linux/net/sunrpc/svc_xprt.c
<<
>>
Prefs
   1/*
   2 * linux/net/sunrpc/svc_xprt.c
   3 *
   4 * Author: Tom Tucker <tom@opengridcomputing.com>
   5 */
   6
   7#include <linux/sched.h>
   8#include <linux/errno.h>
   9#include <linux/freezer.h>
  10#include <linux/kthread.h>
  11#include <linux/slab.h>
  12#include <net/sock.h>
  13#include <linux/sunrpc/addr.h>
  14#include <linux/sunrpc/stats.h>
  15#include <linux/sunrpc/svc_xprt.h>
  16#include <linux/sunrpc/svcsock.h>
  17#include <linux/sunrpc/xprt.h>
  18#include <linux/module.h>
  19#include <linux/netdevice.h>
  20#include <trace/events/sunrpc.h>
  21
  22#define RPCDBG_FACILITY RPCDBG_SVCXPRT
  23
  24static unsigned int svc_rpc_per_connection_limit __read_mostly;
  25module_param(svc_rpc_per_connection_limit, uint, 0644);
  26
  27
  28static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
  29static int svc_deferred_recv(struct svc_rqst *rqstp);
  30static struct cache_deferred_req *svc_defer(struct cache_req *req);
  31static void svc_age_temp_xprts(unsigned long closure);
  32static void svc_delete_xprt(struct svc_xprt *xprt);
  33
  34/* apparently the "standard" is that clients close
  35 * idle connections after 5 minutes, servers after
  36 * 6 minutes
  37 *   http://www.connectathon.org/talks96/nfstcp.pdf
  38 */
  39static int svc_conn_age_period = 6*60;
  40
  41/* List of registered transport classes */
  42static DEFINE_SPINLOCK(svc_xprt_class_lock);
  43static LIST_HEAD(svc_xprt_class_list);
  44
  45/* SMP locking strategy:
  46 *
  47 *      svc_pool->sp_lock protects most of the fields of that pool.
  48 *      svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
  49 *      when both need to be taken (rare), svc_serv->sv_lock is first.
  50 *      The "service mutex" protects svc_serv->sv_nrthread.
  51 *      svc_sock->sk_lock protects the svc_sock->sk_deferred list
  52 *             and the ->sk_info_authunix cache.
  53 *
  54 *      The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
  55 *      enqueued multiply. During normal transport processing this bit
  56 *      is set by svc_xprt_enqueue and cleared by svc_xprt_received.
  57 *      Providers should not manipulate this bit directly.
  58 *
  59 *      Some flags can be set to certain values at any time
  60 *      providing that certain rules are followed:
  61 *
  62 *      XPT_CONN, XPT_DATA:
  63 *              - Can be set or cleared at any time.
  64 *              - After a set, svc_xprt_enqueue must be called to enqueue
  65 *                the transport for processing.
  66 *              - After a clear, the transport must be read/accepted.
  67 *                If this succeeds, it must be set again.
  68 *      XPT_CLOSE:
  69 *              - Can set at any time. It is never cleared.
  70 *      XPT_DEAD:
  71 *              - Can only be set while XPT_BUSY is held which ensures
  72 *                that no other thread will be using the transport or will
  73 *                try to set XPT_DEAD.
  74 */
  75int svc_reg_xprt_class(struct svc_xprt_class *xcl)
  76{
  77        struct svc_xprt_class *cl;
  78        int res = -EEXIST;
  79
  80        dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
  81
  82        INIT_LIST_HEAD(&xcl->xcl_list);
  83        spin_lock(&svc_xprt_class_lock);
  84        /* Make sure there isn't already a class with the same name */
  85        list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
  86                if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
  87                        goto out;
  88        }
  89        list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
  90        res = 0;
  91out:
  92        spin_unlock(&svc_xprt_class_lock);
  93        return res;
  94}
  95EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
  96
  97void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
  98{
  99        dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
 100        spin_lock(&svc_xprt_class_lock);
 101        list_del_init(&xcl->xcl_list);
 102        spin_unlock(&svc_xprt_class_lock);
 103}
 104EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
 105
 106/*
 107 * Format the transport list for printing
 108 */
 109int svc_print_xprts(char *buf, int maxlen)
 110{
 111        struct svc_xprt_class *xcl;
 112        char tmpstr[80];
 113        int len = 0;
 114        buf[0] = '\0';
 115
 116        spin_lock(&svc_xprt_class_lock);
 117        list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 118                int slen;
 119
 120                sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
 121                slen = strlen(tmpstr);
 122                if (len + slen > maxlen)
 123                        break;
 124                len += slen;
 125                strcat(buf, tmpstr);
 126        }
 127        spin_unlock(&svc_xprt_class_lock);
 128
 129        return len;
 130}
 131
 132static void svc_xprt_free(struct kref *kref)
 133{
 134        struct svc_xprt *xprt =
 135                container_of(kref, struct svc_xprt, xpt_ref);
 136        struct module *owner = xprt->xpt_class->xcl_owner;
 137        if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
 138                svcauth_unix_info_release(xprt);
 139        put_net(xprt->xpt_net);
 140        /* See comment on corresponding get in xs_setup_bc_tcp(): */
 141        if (xprt->xpt_bc_xprt)
 142                xprt_put(xprt->xpt_bc_xprt);
 143        if (xprt->xpt_bc_xps)
 144                xprt_switch_put(xprt->xpt_bc_xps);
 145        xprt->xpt_ops->xpo_free(xprt);
 146        module_put(owner);
 147}
 148
 149void svc_xprt_put(struct svc_xprt *xprt)
 150{
 151        kref_put(&xprt->xpt_ref, svc_xprt_free);
 152}
 153EXPORT_SYMBOL_GPL(svc_xprt_put);
 154
 155/*
 156 * Called by transport drivers to initialize the transport independent
 157 * portion of the transport instance.
