linux/net/sunrpc/xprtrdma/rpc_rdma.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the BSD-type
   8 * license below:
   9 *
  10 * Redistribution and use in source and binary forms, with or without
  11 * modification, are permitted provided that the following conditions
  12 * are met:
  13 *
  14 *      Redistributions of source code must retain the above copyright
  15 *      notice, this list of conditions and the following disclaimer.
  16 *
  17 *      Redistributions in binary form must reproduce the above
  18 *      copyright notice, this list of conditions and the following
  19 *      disclaimer in the documentation and/or other materials provided
  20 *      with the distribution.
  21 *
  22 *      Neither the name of the Network Appliance, Inc. nor the names of
  23 *      its contributors may be used to endorse or promote products
  24 *      derived from this software without specific prior written
  25 *      permission.
  26 *
  27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  38 */
  39
  40/*
  41 * rpc_rdma.c
  42 *
  43 * This file contains the guts of the RPC RDMA protocol, and
  44 * does marshaling/unmarshaling, etc. It is also where interfacing
  45 * to the Linux RPC framework lives.
  46 */
  47
  48#include "xprt_rdma.h"
  49
  50#include <linux/highmem.h>
  51
  52#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  53# define RPCDBG_FACILITY        RPCDBG_TRANS
  54#endif
  55
  56enum rpcrdma_chunktype {
  57        rpcrdma_noch = 0,
  58        rpcrdma_readch,
  59        rpcrdma_areadch,
  60        rpcrdma_writech,
  61        rpcrdma_replych
  62};
  63
  64static const char transfertypes[][12] = {
  65        "inline",       /* no chunks */
  66        "read list",    /* some argument via rdma read */
  67        "*read list",   /* entire request via rdma read */
  68        "write list",   /* some result via rdma write */
  69        "reply chunk"   /* entire reply via rdma write */
  70};
  71
  72/* Returns size of largest RPC-over-RDMA header in a Call message
  73 *
  74 * The largest Call header contains a full-size Read list and a
  75 * minimal Reply chunk.
  76 */
  77static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
  78{
  79        unsigned int size;
  80
  81        /* Fixed header fields and list discriminators */
  82        size = RPCRDMA_HDRLEN_MIN;
  83
  84        /* Maximum Read list size */
  85        maxsegs += 2;   /* segment for head and tail buffers */
  86        size = maxsegs * sizeof(struct rpcrdma_read_chunk);
  87
  88        /* Minimal Read chunk size */
  89        size += sizeof(__be32); /* segment count */
  90        size += sizeof(struct rpcrdma_segment);
  91        size += sizeof(__be32); /* list discriminator */
  92
  93        dprintk("RPC:       %s: max call header size = %u\n",
  94                __func__, size);
  95        return size;
  96}
  97
  98/* Returns size of largest RPC-over-RDMA header in a Reply message
  99 *
 100 * There is only one Write list or one Reply chunk per Reply
 101 * message.  The larger list is the Write list.
 102 */
 103static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
 104{
 105        unsigned int size;
 106
 107        /* Fixed header fields and list discriminators */
 108        size = RPCRDMA_HDRLEN_MIN;
 109
 110        /* Maximum Write list size */
 111        maxsegs += 2;   /* segment for head and tail buffers */
 112        size = sizeof(__be32);          /* segment count */
 113        size += maxsegs * sizeof(struct rpcrdma_segment);
 114        size += sizeof(__be32); /* list discriminator */
 115
 116        dprintk("RPC:       %s: max reply header size = %u\n",
 117                __func__, size);
 118        return size;
 119}
 120
 121void rpcrdma_set_max_header_sizes(struct rpcrdma_ia *ia,
 122                                  struct rpcrdma_create_data_internal *cdata,
 123                                  unsigned int maxsegs)
 124{
 125        ia->ri_max_inline_write = cdata->inline_wsize -
 126                                  rpcrdma_max_call_header_size(maxsegs);
 127        ia->ri_max_inline_read = cdata->inline_rsize -
 128                                 rpcrdma_max_reply_header_size(maxsegs);
 129}
 130
 131/* The client can send a request inline as long as the RPCRDMA header
 132 * plus the RPC call fit under the transport's inline limit. If the
 133 * combined call message size exceeds that limit, the client must use
 134 * the read chunk list for this operation.
 135 */
 136static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
 137                                struct rpc_rqst *rqst)
 138{
 139        struct rpcrdma_ia *ia = &r_xprt->rx_ia;
 140
 141        return rqst->rq_snd_buf.len <= ia->ri_max_inline_write;
 142}
 143
 144/* The client can't know how large the actual reply will be. Thus it
 145 * plans for the largest possible reply for that particular ULP
 146 * operation. If the maximum combined reply message size exceeds that
 147 * limit, the client must provide a write list or a reply chunk for
 148 * this request.
 149 */
 150static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
 151                                   struct rpc_rqst *rqst)
 152{
 153        struct rpcrdma_ia *ia = &r_xprt->rx_ia;
 154
 155        return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read;
 156}
 157
 158static int
 159rpcrdma_tail_pullup(struct xdr_buf *buf)
 160{
 161        size_t tlen = buf->tail[0].iov_len;
 162        size_t skip = tlen & 3;
 163
 164        /* Do not include the tail if it is only an XDR pad */
 165        if (tlen < 4)
 166                return 0;
 167
 168        /* xdr_write_pages() adds a pad at the beginning of the tail
 169         * if the content in "buf->pages" is unaligned. Force the
 170         * tail's actual content to land at the next XDR position
 171         * after the head instead.
