linux/tools/perf/bench/numa.c
<<
>>
Prefs
   1/*
   2 * numa.c
   3 *
   4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   5 */
   6
   7/* For the CLR_() macros */
   8#include <pthread.h>
   9
  10#include "../perf.h"
  11#include "../builtin.h"
  12#include "../util/util.h"
  13#include <subcmd/parse-options.h>
  14#include "../util/cloexec.h"
  15
  16#include "bench.h"
  17
  18#include <errno.h>
  19#include <sched.h>
  20#include <stdio.h>
  21#include <assert.h>
  22#include <malloc.h>
  23#include <signal.h>
  24#include <stdlib.h>
  25#include <string.h>
  26#include <unistd.h>
  27#include <sys/mman.h>
  28#include <sys/time.h>
  29#include <sys/resource.h>
  30#include <sys/wait.h>
  31#include <sys/prctl.h>
  32#include <sys/types.h>
  33
  34#include <numa.h>
  35#include <numaif.h>
  36
  37/*
  38 * Regular printout to the terminal, supressed if -q is specified:
  39 */
  40#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  41
  42/*
  43 * Debug printf:
  44 */
  45#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  46
  47struct thread_data {
  48        int                     curr_cpu;
  49        cpu_set_t               bind_cpumask;
  50        int                     bind_node;
  51        u8                      *process_data;
  52        int                     process_nr;
  53        int                     thread_nr;
  54        int                     task_nr;
  55        unsigned int            loops_done;
  56        u64                     val;
  57        u64                     runtime_ns;
  58        u64                     system_time_ns;
  59        u64                     user_time_ns;
  60        double                  speed_gbs;
  61        pthread_mutex_t         *process_lock;
  62};
  63
  64/* Parameters set by options: */
  65
  66struct params {
  67        /* Startup synchronization: */
  68        bool                    serialize_startup;
  69
  70        /* Task hierarchy: */
  71        int                     nr_proc;
  72        int                     nr_threads;
  73
  74        /* Working set sizes: */
  75        const char              *mb_global_str;
  76        const char              *mb_proc_str;
  77        const char              *mb_proc_locked_str;
  78        const char              *mb_thread_str;
  79
  80        double                  mb_global;
  81        double                  mb_proc;
  82        double                  mb_proc_locked;
  83        double                  mb_thread;
  84
  85        /* Access patterns to the working set: */
  86        bool                    data_reads;
  87        bool                    data_writes;
  88        bool                    data_backwards;
  89        bool                    data_zero_memset;
  90        bool                    data_rand_walk;
  91        u32                     nr_loops;
  92        u32                     nr_secs;
  93        u32                     sleep_usecs;
  94
  95        /* Working set initialization: */
  96        bool                    init_zero;
  97        bool                    init_random;
  98        bool                    init_cpu0;
  99
 100        /* Misc options: */
 101        int                     show_details;
 102        int                     run_all;
 103        int                     thp;
 104
 105        long                    bytes_global;
 106        long                    bytes_process;
 107        long                    bytes_process_locked;
 108        long                    bytes_thread;
 109
 110        int                     nr_tasks;
 111        bool                    show_quiet;
 112
 113        bool                    show_convergence;
 114        bool                    measure_convergence;
 115
 116        int                     perturb_secs;
 117        int                     nr_cpus;
 118        int                     nr_nodes;
 119
 120        /* Affinity options -C and -N: */
 121        char                    *cpu_list_str;
 122        char                    *node_list_str;
 123};
 124
 125
 126/* Global, read-writable area, accessible to all processes and threads: */
 127
 128struct global_info {
 129        u8                      *data;
 130
 131        pthread_mutex_t         startup_mutex;
 132        int                     nr_tasks_started;
 133
 134        pthread_mutex_t         startup_done_mutex;
 135
 136        pthread_mutex_t         start_work_mutex;
 137        int                     nr_tasks_working;
 138
 139        pthread_mutex_t         stop_work_mutex;
 140        u64                     bytes_done;
 141
 142        struct thread_data      *threads;
 143
 144        /* Convergence latency measurement: */
 145        bool                    all_converged;
 146        bool                    stop_work;
 147
 148        int                     print_once;
 149
 150        struct params           p;
 151};
 152
 153static struct global_info       *g = NULL;
 154
 155static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 156static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 157
 158struct params p0;
 159
 160static const struct option options[] = {
 161        OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
 162        OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
 163
 164        OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
 165        OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
 166        OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 167        OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
 168
 169        OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run (default: unlimited)"),
 170        OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run (default: 5 secs)"),
 171        OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
 172
 173        OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via writes (can be mixed with -W)"),
 174        OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
 175        OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
 176        OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 177        OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
 178
 179
 180        OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
 181        OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
 182        OPT_BOOLEAN('0', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
 183        OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
 184
 185        OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
 186        OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
 187        OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 188        OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
 189        OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
 190        OPT_BOOLEAN('q', "quiet"        , &p0.show_quiet,       "quiet mode"),
 191        OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 192
 193        /* Special option string parsing callbacks: */
 194        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 195                        "bind the first N tasks to these specific cpus (the rest is unbound)",
 196                        parse_cpus_opt),
 197        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 198                        "bind the first N tasks to these specific memory nodes (the rest is unbound)",
 199                        parse_nodes_opt),
 200        OPT_END()
 201};
 202
 203static const char * const bench_numa_usage[] = {
 204        "perf bench numa <options>",
 205        NULL
 206};
 207
 208static const char * const numa_usage[] = {
 209        "perf bench numa mem [<options>]",
 210        NULL
 211};
 212
 213static cpu_set_t bind_to_cpu(int target_cpu)
 214{
 215        cpu_set_t orig_mask, mask;
 216        int ret;
 217
 218        ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 219        BUG_ON(ret);
 220
 221        CPU_ZERO(&mask);
 222
 223        if (target_cpu == -1) {
 224                int cpu;
 225
 226                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 227                        CPU_SET(cpu, &mask);