 158 */
 159void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
 160                   struct svc_xprt *xprt, struct svc_serv *serv)
 161{
 162        memset(xprt, 0, sizeof(*xprt));
 163        xprt->xpt_class = xcl;
 164        xprt->xpt_ops = xcl->xcl_ops;
 165        kref_init(&xprt->xpt_ref);
 166        xprt->xpt_server = serv;
 167        INIT_LIST_HEAD(&xprt->xpt_list);
 168        INIT_LIST_HEAD(&xprt->xpt_ready);
 169        INIT_LIST_HEAD(&xprt->xpt_deferred);
 170        INIT_LIST_HEAD(&xprt->xpt_users);
 171        mutex_init(&xprt->xpt_mutex);
 172        spin_lock_init(&xprt->xpt_lock);
 173        set_bit(XPT_BUSY, &xprt->xpt_flags);
 174        rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
 175        xprt->xpt_net = get_net(net);
 176}
 177EXPORT_SYMBOL_GPL(svc_xprt_init);
 178
 179static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
 180                                         struct svc_serv *serv,
 181                                         struct net *net,
 182                                         const int family,
 183                                         const unsigned short port,
 184                                         int flags)
 185{
 186        struct sockaddr_in sin = {
 187                .sin_family             = AF_INET,
 188                .sin_addr.s_addr        = htonl(INADDR_ANY),
 189                .sin_port               = htons(port),
 190        };
 191#if IS_ENABLED(CONFIG_IPV6)
 192        struct sockaddr_in6 sin6 = {
 193                .sin6_family            = AF_INET6,
 194                .sin6_addr              = IN6ADDR_ANY_INIT,
 195                .sin6_port              = htons(port),
 196        };
 197#endif
 198        struct sockaddr *sap;
 199        size_t len;
 200
 201        switch (family) {
 202        case PF_INET:
 203                sap = (struct sockaddr *)&sin;
 204                len = sizeof(sin);
 205                break;
 206#if IS_ENABLED(CONFIG_IPV6)
 207        case PF_INET6:
 208                sap = (struct sockaddr *)&sin6;
 209                len = sizeof(sin6);
 210                break;
 211#endif
 212        default:
 213                return ERR_PTR(-EAFNOSUPPORT);
 214        }
 215
 216        return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
 217}
 218
 219/*
 220 * svc_xprt_received conditionally queues the transport for processing
 221 * by another thread. The caller must hold the XPT_BUSY bit and must
 222 * not thereafter touch transport data.
 223 *
 224 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
 225 * insufficient) data.
 226 */
 227static void svc_xprt_received(struct svc_xprt *xprt)
 228{
 229        if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
 230                WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
 231                return;
 232        }
 233
 234        /* As soon as we clear busy, the xprt could be closed and
 235         * 'put', so we need a reference to call svc_enqueue_xprt with:
 236         */
 237        svc_xprt_get(xprt);
 238        smp_mb__before_atomic();
 239        clear_bit(XPT_BUSY, &xprt->xpt_flags);
 240        xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
 241        svc_xprt_put(xprt);
 242}
 243
 244void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
 245{
 246        clear_bit(XPT_TEMP, &new->xpt_flags);
 247        spin_lock_bh(&serv->sv_lock);
 248        list_add(&new->xpt_list, &serv->sv_permsocks);
 249        spin_unlock_bh(&serv->sv_lock);
 250        svc_xprt_received(new);
 251}
 252
 253int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
 254                    struct net *net, const int family,
 255                    const unsigned short port, int flags)
 256{
 257        struct svc_xprt_class *xcl;
 258
 259        spin_lock(&svc_xprt_class_lock);
 260        list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 261                struct svc_xprt *newxprt;
 262                unsigned short newport;
 263
 264                if (strcmp(xprt_name, xcl->xcl_name))
 265                        continue;
 266
 267                if (!try_module_get(xcl->xcl_owner))
 268                        goto err;
 269
 270                spin_unlock(&svc_xprt_class_lock);
 271                newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
 272                if (IS_ERR(newxprt)) {
 273                        module_put(xcl->xcl_owner);
 274                        return PTR_ERR(newxprt);
 275                }
 276                svc_add_new_perm_xprt(serv, newxprt);
 277                newport = svc_xprt_local_port(newxprt);
 278                return newport;
 279        }
 280 err:
 281        spin_unlock(&svc_xprt_class_lock);
 282        /* This errno is exposed to user space.  Provide a reasonable
 283         * perror msg for a bad transport. */
 284        return -EPROTONOSUPPORT;
 285}
 286
 287int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
 288                    struct net *net, const int family,
 289                    const unsigned short port, int flags)
 290{
 291        int err;
 292
 293        dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
 294        err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
 295        if (err == -EPROTONOSUPPORT) {
 296                request_module("svc%s", xprt_name);
 297                err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
 298        }
 299        if (err)
 300                dprintk("svc: transport %s not found, err %d\n",
 301                        xprt_name, err);
 302        return err;
 303}
 304EXPORT_SYMBOL_GPL(svc_create_xprt);
 305
 306/*
 307 * Copy the local and remote xprt addresses to the rqstp structure
 308 */
 309void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 310{
 311        memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
 312        rqstp->rq_addrlen = xprt->xpt_remotelen;
 313
 314        /*
 315         * Destination address in request is needed for binding the
 316         * source address in RPC replies/callbacks later.
 317         */
 318        memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
 319        rqstp->rq_daddrlen = xprt->xpt_locallen;
 320}
 321EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
 322
 323/**
 324 * svc_print_addr - Format rq_addr field for printing
 325 * @rqstp: svc_rqst struct containing address to print
 326 * @buf: target buffer for formatted address
 327 * @len: length of target buffer
 328 *
 329 */
 330char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
 331{
 332        return __svc_print_addr(svc_addr(rqstp), buf, len);
 333}
 334EXPORT_SYMBOL_GPL(svc_print_addr);
 335
 336static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
 337{
 338        unsigned int limit = svc_rpc_per_connection_limit;
 339        int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
 340
 341        return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
 342}
 343
 344static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 345{
 346        if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
 347                if (!svc_xprt_slots_in_range(xprt))
 348                        return false;
 349                atomic_inc(&xprt->xpt_nr_rqsts);
 350                set_bit(RQ_DATA, &rqstp->rq_flags);
 351        }
 352        return true;
 353}
 354
 355static void svc_xprt_release_slot(struct svc_rqst *rqstp)
 356{
 357        struct svc_xprt *xprt = rqstp->rq_xprt;
 358        if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
 359                atomic_dec(&xprt->xpt_nr_rqsts);
 360                svc_xprt_enqueue(xprt);
 361        }
 362}
 363
 364static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
 365{
 366        if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
 367                return true;
 368        if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) {
 369                if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
 370                    svc_xprt_slots_in_range(xprt))
 371                        return true;
 372                trace_svc_xprt_no_write_space(xprt);
 373                return false;
 374        }
 375        return false;
 376}
 377
 378void svc_xprt_do_enqueue(struct svc_xprt *xprt)
 379{
 380        struct svc_pool *pool;
 381        struct svc_rqst *rqstp = NULL;
 382        int cpu;
 383        bool queued = false;
 384
 385        if (!svc_xprt_has_something_to_do(xprt))
 386                goto out;
 387
 388        /* Mark transport as busy. It will remain in this state until
 389         * the provider calls svc_xprt_received. We update XPT_BUSY
 390         * atomically because it also guards against trying to enqueue
 391         * the transport twice.
