linux/virt/kvm/kvm_main.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include <kvm/iodev.h>
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/syscore_ops.h>
  34#include <linux/cpu.h>
  35#include <linux/sched.h>
  36#include <linux/cpumask.h>
  37#include <linux/smp.h>
  38#include <linux/anon_inodes.h>
  39#include <linux/profile.h>
  40#include <linux/kvm_para.h>
  41#include <linux/pagemap.h>
  42#include <linux/mman.h>
  43#include <linux/swap.h>
  44#include <linux/bitops.h>
  45#include <linux/spinlock.h>
  46#include <linux/compat.h>
  47#include <linux/srcu.h>
  48#include <linux/hugetlb.h>
  49#include <linux/slab.h>
  50#include <linux/sort.h>
  51#include <linux/bsearch.h>
  52
  53#include <asm/processor.h>
  54#include <asm/io.h>
  55#include <asm/ioctl.h>
  56#include <asm/uaccess.h>
  57#include <asm/pgtable.h>
  58
  59#include "coalesced_mmio.h"
  60#include "async_pf.h"
  61#include "vfio.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/kvm.h>
  65
  66/* Worst case buffer size needed for holding an integer. */
  67#define ITOA_MAX_LEN 12
  68
  69MODULE_AUTHOR("Qumranet");
  70MODULE_LICENSE("GPL");
  71
  72/* Architectures should define their poll value according to the halt latency */
  73static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  74module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
  75
  76/* Default doubles per-vcpu halt_poll_ns. */
  77static unsigned int halt_poll_ns_grow = 2;
  78module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
  79
  80/* Default resets per-vcpu halt_poll_ns . */
  81static unsigned int halt_poll_ns_shrink;
  82module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
  83
  84/*
  85 * Ordering of locks:
  86 *
  87 *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  88 */
  89
  90DEFINE_SPINLOCK(kvm_lock);
  91static DEFINE_RAW_SPINLOCK(kvm_count_lock);
  92LIST_HEAD(vm_list);
  93
  94static cpumask_var_t cpus_hardware_enabled;
  95static int kvm_usage_count;
  96static atomic_t hardware_enable_failed;
  97
  98struct kmem_cache *kvm_vcpu_cache;
  99EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
 100
 101static __read_mostly struct preempt_ops kvm_preempt_ops;
 102
 103struct dentry *kvm_debugfs_dir;
 104EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
 105
 106static int kvm_debugfs_num_entries;
 107static const struct file_operations *stat_fops_per_vm[];
 108
 109static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 110                           unsigned long arg);
 111#ifdef CONFIG_KVM_COMPAT
 112static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 113                                  unsigned long arg);
 114#endif
 115static int hardware_enable_all(void);
 116static void hardware_disable_all(void);
 117
 118static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 119
 120static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
 121static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
 122
 123__visible bool kvm_rebooting;
 124EXPORT_SYMBOL_GPL(kvm_rebooting);
 125
 126static bool largepages_enabled = true;
 127
 128bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
 129{
 130        if (pfn_valid(pfn))
 131                return PageReserved(pfn_to_page(pfn));
 132
 133        return true;
 134}
 135
 136/*
 137 * Switches to specified vcpu, until a matching vcpu_put()
 138 */
 139int vcpu_load(struct kvm_vcpu *vcpu)
 140{
 141        int cpu;
 142
 143        if (mutex_lock_killable(&vcpu->mutex))
 144                return -EINTR;
 145        cpu = get_cpu();
 146        preempt_notifier_register(&vcpu->preempt_notifier);
 147        kvm_arch_vcpu_load(vcpu, cpu);
 148        put_cpu();
 149        return 0;
 150}
 151EXPORT_SYMBOL_GPL(vcpu_load);
 152
 153void vcpu_put(struct kvm_vcpu *vcpu)
 154{
 155        preempt_disable();
 156        kvm_arch_vcpu_put(vcpu);
 157        preempt_notifier_unregister(&vcpu->preempt_notifier);
 158        preempt_enable();
 159        mutex_unlock(&vcpu->mutex);
 160}
 161EXPORT_SYMBOL_GPL(vcpu_put);
 162
 163static void ack_flush(void *_completed)
 164{
 165}
 166
 167bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 168{
 169        int i, cpu, me;
 170        cpumask_var_t cpus;
 171        bool called = true;
 172        struct kvm_vcpu *vcpu;
 173
 174        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 175
 176        me = get_cpu();
 177        kvm_for_each_vcpu(i, vcpu, kvm) {
 178                kvm_make_request(req, vcpu);
 179                cpu = vcpu->cpu;
 180
 181                /* Set ->requests bit before we read ->mode. */
 182                smp_mb__after_atomic();
 183
 184                if (cpus != NULL && cpu != -1 && cpu != me &&
 185                      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
 186                        cpumask_set_cpu(cpu, cpus);
 187        }
 188        if (unlikely(cpus == NULL))
 189                smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
 190        else if (!cpumask_empty(cpus))
 191                smp_call_function_many(cpus, ack_flush, NULL, 1);
 192        else
 193                called = false;
 194        put_cpu();
 195        free_cpumask_var(cpus);
 196        return called;
 197}
 198
 199#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 200void kvm_flush_remote_tlbs(struct kvm *kvm)
 201{
 202        /*
 203         * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
 204         * kvm_make_all_cpus_request.
 205         */
 206        long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
 207
 208        /*
 209         * We want to publish modifications to the page tables before reading
 210         * mode. Pairs with a memory barrier in arch-specific code.
 211         * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 212         * and smp_mb in walk_shadow_page_lockless_begin/end.
 213         * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 214         *
 215         * There is already an smp_mb__after_atomic() before
 216         * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 217         * barrier here.
 218         */
 219        if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 220                ++kvm->stat.remote_tlb_flush;
 221        cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 222}
 223EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 224#endif
 225
 226void kvm_reload_remote_mmus(struct kvm *kvm)
 227{
 228        kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 229}
 230
 231int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 232{
 233        struct page *page;
 234        int r;
 235
 236        mutex_init(&vcpu->mutex);
 237        vcpu->cpu = -1;
 238        vcpu->kvm = kvm;
 239        vcpu->vcpu_id = id;
 240        vcpu->pid = NULL;
 241        init_swait_queue_head(&vcpu->wq);
 242        kvm_async_pf_vcpu_init(vcpu);
 243
 244        vcpu->pre_pcpu = -1;
 245        INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
 246
 247        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 248        if (!page) {
 249                r = -ENOMEM;
 250                goto fail;
 251        }
 252        vcpu->run = page_address(page);
 253
 254        kvm_vcpu_set_in_spin_loop(vcpu, false);
 255        kvm_vcpu_set_dy_eligible(vcpu, false);
 256        vcpu->preempted = false;
 257
 258        r = kvm_arch_vcpu_init(vcpu);
 259        if (r < 0)
 260                goto fail_free_run;
 261        return 0;
 262
 263fail_free_run:
 264        free_page((unsigned long)vcpu->run);
 265fail:
 266        return r;
 267}
 268EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 269
 270void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 271{
 272        put_pid(vcpu->pid);
 273        kvm_arch_vcpu_uninit(vcpu);
 274        free_page((unsigned long)vcpu->run);
 275}
 276EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 277
 278#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 279static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 280{
 281        return container_of(mn, struct kvm, mmu_notifier);
 282}
 283
 284static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
 285                                             struct mm_struct *mm,
 286                                             unsigned long address)
 287{
 288        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 289        int need_tlb_flush, idx;
 290
 291        /*
 292         * When ->invalidate_page runs, the linux pte has been zapped
 293         * already but the page is still allocated until
 294         * ->invalidate_page returns. So if we increase the sequence
 295         * here the kvm page fault will notice if the spte can't be
 296         * established because the page is going to be freed. If
 297         * instead the kvm page fault establishes the spte before
 298         * ->invalidate_page runs, kvm_unmap_hva will release it
 299         * before returning.
 300         *
 301         * The sequence increase only need to be seen at spin_unlock
 302         * time, and not at spin_lock time.
 303         *
 304         * Increasing the sequence after the spin_unlock would be
 305         * unsafe because the kvm page fault could then establish the
 306         * pte after kvm_unmap_hva returned, without noticing the page
 307         * is going to be freed.
 308         */
 309        idx = srcu_read_lock(&kvm->srcu);
 310        spin_lock(&kvm->mmu_lock);
 311
 312        kvm->mmu_notifier_seq++;
 313        need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
 314        /* we've to flush the tlb before the pages can be freed */
 315        if (need_tlb_flush)
 316                kvm_flush_remote_tlbs(kvm);
 317
 318        spin_unlock(&kvm->mmu_lock);
 319
 320        kvm_arch_mmu_notifier_invalidate_page(kvm, address);
 321
 322        srcu_read_unlock(&kvm->srcu, idx);
 323}
 324
 325static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 326                                        struct mm_struct *mm,
 327                                        unsigned long address,
 328                                        pte_t pte)
 329{
 330        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 331        int idx;
 332
 333        idx = srcu_read_lock(&kvm->srcu);
 334        spin_lock(&kvm->mmu_lock);
 335        kvm->mmu_notifier_seq++;
 336        kvm_set_spte_hva(kvm, address, pte);
 337        spin_unlock(&kvm->mmu_lock);
 338        srcu_read_unlock(&kvm->srcu, idx);
 339}
 340
 341static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 342                                                    struct mm_struct *mm,
 343                                                    unsigned long start,
 344                                                    unsigned long end)
 345{
 346        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 347        int need_tlb_flush = 0, idx;
 348
 349        idx = srcu_read_lock(&kvm->srcu);
 350        spin_lock(&kvm->mmu_lock);
 351        /*
 352         * The count increase must become visible at unlock time as no
 353         * spte can be established without taking the mmu_lock and
 354         * count is also read inside the mmu_lock critical section.