 228        } else {
 229                BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 230                CPU_SET(target_cpu, &mask);
 231        }
 232
 233        ret = sched_setaffinity(0, sizeof(mask), &mask);
 234        BUG_ON(ret);
 235
 236        return orig_mask;
 237}
 238
 239static cpu_set_t bind_to_node(int target_node)
 240{
 241        int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
 242        cpu_set_t orig_mask, mask;
 243        int cpu;
 244        int ret;
 245
 246        BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
 247        BUG_ON(!cpus_per_node);
 248
 249        ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 250        BUG_ON(ret);
 251
 252        CPU_ZERO(&mask);
 253
 254        if (target_node == -1) {
 255                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 256                        CPU_SET(cpu, &mask);
 257        } else {
 258                int cpu_start = (target_node + 0) * cpus_per_node;
 259                int cpu_stop  = (target_node + 1) * cpus_per_node;
 260
 261                BUG_ON(cpu_stop > g->p.nr_cpus);
 262
 263                for (cpu = cpu_start; cpu < cpu_stop; cpu++)
 264                        CPU_SET(cpu, &mask);
 265        }
 266
 267        ret = sched_setaffinity(0, sizeof(mask), &mask);
 268        BUG_ON(ret);
 269
 270        return orig_mask;
 271}
 272
 273static void bind_to_cpumask(cpu_set_t mask)
 274{
 275        int ret;
 276
 277        ret = sched_setaffinity(0, sizeof(mask), &mask);
 278        BUG_ON(ret);
 279}
 280
 281static void mempol_restore(void)
 282{
 283        int ret;
 284
 285        ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 286
 287        BUG_ON(ret);
 288}
 289
 290static void bind_to_memnode(int node)
 291{
 292        unsigned long nodemask;
 293        int ret;
 294
 295        if (node == -1)
 296                return;
 297
 298        BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
 299        nodemask = 1L << node;
 300
 301        ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
 302        dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
 303
 304        BUG_ON(ret);
 305}
 306
 307#define HPSIZE (2*1024*1024)
 308
 309#define set_taskname(fmt...)                            \
 310do {                                                    \
 311        char name[20];                                  \
 312                                                        \
 313        snprintf(name, 20, fmt);                        \
 314        prctl(PR_SET_NAME, name);                       \
 315} while (0)
 316
 317static u8 *alloc_data(ssize_t bytes0, int map_flags,
 318                      int init_zero, int init_cpu0, int thp, int init_random)
 319{
 320        cpu_set_t orig_mask;
 321        ssize_t bytes;
 322        u8 *buf;
 323        int ret;
 324
 325        if (!bytes0)
 326                return NULL;
 327
 328        /* Allocate and initialize all memory on CPU#0: */
 329        if (init_cpu0) {
 330                orig_mask = bind_to_node(0);
 331                bind_to_memnode(0);
 332        }
 333
 334        bytes = bytes0 + HPSIZE;
 335
 336        buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 337        BUG_ON(buf == (void *)-1);
 338
 339        if (map_flags == MAP_PRIVATE) {
 340                if (thp > 0) {
 341                        ret = madvise(buf, bytes, MADV_HUGEPAGE);
 342                        if (ret && !g->print_once) {
 343                                g->print_once = 1;
 344                                printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 345                        }
 346                }
 347                if (thp < 0) {
 348                        ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 349                        if (ret && !g->print_once) {
 350                                g->print_once = 1;
 351                                printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 352                        }
 353                }
 354        }
 355
 356        if (init_zero) {
 357                bzero(buf, bytes);
 358        } else {
 359                /* Initialize random contents, different in each word: */
 360                if (init_random) {
 361                        u64 *wbuf = (void *)buf;
 362                        long off = rand();
 363                        long i;
 364
 365                        for (i = 0; i < bytes/8; i++)
 366                                wbuf[i] = i + off;
 367                }
 368        }
 369
 370        /* Align to 2MB boundary: */
 371        buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 372
 373        /* Restore affinity: */
 374        if (init_cpu0) {
 375                bind_to_cpumask(orig_mask);
 376                mempol_restore();
 377        }
 378
 379        return buf;
 380}
 381
 382static void free_data(void *data, ssize_t bytes)
 383{
 384        int ret;
 385
 386        if (!data)
 387                return;
 388
 389        ret = munmap(data, bytes);
 390        BUG_ON(ret);
 391}
 392
 393/*
 394 * Create a shared memory buffer that can be shared between processes, zeroed:
 395 */
 396static void * zalloc_shared_data(ssize_t bytes)
 397{
 398        return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 399}
 400
 401/*
 402 * Create a shared memory buffer that can be shared between processes:
 403 */
 404static void * setup_shared_data(ssize_t bytes)
 405{
 406        return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 407}
 408
 409/*
 410 * Allocate process-local memory - this will either be shared between
 411 * threads of this process, or only be accessed by this thread:
 412 */
 413static void * setup_private_data(ssize_t bytes)
 414{
 415        return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 416}
 417
 418/*
 419 * Return a process-shared (global) mutex:
 420 */
 421static void init_global_mutex(pthread_mutex_t *mutex)
 422{
 423        pthread_mutexattr_t attr;
 424
 425        pthread_mutexattr_init(&attr);
 426        pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 427        pthread_mutex_init(mutex, &attr);
 428}
 429
 430static int parse_cpu_list(const char *arg)
 431{
 432        p0.cpu_list_str = strdup(arg);
 433
 434        dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 435
 436        return 0;
 437}
 438
 439static int parse_setup_cpu_list(void)
 440{
 441        struct thread_data *td;
 442        char *str0, *str;
 443        int t;
 444
 445        if (!g->p.cpu_list_str)
 446                return 0;
 447
 448        dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 449
 450        str0 = str = strdup(g->p.cpu_list_str);
 451        t = 0;
 452
 453        BUG_ON(!str);
 454
 455        tprintf("# binding tasks to CPUs:\n");
 456        tprintf("#  ");
 457
 458        while (true) {
 459                int bind_cpu, bind_cpu_0, bind_cpu_1;
 460                char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 461                int bind_len;
 462                int step;
 463                int mul;
 464
 465                tok = strsep(&str, ",");
 466                if (!tok)
 467                        break;
 468
 469                tok_end = strstr(tok, "-");
 470
 471                dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 472                if (!tok_end) {
 473                        /* Single CPU specified: */
 474                        bind_cpu_0 = bind_cpu_1 = atol(tok);
 475                } else {
 476                        /* CPU range specified (for example: "5-11"): */
 477                        bind_cpu_0 = atol(tok);
 478                        bind_cpu_1 = atol(tok_end + 1);
 479                }
 480
 481                step = 1;
 482                tok_step = strstr(tok, "#");
 483                if (tok_step) {
 484                        step = atol(tok_step + 1);
 485                        BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 486                }
 487
 488                /*
 489                 * Mask length.