 172         */
 173        if (skip) {
 174                unsigned char *src, *dst;
 175                unsigned int count;
 176
 177                src = buf->tail[0].iov_base;
 178                dst = buf->head[0].iov_base;
 179                dst += buf->head[0].iov_len;
 180
 181                src += skip;
 182                tlen -= skip;
 183
 184                dprintk("RPC:       %s: skip=%zu, memmove(%p, %p, %zu)\n",
 185                        __func__, skip, dst, src, tlen);
 186
 187                for (count = tlen; count; count--)
 188                        *dst++ = *src++;
 189        }
 190
 191        return tlen;
 192}
 193
 194/* Split "vec" on page boundaries into segments. FMR registers pages,
 195 * not a byte range. Other modes coalesce these segments into a single
 196 * MR when they can.
 197 */
 198static int
 199rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, int n)
 200{
 201        size_t page_offset;
 202        u32 remaining;
 203        char *base;
 204
 205        base = vec->iov_base;
 206        page_offset = offset_in_page(base);
 207        remaining = vec->iov_len;
 208        while (remaining && n < RPCRDMA_MAX_SEGS) {
 209                seg[n].mr_page = NULL;
 210                seg[n].mr_offset = base;
 211                seg[n].mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
 212                remaining -= seg[n].mr_len;
 213                base += seg[n].mr_len;
 214                ++n;
 215                page_offset = 0;
 216        }
 217        return n;
 218}
 219
 220/*
 221 * Chunk assembly from upper layer xdr_buf.
 222 *
 223 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
 224 * elements. Segments are then coalesced when registered, if possible
 225 * within the selected memreg mode.
 226 *
 227 * Returns positive number of segments converted, or a negative errno.
 228 */
 229
 230static int
 231rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
 232        enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg)
 233{
 234        int len, n, p, page_base;
 235        struct page **ppages;
 236
 237        n = 0;
 238        if (pos == 0) {
 239                n = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, n);
 240                if (n == RPCRDMA_MAX_SEGS)
 241                        goto out_overflow;
 242        }
 243
 244        len = xdrbuf->page_len;
 245        ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
 246        page_base = xdrbuf->page_base & ~PAGE_MASK;
 247        p = 0;
 248        while (len && n < RPCRDMA_MAX_SEGS) {
 249                if (!ppages[p]) {
 250                        /* alloc the pagelist for receiving buffer */
 251                        ppages[p] = alloc_page(GFP_ATOMIC);
 252                        if (!ppages[p])
 253                                return -EAGAIN;
 254                }
 255                seg[n].mr_page = ppages[p];
 256                seg[n].mr_offset = (void *)(unsigned long) page_base;
 257                seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
 258                if (seg[n].mr_len > PAGE_SIZE)
 259                        goto out_overflow;
 260                len -= seg[n].mr_len;
 261                ++n;
 262                ++p;
 263                page_base = 0;  /* page offset only applies to first page */
 264        }
 265
 266        /* Message overflows the seg array */
 267        if (len && n == RPCRDMA_MAX_SEGS)
 268                goto out_overflow;
 269
 270        /* When encoding the read list, the tail is always sent inline */
 271        if (type == rpcrdma_readch)
 272                return n;
 273
 274        if (xdrbuf->tail[0].iov_len) {
 275                /* the rpcrdma protocol allows us to omit any trailing
 276                 * xdr pad bytes, saving the server an RDMA operation. */
 277                if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
 278                        return n;
 279                n = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, n);
 280                if (n == RPCRDMA_MAX_SEGS)
 281                        goto out_overflow;
 282        }
 283
 284        return n;
 285
 286out_overflow:
 287        pr_err("rpcrdma: segment array overflow\n");
 288        return -EIO;
 289}
 290
 291static inline __be32 *
 292xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mw *mw)
 293{
 294        *iptr++ = cpu_to_be32(mw->mw_handle);
 295        *iptr++ = cpu_to_be32(mw->mw_length);
 296        return xdr_encode_hyper(iptr, mw->mw_offset);
 297}
 298
 299/* XDR-encode the Read list. Supports encoding a list of read
 300 * segments that belong to a single read chunk.
 301 *
 302 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 303 *
 304 *  Read chunklist (a linked list):
 305 *   N elements, position P (same P for all chunks of same arg!):
 306 *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
 307 *
 308 * Returns a pointer to the XDR word in the RDMA header following
 309 * the end of the Read list, or an error pointer.
