 574struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
 575{
 576        return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
 577}
 578EXPORT_SYMBOL_GPL(rpc_wake_up_next);
 579
 580/**
 581 * rpc_wake_up - wake up all rpc_tasks
 582 * @queue: rpc_wait_queue on which the tasks are sleeping
 583 *
 584 * Grabs queue->lock
 585 */
 586void rpc_wake_up(struct rpc_wait_queue *queue)
 587{
 588        struct list_head *head;
 589
 590        spin_lock_bh(&queue->lock);
 591        head = &queue->tasks[queue->maxpriority];
 592        for (;;) {
 593                while (!list_empty(head)) {
 594                        struct rpc_task *task;
 595                        task = list_first_entry(head,
 596                                        struct rpc_task,
 597                                        u.tk_wait.list);
 598                        rpc_wake_up_task_queue_locked(queue, task);
 599                }
 600                if (head == &queue->tasks[0])
 601                        break;
 602                head--;
 603        }
 604        spin_unlock_bh(&queue->lock);
 605}
 606EXPORT_SYMBOL_GPL(rpc_wake_up);
 607
 608/**
 609 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 610 * @queue: rpc_wait_queue on which the tasks are sleeping
 611 * @status: status value to set
 612 *
 613 * Grabs queue->lock
 614 */
 615void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 616{
 617        struct list_head *head;
 618
 619        spin_lock_bh(&queue->lock);
 620        head = &queue->tasks[queue->maxpriority];
 621        for (;;) {
 622                while (!list_empty(head)) {
 623                        struct rpc_task *task;
 624                        task = list_first_entry(head,
 625                                        struct rpc_task,
 626                                        u.tk_wait.list);
 627                        task->tk_status = status;
 628                        rpc_wake_up_task_queue_locked(queue, task);
 629                }
 630                if (head == &queue->tasks[0])
 631                        break;
 632                head--;
 633        }
 634        spin_unlock_bh(&queue->lock);
 635}
 636EXPORT_SYMBOL_GPL(rpc_wake_up_status);
 637
 638static void __rpc_queue_timer_fn(unsigned long ptr)
 639{
 640        struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
 641        struct rpc_task *task, *n;
 642        unsigned long expires, now, timeo;
 643
 644        spin_lock(&queue->lock);
 645        expires = now = jiffies;
 646        list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
 647                timeo = task->u.tk_wait.expires;
 648                if (time_after_eq(now, timeo)) {
 649                        dprintk("RPC: %5u timeout\n", task->tk_pid);
 650                        task->tk_status = -ETIMEDOUT;
 651                        rpc_wake_up_task_queue_locked(queue, task);
 652                        continue;
 653                }
 654                if (expires == now || time_after(expires, timeo))
 655                        expires = timeo;
 656        }
 657        if (!list_empty(&queue->timer_list.list))
 658                rpc_set_queue_timer(queue, expires);
 659        spin_unlock(&queue->lock);
 660}
 661
 662static void __rpc_atrun(struct rpc_task *task)
 663{
 664        if (task->tk_status == -ETIMEDOUT)
 665                task->tk_status = 0;
 666}
 667
 668/*
 669 * Run a task at a later time
 670 */
 671void rpc_delay(struct rpc_task *task, unsigned long delay)
 672{
 673        task->tk_timeout = delay;
 674        rpc_sleep_on(&delay_queue, task, __rpc_atrun);
 675}
 676EXPORT_SYMBOL_GPL(rpc_delay);
 677
 678/*
 679 * Helper to call task->tk_ops->rpc_call_prepare
 680 */
 681void rpc_prepare_task(struct rpc_task *task)
 682{
 683        task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 684}
 685
 686static void
 687rpc_init_task_statistics(struct rpc_task *task)
 688{
 689        /* Initialize retry counters */
 690        task->tk_garb_retry = 2;
 691        task->tk_cred_retry = 2;
 692        task->tk_rebind_retry = 2;
 693
 694        /* starting timestamp */
 695        task->tk_start = ktime_get();
 696}
 697
 698static void
 699rpc_reset_task_statistics(struct rpc_task *task)
 700{
 701        task->tk_timeouts = 0;
 702        task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
 703
 704        rpc_init_task_statistics(task);
 705}
 706
 707/*