 355         */
 356        kvm->mmu_notifier_count++;
 357        need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
 358        need_tlb_flush |= kvm->tlbs_dirty;
 359        /* we've to flush the tlb before the pages can be freed */
 360        if (need_tlb_flush)
 361                kvm_flush_remote_tlbs(kvm);
 362
 363        spin_unlock(&kvm->mmu_lock);
 364        srcu_read_unlock(&kvm->srcu, idx);
 365}
 366
 367static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 368                                                  struct mm_struct *mm,
 369                                                  unsigned long start,
 370                                                  unsigned long end)
 371{
 372        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 373
 374        spin_lock(&kvm->mmu_lock);
 375        /*
 376         * This sequence increase will notify the kvm page fault that
 377         * the page that is going to be mapped in the spte could have
 378         * been freed.
 379         */
 380        kvm->mmu_notifier_seq++;
 381        smp_wmb();
 382        /*
 383         * The above sequence increase must be visible before the
 384         * below count decrease, which is ensured by the smp_wmb above
 385         * in conjunction with the smp_rmb in mmu_notifier_retry().
 386         */
 387        kvm->mmu_notifier_count--;
 388        spin_unlock(&kvm->mmu_lock);
 389
 390        BUG_ON(kvm->mmu_notifier_count < 0);
 391}
 392
 393static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 394                                              struct mm_struct *mm,
 395                                              unsigned long start,
 396                                              unsigned long end)
 397{
 398        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 399        int young, idx;
 400
 401        idx = srcu_read_lock(&kvm->srcu);
 402        spin_lock(&kvm->mmu_lock);
 403
 404        young = kvm_age_hva(kvm, start, end);
 405        if (young)
 406                kvm_flush_remote_tlbs(kvm);
 407
 408        spin_unlock(&kvm->mmu_lock);
 409        srcu_read_unlock(&kvm->srcu, idx);
 410
 411        return young;
 412}
 413
 414static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 415                                        struct mm_struct *mm,
 416                                        unsigned long start,
 417                                        unsigned long end)
 418{
 419        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 420        int young, idx;
 421
 422        idx = srcu_read_lock(&kvm->srcu);
 423        spin_lock(&kvm->mmu_lock);
 424        /*
 425         * Even though we do not flush TLB, this will still adversely
 426         * affect performance on pre-Haswell Intel EPT, where there is
 427         * no EPT Access Bit to clear so that we have to tear down EPT
 428         * tables instead. If we find this unacceptable, we can always
 429         * add a parameter to kvm_age_hva so that it effectively doesn't
 430         * do anything on clear_young.
 431         *
 432         * Also note that currently we never issue secondary TLB flushes
 433         * from clear_young, leaving this job up to the regular system
 434         * cadence. If we find this inaccurate, we might come up with a
 435         * more sophisticated heuristic later.
 436         */
 437        young = kvm_age_hva(kvm, start, end);
 438        spin_unlock(&kvm->mmu_lock);
 439        srcu_read_unlock(&kvm->srcu, idx);
 440
 441        return young;
 442}
 443
 444static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 445                                       struct mm_struct *mm,
 446                                       unsigned long address)
 447{
 448        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 449        int young, idx;
 450
 451        idx = srcu_read_lock(&kvm->srcu);
 452        spin_lock(&kvm->mmu_lock);
 453        young = kvm_test_age_hva(kvm, address);
 454        spin_unlock(&kvm->mmu_lock);
 455        srcu_read_unlock(&kvm->srcu, idx);
 456
 457        return young;
 458}
 459
 460static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 461                                     struct mm_struct *mm)
 462{
 463        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 464        int idx;
 465
 466        idx = srcu_read_lock(&kvm->srcu);
 467        kvm_arch_flush_shadow_all(kvm);
 468        srcu_read_unlock(&kvm->srcu, idx);
 469}
 470
 471static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 472        .invalidate_page        = kvm_mmu_notifier_invalidate_page,
 473        .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
 474        .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
 475        .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
 476        .clear_young            = kvm_mmu_notifier_clear_young,
 477        .test_young             = kvm_mmu_notifier_test_young,
 478        .change_pte             = kvm_mmu_notifier_change_pte,
 479        .release                = kvm_mmu_notifier_release,
 480};
 481
 482static int kvm_init_mmu_notifier(struct kvm *kvm)
 483{
 484        kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 485        return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 486}
 487
 488#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 489
 490static int kvm_init_mmu_notifier(struct kvm *kvm)
 491{
 492        return 0;
 493}
 494
 495#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 496
 497static struct kvm_memslots *kvm_alloc_memslots(void)
 498{
 499        int i;
 500        struct kvm_memslots *slots;
 501
 502        slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
 503        if (!slots)
 504                return NULL;
 505
 506        /*
 507         * Init kvm generation close to the maximum to easily test the
 508         * code of handling generation number wrap-around.
 509         */
 510        slots->generation = -150;
 511        for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 512                slots->id_to_index[i] = slots->memslots[i].id = i;
 513
 514        return slots;
 515}
 516
 517static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 518{
 519        if (!memslot->dirty_bitmap)
 520                return;
 521
 522        kvfree(memslot->dirty_bitmap);
 523        memslot->dirty_bitmap = NULL;
 524}
 525
 526/*
 527 * Free any memory in @free but not in @dont.
 528 */
 529static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
 530                              struct kvm_memory_slot *dont)
 531{
 532        if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 533                kvm_destroy_dirty_bitmap(free);
 534
 535        kvm_arch_free_memslot(kvm, free, dont);
 536
 537        free->npages = 0;
 538}
 539
 540static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 541{
 542        struct kvm_memory_slot *memslot;
 543
 544        if (!slots)
 545                return;
 546
 547        kvm_for_each_memslot(memslot, slots)
 548                kvm_free_memslot(kvm, memslot, NULL);
 549
 550        kvfree(slots);
 551}
 552
 553static void kvm_destroy_vm_debugfs(struct kvm *kvm)
 554{
 555        int i;
 556
 557        if (!kvm->debugfs_dentry)
 558                return;
 559
 560        debugfs_remove_recursive(kvm->debugfs_dentry);
 561
 562        for (i = 0; i < kvm_debugfs_num_entries; i++)
 563                kfree(kvm->debugfs_stat_data[i]);
 564        kfree(kvm->debugfs_stat_data);
 565}
 566
 567static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
 568{
 569        char dir_name[ITOA_MAX_LEN * 2];
 570        struct kvm_stat_data *stat_data;
 571        struct kvm_stats_debugfs_item *p;
 572
 573        if (!debugfs_initialized())
 574                return 0;
 575
 576        snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
 577        kvm->debugfs_dentry = debugfs_create_dir(dir_name,
 578                                                 kvm_debugfs_dir);
 579        if (!kvm->debugfs_dentry)
 580                return -ENOMEM;
 581
 582        kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
 583                                         sizeof(*kvm->debugfs_stat_data),
 584                                         GFP_KERNEL);
 585        if (!kvm->debugfs_stat_data)
 586                return -ENOMEM;
 587
 588        for (p = debugfs_entries; p->name; p++) {
 589                stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
 590                if (!stat_data)
 591                        return -ENOMEM;
 592
 593                stat_data->kvm = kvm;
 594                stat_data->offset = p->offset;
 595                kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
 596                if (!debugfs_create_file(p->name, 0444,
 597                                         kvm->debugfs_dentry,
 598                                         stat_data,
 599                                         stat_fops_per_vm[p->kind]))
 600                        return -ENOMEM;
 601        }
 602        return 0;
 603}
 604
 605static struct kvm *kvm_create_vm(unsigned long type)
 606{
 607        int r, i;
 608        struct kvm *kvm = kvm_arch_alloc_vm();
 609
 610        if (!kvm)
 611                return ERR_PTR(-ENOMEM);
 612
 613        spin_lock_init(&kvm->mmu_lock);
 614        atomic_inc(&current->mm->mm_count);
 615        kvm->mm = current->mm;
 616        kvm_eventfd_init(kvm);
 617        mutex_init(&kvm->lock);
 618        mutex_init(&kvm->irq_lock);
 619        mutex_init(&kvm->slots_lock);
 620        atomic_set(&kvm->users_count, 1);
 621        INIT_LIST_HEAD(&kvm->devices);
 622
 623        r = kvm_arch_init_vm(kvm, type);
 624        if (r)
 625                goto out_err_no_disable;
 626
 627        r = hardware_enable_all();
 628        if (r)
 629                goto out_err_no_disable;
 630
 631#ifdef CONFIG_HAVE_KVM_IRQFD
 632        INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 633#endif
 634
 635        BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 636
 637        r = -ENOMEM;
 638        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 639                kvm->memslots[i] = kvm_alloc_memslots();
 640                if (!kvm->memslots[i])
 641                        goto out_err_no_srcu;
 642        }
 643
 644        if (init_srcu_struct(&kvm->srcu))
 645                goto out_err_no_srcu;
 646        if (init_srcu_struct(&kvm->irq_srcu))
 647                goto out_err_no_irq_srcu;
 648        for (i = 0; i < KVM_NR_BUSES; i++) {
 649                kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
 650                                        GFP_KERNEL);
 651                if (!kvm->buses[i])
 652                        goto out_err;
 653        }
 654
 655        r = kvm_init_mmu_notifier(kvm);
 656        if (r)
 657                goto out_err;
 658
 659        spin_lock(&kvm_lock);
 660        list_add(&kvm->vm_list, &vm_list);
 661        spin_unlock(&kvm_lock);
 662
 663        preempt_notifier_inc();
 664
 665        return kvm;
 666
 667out_err:
 668        cleanup_srcu_struct(&kvm->irq_srcu);
 669out_err_no_irq_srcu:
 670        cleanup_srcu_struct(&kvm->srcu);
 671out_err_no_srcu:
 672        hardware_disable_all();
 673out_err_no_disable:
 674        for (i = 0; i < KVM_NR_BUSES; i++)
 675                kfree(kvm->buses[i]);
 676        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 677                kvm_free_memslots(kvm, kvm->memslots[i]);
 678        kvm_arch_free_vm(kvm);
 679        mmdrop(current->mm);
 680        return ERR_PTR(r);
 681}
 682
 683/*
 684 * Avoid using vmalloc for a small buffer.