 310 */
 311static __be32 *
 312rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
 313                         struct rpcrdma_req *req, struct rpc_rqst *rqst,
 314                         __be32 *iptr, enum rpcrdma_chunktype rtype)
 315{
 316        struct rpcrdma_mr_seg *seg;
 317        struct rpcrdma_mw *mw;
 318        unsigned int pos;
 319        int n, nsegs;
 320
 321        if (rtype == rpcrdma_noch) {
 322                *iptr++ = xdr_zero;     /* item not present */
 323                return iptr;
 324        }
 325
 326        pos = rqst->rq_snd_buf.head[0].iov_len;
 327        if (rtype == rpcrdma_areadch)
 328                pos = 0;
 329        seg = req->rl_segments;
 330        nsegs = rpcrdma_convert_iovs(&rqst->rq_snd_buf, pos, rtype, seg);
 331        if (nsegs < 0)
 332                return ERR_PTR(nsegs);
 333
 334        do {
 335                n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
 336                                                 false, &mw);
 337                if (n < 0)
 338                        return ERR_PTR(n);
 339                list_add(&mw->mw_list, &req->rl_registered);
 340
 341                *iptr++ = xdr_one;      /* item present */
 342
 343                /* All read segments in this chunk
 344                 * have the same "position".
 345                 */
 346                *iptr++ = cpu_to_be32(pos);
 347                iptr = xdr_encode_rdma_segment(iptr, mw);
 348
 349                dprintk("RPC: %5u %s: pos %u %u@0x%016llx:0x%08x (%s)\n",
 350                        rqst->rq_task->tk_pid, __func__, pos,
 351                        mw->mw_length, (unsigned long long)mw->mw_offset,
 352                        mw->mw_handle, n < nsegs ? "more" : "last");
 353
 354                r_xprt->rx_stats.read_chunk_count++;
 355                seg += n;
 356                nsegs -= n;
 357        } while (nsegs);
 358
 359        /* Finish Read list */
 360        *iptr++ = xdr_zero;     /* Next item not present */
 361        return iptr;
 362}
 363
 364/* XDR-encode the Write list. Supports encoding a list containing
 365 * one array of plain segments that belong to a single write chunk.
 366 *
 367 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 368 *
 369 *  Write chunklist (a list of (one) counted array):
 370 *   N elements:
 371 *    1 - N - HLOO - HLOO - ... - HLOO - 0
 372 *
 373 * Returns a pointer to the XDR word in the RDMA header following
 374 * the end of the Write list, or an error pointer.
 375 */
 376static __be32 *
 377rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
 378                          struct rpc_rqst *rqst, __be32 *iptr,
 379                          enum rpcrdma_chunktype wtype)
 380{
 381        struct rpcrdma_mr_seg *seg;
 382        struct rpcrdma_mw *mw;
 383        int n, nsegs, nchunks;
 384        __be32 *segcount;
 385
 386        if (wtype != rpcrdma_writech) {
 387                *iptr++ = xdr_zero;     /* no Write list present */
 388                return iptr;
 389        }
 390
 391        seg = req->rl_segments;
 392        nsegs = rpcrdma_convert_iovs(&rqst->rq_rcv_buf,
 393                                     rqst->rq_rcv_buf.head[0].iov_len,
 394                                     wtype, seg);
 395        if (nsegs < 0)
 396                return ERR_PTR(nsegs);
 397
 398        *iptr++ = xdr_one;      /* Write list present */
 399        segcount = iptr++;      /* save location of segment count */
 400
 401        nchunks = 0;
 402        do {
 403                n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
 404                                                 true, &mw);
 405                if (n < 0)
 406                        return ERR_PTR(n);
 407                list_add(&mw->mw_list, &req->rl_registered);
 408
 409                iptr = xdr_encode_rdma_segment(iptr, mw);
 410
 411                dprintk("RPC: %5u %s: %u@0x016%llx:0x%08x (%s)\n",
 412                        rqst->rq_task->tk_pid, __func__,
 413                        mw->mw_length, (unsigned long long)mw->mw_offset,
 414                        mw->mw_handle, n < nsegs ? "more" : "last");
 415
 416                r_xprt->rx_stats.write_chunk_count++;
 417                r_xprt->rx_stats.total_rdma_request += seg->mr_len;
 418                nchunks++;
 419                seg   += n;
 420                nsegs -= n;
 421        } while (nsegs);
 422
 423        /* Update count of segments in this Write chunk */
 424        *segcount = cpu_to_be32(nchunks);
 425
 426        /* Finish Write list */
 427        *iptr++ = xdr_zero;     /* Next item not present */
 428        return iptr;
 429}
 430
 431/* XDR-encode the Reply chunk. Supports encoding an array of plain
 432 * segments that belong to a single write (reply) chunk.
 433 *
 434 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 435 *
 436 *  Reply chunk (a counted array):
 437 *   N elements:
 438 *    1 - N - HLOO - HLOO - ... - HLOO
 439 *
 440 * Returns a pointer to the XDR word in the RDMA header following
 441 * the end of the Reply chunk, or an error pointer.