 490                 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 491                 * where the _4 means the next 4 CPUs are allowed.
 492                 */
 493                bind_len = 1;
 494                tok_len = strstr(tok, "_");
 495                if (tok_len) {
 496                        bind_len = atol(tok_len + 1);
 497                        BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 498                }
 499
 500                /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 501                mul = 1;
 502                tok_mul = strstr(tok, "x");
 503                if (tok_mul) {
 504                        mul = atol(tok_mul + 1);
 505                        BUG_ON(mul <= 0);
 506                }
 507
 508                dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 509
 510                if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 511                        printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 512                        return -1;
 513                }
 514
 515                BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 516                BUG_ON(bind_cpu_0 > bind_cpu_1);
 517
 518                for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 519                        int i;
 520
 521                        for (i = 0; i < mul; i++) {
 522                                int cpu;
 523
 524                                if (t >= g->p.nr_tasks) {
 525                                        printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 526                                        goto out;
 527                                }
 528                                td = g->threads + t;
 529
 530                                if (t)
 531                                        tprintf(",");
 532                                if (bind_len > 1) {
 533                                        tprintf("%2d/%d", bind_cpu, bind_len);
 534                                } else {
 535                                        tprintf("%2d", bind_cpu);
 536                                }
 537
 538                                CPU_ZERO(&td->bind_cpumask);
 539                                for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 540                                        BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 541                                        CPU_SET(cpu, &td->bind_cpumask);
 542                                }
 543                                t++;
 544                        }
 545                }
 546        }
 547out:
 548
 549        tprintf("\n");
 550
 551        if (t < g->p.nr_tasks)
 552                printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 553
 554        free(str0);
 555        return 0;
 556}
 557
 558static int parse_cpus_opt(const struct option *opt __maybe_unused,
 559                          const char *arg, int unset __maybe_unused)
 560{
 561        if (!arg)
 562                return -1;
 563
 564        return parse_cpu_list(arg);
 565}
 566
 567static int parse_node_list(const char *arg)
 568{
 569        p0.node_list_str = strdup(arg);
 570
 571        dprintf("got NODE list: {%s}\n", p0.node_list_str);
 572
 573        return 0;
 574}
 575
 576static int parse_setup_node_list(void)
 577{
 578        struct thread_data *td;
 579        char *str0, *str;
 580        int t;
 581
 582        if (!g->p.node_list_str)
 583                return 0;
 584
 585        dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 586
 587        str0 = str = strdup(g->p.node_list_str);
 588        t = 0;
 589
 590        BUG_ON(!str);
 591
 592        tprintf("# binding tasks to NODEs:\n");
 593        tprintf("# ");
 594
 595        while (true) {
 596                int bind_node, bind_node_0, bind_node_1;
 597                char *tok, *tok_end, *tok_step, *tok_mul;
 598                int step;
 599                int mul;
 600
 601                tok = strsep(&str, ",");
 602                if (!tok)
 603                        break;
 604
 605                tok_end = strstr(tok, "-");
 606
 607                dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 608                if (!tok_end) {
 609                        /* Single NODE specified: */
 610                        bind_node_0 = bind_node_1 = atol(tok);
 611                } else {
 612                        /* NODE range specified (for example: "5-11"): */
 613                        bind_node_0 = atol(tok);
 614                        bind_node_1 = atol(tok_end + 1);
 615                }
 616
 617                step = 1;
 618                tok_step = strstr(tok, "#");
 619                if (tok_step) {
 620                        step = atol(tok_step + 1);
 621                        BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 622                }
 623
 624                /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 625                mul = 1;
 626                tok_mul = strstr(tok, "x");
 627                if (tok_mul) {
 628                        mul = atol(tok_mul + 1);
 629                        BUG_ON(mul <= 0);
 630                }
 631
 632                dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 633
 634                if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 635                        printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 636                        return -1;
 637                }
 638
 639                BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 640                BUG_ON(bind_node_0 > bind_node_1);
 641
 642                for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 643                        int i;
 644
 645                        for (i = 0; i < mul; i++) {
 646                                if (t >= g->p.nr_tasks) {
 647                                        printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 648                                        goto out;
 649                                }
 650                                td = g->threads + t;
 651
 652                                if (!t)
 653                                        tprintf(" %2d", bind_node);
 654                                else
 655                                        tprintf(",%2d", bind_node);
 656
 657                                td->bind_node = bind_node;
 658                                t++;
 659                        }
 660                }
 661        }
 662out:
 663
 664        tprintf("\n");
 665
 666        if (t < g->p.nr_tasks)
 667                printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 668
 669        free(str0);
 670        return 0;
 671}
 672
 673static int parse_nodes_opt(const struct option *opt __maybe_unused,
 674                          const char *arg, int unset __maybe_unused)
 675{
 676        if (!arg)
 677                return -1;
 678
 679        return parse_node_list(arg);
 680
 681        return 0;
 682}
 683
 684#define BIT(x) (1ul << x)
 685
 686static inline uint32_t lfsr_32(uint32_t lfsr)
 687{
 688        const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 689        return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 690}
 691
 692/*
 693 * Make sure there's real data dependency to RAM (when read
 694 * accesses are enabled), so the compiler, the CPU and the
 695 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 696 * accesses:
 697 */
 698static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
 699{
 700        if (g->p.data_reads)
 701                val += *data;
 702        if (g->p.data_writes)
 703                *data = val + 1;
 704        return val;
 705}
 706
 707/*
 708 * The worker process does two types of work, a forwards going
 709 * loop and a backwards going loop.
 710 *
 711 * We do this so that on multiprocessor systems we do not create
 712 * a 'train' of processing, with highly synchronized processes,
 713 * skewing the whole benchmark.