 685 * Should not be used when the size is statically known.
 686 */
 687void *kvm_kvzalloc(unsigned long size)
 688{
 689        if (size > PAGE_SIZE)
 690                return vzalloc(size);
 691        else
 692                return kzalloc(size, GFP_KERNEL);
 693}
 694
 695static void kvm_destroy_devices(struct kvm *kvm)
 696{
 697        struct kvm_device *dev, *tmp;
 698
 699        /*
 700         * We do not need to take the kvm->lock here, because nobody else
 701         * has a reference to the struct kvm at this point and therefore
 702         * cannot access the devices list anyhow.
 703         */
 704        list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
 705                list_del(&dev->vm_node);
 706                dev->ops->destroy(dev);
 707        }
 708}
 709
 710static void kvm_destroy_vm(struct kvm *kvm)
 711{
 712        int i;
 713        struct mm_struct *mm = kvm->mm;
 714
 715        kvm_destroy_vm_debugfs(kvm);
 716        kvm_arch_sync_events(kvm);
 717        spin_lock(&kvm_lock);
 718        list_del(&kvm->vm_list);
 719        spin_unlock(&kvm_lock);
 720        kvm_free_irq_routing(kvm);
 721        for (i = 0; i < KVM_NR_BUSES; i++)
 722                kvm_io_bus_destroy(kvm->buses[i]);
 723        kvm_coalesced_mmio_free(kvm);
 724#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 725        mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 726#else
 727        kvm_arch_flush_shadow_all(kvm);
 728#endif
 729        kvm_arch_destroy_vm(kvm);
 730        kvm_destroy_devices(kvm);
 731        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 732                kvm_free_memslots(kvm, kvm->memslots[i]);
 733        cleanup_srcu_struct(&kvm->irq_srcu);
 734        cleanup_srcu_struct(&kvm->srcu);
 735        kvm_arch_free_vm(kvm);
 736        preempt_notifier_dec();
 737        hardware_disable_all();
 738        mmdrop(mm);
 739}
 740
 741void kvm_get_kvm(struct kvm *kvm)
 742{
 743        atomic_inc(&kvm->users_count);
 744}
 745EXPORT_SYMBOL_GPL(kvm_get_kvm);
 746
 747void kvm_put_kvm(struct kvm *kvm)
 748{
 749        if (atomic_dec_and_test(&kvm->users_count))
 750                kvm_destroy_vm(kvm);
 751}
 752EXPORT_SYMBOL_GPL(kvm_put_kvm);
 753
 754
 755static int kvm_vm_release(struct inode *inode, struct file *filp)
 756{
 757        struct kvm *kvm = filp->private_data;
 758
 759        kvm_irqfd_release(kvm);
 760
 761        kvm_put_kvm(kvm);
 762        return 0;
 763}
 764
 765/*
 766 * Allocation size is twice as large as the actual dirty bitmap size.
 767 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 768 */
 769static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 770{
 771        unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 772
 773        memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
 774        if (!memslot->dirty_bitmap)
 775                return -ENOMEM;
 776
 777        return 0;
 778}
 779
 780/*
 781 * Insert memslot and re-sort memslots based on their GFN,
 782 * so binary search could be used to lookup GFN.
 783 * Sorting algorithm takes advantage of having initially
 784 * sorted array and known changed memslot position.
 785 */
 786static void update_memslots(struct kvm_memslots *slots,
 787                            struct kvm_memory_slot *new)
 788{
 789        int id = new->id;
 790        int i = slots->id_to_index[id];
 791        struct kvm_memory_slot *mslots = slots->memslots;
 792
 793        WARN_ON(mslots[i].id != id);
 794        if (!new->npages) {
 795                WARN_ON(!mslots[i].npages);
 796                if (mslots[i].npages)
 797                        slots->used_slots--;
 798        } else {
 799                if (!mslots[i].npages)
 800                        slots->used_slots++;
 801        }
 802
 803        while (i < KVM_MEM_SLOTS_NUM - 1 &&
 804               new->base_gfn <= mslots[i + 1].base_gfn) {
 805                if (!mslots[i + 1].npages)
 806                        break;
 807                mslots[i] = mslots[i + 1];
 808                slots->id_to_index[mslots[i].id] = i;
 809                i++;
 810        }
 811
 812        /*
 813         * The ">=" is needed when creating a slot with base_gfn == 0,
 814         * so that it moves before all those with base_gfn == npages == 0.
 815         *
 816         * On the other hand, if new->npages is zero, the above loop has
 817         * already left i pointing to the beginning of the empty part of
 818         * mslots, and the ">=" would move the hole backwards in this
 819         * case---which is wrong.  So skip the loop when deleting a slot.
 820         */
 821        if (new->npages) {
 822                while (i > 0 &&
 823                       new->base_gfn >= mslots[i - 1].base_gfn) {
 824                        mslots[i] = mslots[i - 1];
 825                        slots->id_to_index[mslots[i].id] = i;
 826                        i--;
 827                }
 828        } else
 829                WARN_ON_ONCE(i != slots->used_slots);
 830
 831        mslots[i] = *new;
 832        slots->id_to_index[mslots[i].id] = i;
 833}
 834
 835static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
 836{
 837        u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
 838
 839#ifdef __KVM_HAVE_READONLY_MEM
 840        valid_flags |= KVM_MEM_READONLY;
 841#endif
 842
 843        if (mem->flags & ~valid_flags)
 844                return -EINVAL;
 845
 846        return 0;
 847}
 848
 849static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
 850                int as_id, struct kvm_memslots *slots)
 851{
 852        struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
 853
 854        /*
 855         * Set the low bit in the generation, which disables SPTE caching
 856         * until the end of synchronize_srcu_expedited.
 857         */
 858        WARN_ON(old_memslots->generation & 1);
 859        slots->generation = old_memslots->generation + 1;
 860
 861        rcu_assign_pointer(kvm->memslots[as_id], slots);
 862        synchronize_srcu_expedited(&kvm->srcu);
 863
 864        /*
 865         * Increment the new memslot generation a second time. This prevents
 866         * vm exits that race with memslot updates from caching a memslot
 867         * generation that will (potentially) be valid forever.
 868         */
 869        slots->generation++;
 870
 871        kvm_arch_memslots_updated(kvm, slots);
 872
 873        return old_memslots;
 874}
 875
 876/*
 877 * Allocate some memory and give it an address in the guest physical address
 878 * space.
 879 *
 880 * Discontiguous memory is allowed, mostly for framebuffers.
 881 *
 882 * Must be called holding kvm->slots_lock for write.