 442 */
 443static __be32 *
 444rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
 445                           struct rpcrdma_req *req, struct rpc_rqst *rqst,
 446                           __be32 *iptr, enum rpcrdma_chunktype wtype)
 447{
 448        struct rpcrdma_mr_seg *seg;
 449        struct rpcrdma_mw *mw;
 450        int n, nsegs, nchunks;
 451        __be32 *segcount;
 452
 453        if (wtype != rpcrdma_replych) {
 454                *iptr++ = xdr_zero;     /* no Reply chunk present */
 455                return iptr;
 456        }
 457
 458        seg = req->rl_segments;
 459        nsegs = rpcrdma_convert_iovs(&rqst->rq_rcv_buf, 0, wtype, seg);
 460        if (nsegs < 0)
 461                return ERR_PTR(nsegs);
 462
 463        *iptr++ = xdr_one;      /* Reply chunk present */
 464        segcount = iptr++;      /* save location of segment count */
 465
 466        nchunks = 0;
 467        do {
 468                n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
 469                                                 true, &mw);
 470                if (n < 0)
 471                        return ERR_PTR(n);
 472                list_add(&mw->mw_list, &req->rl_registered);
 473
 474                iptr = xdr_encode_rdma_segment(iptr, mw);
 475
 476                dprintk("RPC: %5u %s: %u@0x%016llx:0x%08x (%s)\n",
 477                        rqst->rq_task->tk_pid, __func__,
 478                        mw->mw_length, (unsigned long long)mw->mw_offset,
 479                        mw->mw_handle, n < nsegs ? "more" : "last");
 480
 481                r_xprt->rx_stats.reply_chunk_count++;
 482                r_xprt->rx_stats.total_rdma_request += seg->mr_len;
 483                nchunks++;
 484                seg   += n;
 485                nsegs -= n;
 486        } while (nsegs);
 487
 488        /* Update count of segments in the Reply chunk */
 489        *segcount = cpu_to_be32(nchunks);
 490
 491        return iptr;
 492}
 493
 494/*
 495 * Copy write data inline.
 496 * This function is used for "small" requests. Data which is passed
 497 * to RPC via iovecs (or page list) is copied directly into the
 498 * pre-registered memory buffer for this request. For small amounts
 499 * of data, this is efficient. The cutoff value is tunable.
 500 */
 501static void rpcrdma_inline_pullup(struct rpc_rqst *rqst)
 502{
 503        int i, npages, curlen;
 504        int copy_len;
 505        unsigned char *srcp, *destp;
 506        struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
 507        int page_base;
 508        struct page **ppages;
 509
 510        destp = rqst->rq_svec[0].iov_base;
 511        curlen = rqst->rq_svec[0].iov_len;
 512        destp += curlen;
 513
 514        dprintk("RPC:       %s: destp 0x%p len %d hdrlen %d\n",
 515                __func__, destp, rqst->rq_slen, curlen);
 516
 517        copy_len = rqst->rq_snd_buf.page_len;
 518
 519        if (rqst->rq_snd_buf.tail[0].iov_len) {
 520                curlen = rqst->rq_snd_buf.tail[0].iov_len;
 521                if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
 522                        memmove(destp + copy_len,
 523                                rqst->rq_snd_buf.tail[0].iov_base, curlen);
 524                        r_xprt->rx_stats.pullup_copy_count += curlen;
 525                }
 526                dprintk("RPC:       %s: tail destp 0x%p len %d\n",
 527                        __func__, destp + copy_len, curlen);
 528                rqst->rq_svec[0].iov_len += curlen;
 529        }
 530        r_xprt->rx_stats.pullup_copy_count += copy_len;
 531
 532        page_base = rqst->rq_snd_buf.page_base;
 533        ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
 534        page_base &= ~PAGE_MASK;
 535        npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
 536        for (i = 0; copy_len && i < npages; i++) {
 537                curlen = PAGE_SIZE - page_base;
 538                if (curlen > copy_len)
 539                        curlen = copy_len;
 540                dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
 541                        __func__, i, destp, copy_len, curlen);
 542                srcp = kmap_atomic(ppages[i]);
 543                memcpy(destp, srcp+page_base, curlen);
 544                kunmap_atomic(srcp);
 545                rqst->rq_svec[0].iov_len += curlen;
 546                destp += curlen;
 547                copy_len -= curlen;
 548                page_base = 0;
 549        }
 550        /* header now contains entire send message */
 551}
 552
 553/*
 554 * Marshal a request: the primary job of this routine is to choose
 555 * the transfer modes. See comments below.
 556 *
 557 * Prepares up to two IOVs per Call message:
 558 *
 559 *  [0] -- RPC RDMA header
 560 *  [1] -- the RPC header/data
 561 *
 562 * Returns zero on success, otherwise a negative errno.
 563 */
 564
 565int
 566rpcrdma_marshal_req(struct rpc_rqst *rqst)
 567{
 568        struct rpc_xprt *xprt = rqst->rq_xprt;
 569        struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
 570        struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
 571        enum rpcrdma_chunktype rtype, wtype;
 572        struct rpcrdma_msg *headerp;
 573        bool ddp_allowed;
 574        ssize_t hdrlen;
 575        size_t rpclen;
 576        __be32 *iptr;
 577
 578#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 579        if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state))
 580                return rpcrdma_bc_marshal_reply(rqst);
 581#endif
 582
 583        headerp = rdmab_to_msg(req->rl_rdmabuf);
 584        /* don't byte-swap XID, it's already done in request */
 585        headerp->rm_xid = rqst->rq_xid;
 586        headerp->rm_vers = rpcrdma_version;
 587        headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
 588        headerp->rm_type = rdma_msg;
 589
 590        /* When the ULP employs a GSS flavor that guarantees integrity
 591         * or privacy, direct data placement of individual data items
 592         * is not allowed.
 593         */
 594        ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
 595                                                RPCAUTH_AUTH_DATATOUCH);
 596
 597        /*
 598         * Chunks needed for results?
 599         *
 600         * o If the expected result is under the inline threshold, all ops
 601         *   return as inline.