 392         */
 393        if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
 394                /* Don't enqueue transport while already enqueued */
 395                dprintk("svc: transport %p busy, not enqueued\n", xprt);
 396                goto out;
 397        }
 398
 399        cpu = get_cpu();
 400        pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
 401
 402        atomic_long_inc(&pool->sp_stats.packets);
 403
 404redo_search:
 405        /* find a thread for this xprt */
 406        rcu_read_lock();
 407        list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 408                /* Do a lockless check first */
 409                if (test_bit(RQ_BUSY, &rqstp->rq_flags))
 410                        continue;
 411
 412                /*
 413                 * Once the xprt has been queued, it can only be dequeued by
 414                 * the task that intends to service it. All we can do at that
 415                 * point is to try to wake this thread back up so that it can
 416                 * do so.
 417                 */
 418                if (!queued) {
 419                        spin_lock_bh(&rqstp->rq_lock);
 420                        if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
 421                                /* already busy, move on... */
 422                                spin_unlock_bh(&rqstp->rq_lock);
 423                                continue;
 424                        }
 425
 426                        /* this one will do */
 427                        rqstp->rq_xprt = xprt;
 428                        svc_xprt_get(xprt);
 429                        spin_unlock_bh(&rqstp->rq_lock);
 430                }
 431                rcu_read_unlock();
 432
 433                atomic_long_inc(&pool->sp_stats.threads_woken);
 434                wake_up_process(rqstp->rq_task);
 435                put_cpu();
 436                goto out;
 437        }
 438        rcu_read_unlock();
 439
 440        /*
 441         * We didn't find an idle thread to use, so we need to queue the xprt.
 442         * Do so and then search again. If we find one, we can't hook this one
 443         * up to it directly but we can wake the thread up in the hopes that it
 444         * will pick it up once it searches for a xprt to service.
 445         */
 446        if (!queued) {
 447                queued = true;
 448                dprintk("svc: transport %p put into queue\n", xprt);
 449                spin_lock_bh(&pool->sp_lock);
 450                list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
 451                pool->sp_stats.sockets_queued++;
 452                spin_unlock_bh(&pool->sp_lock);
 453                goto redo_search;
 454        }
 455        rqstp = NULL;
 456        put_cpu();
 457out:
 458        trace_svc_xprt_do_enqueue(xprt, rqstp);
 459}
 460EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
 461
 462/*
 463 * Queue up a transport with data pending. If there are idle nfsd
 464 * processes, wake 'em up.
 465 *
 466 */
 467void svc_xprt_enqueue(struct svc_xprt *xprt)
 468{
 469        if (test_bit(XPT_BUSY, &xprt->xpt_flags))
 470                return;
 471        xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
 472}
 473EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
 474
 475/*
 476 * Dequeue the first transport, if there is one.
 477 */
 478static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
 479{
 480        struct svc_xprt *xprt = NULL;
 481
 482        if (list_empty(&pool->sp_sockets))
 483                goto out;
 484
 485        spin_lock_bh(&pool->sp_lock);
 486        if (likely(!list_empty(&pool->sp_sockets))) {
 487                xprt = list_first_entry(&pool->sp_sockets,
 488                                        struct svc_xprt, xpt_ready);
 489                list_del_init(&xprt->xpt_ready);
 490                svc_xprt_get(xprt);
 491
 492                dprintk("svc: transport %p dequeued, inuse=%d\n",
 493                        xprt, atomic_read(&xprt->xpt_ref.refcount));
 494        }
 495        spin_unlock_bh(&pool->sp_lock);
 496out:
 497        trace_svc_xprt_dequeue(xprt);
 498        return xprt;
 499}
 500
 501/**
 502 * svc_reserve - change the space reserved for the reply to a request.
 503 * @rqstp:  The request in question
 504 * @space: new max space to reserve
 505 *
 506 * Each request reserves some space on the output queue of the transport
 507 * to make sure the reply fits.  This function reduces that reserved
 508 * space to be the amount of space used already, plus @space.
 509 *
 510 */
 511void svc_reserve(struct svc_rqst *rqstp, int space)
 512{
 513        space += rqstp->rq_res.head[0].iov_len;
 514
 515        if (space < rqstp->rq_reserved) {
 516                struct svc_xprt *xprt = rqstp->rq_xprt;
 517                atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
 518                rqstp->rq_reserved = space;
 519
 520                svc_xprt_enqueue(xprt);
 521        }
 522}
 523EXPORT_SYMBOL_GPL(svc_reserve);
 524
 525static void svc_xprt_release(struct svc_rqst *rqstp)
 526{
 527        struct svc_xprt *xprt = rqstp->rq_xprt;
 528
 529        rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
 530
 531        kfree(rqstp->rq_deferred);
 532        rqstp->rq_deferred = NULL;
 533
 534        svc_free_res_pages(rqstp);
 535        rqstp->rq_res.page_len = 0;
 536        rqstp->rq_res.page_base = 0;
 537
 538        /* Reset response buffer and release
 539         * the reservation.
 540         * But first, check that enough space was reserved
 541         * for the reply, otherwise we have a bug!