 714 */
 715static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 716{
 717        long words = bytes/sizeof(u64);
 718        u64 *data = (void *)__data;
 719        long chunk_0, chunk_1;
 720        u64 *d0, *d, *d1;
 721        long off;
 722        long i;
 723
 724        BUG_ON(!data && words);
 725        BUG_ON(data && !words);
 726
 727        if (!data)
 728                return val;
 729
 730        /* Very simple memset() work variant: */
 731        if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 732                bzero(data, bytes);
 733                return val;
 734        }
 735
 736        /* Spread out by PID/TID nr and by loop nr: */
 737        chunk_0 = words/nr_max;
 738        chunk_1 = words/g->p.nr_loops;
 739        off = nr*chunk_0 + loop*chunk_1;
 740
 741        while (off >= words)
 742                off -= words;
 743
 744        if (g->p.data_rand_walk) {
 745                u32 lfsr = nr + loop + val;
 746                int j;
 747
 748                for (i = 0; i < words/1024; i++) {
 749                        long start, end;
 750
 751                        lfsr = lfsr_32(lfsr);
 752
 753                        start = lfsr % words;
 754                        end = min(start + 1024, words-1);
 755
 756                        if (g->p.data_zero_memset) {
 757                                bzero(data + start, (end-start) * sizeof(u64));
 758                        } else {
 759                                for (j = start; j < end; j++)
 760                                        val = access_data(data + j, val);
 761                        }
 762                }
 763        } else if (!g->p.data_backwards || (nr + loop) & 1) {
 764
 765                d0 = data + off;
 766                d  = data + off + 1;
 767                d1 = data + words;
 768
 769                /* Process data forwards: */
 770                for (;;) {
 771                        if (unlikely(d >= d1))
 772                                d = data;
 773                        if (unlikely(d == d0))
 774                                break;
 775
 776                        val = access_data(d, val);
 777
 778                        d++;
 779                }
 780        } else {
 781                /* Process data backwards: */
 782
 783                d0 = data + off;
 784                d  = data + off - 1;
 785                d1 = data + words;
 786
 787                /* Process data forwards: */
 788                for (;;) {
 789                        if (unlikely(d < data))
 790                                d = data + words-1;
 791                        if (unlikely(d == d0))
 792                                break;
 793
 794                        val = access_data(d, val);
 795
 796                        d--;
 797                }
 798        }
 799
 800        return val;
 801}
 802
 803static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 804{
 805        unsigned int cpu;
 806
 807        cpu = sched_getcpu();
 808
 809        g->threads[task_nr].curr_cpu = cpu;
 810        prctl(0, bytes_worked);
 811}
 812
 813#define MAX_NR_NODES    64
 814
 815/*
 816 * Count the number of nodes a process's threads
 817 * are spread out on.
 818 *
 819 * A count of 1 means that the process is compressed
 820 * to a single node. A count of g->p.nr_nodes means it's
 821 * spread out on the whole system.
 822 */
 823static int count_process_nodes(int process_nr)
 824{
 825        char node_present[MAX_NR_NODES] = { 0, };
 826        int nodes;
 827        int n, t;
 828
 829        for (t = 0; t < g->p.nr_threads; t++) {
 830                struct thread_data *td;
 831                int task_nr;
 832                int node;
 833
 834                task_nr = process_nr*g->p.nr_threads + t;
 835                td = g->threads + task_nr;
 836
 837                node = numa_node_of_cpu(td->curr_cpu);
 838                if (node < 0) /* curr_cpu was likely still -1 */
 839                        return 0;
 840
 841                node_present[node] = 1;
 842        }
 843
 844        nodes = 0;
 845
 846        for (n = 0; n < MAX_NR_NODES; n++)
 847                nodes += node_present[n];
 848
 849        return nodes;
 850}
 851
 852/*
 853 * Count the number of distinct process-threads a node contains.
 854 *
 855 * A count of 1 means that the node contains only a single
 856 * process. If all nodes on the system contain at most one
 857 * process then we are well-converged.
 858 */
 859static int count_node_processes(int node)
 860{
 861        int processes = 0;
 862        int t, p;
 863
 864        for (p = 0; p < g->p.nr_proc; p++) {
 865                for (t = 0; t < g->p.nr_threads; t++) {
 866                        struct thread_data *td;
 867                        int task_nr;
 868                        int n;
 869
 870                        task_nr = p*g->p.nr_threads + t;
 871                        td = g->threads + task_nr;
 872
 873                        n = numa_node_of_cpu(td->curr_cpu);
 874                        if (n == node) {
 875                                processes++;
 876                                break;
 877                        }
 878                }
 879        }
 880
 881        return processes;
 882}
 883
 884static void calc_convergence_compression(int *strong)
 885{
 886        unsigned int nodes_min, nodes_max;
 887        int p;
 888
 889        nodes_min = -1;
 890        nodes_max =  0;
 891
 892        for (p = 0; p < g->p.nr_proc; p++) {
 893                unsigned int nodes = count_process_nodes(p);
 894
 895                if (!nodes) {
 896                        *strong = 0;
 897                        return;
 898                }
 899
 900                nodes_min = min(nodes, nodes_min);
 901                nodes_max = max(nodes, nodes_max);
 902        }
 903
 904        /* Strong convergence: all threads compress on a single node: */
 905        if (nodes_min == 1 && nodes_max == 1) {
 906                *strong = 1;
 907        } else {
 908                *strong = 0;
 909                tprintf(" {%d-%d}", nodes_min, nodes_max);
 910        }
 911}
 912
 913static void calc_convergence(double runtime_ns_max, double *convergence)
 914{
 915        unsigned int loops_done_min, loops_done_max;
 916        int process_groups;
 917        int nodes[MAX_NR_NODES];
 918        int distance;
 919        int nr_min;
 920        int nr_max;
 921        int strong;
 922        int sum;
 923        int nr;
 924        int node;
 925        int cpu;
 926        int t;
 927
 928        if (!g->p.show_convergence && !g->p.measure_convergence)
 929                return;
 930
 931        for (node = 0; node < g->p.nr_nodes; node++)
 932                nodes[node] = 0;
 933
 934        loops_done_min = -1;
 935        loops_done_max = 0;
 936
 937        for (t = 0; t < g->p.nr_tasks; t++) {
 938                struct thread_data *td = g->threads + t;
 939                unsigned int loops_done;
 940
 941                cpu = td->curr_cpu;
 942
 943                /* Not all threads have written it yet: */
 944                if (cpu < 0)
 945                        continue;
 946
 947                node = numa_node_of_cpu(cpu);
 948
 949                nodes[node]++;
 950
 951                loops_done = td->loops_done;
 952                loops_done_min = min(loops_done, loops_done_min);
 953                loops_done_max = max(loops_done, loops_done_max);
 954        }
 955
 956        nr_max = 0;
 957        nr_min = g->p.nr_tasks;
 958        sum = 0;
 959
 960        for (node = 0; node < g->p.nr_nodes; node++) {
 961                nr = nodes[node];