 883 */
 884int __kvm_set_memory_region(struct kvm *kvm,
 885                            const struct kvm_userspace_memory_region *mem)
 886{
 887        int r;
 888        gfn_t base_gfn;
 889        unsigned long npages;
 890        struct kvm_memory_slot *slot;
 891        struct kvm_memory_slot old, new;
 892        struct kvm_memslots *slots = NULL, *old_memslots;
 893        int as_id, id;
 894        enum kvm_mr_change change;
 895
 896        r = check_memory_region_flags(mem);
 897        if (r)
 898                goto out;
 899
 900        r = -EINVAL;
 901        as_id = mem->slot >> 16;
 902        id = (u16)mem->slot;
 903
 904        /* General sanity checks */
 905        if (mem->memory_size & (PAGE_SIZE - 1))
 906                goto out;
 907        if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 908                goto out;
 909        /* We can read the guest memory with __xxx_user() later on. */
 910        if ((id < KVM_USER_MEM_SLOTS) &&
 911            ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 912             !access_ok(VERIFY_WRITE,
 913                        (void __user *)(unsigned long)mem->userspace_addr,
 914                        mem->memory_size)))
 915                goto out;
 916        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
 917                goto out;
 918        if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 919                goto out;
 920
 921        slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
 922        base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 923        npages = mem->memory_size >> PAGE_SHIFT;
 924
 925        if (npages > KVM_MEM_MAX_NR_PAGES)
 926                goto out;
 927
 928        new = old = *slot;
 929
 930        new.id = id;
 931        new.base_gfn = base_gfn;
 932        new.npages = npages;
 933        new.flags = mem->flags;
 934
 935        if (npages) {
 936                if (!old.npages)
 937                        change = KVM_MR_CREATE;
 938                else { /* Modify an existing slot. */
 939                        if ((mem->userspace_addr != old.userspace_addr) ||
 940                            (npages != old.npages) ||
 941                            ((new.flags ^ old.flags) & KVM_MEM_READONLY))
 942                                goto out;
 943
 944                        if (base_gfn != old.base_gfn)
 945                                change = KVM_MR_MOVE;
 946                        else if (new.flags != old.flags)
 947                                change = KVM_MR_FLAGS_ONLY;
 948                        else { /* Nothing to change. */
 949                                r = 0;
 950                                goto out;
 951                        }
 952                }
 953        } else {
 954                if (!old.npages)
 955                        goto out;
 956
 957                change = KVM_MR_DELETE;
 958                new.base_gfn = 0;
 959                new.flags = 0;
 960        }
 961
 962        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
 963                /* Check for overlaps */
 964                r = -EEXIST;
 965                kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
 966                        if ((slot->id >= KVM_USER_MEM_SLOTS) ||
 967                            (slot->id == id))
 968                                continue;
 969                        if (!((base_gfn + npages <= slot->base_gfn) ||
 970                              (base_gfn >= slot->base_gfn + slot->npages)))
 971                                goto out;
 972                }
 973        }
 974
 975        /* Free page dirty bitmap if unneeded */
 976        if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
 977                new.dirty_bitmap = NULL;
 978
 979        r = -ENOMEM;
 980        if (change == KVM_MR_CREATE) {
 981                new.userspace_addr = mem->userspace_addr;
 982
 983                if (kvm_arch_create_memslot(kvm, &new, npages))
 984                        goto out_free;
 985        }
 986
 987        /* Allocate page dirty bitmap if needed */
 988        if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
 989                if (kvm_create_dirty_bitmap(&new) < 0)
 990                        goto out_free;
 991        }
 992
 993        slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
 994        if (!slots)
 995                goto out_free;
 996        memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
 997
 998        if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
 999                slot = id_to_memslot(slots, id);
1000                slot->flags |= KVM_MEMSLOT_INVALID;
1001
1002                old_memslots = install_new_memslots(kvm, as_id, slots);
1003
1004                /* slot was deleted or moved, clear iommu mapping */
1005                kvm_iommu_unmap_pages(kvm, &old);
1006                /* From this point no new shadow pages pointing to a deleted,
1007                 * or moved, memslot will be created.
1008                 *
1009                 * validation of sp->gfn happens in:
1010                 *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1011                 *      - kvm_is_visible_gfn (mmu_check_roots)
1012                 */
1013                kvm_arch_flush_shadow_memslot(kvm, slot);
1014
1015                /*
1016                 * We can re-use the old_memslots from above, the only difference
1017                 * from the currently installed memslots is the invalid flag.  This
1018                 * will get overwritten by update_memslots anyway.
1019                 */
1020                slots = old_memslots;
1021        }
1022
1023        r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1024        if (r)
1025                goto out_slots;
1026
1027        /* actual memory is freed via old in kvm_free_memslot below */
1028        if (change == KVM_MR_DELETE) {
1029                new.dirty_bitmap = NULL;
1030                memset(&new.arch, 0, sizeof(new.arch));
1031        }
1032
1033        update_memslots(slots, &new);
1034        old_memslots = install_new_memslots(kvm, as_id, slots);
1035
1036        kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1037
1038        kvm_free_memslot(kvm, &old, &new);
1039        kvfree(old_memslots);
1040
1041        /*
1042         * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1043         * un-mapped and re-mapped if their base changes.  Since base change
1044         * unmapping is handled above with slot deletion, mapping alone is
1045         * needed here.  Anything else the iommu might care about for existing
1046         * slots (size changes, userspace addr changes and read-only flag
1047         * changes) is disallowed above, so any other attribute changes getting
1048         * here can be skipped.
1049         */
1050        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1051                r = kvm_iommu_map_pages(kvm, &new);
1052                return r;
1053        }
1054
1055        return 0;
1056
1057out_slots:
1058        kvfree(slots);
1059out_free:
1060        kvm_free_memslot(kvm, &new, &old);
1061out:
1062        return r;
1063}
1064EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1065
1066int kvm_set_memory_region(struct kvm *kvm,
1067                          const struct kvm_userspace_memory_region *mem)
1068{
1069        int r;
1070
1071        mutex_lock(&kvm->slots_lock);
1072        r = __kvm_set_memory_region(kvm, mem);
1073        mutex_unlock(&kvm->slots_lock);
1074        return r;
1075}
1076EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1077
1078static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1079                                          struct kvm_userspace_memory_region *mem)
1080{
1081        if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1082                return -EINVAL;
1083
1084        return kvm_set_memory_region(kvm, mem);
1085}
1086
1087int kvm_get_dirty_log(struct kvm *kvm,
1088                        struct kvm_dirty_log *log, int *is_dirty)
1089{
1090        struct kvm_memslots *slots;
1091        struct kvm_memory_slot *memslot;
1092        int r, i, as_id, id;
1093        unsigned long n;
1094        unsigned long any = 0;
1095
1096        r = -EINVAL;
1097        as_id = log->slot >> 16;
1098        id = (u16)log->slot;
1099        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1100                goto out;
1101
1102        slots = __kvm_memslots(kvm, as_id);
1103        memslot = id_to_memslot(slots, id);
1104        r = -ENOENT;
1105        if (!memslot->dirty_bitmap)
1106                goto out;
1107
1108        n = kvm_dirty_bitmap_bytes(memslot);
1109
1110        for (i = 0; !any && i < n/sizeof(long); ++i)
1111                any = memslot->dirty_bitmap[i];
1112
1113        r = -EFAULT;
1114        if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1115                goto out;
1116
1117        if (any)
1118                *is_dirty = 1;
1119
1120        r = 0;
1121out:
1122        return r;
1123}
1124EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1125
1126#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1127/**
1128 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1129 *      are dirty write protect them for next write.
1130 * @kvm:        pointer to kvm instance
1131 * @log:        slot id and address to which we copy the log
1132 * @is_dirty:   flag set if any page is dirty
1133 *
1134 * We need to keep it in mind that VCPU threads can write to the bitmap
1135 * concurrently. So, to avoid losing track of dirty pages we keep the
1136 * following order:
1137 *
1138 *    1. Take a snapshot of the bit and clear it if needed.
1139 *    2. Write protect the corresponding page.
1140 *    3. Copy the snapshot to the userspace.
1141 *    4. Upon return caller flushes TLB's if needed.
1142 *
1143 * Between 2 and 4, the guest may write to the page using the remaining TLB
1144 * entry.  This is not a problem because the page is reported dirty using
1145 * the snapshot taken before and step 4 ensures that writes done after
1146 * exiting to userspace will be logged for the next call.
1147 *
1148 */
1149int kvm_get_dirty_log_protect(struct kvm *kvm,
1150                        struct kvm_dirty_log *log, bool *is_dirty)
1151{
1152        struct kvm_memslots *slots;
1153        struct kvm_memory_slot *memslot;
1154        int r, i, as_id, id;
1155        unsigned long n;
1156        unsigned long *dirty_bitmap;
1157        unsigned long *dirty_bitmap_buffer;
1158
1159        r = -EINVAL;
1160        as_id = log->slot >> 16;
1161        id = (u16)log->slot;
1162        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1163                goto out;
1164
1165        slots = __kvm_memslots(kvm, as_id);
1166        memslot = id_to_memslot(slots, id);
1167
1168        dirty_bitmap = memslot->dirty_bitmap;
1169        r = -ENOENT;
1170        if (!dirty_bitmap)
1171                goto out;
1172
1173        n = kvm_dirty_bitmap_bytes(memslot);
1174
1175        dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1176        memset(dirty_bitmap_buffer, 0, n);
1177
1178        spin_lock(&kvm->mmu_lock);
1179        *is_dirty = false;
1180        for (i = 0; i < n / sizeof(long); i++) {
1181                unsigned long mask;
1182                gfn_t offset;
1183
1184                if (!dirty_bitmap[i])
1185                        continue;
1186
1187                *is_dirty = true;
1188
1189                mask = xchg(&dirty_bitmap[i], 0);
1190                dirty_bitmap_buffer[i] = mask;
1191
1192                if (mask) {
1193                        offset = i * BITS_PER_LONG;
1194                        kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1195                                                                offset, mask);
1196                }
1197        }
1198
1199        spin_unlock(&kvm->mmu_lock);
1200
1201        r = -EFAULT;
1202        if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1203                goto out;
1204
1205        r = 0;
1206out:
1207        return r;
1208}
1209EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1210#endif
1211
1212bool kvm_largepages_enabled(void)
1213{
1214        return largepages_enabled;
1215}
1216
1217void kvm_disable_largepages(void)
1218{
1219        largepages_enabled = false;
1220}
1221EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1222
1223struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1224{
1225        return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1226}
1227EXPORT_SYMBOL_GPL(gfn_to_memslot);
1228
1229struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1230{
1231        return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1232}
1233
1234bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1235{
1236        struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1237
1238        if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1239              memslot->flags & KVM_MEMSLOT_INVALID)
1240                return false;
1241
1242        return true;
1243}
1244EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1245
1246unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1247{
1248        struct vm_area_struct *vma;
1249        unsigned long addr, size;
1250
1251        size = PAGE_SIZE;
1252
1253        addr = gfn_to_hva(kvm, gfn);
1254        if (kvm_is_error_hva(addr))
1255                return PAGE_SIZE;
1256
1257        down_read(&current->mm->mmap_sem);
1258        vma = find_vma(current->mm, addr);
1259        if (!vma)
1260                goto out;
1261
1262        size = vma_kernel_pagesize(vma);
1263
1264out:
1265        up_read(&current->mm->mmap_sem);
1266
1267        return size;
1268}
1269
1270static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1271{
1272        return slot->flags & KVM_MEM_READONLY;
1273}
1274
1275static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1276                                       gfn_t *nr_pages, bool write)
1277{
1278        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1279                return KVM_HVA_ERR_BAD;
1280
1281        if (memslot_is_readonly(slot) && write)
1282                return KVM_HVA_ERR_RO_BAD;
1283
1284        if (nr_pages)
1285                *nr_pages = slot->npages - (gfn - slot->base_gfn);
1286
1287        return __gfn_to_hva_memslot(slot, gfn);
1288}
1289
1290static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1291                                     gfn_t *nr_pages)
1292{
1293        return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1294}
1295
1296unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1297                                        gfn_t gfn)
1298{
1299        return gfn_to_hva_many(slot, gfn, NULL);
1300}
1301EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1302
1303unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1304{
1305        return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1306}
1307EXPORT_SYMBOL_GPL(gfn_to_hva);
1308
1309unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1310{
1311        return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1312}
1313EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1314
1315/*
1316 * If writable is set to false, the hva returned by this function is only
1317 * allowed to be read.