 542         */
 543        if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
 544                printk(KERN_ERR "RPC request reserved %d but used %d\n",
 545                       rqstp->rq_reserved,
 546                       rqstp->rq_res.len);
 547
 548        rqstp->rq_res.head[0].iov_len = 0;
 549        svc_reserve(rqstp, 0);
 550        svc_xprt_release_slot(rqstp);
 551        rqstp->rq_xprt = NULL;
 552        svc_xprt_put(xprt);
 553}
 554
 555/*
 556 * Some svc_serv's will have occasional work to do, even when a xprt is not
 557 * waiting to be serviced. This function is there to "kick" a task in one of
 558 * those services so that it can wake up and do that work. Note that we only
 559 * bother with pool 0 as we don't need to wake up more than one thread for
 560 * this purpose.
 561 */
 562void svc_wake_up(struct svc_serv *serv)
 563{
 564        struct svc_rqst *rqstp;
 565        struct svc_pool *pool;
 566
 567        pool = &serv->sv_pools[0];
 568
 569        rcu_read_lock();
 570        list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 571                /* skip any that aren't queued */
 572                if (test_bit(RQ_BUSY, &rqstp->rq_flags))
 573                        continue;
 574                rcu_read_unlock();
 575                dprintk("svc: daemon %p woken up.\n", rqstp);
 576                wake_up_process(rqstp->rq_task);
 577                trace_svc_wake_up(rqstp->rq_task->pid);
 578                return;
 579        }
 580        rcu_read_unlock();
 581
 582        /* No free entries available */
 583        set_bit(SP_TASK_PENDING, &pool->sp_flags);
 584        smp_wmb();
 585        trace_svc_wake_up(0);
 586}
 587EXPORT_SYMBOL_GPL(svc_wake_up);
 588
 589int svc_port_is_privileged(struct sockaddr *sin)
 590{
 591        switch (sin->sa_family) {
 592        case AF_INET:
 593                return ntohs(((struct sockaddr_in *)sin)->sin_port)
 594                        < PROT_SOCK;
 595        case AF_INET6:
 596                return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
 597                        < PROT_SOCK;
 598        default:
 599                return 0;
 600        }
 601}
 602
 603/*
 604 * Make sure that we don't have too many active connections. If we have,
 605 * something must be dropped. It's not clear what will happen if we allow
 606 * "too many" connections, but when dealing with network-facing software,
 607 * we have to code defensively. Here we do that by imposing hard limits.
 608 *
 609 * There's no point in trying to do random drop here for DoS
 610 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
 611 * attacker can easily beat that.
 612 *
 613 * The only somewhat efficient mechanism would be if drop old
 614 * connections from the same IP first. But right now we don't even
 615 * record the client IP in svc_sock.
 616 *
 617 * single-threaded services that expect a lot of clients will probably
 618 * need to set sv_maxconn to override the default value which is based
 619 * on the number of threads
 620 */
 621static void svc_check_conn_limits(struct svc_serv *serv)
 622{
 623        unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
 624                                (serv->sv_nrthreads+3) * 20;
 625
 626        if (serv->sv_tmpcnt > limit) {
 627                struct svc_xprt *xprt = NULL;
 628                spin_lock_bh(&serv->sv_lock);
 629                if (!list_empty(&serv->sv_tempsocks)) {
 630                        /* Try to help the admin */
 631                        net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
 632                                               serv->sv_name, serv->sv_maxconn ?
 633                                               "max number of connections" :
 634                                               "number of threads");
 635                        /*
 636                         * Always select the oldest connection. It's not fair,
 637                         * but so is life
 638                         */
 639                        xprt = list_entry(serv->sv_tempsocks.prev,
 640                                          struct svc_xprt,
 641                                          xpt_list);
 642                        set_bit(XPT_CLOSE, &xprt->xpt_flags);
 643                        svc_xprt_get(xprt);
 644                }
 645                spin_unlock_bh(&serv->sv_lock);
 646
 647                if (xprt) {
 648                        svc_xprt_enqueue(xprt);
 649                        svc_xprt_put(xprt);
 650                }
 651        }
 652}
 653
 654static int svc_alloc_arg(struct svc_rqst *rqstp)
 655{
 656        struct svc_serv *serv = rqstp->rq_server;
 657        struct xdr_buf *arg;
 658        int pages;
 659        int i;
 660
 661        /* now allocate needed pages.  If we get a failure, sleep briefly */
 662        pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
 663        WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
 664        if (pages >= RPCSVC_MAXPAGES)
 665                /* use as many pages as possible */
 666                pages = RPCSVC_MAXPAGES - 1;
 667        for (i = 0; i < pages ; i++)
 668                while (rqstp->rq_pages[i] == NULL) {
 669                        struct page *p = alloc_page(GFP_KERNEL);
 670                        if (!p) {
 671                                set_current_state(TASK_INTERRUPTIBLE);
 672                                if (signalled() || kthread_should_stop()) {
 673                                        set_current_state(TASK_RUNNING);
 674                                        return -EINTR;
 675                                }
 676                                schedule_timeout(msecs_to_jiffies(500));
 677                        }
 678                        rqstp->rq_pages[i] = p;
 679                }
 680        rqstp->rq_page_end = &rqstp->rq_pages[i];
 681        rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
 682
 683        /* Make arg->head point to first page and arg->pages point to rest */
 684        arg = &rqstp->rq_arg;
 685        arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
 686        arg->head[0].iov_len = PAGE_SIZE;
 687        arg->pages = rqstp->rq_pages + 1;
 688        arg->page_base = 0;
 689        /* save at least one page for response */
 690        arg->page_len = (pages-2)*PAGE_SIZE;
 691        arg->len = (pages-1)*PAGE_SIZE;
 692        arg->tail[0].iov_len = 0;
 693        return 0;
 694}
 695
 696static bool
 697rqst_should_sleep(struct svc_rqst *rqstp)
 698{
 699        struct svc_pool         *pool = rqstp->rq_pool;
 700
 701        /* did someone call svc_wake_up? */
 702        if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
 703                return false;
 704
 705        /* was a socket queued? */
 706        if (!list_empty(&pool->sp_sockets))
 707                return false;
 708
 709        /* are we shutting down? */
 710        if (signalled() || kthread_should_stop())
 711                return false;
 712
 713        /* are we freezing? */
 714        if (freezing(current))
 715                return false;
 716
 717        return true;
 718}
 719
 720static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
 721{
 722        struct svc_xprt *xprt;
 723        struct svc_pool         *pool = rqstp->rq_pool;
 724        long                    time_left = 0;
 725
 726        /* rq_xprt should be clear on entry */
 727        WARN_ON_ONCE(rqstp->rq_xprt);
 728
 729        /* Normally we will wait up to 5 seconds for any required
 730         * cache information to be provided.