 708 * Helper that calls task->tk_ops->rpc_call_done if it exists
 709 */
 710void rpc_exit_task(struct rpc_task *task)
 711{
 712        task->tk_action = NULL;
 713        if (task->tk_ops->rpc_call_done != NULL) {
 714                task->tk_ops->rpc_call_done(task, task->tk_calldata);
 715                if (task->tk_action != NULL) {
 716                        WARN_ON(RPC_ASSASSINATED(task));
 717                        /* Always release the RPC slot and buffer memory */
 718                        xprt_release(task);
 719                        rpc_reset_task_statistics(task);
 720                }
 721        }
 722}
 723
 724void rpc_exit(struct rpc_task *task, int status)
 725{
 726        task->tk_status = status;
 727        task->tk_action = rpc_exit_task;
 728        if (RPC_IS_QUEUED(task))
 729                rpc_wake_up_queued_task(task->tk_waitqueue, task);
 730}
 731EXPORT_SYMBOL_GPL(rpc_exit);
 732
 733void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
 734{
 735        if (ops->rpc_release != NULL)
 736                ops->rpc_release(calldata);
 737}
 738
 739/*
 740 * This is the RPC `scheduler' (or rather, the finite state machine).
 741 */
 742static void __rpc_execute(struct rpc_task *task)
 743{
 744        struct rpc_wait_queue *queue;
 745        int task_is_async = RPC_IS_ASYNC(task);
 746        int status = 0;
 747
 748        dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
 749                        task->tk_pid, task->tk_flags);
 750
 751        WARN_ON_ONCE(RPC_IS_QUEUED(task));
 752        if (RPC_IS_QUEUED(task))
 753                return;
 754
 755        for (;;) {
 756                void (*do_action)(struct rpc_task *);
 757
 758                /*
 759                 * Execute any pending callback first.
 760                 */
 761                do_action = task->tk_callback;
 762                task->tk_callback = NULL;
 763                if (do_action == NULL) {
 764                        /*
 765                         * Perform the next FSM step.
 766                         * tk_action may be NULL if the task has been killed.
 767                         * In particular, note that rpc_killall_tasks may
 768                         * do this at any time, so beware when dereferencing.
 769                         */
 770                        do_action = task->tk_action;
 771                        if (do_action == NULL)
 772                                break;
 773                }
 774                trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
 775                do_action(task);
 776
 777                /*
 778                 * Lockless check for whether task is sleeping or not.
 779                 */
 780                if (!RPC_IS_QUEUED(task))
 781                        continue;
 782                /*
 783                 * The queue->lock protects against races with
 784                 * rpc_make_runnable().
 785                 *
 786                 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
 787                 * rpc_task, rpc_make_runnable() can assign it to a
 788                 * different workqueue. We therefore cannot assume that the
 789                 * rpc_task pointer may still be dereferenced.
 790                 */
 791                queue = task->tk_waitqueue;
 792                spin_lock_bh(&queue->lock);
 793                if (!RPC_IS_QUEUED(task)) {
 794                        spin_unlock_bh(&queue->lock);
 795                        continue;
 796                }
 797                rpc_clear_running(task);
 798                spin_unlock_bh(&queue->lock);
 799                if (task_is_async)
 800                        return;
 801
 802                /* sync task: sleep here */
 803                dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
 804                status = out_of_line_wait_on_bit(&task->tk_runstate,
 805                                RPC_TASK_QUEUED, rpc_wait_bit_killable,
 806                                TASK_KILLABLE);
 807                if (status == -ERESTARTSYS) {
 808                        /*
 809                         * When a sync task receives a signal, it exits with
 810                         * -ERESTARTSYS. In order to catch any callbacks that
 811                         * clean up after sleeping on some queue, we don't
 812                         * break the loop here, but go around once more.