 602         * o Large read ops return data as write chunk(s), header as
 603         *   inline.
 604         * o Large non-read ops return as a single reply chunk.
 605         */
 606        if (rpcrdma_results_inline(r_xprt, rqst))
 607                wtype = rpcrdma_noch;
 608        else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ)
 609                wtype = rpcrdma_writech;
 610        else
 611                wtype = rpcrdma_replych;
 612
 613        /*
 614         * Chunks needed for arguments?
 615         *
 616         * o If the total request is under the inline threshold, all ops
 617         *   are sent as inline.
 618         * o Large write ops transmit data as read chunk(s), header as
 619         *   inline.
 620         * o Large non-write ops are sent with the entire message as a
 621         *   single read chunk (protocol 0-position special case).
 622         *
 623         * This assumes that the upper layer does not present a request
 624         * that both has a data payload, and whose non-data arguments
 625         * by themselves are larger than the inline threshold.
 626         */
 627        if (rpcrdma_args_inline(r_xprt, rqst)) {
 628                rtype = rpcrdma_noch;
 629                rpcrdma_inline_pullup(rqst);
 630                rpclen = rqst->rq_svec[0].iov_len;
 631        } else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
 632                rtype = rpcrdma_readch;
 633                rpclen = rqst->rq_svec[0].iov_len;
 634                rpclen += rpcrdma_tail_pullup(&rqst->rq_snd_buf);
 635        } else {
 636                r_xprt->rx_stats.nomsg_call_count++;
 637                headerp->rm_type = htonl(RDMA_NOMSG);
 638                rtype = rpcrdma_areadch;
 639                rpclen = 0;
 640        }
 641
 642        /* This implementation supports the following combinations
 643         * of chunk lists in one RPC-over-RDMA Call message:
 644         *
 645         *   - Read list
 646         *   - Write list
 647         *   - Reply chunk
 648         *   - Read list + Reply chunk
 649         *
 650         * It might not yet support the following combinations:
 651         *
 652         *   - Read list + Write list
 653         *
 654         * It does not support the following combinations:
 655         *
 656         *   - Write list + Reply chunk
 657         *   - Read list + Write list + Reply chunk
 658         *
 659         * This implementation supports only a single chunk in each
 660         * Read or Write list. Thus for example the client cannot
 661         * send a Call message with a Position Zero Read chunk and a
 662         * regular Read chunk at the same time.
 663         */
 664        iptr = headerp->rm_body.rm_chunks;
 665        iptr = rpcrdma_encode_read_list(r_xprt, req, rqst, iptr, rtype);
 666        if (IS_ERR(iptr))
 667                goto out_unmap;
 668        iptr = rpcrdma_encode_write_list(r_xprt, req, rqst, iptr, wtype);
 669        if (IS_ERR(iptr))
 670                goto out_unmap;
 671        iptr = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, iptr, wtype);
 672        if (IS_ERR(iptr))
 673                goto out_unmap;
 674        hdrlen = (unsigned char *)iptr - (unsigned char *)headerp;
 675
 676        if (hdrlen + rpclen > RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
 677                goto out_overflow;
 678
 679        dprintk("RPC: %5u %s: %s/%s: hdrlen %zd rpclen %zd\n",
 680                rqst->rq_task->tk_pid, __func__,
 681                transfertypes[rtype], transfertypes[wtype],
 682                hdrlen, rpclen);
 683
 684        req->rl_send_iov[0].addr = rdmab_addr(req->rl_rdmabuf);
 685        req->rl_send_iov[0].length = hdrlen;
 686        req->rl_send_iov[0].lkey = rdmab_lkey(req->rl_rdmabuf);
 687
 688        req->rl_niovs = 1;
 689        if (rtype == rpcrdma_areadch)
 690                return 0;
 691
 692        req->rl_send_iov[1].addr = rdmab_addr(req->rl_sendbuf);
 693        req->rl_send_iov[1].length = rpclen;
 694        req->rl_send_iov[1].lkey = rdmab_lkey(req->rl_sendbuf);
 695
 696        req->rl_niovs = 2;
 697        return 0;
 698
 699out_overflow:
 700        pr_err("rpcrdma: send overflow: hdrlen %zd rpclen %zu %s/%s\n",
 701                hdrlen, rpclen, transfertypes[rtype], transfertypes[wtype]);
 702        iptr = ERR_PTR(-EIO);
 703
 704out_unmap:
 705        r_xprt->rx_ia.ri_ops->ro_unmap_safe(r_xprt, req, false);
 706        return PTR_ERR(iptr);
 707}
 708
 709/*
 710 * Chase down a received write or reply chunklist to get length
 711 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
 712 */
 713static int
 714rpcrdma_count_chunks(struct rpcrdma_rep *rep, int wrchunk, __be32 **iptrp)
 715{
 716        unsigned int i, total_len;
 717        struct rpcrdma_write_chunk *cur_wchunk;
 718        char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
 719
 720        i = be32_to_cpu(**iptrp);
 721        cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
 722        total_len = 0;
 723        while (i--) {
 724                struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
 725                ifdebug(FACILITY) {
 726                        u64 off;
 727                        xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
 728                        dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
 729                                __func__,
 730                                be32_to_cpu(seg->rs_length),
 731                                (unsigned long long)off,
 732                                be32_to_cpu(seg->rs_handle));
 733                }
 734                total_len += be32_to_cpu(seg->rs_length);
 735                ++cur_wchunk;
 736        }
 737        /* check and adjust for properly terminated write chunk */
 738        if (wrchunk) {
 739                __be32 *w = (__be32 *) cur_wchunk;
 740                if (*w++ != xdr_zero)
 741                        return -1;
 742                cur_wchunk = (struct rpcrdma_write_chunk *) w;
 743        }
 744        if ((char *)cur_wchunk > base + rep->rr_len)
 745                return -1;
 746
 747        *iptrp = (__be32 *) cur_wchunk;
 748        return total_len;
 749}
 750
 751/**
 752 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
 753 * @rqst: controlling RPC request
 754 * @srcp: points to RPC message payload in receive buffer
 755 * @copy_len: remaining length of receive buffer content
 756 * @pad: Write chunk pad bytes needed (zero for pure inline)
 757 *
 758 * The upper layer has set the maximum number of bytes it can
 759 * receive in each component of rq_rcv_buf. These values are set in
 760 * the head.iov_len, page_len, tail.iov_len, and buflen fields.