 731         */
 732        rqstp->rq_chandle.thread_wait = 5*HZ;
 733
 734        xprt = svc_xprt_dequeue(pool);
 735        if (xprt) {
 736                rqstp->rq_xprt = xprt;
 737
 738                /* As there is a shortage of threads and this request
 739                 * had to be queued, don't allow the thread to wait so
 740                 * long for cache updates.
 741                 */
 742                rqstp->rq_chandle.thread_wait = 1*HZ;
 743                clear_bit(SP_TASK_PENDING, &pool->sp_flags);
 744                return xprt;
 745        }
 746
 747        /*
 748         * We have to be able to interrupt this wait
 749         * to bring down the daemons ...
 750         */
 751        set_current_state(TASK_INTERRUPTIBLE);
 752        clear_bit(RQ_BUSY, &rqstp->rq_flags);
 753        smp_mb();
 754
 755        if (likely(rqst_should_sleep(rqstp)))
 756                time_left = schedule_timeout(timeout);
 757        else
 758                __set_current_state(TASK_RUNNING);
 759
 760        try_to_freeze();
 761
 762        spin_lock_bh(&rqstp->rq_lock);
 763        set_bit(RQ_BUSY, &rqstp->rq_flags);
 764        spin_unlock_bh(&rqstp->rq_lock);
 765
 766        xprt = rqstp->rq_xprt;
 767        if (xprt != NULL)
 768                return xprt;
 769
 770        if (!time_left)
 771                atomic_long_inc(&pool->sp_stats.threads_timedout);
 772
 773        if (signalled() || kthread_should_stop())
 774                return ERR_PTR(-EINTR);
 775        return ERR_PTR(-EAGAIN);
 776}
 777
 778static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
 779{
 780        spin_lock_bh(&serv->sv_lock);
 781        set_bit(XPT_TEMP, &newxpt->xpt_flags);
 782        list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
 783        serv->sv_tmpcnt++;
 784        if (serv->sv_temptimer.function == NULL) {
 785                /* setup timer to age temp transports */
 786                setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
 787                            (unsigned long)serv);
 788                mod_timer(&serv->sv_temptimer,
 789                          jiffies + svc_conn_age_period * HZ);
 790        }
 791        spin_unlock_bh(&serv->sv_lock);
 792        svc_xprt_received(newxpt);
 793}
 794
 795static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 796{
 797        struct svc_serv *serv = rqstp->rq_server;
 798        int len = 0;
 799
 800        if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
 801                dprintk("svc_recv: found XPT_CLOSE\n");
 802                svc_delete_xprt(xprt);
 803                /* Leave XPT_BUSY set on the dead xprt: */
 804                goto out;
 805        }
 806        if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
 807                struct svc_xprt *newxpt;
 808                /*
 809                 * We know this module_get will succeed because the
 810                 * listener holds a reference too
 811                 */
 812                __module_get(xprt->xpt_class->xcl_owner);
 813                svc_check_conn_limits(xprt->xpt_server);
 814                newxpt = xprt->xpt_ops->xpo_accept(xprt);
 815                if (newxpt)
 816                        svc_add_new_temp_xprt(serv, newxpt);
 817                else
 818                        module_put(xprt->xpt_class->xcl_owner);
 819        } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
 820                /* XPT_DATA|XPT_DEFERRED case: */
 821                dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
 822                        rqstp, rqstp->rq_pool->sp_id, xprt,
 823                        atomic_read(&xprt->xpt_ref.refcount));
 824                rqstp->rq_deferred = svc_deferred_dequeue(xprt);
 825                if (rqstp->rq_deferred)
 826                        len = svc_deferred_recv(rqstp);
 827                else
 828                        len = xprt->xpt_ops->xpo_recvfrom(rqstp);
 829                dprintk("svc: got len=%d\n", len);
 830                rqstp->rq_reserved = serv->sv_max_mesg;
 831                atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
 832        }
 833        /* clear XPT_BUSY: */
 834        svc_xprt_received(xprt);
 835out:
 836        trace_svc_handle_xprt(xprt, len);
 837        return len;
 838}
 839
 840/*
 841 * Receive the next request on any transport.  This code is carefully
 842 * organised not to touch any cachelines in the shared svc_serv
 843 * structure, only cachelines in the local svc_pool.
 844 */
 845int svc_recv(struct svc_rqst *rqstp, long timeout)
 846{
 847        struct svc_xprt         *xprt = NULL;
 848        struct svc_serv         *serv = rqstp->rq_server;
 849        int                     len, err;
 850
 851        dprintk("svc: server %p waiting for data (to = %ld)\n",
 852                rqstp, timeout);
 853
 854        if (rqstp->rq_xprt)
 855                printk(KERN_ERR
 856                        "svc_recv: service %p, transport not NULL!\n",
 857                         rqstp);
 858
 859        err = svc_alloc_arg(rqstp);
 860        if (err)
 861                goto out;
 862
 863        try_to_freeze();
 864        cond_resched();
 865        err = -EINTR;
 866        if (signalled() || kthread_should_stop())
 867                goto out;
 868
 869        xprt = svc_get_next_xprt(rqstp, timeout);
 870        if (IS_ERR(xprt)) {
 871                err = PTR_ERR(xprt);
 872                goto out;
 873        }
 874
 875        len = svc_handle_xprt(rqstp, xprt);
 876
 877        /* No data, incomplete (TCP) read, or accept() */
 878        err = -EAGAIN;
 879        if (len <= 0)
 880                goto out_release;
 881
 882        clear_bit(XPT_OLD, &xprt->xpt_flags);
 883
 884        if (xprt->xpt_ops->xpo_secure_port(rqstp))
 885                set_bit(RQ_SECURE, &rqstp->rq_flags);
 886        else
 887                clear_bit(RQ_SECURE, &rqstp->rq_flags);
 888        rqstp->rq_chandle.defer = svc_defer;
 889        rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
 890
 891        if (serv->sv_stats)
 892                serv->sv_stats->netcnt++;
 893        trace_svc_recv(rqstp, len);
 894        return len;
 895out_release:
 896        rqstp->rq_res.len = 0;
 897        svc_xprt_release(rqstp);
 898out:
 899        trace_svc_recv(rqstp, err);
 900        return err;
 901}
 902EXPORT_SYMBOL_GPL(svc_recv);
 903
 904/*
 905 * Drop request
 906 */
 907void svc_drop(struct svc_rqst *rqstp)
 908{
 909        trace_svc_drop(rqstp);
 910        dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
 911        svc_xprt_release(rqstp);
 912}
 913EXPORT_SYMBOL_GPL(svc_drop);
 914
 915/*
 916 * Return reply to client.