 813                         */
 814                        dprintk("RPC: %5u got signal\n", task->tk_pid);
 815                        task->tk_flags |= RPC_TASK_KILLED;
 816                        rpc_exit(task, -ERESTARTSYS);
 817                }
 818                dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
 819        }
 820
 821        dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
 822                        task->tk_status);
 823        /* Release all resources associated with the task */
 824        rpc_release_task(task);
 825}
 826
 827/*
 828 * User-visible entry point to the scheduler.
 829 *
 830 * This may be called recursively if e.g. an async NFS task updates
 831 * the attributes and finds that dirty pages must be flushed.
 832 * NOTE: Upon exit of this function the task is guaranteed to be
 833 *       released. In particular note that tk_release() will have
 834 *       been called, so your task memory may have been freed.
 835 */
 836void rpc_execute(struct rpc_task *task)
 837{
 838        bool is_async = RPC_IS_ASYNC(task);
 839
 840        rpc_set_active(task);
 841        rpc_make_runnable(rpciod_workqueue, task);
 842        if (!is_async)
 843                __rpc_execute(task);
 844}
 845
 846static void rpc_async_schedule(struct work_struct *work)
 847{
 848        __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
 849}
 850
 851/**
 852 * rpc_malloc - allocate an RPC buffer
 853 * @task: RPC task that will use this buffer
 854 * @size: requested byte size
 855 *
 856 * To prevent rpciod from hanging, this allocator never sleeps,
 857 * returning NULL and suppressing warning if the request cannot be serviced
 858 * immediately.
 859 * The caller can arrange to sleep in a way that is safe for rpciod.
 860 *
 861 * Most requests are 'small' (under 2KiB) and can be serviced from a
 862 * mempool, ensuring that NFS reads and writes can always proceed,
 863 * and that there is good locality of reference for these buffers.
 864 *
 865 * In order to avoid memory starvation triggering more writebacks of
 866 * NFS requests, we avoid using GFP_KERNEL.
 867 */
 868void *rpc_malloc(struct rpc_task *task, size_t size)
 869{
 870        struct rpc_buffer *buf;
 871        gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
 872
 873        if (RPC_IS_SWAPPER(task))
 874                gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
 875
 876        size += sizeof(struct rpc_buffer);
 877        if (size <= RPC_BUFFER_MAXSIZE)
 878                buf = mempool_alloc(rpc_buffer_mempool, gfp);
 879        else
 880                buf = kmalloc(size, gfp);
 881
 882        if (!buf)
 883                return NULL;
 884
 885        buf->len = size;
 886        dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
 887                        task->tk_pid, size, buf);
 888        return &buf->data;
 889}
 890EXPORT_SYMBOL_GPL(rpc_malloc);
 891
 892/**
 893 * rpc_free - free buffer allocated via rpc_malloc
 894 * @buffer: buffer to free
 895 *
 896 */
 897void rpc_free(void *buffer)
 898{
 899        size_t size;
 900        struct rpc_buffer *buf;
 901
 902        if (!buffer)
 903                return;
 904
 905        buf = container_of(buffer, struct rpc_buffer, data);
 906        size = buf->len;
 907
 908        dprintk("RPC:       freeing buffer of size %zu at %p\n",
 909                        size, buf);
 910
 911        if (size <= RPC_BUFFER_MAXSIZE)
 912                mempool_free(buf, rpc_buffer_mempool);
 913        else
 914                kfree(buf);
 915}
 916EXPORT_SYMBOL_GPL(rpc_free);
 917
 918/*
 919 * Creation and deletion of RPC task structures
 920 */
 921static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
 922{
 923        memset(task, 0, sizeof(*task));
 924        atomic_set(&task->tk_count, 1);
 925        task->tk_flags  = task_setup_data->flags;
 926        task->tk_ops = task_setup_data->callback_ops;
 927        task->tk_calldata = task_setup_data->callback_data;
 928        INIT_LIST_HEAD(&task->tk_task);
 929
 930        task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
 931        task->tk_owner = current->tgid;
 932
 933        /* Initialize workqueue for async tasks */
 934        task->tk_workqueue = task_setup_data->workqueue;
 935
 936        task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
 937
 938        if (task->tk_ops->rpc_call_prepare != NULL)
 939                task->tk_action = rpc_prepare_task;
 940
 941        rpc_init_task_statistics(task);
 942
 943        dprintk("RPC:       new task initialized, procpid %u\n",
 944                                task_pid_nr(current));
 945}
 946
 947static struct rpc_task *
 948rpc_alloc_task(void)
 949{
 950        return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
 951}
 952
 953/*
 954 * Create a new task for the specified client.