1318 */
1319unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1320                                      gfn_t gfn, bool *writable)
1321{
1322        unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1323
1324        if (!kvm_is_error_hva(hva) && writable)
1325                *writable = !memslot_is_readonly(slot);
1326
1327        return hva;
1328}
1329
1330unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1331{
1332        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1333
1334        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1335}
1336
1337unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1338{
1339        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1340
1341        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1342}
1343
1344static int get_user_page_nowait(unsigned long start, int write,
1345                struct page **page)
1346{
1347        int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1348
1349        if (write)
1350                flags |= FOLL_WRITE;
1351
1352        return __get_user_pages(current, current->mm, start, 1, flags, page,
1353                        NULL, NULL);
1354}
1355
1356static inline int check_user_page_hwpoison(unsigned long addr)
1357{
1358        int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1359
1360        rc = __get_user_pages(current, current->mm, addr, 1,
1361                              flags, NULL, NULL, NULL);
1362        return rc == -EHWPOISON;
1363}
1364
1365/*
1366 * The atomic path to get the writable pfn which will be stored in @pfn,
1367 * true indicates success, otherwise false is returned.
1368 */
1369static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1370                            bool write_fault, bool *writable, kvm_pfn_t *pfn)
1371{
1372        struct page *page[1];
1373        int npages;
1374
1375        if (!(async || atomic))
1376                return false;
1377
1378        /*
1379         * Fast pin a writable pfn only if it is a write fault request
1380         * or the caller allows to map a writable pfn for a read fault
1381         * request.
1382         */
1383        if (!(write_fault || writable))
1384                return false;
1385
1386        npages = __get_user_pages_fast(addr, 1, 1, page);
1387        if (npages == 1) {
1388                *pfn = page_to_pfn(page[0]);
1389
1390                if (writable)
1391                        *writable = true;
1392                return true;
1393        }
1394
1395        return false;
1396}
1397
1398/*
1399 * The slow path to get the pfn of the specified host virtual address,
1400 * 1 indicates success, -errno is returned if error is detected.
1401 */
1402static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1403                           bool *writable, kvm_pfn_t *pfn)
1404{
1405        struct page *page[1];
1406        int npages = 0;
1407
1408        might_sleep();
1409
1410        if (writable)
1411                *writable = write_fault;
1412
1413        if (async) {
1414                down_read(&current->mm->mmap_sem);
1415                npages = get_user_page_nowait(addr, write_fault, page);
1416                up_read(&current->mm->mmap_sem);
1417        } else
1418                npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1419                                                   write_fault, 0, page,
1420                                                   FOLL_TOUCH|FOLL_HWPOISON);
1421        if (npages != 1)
1422                return npages;
1423
1424        /* map read fault as writable if possible */
1425        if (unlikely(!write_fault) && writable) {
1426                struct page *wpage[1];
1427
1428                npages = __get_user_pages_fast(addr, 1, 1, wpage);
1429                if (npages == 1) {
1430                        *writable = true;
1431                        put_page(page[0]);
1432                        page[0] = wpage[0];
1433                }
1434
1435                npages = 1;
1436        }
1437        *pfn = page_to_pfn(page[0]);
1438        return npages;
1439}
1440
1441static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1442{
1443        if (unlikely(!(vma->vm_flags & VM_READ)))
1444                return false;
1445
1446        if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1447                return false;
1448
1449        return true;
1450}
1451
1452static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1453                               unsigned long addr, bool *async,
1454                               bool write_fault, kvm_pfn_t *p_pfn)
1455{
1456        unsigned long pfn;
1457        int r;
1458
1459        r = follow_pfn(vma, addr, &pfn);
1460        if (r) {
1461                /*
1462                 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1463                 * not call the fault handler, so do it here.
1464                 */
1465                bool unlocked = false;
1466                r = fixup_user_fault(current, current->mm, addr,
1467                                     (write_fault ? FAULT_FLAG_WRITE : 0),
1468                                     &unlocked);
1469                if (unlocked)
1470                        return -EAGAIN;
1471                if (r)
1472                        return r;
1473
1474                r = follow_pfn(vma, addr, &pfn);
1475                if (r)
1476                        return r;
1477
1478        }
1479
1480
1481        /*
1482         * Get a reference here because callers of *hva_to_pfn* and
1483         * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1484         * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1485         * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1486         * simply do nothing for reserved pfns.
1487         *
1488         * Whoever called remap_pfn_range is also going to call e.g.
1489         * unmap_mapping_range before the underlying pages are freed,
1490         * causing a call to our MMU notifier.
1491         */ 
1492        kvm_get_pfn(pfn);
1493
1494        *p_pfn = pfn;
1495        return 0;
1496}
1497
1498/*
1499 * Pin guest page in memory and return its pfn.
1500 * @addr: host virtual address which maps memory to the guest
1501 * @atomic: whether this function can sleep
1502 * @async: whether this function need to wait IO complete if the
1503 *         host page is not in the memory
1504 * @write_fault: whether we should get a writable host page
1505 * @writable: whether it allows to map a writable host page for !@write_fault
1506 *
1507 * The function will map a writable host page for these two cases:
1508 * 1): @write_fault = true
1509 * 2): @write_fault = false && @writable, @writable will tell the caller
1510 *     whether the mapping is writable.