 917 */
 918int svc_send(struct svc_rqst *rqstp)
 919{
 920        struct svc_xprt *xprt;
 921        int             len = -EFAULT;
 922        struct xdr_buf  *xb;
 923
 924        xprt = rqstp->rq_xprt;
 925        if (!xprt)
 926                goto out;
 927
 928        /* release the receive skb before sending the reply */
 929        rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
 930
 931        /* calculate over-all length */
 932        xb = &rqstp->rq_res;
 933        xb->len = xb->head[0].iov_len +
 934                xb->page_len +
 935                xb->tail[0].iov_len;
 936
 937        /* Grab mutex to serialize outgoing data. */
 938        mutex_lock(&xprt->xpt_mutex);
 939        if (test_bit(XPT_DEAD, &xprt->xpt_flags)
 940                        || test_bit(XPT_CLOSE, &xprt->xpt_flags))
 941                len = -ENOTCONN;
 942        else
 943                len = xprt->xpt_ops->xpo_sendto(rqstp);
 944        mutex_unlock(&xprt->xpt_mutex);
 945        rpc_wake_up(&xprt->xpt_bc_pending);
 946        svc_xprt_release(rqstp);
 947
 948        if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
 949                len = 0;
 950out:
 951        trace_svc_send(rqstp, len);
 952        return len;
 953}
 954
 955/*
 956 * Timer function to close old temporary transports, using
 957 * a mark-and-sweep algorithm.
 958 */
 959static void svc_age_temp_xprts(unsigned long closure)
 960{
 961        struct svc_serv *serv = (struct svc_serv *)closure;
 962        struct svc_xprt *xprt;
 963        struct list_head *le, *next;
 964
 965        dprintk("svc_age_temp_xprts\n");
 966
 967        if (!spin_trylock_bh(&serv->sv_lock)) {
 968                /* busy, try again 1 sec later */
 969                dprintk("svc_age_temp_xprts: busy\n");
 970                mod_timer(&serv->sv_temptimer, jiffies + HZ);
 971                return;
 972        }
 973
 974        list_for_each_safe(le, next, &serv->sv_tempsocks) {
 975                xprt = list_entry(le, struct svc_xprt, xpt_list);
 976
 977                /* First time through, just mark it OLD. Second time
 978                 * through, close it. */
 979                if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
 980                        continue;
 981                if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
 982                    test_bit(XPT_BUSY, &xprt->xpt_flags))
 983                        continue;
 984                list_del_init(le);
 985                set_bit(XPT_CLOSE, &xprt->xpt_flags);
 986                dprintk("queuing xprt %p for closing\n", xprt);
 987
 988                /* a thread will dequeue and close it soon */
 989                svc_xprt_enqueue(xprt);
 990        }
 991        spin_unlock_bh(&serv->sv_lock);
 992
 993        mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
 994}
 995
 996/* Close temporary transports whose xpt_local matches server_addr immediately
 997 * instead of waiting for them to be picked up by the timer.
 998 *
 999 * This is meant to be called from a notifier_block that runs when an ip
1000 * address is deleted.
1001 */
1002void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
1003{
1004        struct svc_xprt *xprt;
1005        struct svc_sock *svsk;
1006        struct socket *sock;
1007        struct list_head *le, *next;
1008        LIST_HEAD(to_be_closed);
1009        struct linger no_linger = {
1010                .l_onoff = 1,
1011                .l_linger = 0,
1012        };
1013
1014        spin_lock_bh(&serv->sv_lock);
1015        list_for_each_safe(le, next, &serv->sv_tempsocks) {
1016                xprt = list_entry(le, struct svc_xprt, xpt_list);
1017                if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1018                                &xprt->xpt_local)) {
1019                        dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1020                        list_move(le, &to_be_closed);
1021                }
1022        }
1023        spin_unlock_bh(&serv->sv_lock);
1024
1025        while (!list_empty(&to_be_closed)) {
1026                le = to_be_closed.next;
1027                list_del_init(le);
1028                xprt = list_entry(le, struct svc_xprt, xpt_list);
1029                dprintk("svc_age_temp_xprts_now: closing %p\n", xprt);
1030                svsk = container_of(xprt, struct svc_sock, sk_xprt);
1031                sock = svsk->sk_sock;
1032                kernel_setsockopt(sock, SOL_SOCKET, SO_LINGER,
1033                                  (char *)&no_linger, sizeof(no_linger));
1034                svc_close_xprt(xprt);
1035        }
1036}
1037EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1038
1039static void call_xpt_users(struct svc_xprt *xprt)
1040{
1041        struct svc_xpt_user *u;
1042
1043        spin_lock(&xprt->xpt_lock);
1044        while (!list_empty(&xprt->xpt_users)) {
1045                u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1046                list_del(&u->list);
1047                u->callback(u);
1048        }
1049        spin_unlock(&xprt->xpt_lock);
1050}
1051
1052/*
1053 * Remove a dead transport
1054 */
1055static void svc_delete_xprt(struct svc_xprt *xprt)
1056{
1057        struct svc_serv *serv = xprt->xpt_server;
1058        struct svc_deferred_req *dr;
1059
1060        /* Only do this once */
1061        if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1062                BUG();
1063
1064        dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1065        xprt->xpt_ops->xpo_detach(xprt);
1066
1067        spin_lock_bh(&serv->sv_lock);
1068        list_del_init(&xprt->xpt_list);
1069        WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1070        if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1071                serv->sv_tmpcnt--;
1072        spin_unlock_bh(&serv->sv_lock);
1073
1074        while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1075                kfree(dr);
1076
1077        call_xpt_users(xprt);
1078        svc_xprt_put(xprt);
1079}
1080
1081void svc_close_xprt(struct svc_xprt *xprt)
1082{
1083        set_bit(XPT_CLOSE, &xprt->xpt_flags);
1084        if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1085                /* someone else will have to effect the close */
1086                return;
1087        /*
1088         * We expect svc_close_xprt() to work even when no threads are
1089         * running (e.g., while configuring the server before starting
1090         * any threads), so if the transport isn't busy, we delete
1091         * it ourself:
1092         */
1093        svc_delete_xprt(xprt);
1094}
1095EXPORT_SYMBOL_GPL(svc_close_xprt);
1096
1097static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1098{
1099        struct svc_xprt *xprt;
1100        int ret = 0;
1101
1102        spin_lock(&serv->sv_lock);
1103        list_for_each_entry(xprt, xprt_list, xpt_list) {
1104                if (xprt->xpt_net != net)
1105                        continue;
1106                ret++;
1107                set_bit(XPT_CLOSE, &xprt->xpt_flags);
1108                svc_xprt_enqueue(xprt);
1109        }
1110        spin_unlock(&serv->sv_lock);
1111        return ret;
1112}
1113
1114static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1115{
1116        struct svc_pool *pool;