 955 */
 956struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
 957{
 958        struct rpc_task *task = setup_data->task;
 959        unsigned short flags = 0;
 960
 961        if (task == NULL) {
 962                task = rpc_alloc_task();
 963                if (task == NULL) {
 964                        rpc_release_calldata(setup_data->callback_ops,
 965                                        setup_data->callback_data);
 966                        return ERR_PTR(-ENOMEM);
 967                }
 968                flags = RPC_TASK_DYNAMIC;
 969        }
 970
 971        rpc_init_task(task, setup_data);
 972        task->tk_flags |= flags;
 973        dprintk("RPC:       allocated task %p\n", task);
 974        return task;
 975}
 976
 977/*
 978 * rpc_free_task - release rpc task and perform cleanups
 979 *
 980 * Note that we free up the rpc_task _after_ rpc_release_calldata()
 981 * in order to work around a workqueue dependency issue.
 982 *
 983 * Tejun Heo states:
 984 * "Workqueue currently considers two work items to be the same if they're
 985 * on the same address and won't execute them concurrently - ie. it
 986 * makes a work item which is queued again while being executed wait
 987 * for the previous execution to complete.
 988 *
 989 * If a work function frees the work item, and then waits for an event
 990 * which should be performed by another work item and *that* work item
 991 * recycles the freed work item, it can create a false dependency loop.
 992 * There really is no reliable way to detect this short of verifying
 993 * every memory free."
 994 *
 995 */
 996static void rpc_free_task(struct rpc_task *task)
 997{
 998        unsigned short tk_flags = task->tk_flags;
 999
1000        rpc_release_calldata(task->tk_ops, task->tk_calldata);
1001
1002        if (tk_flags & RPC_TASK_DYNAMIC) {
1003                dprintk("RPC: %5u freeing task\n", task->tk_pid);
1004                mempool_free(task, rpc_task_mempool);
1005        }
1006}
1007
1008static void rpc_async_release(struct work_struct *work)
1009{
1010        rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1011}
1012
1013static void rpc_release_resources_task(struct rpc_task *task)
1014{
1015        xprt_release(task);
1016        if (task->tk_msg.rpc_cred) {
1017                put_rpccred(task->tk_msg.rpc_cred);
1018                task->tk_msg.rpc_cred = NULL;
1019        }
1020        rpc_task_release_client(task);
1021}
1022
1023static void rpc_final_put_task(struct rpc_task *task,
1024                struct workqueue_struct *q)
1025{
1026        if (q != NULL) {
1027                INIT_WORK(&task->u.tk_work, rpc_async_release);
1028                queue_work(q, &task->u.tk_work);
1029        } else
1030                rpc_free_task(task);
1031}
1032
1033static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1034{
1035        if (atomic_dec_and_test(&task->tk_count)) {
1036                rpc_release_resources_task(task);
1037                rpc_final_put_task(task, q);
1038        }
1039}
1040
1041void rpc_put_task(struct rpc_task *task)
1042{
1043        rpc_do_put_task(task, NULL);
1044}
1045EXPORT_SYMBOL_GPL(rpc_put_task);
1046
1047void rpc_put_task_async(struct rpc_task *task)
1048{
1049        rpc_do_put_task(task, task->tk_workqueue);
1050}
1051EXPORT_SYMBOL_GPL(rpc_put_task_async);
1052
1053static void rpc_release_task(struct rpc_task *task)
1054{
1055        dprintk("RPC: %5u release task\n", task->tk_pid);
1056
1057        WARN_ON_ONCE(RPC_IS_QUEUED(task));
1058
1059        rpc_release_resources_task(task);
1060
1061        /*
1062         * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1063         * so it should be safe to use task->tk_count as a test for whether
1064         * or not any other processes still hold references to our rpc_task.