1511 */
1512static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1513                        bool write_fault, bool *writable)
1514{
1515        struct vm_area_struct *vma;
1516        kvm_pfn_t pfn = 0;
1517        int npages, r;
1518
1519        /* we can do it either atomically or asynchronously, not both */
1520        BUG_ON(atomic && async);
1521
1522        if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1523                return pfn;
1524
1525        if (atomic)
1526                return KVM_PFN_ERR_FAULT;
1527
1528        npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1529        if (npages == 1)
1530                return pfn;
1531
1532        down_read(&current->mm->mmap_sem);
1533        if (npages == -EHWPOISON ||
1534              (!async && check_user_page_hwpoison(addr))) {
1535                pfn = KVM_PFN_ERR_HWPOISON;
1536                goto exit;
1537        }
1538
1539retry:
1540        vma = find_vma_intersection(current->mm, addr, addr + 1);
1541
1542        if (vma == NULL)
1543                pfn = KVM_PFN_ERR_FAULT;
1544        else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1545                r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1546                if (r == -EAGAIN)
1547                        goto retry;
1548                if (r < 0)
1549                        pfn = KVM_PFN_ERR_FAULT;
1550        } else {
1551                if (async && vma_is_valid(vma, write_fault))
1552                        *async = true;
1553                pfn = KVM_PFN_ERR_FAULT;
1554        }
1555exit:
1556        up_read(&current->mm->mmap_sem);
1557        return pfn;
1558}
1559
1560kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1561                               bool atomic, bool *async, bool write_fault,
1562                               bool *writable)
1563{
1564        unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1565
1566        if (addr == KVM_HVA_ERR_RO_BAD) {
1567                if (writable)
1568                        *writable = false;
1569                return KVM_PFN_ERR_RO_FAULT;
1570        }
1571
1572        if (kvm_is_error_hva(addr)) {
1573                if (writable)
1574                        *writable = false;
1575                return KVM_PFN_NOSLOT;
1576        }
1577
1578        /* Do not map writable pfn in the readonly memslot. */
1579        if (writable && memslot_is_readonly(slot)) {
1580                *writable = false;
1581                writable = NULL;
1582        }
1583
1584        return hva_to_pfn(addr, atomic, async, write_fault,
1585                          writable);
1586}
1587EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1588
1589kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1590                      bool *writable)
1591{
1592        return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1593                                    write_fault, writable);
1594}
1595EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1596
1597kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1598{
1599        return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1600}
1601EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1602
1603kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1604{
1605        return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1606}
1607EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1608
1609kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1610{
1611        return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1612}
1613EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1614
1615kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1616{
1617        return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1618}
1619EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1620
1621kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1622{
1623        return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1624}
1625EXPORT_SYMBOL_GPL(gfn_to_pfn);
1626
1627kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1628{
1629        return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1630}
1631EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1632
1633int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1634                            struct page **pages, int nr_pages)
1635{
1636        unsigned long addr;
1637        gfn_t entry;
1638
1639        addr = gfn_to_hva_many(slot, gfn, &entry);
1640        if (kvm_is_error_hva(addr))
1641                return -1;
1642
1643        if (entry < nr_pages)
1644                return 0;
1645
1646        return __get_user_pages_fast(addr, nr_pages, 1, pages);
1647}
1648EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1649
1650static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1651{
1652        if (is_error_noslot_pfn(pfn))
1653                return KVM_ERR_PTR_BAD_PAGE;
1654
1655        if (kvm_is_reserved_pfn(pfn)) {
1656                WARN_ON(1);
1657                return KVM_ERR_PTR_BAD_PAGE;
1658        }
1659
1660        return pfn_to_page(pfn);
1661}
1662
1663struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1664{
1665        kvm_pfn_t pfn;
1666
1667        pfn = gfn_to_pfn(kvm, gfn);
1668
1669        return kvm_pfn_to_page(pfn);
1670}
1671EXPORT_SYMBOL_GPL(gfn_to_page);
1672
1673struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1674{
1675        kvm_pfn_t pfn;
1676
1677        pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1678
1679        return kvm_pfn_to_page(pfn);
1680}
1681EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1682
1683void kvm_release_page_clean(struct page *page)
1684{
1685        WARN_ON(is_error_page(page));
1686
1687        kvm_release_pfn_clean(page_to_pfn(page));
1688}
1689EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1690
1691void kvm_release_pfn_clean(kvm_pfn_t pfn)
1692{
1693        if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1694                put_page(pfn_to_page(pfn));
1695}
1696EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1697
1698void kvm_release_page_dirty(struct page *page)
1699{
1700        WARN_ON(is_error_page(page));
1701
1702        kvm_release_pfn_dirty(page_to_pfn(page));
1703}
1704EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1705
1706static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1707{
1708        kvm_set_pfn_dirty(pfn);
1709        kvm_release_pfn_clean(pfn);
1710}
1711
1712void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1713{
1714        if (!kvm_is_reserved_pfn(pfn)) {
1715                struct page *page = pfn_to_page(pfn);
1716
1717                if (!PageReserved(page))
1718                        SetPageDirty(page);
1719        }
1720}
1721EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1722
1723void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1724{
1725        if (!kvm_is_reserved_pfn(pfn))
1726                mark_page_accessed(pfn_to_page(pfn));
1727}
1728EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1729
1730void kvm_get_pfn(kvm_pfn_t pfn)
1731{
1732        if (!kvm_is_reserved_pfn(pfn))
1733                get_page(pfn_to_page(pfn));
1734}
1735EXPORT_SYMBOL_GPL(kvm_get_pfn);
1736
1737static int next_segment(unsigned long len, int offset)
1738{
1739        if (len > PAGE_SIZE - offset)
1740                return PAGE_SIZE - offset;
1741        else
1742                return len;
1743}
1744
1745static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1746                                 void *data, int offset, int len)
1747{
1748        int r;
1749        unsigned long addr;
1750
1751        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1752        if (kvm_is_error_hva(addr))
1753                return -EFAULT;
1754        r = __copy_from_user(data, (void __user *)addr + offset, len);
1755        if (r)
1756                return -EFAULT;
1757        return 0;
1758}
1759
1760int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1761                        int len)
1762{
1763        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1764
1765        return __kvm_read_guest_page(slot, gfn, data, offset, len);
1766}
1767EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1768
1769int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1770                             int offset, int len)
1771{
1772        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1773
1774        return __kvm_read_guest_page(slot, gfn, data, offset, len);
1775}
1776EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1777
1778int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1779{
1780        gfn_t gfn = gpa >> PAGE_SHIFT;
1781        int seg;
1782        int offset = offset_in_page(gpa);
1783        int ret;
1784
1785        while ((seg = next_segment(len, offset)) != 0) {
1786                ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1787                if (ret < 0)
1788                        return ret;
1789                offset = 0;
1790                len -= seg;
1791                data += seg;
1792                ++gfn;
1793        }
1794        return 0;
1795}
1796EXPORT_SYMBOL_GPL(kvm_read_guest);
1797
1798int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1799{
1800        gfn_t gfn = gpa >> PAGE_SHIFT;
1801        int seg;
1802        int offset = offset_in_page(gpa);
1803        int ret;
1804
1805        while ((seg = next_segment(len, offset)) != 0) {
1806                ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1807                if (ret < 0)
1808                        return ret;
1809                offset = 0;
1810                len -= seg;
1811                data += seg;
1812                ++gfn;
1813        }
1814        return 0;
1815}
1816EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1817
1818static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1819                                   void *data, int offset, unsigned long len)
1820{
1821        int r;
1822        unsigned long addr;
1823
1824        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1825        if (kvm_is_error_hva(addr))
1826                return -EFAULT;
1827        pagefault_disable();
1828        r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1829        pagefault_enable();
1830        if (r)
1831                return -EFAULT;
1832        return 0;
1833}
1834
1835int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1836                          unsigned long len)
1837{
1838        gfn_t gfn = gpa >> PAGE_SHIFT;
1839        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1840        int offset = offset_in_page(gpa);
1841
1842        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1843}
1844EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1845
1846int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1847                               void *data, unsigned long len)
1848{
1849        gfn_t gfn = gpa >> PAGE_SHIFT;
1850        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1851        int offset = offset_in_page(gpa);
1852
1853        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1854}
1855EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1856
1857static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1858                                  const void *data, int offset, int len)
1859{
1860        int r;
1861        unsigned long addr;
1862
1863        addr = gfn_to_hva_memslot(memslot, gfn);
1864        if (kvm_is_error_hva(addr))
1865                return -EFAULT;
1866        r = __copy_to_user((void __user *)addr + offset, data, len);
1867        if (r)
1868                return -EFAULT;
1869        mark_page_dirty_in_slot(memslot, gfn);
1870        return 0;
1871}
1872
1873int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1874                         const void *data, int offset, int len)
1875{
1876        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1877
1878        return __kvm_write_guest_page(slot, gfn, data, offset, len);
1879}
1880EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1881
1882int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1883                              const void *data, int offset, int len)
1884{
1885        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1886
1887        return __kvm_write_guest_page(slot, gfn, data, offset, len);
1888}
1889EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1890
1891int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1892                    unsigned long len)
1893{
1894        gfn_t gfn = gpa >> PAGE_SHIFT;
1895        int seg;
1896        int offset = offset_in_page(gpa);
1897        int ret;
1898
1899        while ((seg = next_segment(len, offset)) != 0) {
1900                ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1901                if (ret < 0)
1902                        return ret;
1903                offset = 0;
1904                len -= seg;
1905                data += seg;
1906                ++gfn;
1907        }
1908        return 0;
1909}
1910EXPORT_SYMBOL_GPL(kvm_write_guest);
1911
1912int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1913                         unsigned long len)
1914{
1915        gfn_t gfn = gpa >> PAGE_SHIFT;
1916        int seg;
1917        int offset = offset_in_page(gpa);
1918        int ret;
1919
1920        while ((seg = next_segment(len, offset)) != 0) {
1921                ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1922                if (ret < 0)
1923                        return ret;
1924                offset = 0;
1925                len -= seg;
1926                data += seg;
1927                ++gfn;
1928        }
1929        return 0;
1930}
1931EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1932
1933int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1934                              gpa_t gpa, unsigned long len)
1935{
1936        struct kvm_memslots *slots = kvm_memslots(kvm);
1937        int offset = offset_in_page(gpa);
1938        gfn_t start_gfn = gpa >> PAGE_SHIFT;
1939        gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1940        gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1941        gfn_t nr_pages_avail;
1942
1943        ghc->gpa = gpa;
1944        ghc->generation = slots->generation;
1945        ghc->len = len;
1946        ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1947        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1948        if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1949                ghc->hva += offset;
1950        } else {
1951                /*
1952                 * If the requested region crosses two memslots, we still
1953                 * verify that the entire region is valid here.