1117        struct svc_xprt *xprt;
1118        struct svc_xprt *tmp;
1119        int i;
1120
1121        for (i = 0; i < serv->sv_nrpools; i++) {
1122                pool = &serv->sv_pools[i];
1123
1124                spin_lock_bh(&pool->sp_lock);
1125                list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1126                        if (xprt->xpt_net != net)
1127                                continue;
1128                        list_del_init(&xprt->xpt_ready);
1129                        spin_unlock_bh(&pool->sp_lock);
1130                        return xprt;
1131                }
1132                spin_unlock_bh(&pool->sp_lock);
1133        }
1134        return NULL;
1135}
1136
1137static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1138{
1139        struct svc_xprt *xprt;
1140
1141        while ((xprt = svc_dequeue_net(serv, net))) {
1142                set_bit(XPT_CLOSE, &xprt->xpt_flags);
1143                svc_delete_xprt(xprt);
1144        }
1145}
1146
1147/*
1148 * Server threads may still be running (especially in the case where the
1149 * service is still running in other network namespaces).
1150 *
1151 * So we shut down sockets the same way we would on a running server, by
1152 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1153 * the close.  In the case there are no such other threads,
1154 * threads running, svc_clean_up_xprts() does a simple version of a
1155 * server's main event loop, and in the case where there are other
1156 * threads, we may need to wait a little while and then check again to
1157 * see if they're done.
1158 */
1159void svc_close_net(struct svc_serv *serv, struct net *net)
1160{
1161        int delay = 0;
1162
1163        while (svc_close_list(serv, &serv->sv_permsocks, net) +
1164               svc_close_list(serv, &serv->sv_tempsocks, net)) {
1165
1166                svc_clean_up_xprts(serv, net);
1167                msleep(delay++);
1168        }
1169}
1170
1171/*
1172 * Handle defer and revisit of requests
1173 */
1174
1175static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1176{
1177        struct svc_deferred_req *dr =
1178                container_of(dreq, struct svc_deferred_req, handle);
1179        struct svc_xprt *xprt = dr->xprt;
1180
1181        spin_lock(&xprt->xpt_lock);
1182        set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1183        if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1184                spin_unlock(&xprt->xpt_lock);
1185                dprintk("revisit canceled\n");
1186                svc_xprt_put(xprt);
1187                trace_svc_drop_deferred(dr);
1188                kfree(dr);
1189                return;
1190        }
1191        dprintk("revisit queued\n");
1192        dr->xprt = NULL;
1193        list_add(&dr->handle.recent, &xprt->xpt_deferred);
1194        spin_unlock(&xprt->xpt_lock);
1195        svc_xprt_enqueue(xprt);
1196        svc_xprt_put(xprt);
1197}
1198
1199/*
1200 * Save the request off for later processing. The request buffer looks
1201 * like this:
1202 *
1203 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1204 *
1205 * This code can only handle requests that consist of an xprt-header
1206 * and rpc-header.
1207 */
1208static struct cache_deferred_req *svc_defer(struct cache_req *req)
1209{
1210        struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1211        struct svc_deferred_req *dr;
1212
1213        if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1214                return NULL; /* if more than a page, give up FIXME */
1215        if (rqstp->rq_deferred) {
1216                dr = rqstp->rq_deferred;
1217                rqstp->rq_deferred = NULL;
1218        } else {
1219                size_t skip;
1220                size_t size;
1221                /* FIXME maybe discard if size too large */
1222                size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1223                dr = kmalloc(size, GFP_KERNEL);
1224                if (dr == NULL)
1225                        return NULL;
1226
1227                dr->handle.owner = rqstp->rq_server;
1228                dr->prot = rqstp->rq_prot;
1229                memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1230                dr->addrlen = rqstp->rq_addrlen;
1231                dr->daddr = rqstp->rq_daddr;
1232                dr->argslen = rqstp->rq_arg.len >> 2;
1233                dr->xprt_hlen = rqstp->rq_xprt_hlen;
1234
1235                /* back up head to the start of the buffer and copy */
1236                skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1237                memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1238                       dr->argslen << 2);
1239        }
1240        svc_xprt_get(rqstp->rq_xprt);
1241        dr->xprt = rqstp->rq_xprt;
1242        set_bit(RQ_DROPME, &rqstp->rq_flags);
1243
1244        dr->handle.revisit = svc_revisit;
1245        trace_svc_defer(rqstp);
1246        return &dr->handle;
1247}
1248
1249/*
1250 * recv data from a deferred request into an active one
1251 */
1252static int svc_deferred_recv(struct svc_rqst *rqstp)
1253{
1254        struct svc_deferred_req *dr = rqstp->rq_deferred;
1255
1256        /* setup iov_base past transport header */
1257        rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1258        /* The iov_len does not include the transport header bytes */
1259        rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1260        rqstp->rq_arg.page_len = 0;
1261        /* The rq_arg.len includes the transport header bytes */
1262        rqstp->rq_arg.len     = dr->argslen<<2;
1263        rqstp->rq_prot        = dr->prot;
1264        memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1265        rqstp->rq_addrlen     = dr->addrlen;
1266        /* Save off transport header len in case we get deferred again */
1267        rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1268        rqstp->rq_daddr       = dr->daddr;
1269        rqstp->rq_respages    = rqstp->rq_pages;
1270        return (dr->argslen<<2) - dr->xprt_hlen;
1271}
1272
1273
1274static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1275{
1276        struct svc_deferred_req *dr = NULL;
1277
1278        if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1279                return NULL;
1280        spin_lock(&xprt->xpt_lock);
1281        if (!list_empty(&xprt->xpt_deferred)) {
1282                dr = list_entry(xprt->xpt_deferred.next,
1283                                struct svc_deferred_req,
1284                                handle.recent);
1285                list_del_init(&dr->handle.recent);
1286                trace_svc_revisit_deferred(dr);
1287        } else
1288                clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1289        spin_unlock(&xprt->xpt_lock);
1290        return dr;
1291}
1292
1293/**
1294 * svc_find_xprt - find an RPC transport instance
1295 * @serv: pointer to svc_serv to search
1296 * @xcl_name: C string containing transport's class name
1297 * @net: owner net pointer
1298 * @af: Address family of transport's local address
1299 * @port: transport's IP port number
1300 *
1301 * Return the transport instance pointer for the endpoint accepting
1302 * connections/peer traffic from the specified transport class,
1303 * address family and port.