1065         */
1066        if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1067                /* Wake up anyone who may be waiting for task completion */
1068                if (!rpc_complete_task(task))
1069                        return;
1070        } else {
1071                if (!atomic_dec_and_test(&task->tk_count))
1072                        return;
1073        }
1074        rpc_final_put_task(task, task->tk_workqueue);
1075}
1076
1077int rpciod_up(void)
1078{
1079        return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1080}
1081
1082void rpciod_down(void)
1083{
1084        module_put(THIS_MODULE);
1085}
1086
1087/*
1088 * Start up the rpciod workqueue.
1089 */
1090static int rpciod_start(void)
1091{
1092        struct workqueue_struct *wq;
1093
1094        /*
1095         * Create the rpciod thread and wait for it to start.
1096         */
1097        dprintk("RPC:       creating workqueue rpciod\n");
1098        wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1099        if (!wq)
1100                goto out_failed;
1101        rpciod_workqueue = wq;
1102        /* Note: highpri because network receive is latency sensitive */
1103        wq = alloc_workqueue("xprtiod", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1104        if (!wq)
1105                goto free_rpciod;
1106        xprtiod_workqueue = wq;
1107        return 1;
1108free_rpciod:
1109        wq = rpciod_workqueue;
1110        rpciod_workqueue = NULL;
1111        destroy_workqueue(wq);
1112out_failed:
1113        return 0;
1114}
1115
1116static void rpciod_stop(void)
1117{
1118        struct workqueue_struct *wq = NULL;
1119
1120        if (rpciod_workqueue == NULL)
1121                return;
1122        dprintk("RPC:       destroying workqueue rpciod\n");
1123
1124        wq = rpciod_workqueue;
1125        rpciod_workqueue = NULL;
1126        destroy_workqueue(wq);
1127        wq = xprtiod_workqueue;
1128        xprtiod_workqueue = NULL;
1129        destroy_workqueue(wq);
1130}
1131
1132void
1133rpc_destroy_mempool(void)
1134{
1135        rpciod_stop();
1136        mempool_destroy(rpc_buffer_mempool);
1137        mempool_destroy(rpc_task_mempool);
1138        kmem_cache_destroy(rpc_task_slabp);
1139        kmem_cache_destroy(rpc_buffer_slabp);
1140        rpc_destroy_wait_queue(&delay_queue);
1141}
1142
1143int
1144rpc_init_mempool(void)
1145{
1146        /*
1147         * The following is not strictly a mempool initialisation,
1148         * but there is no harm in doing it here
1149         */
1150        rpc_init_wait_queue(&delay_queue, "delayq");
1151        if (!rpciod_start())
1152                goto err_nomem;
1153
1154        rpc_task_slabp = kmem_cache_create("rpc_tasks",
1155                                             sizeof(struct rpc_task),
1156                                             0, SLAB_HWCACHE_ALIGN,
1157                                             NULL);
1158        if (!rpc_task_slabp)
1159                goto err_nomem;
1160        rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1161                                             RPC_BUFFER_MAXSIZE,
1162                                             0, SLAB_HWCACHE_ALIGN,
1163                                             NULL);
1164        if (!rpc_buffer_slabp)
1165                goto err_nomem;
1166        rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1167                                                    rpc_task_slabp);
1168        if (!rpc_task_mempool)
1169                goto err_nomem;
1170        rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1171                                                      rpc_buffer_slabp);
1172        if (!rpc_buffer_mempool)
1173                goto err_nomem;
1174        return 0;
1175err_nomem:
1176        rpc_destroy_mempool();
1177        return -ENOMEM;
1178}
1179