1954                 */
1955                while (start_gfn <= end_gfn) {
1956                        ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1957                        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1958                                                   &nr_pages_avail);
1959                        if (kvm_is_error_hva(ghc->hva))
1960                                return -EFAULT;
1961                        start_gfn += nr_pages_avail;
1962                }
1963                /* Use the slow path for cross page reads and writes. */
1964                ghc->memslot = NULL;
1965        }
1966        return 0;
1967}
1968EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1969
1970int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1971                           void *data, unsigned long len)
1972{
1973        struct kvm_memslots *slots = kvm_memslots(kvm);
1974        int r;
1975
1976        BUG_ON(len > ghc->len);
1977
1978        if (slots->generation != ghc->generation)
1979                kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1980
1981        if (unlikely(!ghc->memslot))
1982                return kvm_write_guest(kvm, ghc->gpa, data, len);
1983
1984        if (kvm_is_error_hva(ghc->hva))
1985                return -EFAULT;
1986
1987        r = __copy_to_user((void __user *)ghc->hva, data, len);
1988        if (r)
1989                return -EFAULT;
1990        mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1991
1992        return 0;
1993}
1994EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1995
1996int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1997                           void *data, unsigned long len)
1998{
1999        struct kvm_memslots *slots = kvm_memslots(kvm);
2000        int r;
2001
2002        BUG_ON(len > ghc->len);
2003
2004        if (slots->generation != ghc->generation)
2005                kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2006
2007        if (unlikely(!ghc->memslot))
2008                return kvm_read_guest(kvm, ghc->gpa, data, len);
2009
2010        if (kvm_is_error_hva(ghc->hva))
2011                return -EFAULT;
2012
2013        r = __copy_from_user(data, (void __user *)ghc->hva, len);
2014        if (r)
2015                return -EFAULT;
2016
2017        return 0;
2018}
2019EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2020
2021int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2022{
2023        const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2024
2025        return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2026}
2027EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2028
2029int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2030{
2031        gfn_t gfn = gpa >> PAGE_SHIFT;
2032        int seg;
2033        int offset = offset_in_page(gpa);
2034        int ret;
2035
2036        while ((seg = next_segment(len, offset)) != 0) {
2037                ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2038                if (ret < 0)
2039                        return ret;
2040                offset = 0;
2041                len -= seg;
2042                ++gfn;
2043        }
2044        return 0;
2045}
2046EXPORT_SYMBOL_GPL(kvm_clear_guest);
2047
2048static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2049                                    gfn_t gfn)
2050{
2051        if (memslot && memslot->dirty_bitmap) {
2052                unsigned long rel_gfn = gfn - memslot->base_gfn;
2053
2054                set_bit_le(rel_gfn, memslot->dirty_bitmap);
2055        }
2056}
2057
2058void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2059{
2060        struct kvm_memory_slot *memslot;
2061
2062        memslot = gfn_to_memslot(kvm, gfn);
2063        mark_page_dirty_in_slot(memslot, gfn);
2064}
2065EXPORT_SYMBOL_GPL(mark_page_dirty);
2066
2067void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2068{
2069        struct kvm_memory_slot *memslot;
2070
2071        memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2072        mark_page_dirty_in_slot(memslot, gfn);
2073}
2074EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2075
2076static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2077{
2078        unsigned int old, val, grow;
2079
2080        old = val = vcpu->halt_poll_ns;
2081        grow = READ_ONCE(halt_poll_ns_grow);
2082        /* 10us base */
2083        if (val == 0 && grow)
2084                val = 10000;
2085        else
2086                val *= grow;
2087
2088        if (val > halt_poll_ns)
2089                val = halt_poll_ns;
2090
2091        vcpu->halt_poll_ns = val;
2092        trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2093}
2094
2095static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2096{
2097        unsigned int old, val, shrink;
2098
2099        old = val = vcpu->halt_poll_ns;
2100        shrink = READ_ONCE(halt_poll_ns_shrink);
2101        if (shrink == 0)
2102                val = 0;
2103        else
2104                val /= shrink;
2105
2106        vcpu->halt_poll_ns = val;
2107        trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2108}
2109
2110static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2111{
2112        if (kvm_arch_vcpu_runnable(vcpu)) {
2113                kvm_make_request(KVM_REQ_UNHALT, vcpu);
2114                return -EINTR;
2115        }
2116        if (kvm_cpu_has_pending_timer(vcpu))
2117                return -EINTR;
2118        if (signal_pending(current))
2119                return -EINTR;
2120
2121        return 0;
2122}
2123
2124/*
2125 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2126 */
2127void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2128{
2129        ktime_t start, cur;
2130        DECLARE_SWAITQUEUE(wait);
2131        bool waited = false;
2132        u64 block_ns;
2133
2134        start = cur = ktime_get();
2135        if (vcpu->halt_poll_ns) {
2136                ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2137
2138                ++vcpu->stat.halt_attempted_poll;
2139                do {
2140                        /*
2141                         * This sets KVM_REQ_UNHALT if an interrupt
2142                         * arrives.
2143                         */
2144                        if (kvm_vcpu_check_block(vcpu) < 0) {
2145                                ++vcpu->stat.halt_successful_poll;
2146                                if (!vcpu_valid_wakeup(vcpu))
2147                                        ++vcpu->stat.halt_poll_invalid;
2148                                goto out;
2149                        }
2150                        cur = ktime_get();
2151                } while (single_task_running() && ktime_before(cur, stop));
2152        }
2153
2154        kvm_arch_vcpu_blocking(vcpu);
2155
2156        for (;;) {
2157                prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2158
2159                if (kvm_vcpu_check_block(vcpu) < 0)
2160                        break;
2161
2162                waited = true;
2163                schedule();
2164        }
2165
2166        finish_swait(&vcpu->wq, &wait);
2167        cur = ktime_get();
2168
2169        kvm_arch_vcpu_unblocking(vcpu);
2170out:
2171        block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2172
2173        if (!vcpu_valid_wakeup(vcpu))
2174                shrink_halt_poll_ns(vcpu);
2175        else if (halt_poll_ns) {
2176                if (block_ns <= vcpu->halt_poll_ns)
2177                        ;
2178                /* we had a long block, shrink polling */
2179                else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2180                        shrink_halt_poll_ns(vcpu);
2181                /* we had a short halt and our poll time is too small */
2182                else if (vcpu->halt_poll_ns < halt_poll_ns &&
2183                        block_ns < halt_poll_ns)
2184                        grow_halt_poll_ns(vcpu);
2185        } else
2186                vcpu->halt_poll_ns = 0;
2187
2188        trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2189        kvm_arch_vcpu_block_finish(vcpu);
2190}
2191EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2192
2193#ifndef CONFIG_S390
2194void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2195{
2196        struct swait_queue_head *wqp;
2197
2198        wqp = kvm_arch_vcpu_wq(vcpu);
2199        if (swait_active(wqp)) {
2200                swake_up(wqp);
2201                ++vcpu->stat.halt_wakeup;
2202        }
2203
2204}
2205EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2206
2207/*
2208 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2209 */
2210void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2211{
2212        int me;
2213        int cpu = vcpu->cpu;
2214
2215        kvm_vcpu_wake_up(vcpu);
2216        me = get_cpu();
2217        if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2218                if (kvm_arch_vcpu_should_kick(vcpu))
2219                        smp_send_reschedule(cpu);
2220        put_cpu();
2221}
2222EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2223#endif /* !CONFIG_S390 */
2224
2225int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2226{
2227        struct pid *pid;
2228        struct task_struct *task = NULL;
2229        int ret = 0;
2230
2231        rcu_read_lock();
2232        pid = rcu_dereference(target->pid);
2233        if (pid)
2234                task = get_pid_task(pid, PIDTYPE_PID);
2235        rcu_read_unlock();
2236        if (!task)
2237                return ret;
2238        ret = yield_to(task, 1);
2239        put_task_struct(task);
2240
2241        return ret;
2242}
2243EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2244
2245/*
2246 * Helper that checks whether a VCPU is eligible for directed yield.
2247 * Most eligible candidate to yield is decided by following heuristics:
2248 *
2249 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2250 *  (preempted lock holder), indicated by @in_spin_loop.
2251 *  Set at the beiginning and cleared at the end of interception/PLE handler.
2252 *
2253 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2254 *  chance last time (mostly it has become eligible now since we have probably
2255 *  yielded to lockholder in last iteration. This is done by toggling
2256 *  @dy_eligible each time a VCPU checked for eligibility.)
2257 *
2258 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2259 *  to preempted lock-holder could result in wrong VCPU selection and CPU
2260 *  burning. Giving priority for a potential lock-holder increases lock
2261 *  progress.
2262 *
2263 *  Since algorithm is based on heuristics, accessing another VCPU data without
2264 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2265 *  and continue with next VCPU and so on.
2266 */
2267static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2268{
2269#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2270        bool eligible;
2271
2272        eligible = !vcpu->spin_loop.in_spin_loop ||
2273                    vcpu->spin_loop.dy_eligible;
2274
2275        if (vcpu->spin_loop.in_spin_loop)
2276                kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2277
2278        return eligible;
2279#else
2280        return true;
2281#endif
2282}
2283
2284void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2285{
2286        struct kvm *kvm = me->kvm;
2287        struct kvm_vcpu *vcpu;
2288        int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2289        int yielded = 0;
2290        int try = 3;
2291        int pass;
2292        int i;
2293
2294        kvm_vcpu_set_in_spin_loop(me, true);
2295        /*
2296         * We boost the priority of a VCPU that is runnable but not
2297         * currently running, because it got preempted by something
2298         * else and called schedule in __vcpu_run.  Hopefully that
2299         * VCPU is holding the lock that we need and will release it.
2300         * We approximate round-robin by starting at the last boosted VCPU.