1304 *
1305 * Specifying 0 for the address family or port is effectively a
1306 * wild-card, and will result in matching the first transport in the
1307 * service's list that has a matching class name.
1308 */
1309struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1310                               struct net *net, const sa_family_t af,
1311                               const unsigned short port)
1312{
1313        struct svc_xprt *xprt;
1314        struct svc_xprt *found = NULL;
1315
1316        /* Sanity check the args */
1317        if (serv == NULL || xcl_name == NULL)
1318                return found;
1319
1320        spin_lock_bh(&serv->sv_lock);
1321        list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1322                if (xprt->xpt_net != net)
1323                        continue;
1324                if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1325                        continue;
1326                if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1327                        continue;
1328                if (port != 0 && port != svc_xprt_local_port(xprt))
1329                        continue;
1330                found = xprt;
1331                svc_xprt_get(xprt);
1332                break;
1333        }
1334        spin_unlock_bh(&serv->sv_lock);
1335        return found;
1336}
1337EXPORT_SYMBOL_GPL(svc_find_xprt);
1338
1339static int svc_one_xprt_name(const struct svc_xprt *xprt,
1340                             char *pos, int remaining)
1341{
1342        int len;
1343
1344        len = snprintf(pos, remaining, "%s %u\n",
1345                        xprt->xpt_class->xcl_name,
1346                        svc_xprt_local_port(xprt));
1347        if (len >= remaining)
1348                return -ENAMETOOLONG;
1349        return len;
1350}
1351
1352/**
1353 * svc_xprt_names - format a buffer with a list of transport names
1354 * @serv: pointer to an RPC service
1355 * @buf: pointer to a buffer to be filled in
1356 * @buflen: length of buffer to be filled in
1357 *
1358 * Fills in @buf with a string containing a list of transport names,
1359 * each name terminated with '\n'.
1360 *
1361 * Returns positive length of the filled-in string on success; otherwise
1362 * a negative errno value is returned if an error occurs.
1363 */
1364int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1365{
1366        struct svc_xprt *xprt;
1367        int len, totlen;
1368        char *pos;
1369
1370        /* Sanity check args */
1371        if (!serv)
1372                return 0;
1373
1374        spin_lock_bh(&serv->sv_lock);
1375
1376        pos = buf;
1377        totlen = 0;
1378        list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1379                len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1380                if (len < 0) {
1381                        *buf = '\0';
1382                        totlen = len;
1383                }
1384                if (len <= 0)
1385                        break;
1386
1387                pos += len;
1388                totlen += len;
1389        }
1390
1391        spin_unlock_bh(&serv->sv_lock);
1392        return totlen;
1393}
1394EXPORT_SYMBOL_GPL(svc_xprt_names);
1395
1396
1397/*----------------------------------------------------------------------------*/
1398
1399static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1400{
1401        unsigned int pidx = (unsigned int)*pos;
1402        struct svc_serv *serv = m->private;
1403
1404        dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1405
1406        if (!pidx)
1407                return SEQ_START_TOKEN;
1408        return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1409}
1410
1411static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1412{
1413        struct svc_pool *pool = p;
1414        struct svc_serv *serv = m->private;
1415
1416        dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1417
1418        if (p == SEQ_START_TOKEN) {
1419                pool = &serv->sv_pools[0];
1420        } else {
1421                unsigned int pidx = (pool - &serv->sv_pools[0]);
1422                if (pidx < serv->sv_nrpools-1)
1423                        pool = &serv->sv_pools[pidx+1];
1424                else
1425                        pool = NULL;
1426        }
1427        ++*pos;
1428        return pool;
1429}
1430
1431static void svc_pool_stats_stop(struct seq_file *m, void *p)
1432{
1433}
1434
1435static int svc_pool_stats_show(struct seq_file *m, void *p)
1436{
1437        struct svc_pool *pool = p;
1438
1439        if (p == SEQ_START_TOKEN) {
1440                seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1441                return 0;
1442        }
1443
1444        seq_printf(m, "%u %lu %lu %lu %lu\n",
1445                pool->sp_id,
1446                (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1447                pool->sp_stats.sockets_queued,
1448                (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1449                (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1450
1451        return 0;
1452}
1453
1454static const struct seq_operations svc_pool_stats_seq_ops = {
1455        .start  = svc_pool_stats_start,
1456        .next   = svc_pool_stats_next,
1457        .stop   = svc_pool_stats_stop,
1458        .show   = svc_pool_stats_show,
1459};
1460
1461int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1462{
1463        int err;
1464
1465        err = seq_open(file, &svc_pool_stats_seq_ops);
1466        if (!err)
1467                ((struct seq_file *) file->private_data)->private = serv;
1468        return err;
1469}
1470EXPORT_SYMBOL(svc_pool_stats_open);
1471
1472/*----------------------------------------------------------------------------*/
1473