 962                nr_min = min(nr, nr_min);
 963                nr_max = max(nr, nr_max);
 964                sum += nr;
 965        }
 966        BUG_ON(nr_min > nr_max);
 967
 968        BUG_ON(sum > g->p.nr_tasks);
 969
 970        if (0 && (sum < g->p.nr_tasks))
 971                return;
 972
 973        /*
 974         * Count the number of distinct process groups present
 975         * on nodes - when we are converged this will decrease
 976         * to g->p.nr_proc:
 977         */
 978        process_groups = 0;
 979
 980        for (node = 0; node < g->p.nr_nodes; node++) {
 981                int processes = count_node_processes(node);
 982
 983                nr = nodes[node];
 984                tprintf(" %2d/%-2d", nr, processes);
 985
 986                process_groups += processes;
 987        }
 988
 989        distance = nr_max - nr_min;
 990
 991        tprintf(" [%2d/%-2d]", distance, process_groups);
 992
 993        tprintf(" l:%3d-%-3d (%3d)",
 994                loops_done_min, loops_done_max, loops_done_max-loops_done_min);
 995
 996        if (loops_done_min && loops_done_max) {
 997                double skew = 1.0 - (double)loops_done_min/loops_done_max;
 998
 999                tprintf(" [%4.1f%%]", skew * 100.0);
1000        }
1001
1002        calc_convergence_compression(&strong);
1003
1004        if (strong && process_groups == g->p.nr_proc) {
1005                if (!*convergence) {
1006                        *convergence = runtime_ns_max;
1007                        tprintf(" (%6.1fs converged)\n", *convergence/1e9);
1008                        if (g->p.measure_convergence) {
1009                                g->all_converged = true;
1010                                g->stop_work = true;
1011                        }
1012                }
1013        } else {
1014                if (*convergence) {
1015                        tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
1016                        *convergence = 0;
1017                }
1018                tprintf("\n");
1019        }
1020}
1021
1022static void show_summary(double runtime_ns_max, int l, double *convergence)
1023{
1024        tprintf("\r #  %5.1f%%  [%.1f mins]",
1025                (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
1026
1027        calc_convergence(runtime_ns_max, convergence);
1028
1029        if (g->p.show_details >= 0)
1030                fflush(stdout);
1031}
1032
1033static void *worker_thread(void *__tdata)
1034{
1035        struct thread_data *td = __tdata;
1036        struct timeval start0, start, stop, diff;
1037        int process_nr = td->process_nr;
1038        int thread_nr = td->thread_nr;
1039        unsigned long last_perturbance;
1040        int task_nr = td->task_nr;
1041        int details = g->p.show_details;
1042        int first_task, last_task;
1043        double convergence = 0;
1044        u64 val = td->val;
1045        double runtime_ns_max;
1046        u8 *global_data;
1047        u8 *process_data;
1048        u8 *thread_data;
1049        u64 bytes_done;
1050        long work_done;
1051        u32 l;
1052        struct rusage rusage;
1053
1054        bind_to_cpumask(td->bind_cpumask);
1055        bind_to_memnode(td->bind_node);
1056
1057        set_taskname("thread %d/%d", process_nr, thread_nr);
1058
1059        global_data = g->data;
1060        process_data = td->process_data;
1061        thread_data = setup_private_data(g->p.bytes_thread);
1062
1063        bytes_done = 0;
1064
1065        last_task = 0;
1066        if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1067                last_task = 1;
1068
1069        first_task = 0;
1070        if (process_nr == 0 && thread_nr == 0)
1071                first_task = 1;
1072
1073        if (details >= 2) {
1074                printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1075                        process_nr, thread_nr, global_data, process_data, thread_data);
1076        }
1077
1078        if (g->p.serialize_startup) {
1079                pthread_mutex_lock(&g->startup_mutex);
1080                g->nr_tasks_started++;
1081                pthread_mutex_unlock(&g->startup_mutex);
1082
1083                /* Here we will wait for the main process to start us all at once: */
1084                pthread_mutex_lock(&g->start_work_mutex);
1085                g->nr_tasks_working++;
1086
1087                /* Last one wake the main process: */
1088                if (g->nr_tasks_working == g->p.nr_tasks)
1089                        pthread_mutex_unlock(&g->startup_done_mutex);
1090
1091                pthread_mutex_unlock(&g->start_work_mutex);
1092        }
1093
1094        gettimeofday(&start0, NULL);
1095
1096        start = stop = start0;
1097        last_perturbance = start.tv_sec;
1098
1099        for (l = 0; l < g->p.nr_loops; l++) {
1100                start = stop;
1101
1102                if (g->stop_work)
1103                        break;
1104
1105                val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
1106                val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
1107                val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
1108
1109                if (g->p.sleep_usecs) {
1110                        pthread_mutex_lock(td->process_lock);
1111                        usleep(g->p.sleep_usecs);
1112                        pthread_mutex_unlock(td->process_lock);
1113                }
1114                /*
1115                 * Amount of work to be done under a process-global lock:
1116                 */
1117                if (g->p.bytes_process_locked) {
1118                        pthread_mutex_lock(td->process_lock);
1119                        val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
1120                        pthread_mutex_unlock(td->process_lock);
1121                }
1122
1123                work_done = g->p.bytes_global + g->p.bytes_process +
1124                            g->p.bytes_process_locked + g->p.bytes_thread;
1125
1126                update_curr_cpu(task_nr, work_done);
1127                bytes_done += work_done;
1128
1129                if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1130                        continue;
1131
1132                td->loops_done = l;
1133
1134                gettimeofday(&stop, NULL);
1135
1136                /* Check whether our max runtime timed out: */
1137                if (g->p.nr_secs) {
1138                        timersub(&stop, &start0, &diff);
1139                        if ((u32)diff.tv_sec >= g->p.nr_secs) {
1140                                g->stop_work = true;
1141                                break;
1142                        }
1143                }
1144
1145                /* Update the summary at most once per second: */
1146                if (start.tv_sec == stop.tv_sec)
1147                        continue;
1148
1149                /*
1150                 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1151                 * by migrating to CPU#0:
1152                 */
1153                if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1154                        cpu_set_t orig_mask;
1155                        int target_cpu;
1156                        int this_cpu;
1157
1158                        last_perturbance = stop.tv_sec;
1159
1160                        /*
1161                         * Depending on where we are running, move into
1162                         * the other half of the system, to create some
1163                         * real disturbance:
1164                         */
1165                        this_cpu = g->threads[task_nr].curr_cpu;