 761 *
 762 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
 763 * many cases this function simply updates iov_base pointers in
 764 * rq_rcv_buf to point directly to the received reply data, to
 765 * avoid copying reply data.
 766 *
 767 * Returns the count of bytes which had to be memcopied.
 768 */
 769static unsigned long
 770rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
 771{
 772        unsigned long fixup_copy_count;
 773        int i, npages, curlen;
 774        char *destp;
 775        struct page **ppages;
 776        int page_base;
 777
 778        /* The head iovec is redirected to the RPC reply message
 779         * in the receive buffer, to avoid a memcopy.
 780         */
 781        rqst->rq_rcv_buf.head[0].iov_base = srcp;
 782        rqst->rq_private_buf.head[0].iov_base = srcp;
 783
 784        /* The contents of the receive buffer that follow
 785         * head.iov_len bytes are copied into the page list.
 786         */
 787        curlen = rqst->rq_rcv_buf.head[0].iov_len;
 788        if (curlen > copy_len)
 789                curlen = copy_len;
 790        dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
 791                __func__, srcp, copy_len, curlen);
 792        srcp += curlen;
 793        copy_len -= curlen;
 794
 795        page_base = rqst->rq_rcv_buf.page_base;
 796        ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
 797        page_base &= ~PAGE_MASK;
 798        fixup_copy_count = 0;
 799        if (copy_len && rqst->rq_rcv_buf.page_len) {
 800                int pagelist_len;
 801
 802                pagelist_len = rqst->rq_rcv_buf.page_len;
 803                if (pagelist_len > copy_len)
 804                        pagelist_len = copy_len;
 805                npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
 806                for (i = 0; i < npages; i++) {
 807                        curlen = PAGE_SIZE - page_base;
 808                        if (curlen > pagelist_len)
 809                                curlen = pagelist_len;
 810
 811                        dprintk("RPC:       %s: page %d"
 812                                " srcp 0x%p len %d curlen %d\n",
 813                                __func__, i, srcp, copy_len, curlen);
 814                        destp = kmap_atomic(ppages[i]);
 815                        memcpy(destp + page_base, srcp, curlen);
 816                        flush_dcache_page(ppages[i]);
 817                        kunmap_atomic(destp);
 818                        srcp += curlen;
 819                        copy_len -= curlen;
 820                        fixup_copy_count += curlen;
 821                        pagelist_len -= curlen;
 822                        if (!pagelist_len)
 823                                break;
 824                        page_base = 0;
 825                }
 826
 827                /* Implicit padding for the last segment in a Write
 828                 * chunk is inserted inline at the front of the tail
 829                 * iovec. The upper layer ignores the content of
 830                 * the pad. Simply ensure inline content in the tail
 831                 * that follows the Write chunk is properly aligned.
 832                 */
 833                if (pad)
 834                        srcp -= pad;
 835        }
 836
 837        /* The tail iovec is redirected to the remaining data
 838         * in the receive buffer, to avoid a memcopy.
 839         */
 840        if (copy_len || pad) {
 841                rqst->rq_rcv_buf.tail[0].iov_base = srcp;
 842                rqst->rq_private_buf.tail[0].iov_base = srcp;
 843        }
 844
 845        return fixup_copy_count;
 846}
 847
 848void
 849rpcrdma_connect_worker(struct work_struct *work)
 850{
 851        struct rpcrdma_ep *ep =
 852                container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
 853        struct rpcrdma_xprt *r_xprt =
 854                container_of(ep, struct rpcrdma_xprt, rx_ep);
 855        struct rpc_xprt *xprt = &r_xprt->rx_xprt;
 856
 857        spin_lock_bh(&xprt->transport_lock);
 858        if (++xprt->connect_cookie == 0)        /* maintain a reserved value */
 859                ++xprt->connect_cookie;
 860        if (ep->rep_connected > 0) {
 861                if (!xprt_test_and_set_connected(xprt))
 862                        xprt_wake_pending_tasks(xprt, 0);
 863        } else {
 864                if (xprt_test_and_clear_connected(xprt))
 865                        xprt_wake_pending_tasks(xprt, -ENOTCONN);
 866        }
 867        spin_unlock_bh(&xprt->transport_lock);
 868}
 869
 870#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 871/* By convention, backchannel calls arrive via rdma_msg type
 872 * messages, and never populate the chunk lists. This makes
 873 * the RPC/RDMA header small and fixed in size, so it is
 874 * straightforward to check the RPC header's direction field.