1166                        if (this_cpu < g->p.nr_cpus/2)
1167                                target_cpu = g->p.nr_cpus-1;
1168                        else
1169                                target_cpu = 0;
1170
1171                        orig_mask = bind_to_cpu(target_cpu);
1172
1173                        /* Here we are running on the target CPU already */
1174                        if (details >= 1)
1175                                printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1176
1177                        bind_to_cpumask(orig_mask);
1178                }
1179
1180                if (details >= 3) {
1181                        timersub(&stop, &start, &diff);
1182                        runtime_ns_max = diff.tv_sec * 1000000000;
1183                        runtime_ns_max += diff.tv_usec * 1000;
1184
1185                        if (details >= 0) {
1186                                printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1187                                        process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1188                        }
1189                        fflush(stdout);
1190                }
1191                if (!last_task)
1192                        continue;
1193
1194                timersub(&stop, &start0, &diff);
1195                runtime_ns_max = diff.tv_sec * 1000000000ULL;
1196                runtime_ns_max += diff.tv_usec * 1000ULL;
1197
1198                show_summary(runtime_ns_max, l, &convergence);
1199        }
1200
1201        gettimeofday(&stop, NULL);
1202        timersub(&stop, &start0, &diff);
1203        td->runtime_ns = diff.tv_sec * 1000000000ULL;
1204        td->runtime_ns += diff.tv_usec * 1000ULL;
1205        td->speed_gbs = bytes_done / (td->runtime_ns / 1e9) / 1e9;
1206
1207        getrusage(RUSAGE_THREAD, &rusage);
1208        td->system_time_ns = rusage.ru_stime.tv_sec * 1000000000ULL;
1209        td->system_time_ns += rusage.ru_stime.tv_usec * 1000ULL;
1210        td->user_time_ns = rusage.ru_utime.tv_sec * 1000000000ULL;
1211        td->user_time_ns += rusage.ru_utime.tv_usec * 1000ULL;
1212
1213        free_data(thread_data, g->p.bytes_thread);
1214
1215        pthread_mutex_lock(&g->stop_work_mutex);
1216        g->bytes_done += bytes_done;
1217        pthread_mutex_unlock(&g->stop_work_mutex);
1218
1219        return NULL;
1220}
1221
1222/*
1223 * A worker process starts a couple of threads:
1224 */
1225static void worker_process(int process_nr)
1226{
1227        pthread_mutex_t process_lock;
1228        struct thread_data *td;
1229        pthread_t *pthreads;
1230        u8 *process_data;
1231        int task_nr;
1232        int ret;
1233        int t;
1234
1235        pthread_mutex_init(&process_lock, NULL);
1236        set_taskname("process %d", process_nr);
1237
1238        /*
1239         * Pick up the memory policy and the CPU binding of our first thread,
1240         * so that we initialize memory accordingly:
1241         */
1242        task_nr = process_nr*g->p.nr_threads;
1243        td = g->threads + task_nr;
1244
1245        bind_to_memnode(td->bind_node);
1246        bind_to_cpumask(td->bind_cpumask);
1247
1248        pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1249        process_data = setup_private_data(g->p.bytes_process);
1250
1251        if (g->p.show_details >= 3) {
1252                printf(" # process %2d global mem: %p, process mem: %p\n",
1253                        process_nr, g->data, process_data);
1254        }
1255
1256        for (t = 0; t < g->p.nr_threads; t++) {
1257                task_nr = process_nr*g->p.nr_threads + t;
1258                td = g->threads + task_nr;
1259
1260                td->process_data = process_data;
1261                td->process_nr   = process_nr;
1262                td->thread_nr    = t;
1263                td->task_nr      = task_nr;
1264                td->val          = rand();
1265                td->curr_cpu     = -1;
1266                td->process_lock = &process_lock;
1267
1268                ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1269                BUG_ON(ret);
1270        }
1271
1272        for (t = 0; t < g->p.nr_threads; t++) {
1273                ret = pthread_join(pthreads[t], NULL);
1274                BUG_ON(ret);
1275        }
1276
1277        free_data(process_data, g->p.bytes_process);
1278        free(pthreads);
1279}
1280
1281static void print_summary(void)
1282{
1283        if (g->p.show_details < 0)
1284                return;
1285
1286        printf("\n ###\n");
1287        printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1288                g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1289        printf(" #      %5dx %5ldMB global  shared mem operations\n",
1290                        g->p.nr_loops, g->p.bytes_global/1024/1024);
1291        printf(" #      %5dx %5ldMB process shared mem operations\n",
1292                        g->p.nr_loops, g->p.bytes_process/1024/1024);
1293        printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1294                        g->p.nr_loops, g->p.bytes_thread/1024/1024);
1295
1296        printf(" ###\n");
1297
1298        printf("\n ###\n"); fflush(stdout);
1299}
1300
1301static void init_thread_data(void)
1302{
1303        ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1304        int t;
1305
1306        g->threads = zalloc_shared_data(size);
1307
1308        for (t = 0; t < g->p.nr_tasks; t++) {
1309                struct thread_data *td = g->threads + t;
1310                int cpu;
1311
1312                /* Allow all nodes by default: */
1313                td->bind_node = -1;
1314
1315                /* Allow all CPUs by default: */
1316                CPU_ZERO(&td->bind_cpumask);
1317                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1318                        CPU_SET(cpu, &td->bind_cpumask);
1319        }
1320}
1321
1322static void deinit_thread_data(void)
1323{
1324        ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1325
1326        free_data(g->threads, size);
1327}
1328
1329static int init(void)
1330{
1331        g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1332
1333        /* Copy over options: */
1334        g->p = p0;
1335
1336        g->p.nr_cpus = numa_num_configured_cpus();
1337
1338        g->p.nr_nodes = numa_max_node() + 1;
1339
1340        /* char array in count_process_nodes(): */
1341        BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1342
1343        if (g->p.show_quiet && !g->p.show_details)
1344                g->p.show_details = -1;
1345
1346        /* Some memory should be specified: */
1347        if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1348                return -1;
1349
1350        if (g->p.mb_global_str) {
1351                g->p.mb_global = atof(g->p.mb_global_str);
1352                BUG_ON(g->p.mb_global < 0);
1353        }
1354
1355        if (g->p.mb_proc_str) {
1356                g->p.mb_proc = atof(g->p.mb_proc_str);
1357                BUG_ON(g->p.mb_proc < 0);
1358        }
1359
1360        if (g->p.mb_proc_locked_str) {
1361                g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1362                BUG_ON(g->p.mb_proc_locked < 0);
1363                BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1364        }
1365
1366        if (g->p.mb_thread_str) {
1367                g->p.mb_thread = atof(g->p.mb_thread_str);
1368                BUG_ON(g->p.mb_thread < 0);
1369        }
1370
1371        BUG_ON(g->p.nr_threads <= 0);
1372        BUG_ON(g->p.nr_proc <= 0);
1373
1374        g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1375
1376        g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
1377        g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
1378        g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
1379        g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
1380
1381        g->data = setup_shared_data(g->p.bytes_global);
1382
1383        /* Startup serialization: */
1384        init_global_mutex(&g->start_work_mutex);
1385        init_global_mutex(&g->startup_mutex);
1386        init_global_mutex(&g->startup_done_mutex);
1387        init_global_mutex(&g->stop_work_mutex);
1388
1389        init_thread_data();
1390
1391        tprintf("#\n");
1392        if (parse_setup_cpu_list() || parse_setup_node_list())
1393                return -1;
1394        tprintf("#\n");
1395
1396        print_summary();
1397
1398        return 0;
1399}
1400
1401static void deinit(void)
1402{
1403        free_data(g->data, g->p.bytes_global);
1404        g->data = NULL;
1405
1406        deinit_thread_data();
1407
1408        free_data(g, sizeof(*g));
1409        g = NULL;
1410}
1411
1412/*
1413 * Print a short or long result, depending on the verbosity setting:
1414 */
1415static void print_res(const char *name, double val,
1416                      const char *txt_unit, const char *txt_short, const char *txt_long)
1417{
1418        if (!name)
1419                name = "main,";
1420
1421        if (!g->p.show_quiet)
1422                printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1423        else
1424                printf(" %14.3f %s\n", val, txt_long);
1425}
1426
1427static int __bench_numa(const char *name)
1428{
1429        struct timeval start, stop, diff;
1430        u64 runtime_ns_min, runtime_ns_sum;
1431        pid_t *pids, pid, wpid;
1432        double delta_runtime;
1433        double runtime_avg;
1434        double runtime_sec_max;
1435        double runtime_sec_min;
1436        int wait_stat;
1437        double bytes;
1438        int i, t, p;
1439
1440        if (init())
1441                return -1;
1442
1443        pids = zalloc(g->p.nr_proc * sizeof(*pids));
1444        pid = -1;
1445
1446        /* All threads try to acquire it, this way we can wait for them to start up: */
1447        pthread_mutex_lock(&g->start_work_mutex);
1448
1449        if (g->p.serialize_startup) {
1450                tprintf(" #\n");
1451                tprintf(" # Startup synchronization: ..."); fflush(stdout);
1452        }
1453
1454        gettimeofday(&start, NULL);
1455
1456        for (i = 0; i < g->p.nr_proc; i++) {
1457                pid = fork();
1458                dprintf(" # process %2d: PID %d\n", i, pid);
1459
1460                BUG_ON(pid < 0);
1461                if (!pid) {
1462                        /* Child process: */
1463                        worker_process(i);
1464
1465                        exit(0);
1466                }
1467                pids[i] = pid;
1468
1469        }
1470        /* Wait for all the threads to start up: */
1471        while (g->nr_tasks_started != g->p.nr_tasks)
1472                usleep(1000);
1473
1474        BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1475
1476        if (g->p.serialize_startup) {
1477                double startup_sec;
1478
1479                pthread_mutex_lock(&g->startup_done_mutex);
1480
1481                /* This will start all threads: */
1482                pthread_mutex_unlock(&g->start_work_mutex);
1483
1484                /* This mutex is locked - the last started thread will wake us: */
1485                pthread_mutex_lock(&g->startup_done_mutex);
1486
1487                gettimeofday(&stop, NULL);
1488
1489                timersub(&stop, &start, &diff);
1490
1491                startup_sec = diff.tv_sec * 1000000000.0;
1492                startup_sec += diff.tv_usec * 1000.0;
1493                startup_sec /= 1e9;
1494
1495                tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1496                tprintf(" #\n");
1497
1498                start = stop;
1499                pthread_mutex_unlock(&g->startup_done_mutex);
1500        } else {
1501                gettimeofday(&start, NULL);
1502        }
1503
1504        /* Parent process: */
1505
1506
1507        for (i = 0; i < g->p.nr_proc; i++) {
1508                wpid = waitpid(pids[i], &wait_stat, 0);
1509                BUG_ON(wpid < 0);
1510                BUG_ON(!WIFEXITED(wait_stat));
1511
1512        }
1513
1514        runtime_ns_sum = 0;
1515        runtime_ns_min = -1LL;
1516
1517        for (t = 0; t < g->p.nr_tasks; t++) {
1518                u64 thread_runtime_ns = g->threads[t].runtime_ns;
1519
1520                runtime_ns_sum += thread_runtime_ns;
1521                runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1522        }
1523
1524        gettimeofday(&stop, NULL);
1525        timersub(&stop, &start, &diff);
1526
1527        BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1528
1529        tprintf("\n ###\n");
1530        tprintf("\n");
1531
1532        runtime_sec_max = diff.tv_sec * 1000000000.0;
1533        runtime_sec_max += diff.tv_usec * 1000.0;
1534        runtime_sec_max /= 1e9;
1535
1536        runtime_sec_min = runtime_ns_min/1e9;
1537
1538        bytes = g->bytes_done;
1539        runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
1540
1541        if (g->p.measure_convergence) {
1542                print_res(name, runtime_sec_max,
1543                        "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1544        }
1545
1546        print_res(name, runtime_sec_max,
1547                "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
1548
1549        print_res(name, runtime_sec_min,
1550                "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
1551
1552        print_res(name, runtime_avg,
1553                "secs,", "runtime-avg/thread",  "secs average thread-runtime");
1554
1555        delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1556        print_res(name, delta_runtime / runtime_sec_max * 100.0,
1557                "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
1558
1559        print_res(name, bytes / g->p.nr_tasks / 1e9,
1560                "GB,", "data/thread",           "GB data processed, per thread");
1561
1562        print_res(name, bytes / 1e9,
1563                "GB,", "data-total",            "GB data processed, total");
1564
1565        print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
1566                "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1567
1568        print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1569                "GB/sec,", "thread-speed",      "GB/sec/thread speed");
1570
1571        print_res(name, bytes / runtime_sec_max / 1e9,
1572                "GB/sec,", "total-speed",       "GB/sec total speed");
1573
1574        if (g->p.show_details >= 2) {
1575                char tname[32];
1576                struct thread_data *td;
1577                for (p = 0; p < g->p.nr_proc; p++) {
1578                        for (t = 0; t < g->p.nr_threads; t++) {
1579                                memset(tname, 0, 32);
1580                                td = g->threads + p*g->p.nr_threads + t;
1581                                snprintf(tname, 32, "process%d:thread%d", p, t);
1582                                print_res(tname, td->speed_gbs,
1583                                        "GB/sec",       "thread-speed", "GB/sec/thread speed");
1584                                print_res(tname, td->system_time_ns / 1e9,
1585                                        "secs", "thread-system-time", "system CPU time/thread");