 875 */
 876static bool
 877rpcrdma_is_bcall(struct rpcrdma_msg *headerp)
 878{
 879        __be32 *p = (__be32 *)headerp;
 880
 881        if (headerp->rm_type != rdma_msg)
 882                return false;
 883        if (headerp->rm_body.rm_chunks[0] != xdr_zero)
 884                return false;
 885        if (headerp->rm_body.rm_chunks[1] != xdr_zero)
 886                return false;
 887        if (headerp->rm_body.rm_chunks[2] != xdr_zero)
 888                return false;
 889
 890        /* sanity */
 891        if (p[7] != headerp->rm_xid)
 892                return false;
 893        /* call direction */
 894        if (p[8] != cpu_to_be32(RPC_CALL))
 895                return false;
 896
 897        return true;
 898}
 899#endif  /* CONFIG_SUNRPC_BACKCHANNEL */
 900
 901/*
 902 * This function is called when an async event is posted to
 903 * the connection which changes the connection state. All it
 904 * does at this point is mark the connection up/down, the rpc
 905 * timers do the rest.
 906 */
 907void
 908rpcrdma_conn_func(struct rpcrdma_ep *ep)
 909{
 910        schedule_delayed_work(&ep->rep_connect_worker, 0);
 911}
 912
 913/* Process received RPC/RDMA messages.
 914 *
 915 * Errors must result in the RPC task either being awakened, or
 916 * allowed to timeout, to discover the errors at that time.
 917 */
 918void
 919rpcrdma_reply_handler(struct rpcrdma_rep *rep)
 920{
 921        struct rpcrdma_msg *headerp;
 922        struct rpcrdma_req *req;
 923        struct rpc_rqst *rqst;
 924        struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
 925        struct rpc_xprt *xprt = &r_xprt->rx_xprt;
 926        __be32 *iptr;
 927        int rdmalen, status, rmerr;
 928        unsigned long cwnd;
 929
 930        dprintk("RPC:       %s: incoming rep %p\n", __func__, rep);
 931
 932        if (rep->rr_len == RPCRDMA_BAD_LEN)
 933                goto out_badstatus;
 934        if (rep->rr_len < RPCRDMA_HDRLEN_ERR)
 935                goto out_shortreply;
 936
 937        headerp = rdmab_to_msg(rep->rr_rdmabuf);
 938#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 939        if (rpcrdma_is_bcall(headerp))
 940                goto out_bcall;
 941#endif
 942
 943        /* Match incoming rpcrdma_rep to an rpcrdma_req to
 944         * get context for handling any incoming chunks.
 945         */
 946        spin_lock_bh(&xprt->transport_lock);
 947        rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
 948        if (!rqst)
 949                goto out_nomatch;
 950
 951        req = rpcr_to_rdmar(rqst);
 952        if (req->rl_reply)
 953                goto out_duplicate;
 954
 955        /* Sanity checking has passed. We are now committed
 956         * to complete this transaction.
 957         */
 958        list_del_init(&rqst->rq_list);
 959        spin_unlock_bh(&xprt->transport_lock);
 960        dprintk("RPC:       %s: reply %p completes request %p (xid 0x%08x)\n",
 961                __func__, rep, req, be32_to_cpu(headerp->rm_xid));
 962
 963        /* from here on, the reply is no longer an orphan */
 964        req->rl_reply = rep;
 965        xprt->reestablish_timeout = 0;
 966
 967        if (headerp->rm_vers != rpcrdma_version)
 968                goto out_badversion;
 969
 970        /* check for expected message types */
 971        /* The order of some of these tests is important. */
 972        switch (headerp->rm_type) {
 973        case rdma_msg:
 974                /* never expect read chunks */
 975                /* never expect reply chunks (two ways to check) */
 976                /* never expect write chunks without having offered RDMA */
 977                if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
 978                    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
 979                     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
 980                    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
 981                     list_empty(&req->rl_registered)))
 982                        goto badheader;
 983                if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
 984                        /* count any expected write chunks in read reply */
 985                        /* start at write chunk array count */
 986                        iptr = &headerp->rm_body.rm_chunks[2];
 987                        rdmalen = rpcrdma_count_chunks(rep, 1, &iptr);
 988                        /* check for validity, and no reply chunk after */
 989                        if (rdmalen < 0 || *iptr++ != xdr_zero)
 990                                goto badheader;
 991                        rep->rr_len -=
 992                            ((unsigned char *)iptr - (unsigned char *)headerp);
 993                        status = rep->rr_len + rdmalen;
 994                        r_xprt->rx_stats.total_rdma_reply += rdmalen;
 995                        /* special case - last chunk may omit padding */
 996                        if (rdmalen &= 3) {
 997                                rdmalen = 4 - rdmalen;
 998                                status += rdmalen;
 999                        }
1000                } else {
1001                        /* else ordinary inline */
1002                        rdmalen = 0;
1003                        iptr = (__be32 *)((unsigned char *)headerp +
1004                                                        RPCRDMA_HDRLEN_MIN);