1586                                print_res(tname, td->user_time_ns / 1e9,
1587                                        "secs", "thread-user-time", "user CPU time/thread");
1588                        }
1589                }
1590        }
1591
1592        free(pids);
1593
1594        deinit();
1595
1596        return 0;
1597}
1598
1599#define MAX_ARGS 50
1600
1601static int command_size(const char **argv)
1602{
1603        int size = 0;
1604
1605        while (*argv) {
1606                size++;
1607                argv++;
1608        }
1609
1610        BUG_ON(size >= MAX_ARGS);
1611
1612        return size;
1613}
1614
1615static void init_params(struct params *p, const char *name, int argc, const char **argv)
1616{
1617        int i;
1618
1619        printf("\n # Running %s \"perf bench numa", name);
1620
1621        for (i = 0; i < argc; i++)
1622                printf(" %s", argv[i]);
1623
1624        printf("\"\n");
1625
1626        memset(p, 0, sizeof(*p));
1627
1628        /* Initialize nonzero defaults: */
1629
1630        p->serialize_startup            = 1;
1631        p->data_reads                   = true;
1632        p->data_writes                  = true;
1633        p->data_backwards               = true;
1634        p->data_rand_walk               = true;
1635        p->nr_loops                     = -1;
1636        p->init_random                  = true;
1637        p->mb_global_str                = "1";
1638        p->nr_proc                      = 1;
1639        p->nr_threads                   = 1;
1640        p->nr_secs                      = 5;
1641        p->run_all                      = argc == 1;
1642}
1643
1644static int run_bench_numa(const char *name, const char **argv)
1645{
1646        int argc = command_size(argv);
1647
1648        init_params(&p0, name, argc, argv);
1649        argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1650        if (argc)
1651                goto err;
1652
1653        if (__bench_numa(name))
1654                goto err;
1655
1656        return 0;
1657
1658err:
1659        return -1;
1660}
1661
1662#define OPT_BW_RAM              "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1663#define OPT_BW_RAM_NOTHP        OPT_BW_RAM,             "--thp", "-1"
1664
1665#define OPT_CONV                "-s", "100", "-zZ0qcm", "--thp", " 1"
1666#define OPT_CONV_NOTHP          OPT_CONV,               "--thp", "-1"
1667
1668#define OPT_BW                  "-s",  "20", "-zZ0q",   "--thp", " 1"
1669#define OPT_BW_NOTHP            OPT_BW,                 "--thp", "-1"
1670
1671/*
1672 * The built-in test-suite executed by "perf bench numa -a".
1673 *
1674 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1675 */
1676static const char *tests[][MAX_ARGS] = {
1677   /* Basic single-stream NUMA bandwidth measurements: */
1678   { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1679                          "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1680   { "RAM-bw-local-NOTHP,",
1681                          "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1682                          "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1683   { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1684                          "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1685
1686   /* 2-stream NUMA bandwidth measurements: */
1687   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1688                           "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1689   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1690                           "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1691
1692   /* Cross-stream NUMA bandwidth measurement: */
1693   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1694                           "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1695
1696   /* Convergence latency measurements: */
1697   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1698   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1699   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1700   { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1701   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1702   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1703   { " 4x4-convergence-NOTHP,",
1704                          "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1705   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1706   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1707   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1708   { " 8x4-convergence-NOTHP,",
1709                          "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1710   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1711   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1712   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1713   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1714   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1715
1716   /* Various NUMA process/thread layout bandwidth measurements: */
1717   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1718   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1719   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1720   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1721   { " 8x1-bw-process-NOTHP,",
1722                          "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1723   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1724
1725   { " 4x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1726   { " 8x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1727   { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1728   { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1729
1730   { " 2x3-bw-thread,",   "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1731   { " 4x4-bw-thread,",   "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1732   { " 4x6-bw-thread,",   "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1733   { " 4x8-bw-thread,",   "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1734   { " 4x8-bw-thread-NOTHP,",
1735                          "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1736   { " 3x3-bw-thread,",   "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1737   { " 5x5-bw-thread,",   "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1738
1739   { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1740   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1741
1742   { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1743   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1744   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1745   { "numa01-bw-thread-NOTHP,",
1746                          "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1747};
1748
1749static int bench_all(void)
1750{
1751        int nr = ARRAY_SIZE(tests);
1752        int ret;
1753        int i;
1754
1755        ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1756        BUG_ON(ret < 0);
1757
1758        for (i = 0; i < nr; i++) {
1759                run_bench_numa(tests[i][0], tests[i] + 1);
1760        }
1761
1762        printf("\n");
1763
1764        return 0;
1765}
1766
1767int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1768{
1769        init_params(&p0, "main,", argc, argv);
1770        argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1771        if (argc)
1772                goto err;
1773
1774        if (p0.run_all)
1775                return bench_all();
1776
1777        if (__bench_numa(NULL))
1778                goto err;
1779
1780        return 0;
1781
1782err:
1783        usage_with_options(numa_usage, options);
1784        return -1;
1785}
1786