1005                        rep->rr_len -= RPCRDMA_HDRLEN_MIN;
1006                        status = rep->rr_len;
1007                }
1008
1009                r_xprt->rx_stats.fixup_copy_count +=
1010                        rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len,
1011                                             rdmalen);
1012                break;
1013
1014        case rdma_nomsg:
1015                /* never expect read or write chunks, always reply chunks */
1016                if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
1017                    headerp->rm_body.rm_chunks[1] != xdr_zero ||
1018                    headerp->rm_body.rm_chunks[2] != xdr_one ||
1019                    list_empty(&req->rl_registered))
1020                        goto badheader;
1021                iptr = (__be32 *)((unsigned char *)headerp +
1022                                                        RPCRDMA_HDRLEN_MIN);
1023                rdmalen = rpcrdma_count_chunks(rep, 0, &iptr);
1024                if (rdmalen < 0)
1025                        goto badheader;
1026                r_xprt->rx_stats.total_rdma_reply += rdmalen;
1027                /* Reply chunk buffer already is the reply vector - no fixup. */
1028                status = rdmalen;
1029                break;
1030
1031        case rdma_error:
1032                goto out_rdmaerr;
1033
1034badheader:
1035        default:
1036                dprintk("RPC: %5u %s: invalid rpcrdma reply (type %u)\n",
1037                        rqst->rq_task->tk_pid, __func__,
1038                        be32_to_cpu(headerp->rm_type));
1039                status = -EIO;
1040                r_xprt->rx_stats.bad_reply_count++;
1041                break;
1042        }
1043
1044out:
1045        /* Invalidate and flush the data payloads before waking the
1046         * waiting application. This guarantees the memory region is
1047         * properly fenced from the server before the application
1048         * accesses the data. It also ensures proper send flow
1049         * control: waking the next RPC waits until this RPC has
1050         * relinquished all its Send Queue entries.
1051         */
1052        if (!list_empty(&req->rl_registered))
1053                r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, req);
1054
1055        spin_lock_bh(&xprt->transport_lock);
1056        cwnd = xprt->cwnd;
1057        xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT;
1058        if (xprt->cwnd > cwnd)
1059                xprt_release_rqst_cong(rqst->rq_task);
1060
1061        xprt_complete_rqst(rqst->rq_task, status);
1062        spin_unlock_bh(&xprt->transport_lock);
1063        dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
1064                        __func__, xprt, rqst, status);
1065        return;
1066
1067out_badstatus:
1068        rpcrdma_recv_buffer_put(rep);
1069        if (r_xprt->rx_ep.rep_connected == 1) {
1070                r_xprt->rx_ep.rep_connected = -EIO;
1071                rpcrdma_conn_func(&r_xprt->rx_ep);
1072        }
1073        return;
1074
1075#if defined(CONFIG_SUNRPC_BACKCHANNEL)
1076out_bcall:
1077        rpcrdma_bc_receive_call(r_xprt, rep);
1078        return;
1079#endif
1080
1081/* If the incoming reply terminated a pending RPC, the next
1082 * RPC call will post a replacement receive buffer as it is
1083 * being marshaled.
1084 */
1085out_badversion:
1086        dprintk("RPC:       %s: invalid version %d\n",
1087                __func__, be32_to_cpu(headerp->rm_vers));
1088        status = -EIO;
1089        r_xprt->rx_stats.bad_reply_count++;
1090        goto out;
1091
1092out_rdmaerr:
1093        rmerr = be32_to_cpu(headerp->rm_body.rm_error.rm_err);
1094        switch (rmerr) {
1095        case ERR_VERS:
1096                pr_err("%s: server reports header version error (%u-%u)\n",
1097                       __func__,
1098                       be32_to_cpu(headerp->rm_body.rm_error.rm_vers_low),
1099                       be32_to_cpu(headerp->rm_body.rm_error.rm_vers_high));
1100                break;
1101        case ERR_CHUNK:
1102                pr_err("%s: server reports header decoding error\n",
1103                       __func__);
1104                break;
1105        default:
1106                pr_err("%s: server reports unknown error %d\n",
1107                       __func__, rmerr);
1108        }
1109        status = -EREMOTEIO;
1110        r_xprt->rx_stats.bad_reply_count++;
1111        goto out;
1112
1113/* If no pending RPC transaction was matched, post a replacement
1114 * receive buffer before returning.
1115 */
1116out_shortreply:
1117        dprintk("RPC:       %s: short/invalid reply\n", __func__);
1118        goto repost;
1119
1120out_nomatch:
1121        spin_unlock_bh(&xprt->transport_lock);
1122        dprintk("RPC:       %s: no match for incoming xid 0x%08x len %d\n",
1123                __func__, be32_to_cpu(headerp->rm_xid),
1124                rep->rr_len);
1125        goto repost;
1126
1127out_duplicate:
1128        spin_unlock_bh(&xprt->transport_lock);
1129        dprintk("RPC:       %s: "
1130                "duplicate reply %p to RPC request %p: xid 0x%08x\n",
1131                __func__, rep, req, be32_to_cpu(headerp->rm_xid));
1132
1133repost:
1134        r_xprt->rx_stats.bad_reply_count++;
1135        if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
1136                rpcrdma_recv_buffer_put(rep);
1137}
1138