2301         */
2302        for (pass = 0; pass < 2 && !yielded && try; pass++) {
2303                kvm_for_each_vcpu(i, vcpu, kvm) {
2304                        if (!pass && i <= last_boosted_vcpu) {
2305                                i = last_boosted_vcpu;
2306                                continue;
2307                        } else if (pass && i > last_boosted_vcpu)
2308                                break;
2309                        if (!ACCESS_ONCE(vcpu->preempted))
2310                                continue;
2311                        if (vcpu == me)
2312                                continue;
2313                        if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2314                                continue;
2315                        if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2316                                continue;
2317
2318                        yielded = kvm_vcpu_yield_to(vcpu);
2319                        if (yielded > 0) {
2320                                kvm->last_boosted_vcpu = i;
2321                                break;
2322                        } else if (yielded < 0) {
2323                                try--;
2324                                if (!try)
2325                                        break;
2326                        }
2327                }
2328        }
2329        kvm_vcpu_set_in_spin_loop(me, false);
2330
2331        /* Ensure vcpu is not eligible during next spinloop */
2332        kvm_vcpu_set_dy_eligible(me, false);
2333}
2334EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2335
2336static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2337{
2338        struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2339        struct page *page;
2340
2341        if (vmf->pgoff == 0)
2342                page = virt_to_page(vcpu->run);
2343#ifdef CONFIG_X86
2344        else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2345                page = virt_to_page(vcpu->arch.pio_data);
2346#endif
2347#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2348        else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2349                page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2350#endif
2351        else
2352                return kvm_arch_vcpu_fault(vcpu, vmf);
2353        get_page(page);
2354        vmf->page = page;
2355        return 0;
2356}
2357
2358static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2359        .fault = kvm_vcpu_fault,
2360};
2361
2362static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2363{
2364        vma->vm_ops = &kvm_vcpu_vm_ops;
2365        return 0;
2366}
2367
2368static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2369{
2370        struct kvm_vcpu *vcpu = filp->private_data;
2371
2372        kvm_put_kvm(vcpu->kvm);
2373        return 0;
2374}
2375
2376static struct file_operations kvm_vcpu_fops = {
2377        .release        = kvm_vcpu_release,
2378        .unlocked_ioctl = kvm_vcpu_ioctl,
2379#ifdef CONFIG_KVM_COMPAT
2380        .compat_ioctl   = kvm_vcpu_compat_ioctl,
2381#endif
2382        .mmap           = kvm_vcpu_mmap,
2383        .llseek         = noop_llseek,
2384};
2385
2386/*
2387 * Allocates an inode for the vcpu.
2388 */
2389static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2390{
2391        return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2392}
2393
2394/*
2395 * Creates some virtual cpus.  Good luck creating more than one.
2396 */
2397static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2398{
2399        int r;
2400        struct kvm_vcpu *vcpu;
2401
2402        if (id >= KVM_MAX_VCPU_ID)
2403                return -EINVAL;
2404
2405        mutex_lock(&kvm->lock);
2406        if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2407                mutex_unlock(&kvm->lock);
2408                return -EINVAL;
2409        }
2410
2411        kvm->created_vcpus++;
2412        mutex_unlock(&kvm->lock);
2413
2414        vcpu = kvm_arch_vcpu_create(kvm, id);
2415        if (IS_ERR(vcpu)) {
2416                r = PTR_ERR(vcpu);
2417                goto vcpu_decrement;
2418        }
2419
2420        preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2421
2422        r = kvm_arch_vcpu_setup(vcpu);
2423        if (r)
2424                goto vcpu_destroy;
2425
2426        mutex_lock(&kvm->lock);
2427        if (kvm_get_vcpu_by_id(kvm, id)) {
2428                r = -EEXIST;
2429                goto unlock_vcpu_destroy;
2430        }
2431
2432        BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2433
2434        /* Now it's all set up, let userspace reach it */
2435        kvm_get_kvm(kvm);
2436        r = create_vcpu_fd(vcpu);
2437        if (r < 0) {
2438                kvm_put_kvm(kvm);
2439                goto unlock_vcpu_destroy;
2440        }
2441
2442        kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2443
2444        /*
2445         * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2446         * before kvm->online_vcpu's incremented value.
2447         */
2448        smp_wmb();
2449        atomic_inc(&kvm->online_vcpus);
2450
2451        mutex_unlock(&kvm->lock);
2452        kvm_arch_vcpu_postcreate(vcpu);
2453        return r;
2454
2455unlock_vcpu_destroy:
2456        mutex_unlock(&kvm->lock);
2457vcpu_destroy:
2458        kvm_arch_vcpu_destroy(vcpu);
2459vcpu_decrement:
2460        mutex_lock(&kvm->lock);
2461        kvm->created_vcpus--;
2462        mutex_unlock(&kvm->lock);
2463        return r;
2464}
2465
2466static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2467{
2468        if (sigset) {
2469                sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2470                vcpu->sigset_active = 1;
2471                vcpu->sigset = *sigset;
2472        } else
2473                vcpu->sigset_active = 0;
2474        return 0;
2475}
2476
2477static long kvm_vcpu_ioctl(struct file *filp,
2478                           unsigned int ioctl, unsigned long arg)
2479{
2480        struct kvm_vcpu *vcpu = filp->private_data;
2481        void __user *argp = (void __user *)arg;
2482        int r;
2483        struct kvm_fpu *fpu = NULL;
2484        struct kvm_sregs *kvm_sregs = NULL;
2485
2486        if (vcpu->kvm->mm != current->mm)
2487                return -EIO;
2488
2489        if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2490                return -EINVAL;
2491
2492#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2493        /*
2494         * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2495         * so vcpu_load() would break it.
2496         */
2497        if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2498                return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2499#endif
2500
2501
2502        r = vcpu_load(vcpu);
2503        if (r)
2504                return r;
2505        switch (ioctl) {
2506        case KVM_RUN:
2507                r = -EINVAL;
2508                if (arg)
2509                        goto out;
2510                if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2511                        /* The thread running this VCPU changed. */
2512                        struct pid *oldpid = vcpu->pid;
2513                        struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2514
2515                        rcu_assign_pointer(vcpu->pid, newpid);
2516                        if (oldpid)
2517                                synchronize_rcu();
2518                        put_pid(oldpid);
2519                }
2520                r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2521                trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2522                break;
2523        case KVM_GET_REGS: {
2524                struct kvm_regs *kvm_regs;
2525
2526                r = -ENOMEM;
2527                kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2528                if (!kvm_regs)
2529                        goto out;
2530                r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2531                if (r)
2532                        goto out_free1;
2533                r = -EFAULT;
2534                if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2535                        goto out_free1;
2536                r = 0;
2537out_free1:
2538                kfree(kvm_regs);
2539                break;
2540        }
2541        case KVM_SET_REGS: {
2542                struct kvm_regs *kvm_regs;
2543
2544                r = -ENOMEM;
2545                kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2546                if (IS_ERR(kvm_regs)) {
2547                        r = PTR_ERR(kvm_regs);
2548                        goto out;
2549                }
2550                r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2551                kfree(kvm_regs);
2552                break;
2553        }
2554        case KVM_GET_SREGS: {
2555                kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2556                r = -ENOMEM;
2557                if (!kvm_sregs)
2558                        goto out;
2559                r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2560                if (r)
2561                        goto out;
2562                r = -EFAULT;
2563                if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2564                        goto out;
2565                r = 0;
2566                break;
2567        }
2568        case KVM_SET_SREGS: {
2569                kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2570                if (IS_ERR(kvm_sregs)) {
2571                        r = PTR_ERR(kvm_sregs);
2572                        kvm_sregs = NULL;
2573                        goto out;
2574                }
2575                r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2576                break;
2577        }
2578        case KVM_GET_MP_STATE: {
2579                struct kvm_mp_state mp_state;
2580
2581                r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2582                if (r)
2583                        goto out;
2584                r = -EFAULT;
2585                if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2586                        goto out;
2587                r = 0;
2588                break;
2589        }
2590        case KVM_SET_MP_STATE: {
2591                struct kvm_mp_state mp_state;
2592
2593                r = -EFAULT;
2594                if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2595                        goto out;
2596                r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2597                break;
2598        }
2599        case KVM_TRANSLATE: {
2600                struct kvm_translation tr;
2601
2602                r = -EFAULT;
2603                if (copy_from_user(&tr, argp, sizeof(tr)))
2604                        goto out;
2605                r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2606                if (r)
2607                        goto out;
2608                r = -EFAULT;
2609                if (copy_to_user(argp, &tr, sizeof(tr)))
2610                        goto out;
2611                r = 0;
2612                break;
2613        }
2614        case KVM_SET_GUEST_DEBUG: {
2615                struct kvm_guest_debug dbg;
2616
2617                r = -EFAULT;
2618                if (copy_from_user(&dbg, argp, sizeof(dbg)))
2619                        goto out;
2620                r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2621                break;
2622        }
2623        case KVM_SET_SIGNAL_MASK: {
2624                struct kvm_signal_mask __user *sigmask_arg = argp;
2625                struct kvm_signal_mask kvm_sigmask;
2626                sigset_t sigset, *p;
2627
2628                p = NULL;
2629                if (argp) {
2630                        r = -EFAULT;
2631                        if (copy_from_user(&kvm_sigmask, argp,
2632                                           sizeof(kvm_sigmask)))
2633                                goto out;
2634                        r = -EINVAL;
2635                        if (kvm_sigmask.len != sizeof(sigset))
2636                                goto out;
2637                        r = -EFAULT;
2638                        if (copy_from_user(&sigset, sigmask_arg->sigset,
2639                                           sizeof(sigset)))
2640                                goto out;
2641                        p = &sigset;
2642                }
2643                r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2644                break;
2645        }
2646        case KVM_GET_FPU: {
2647                fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2648                r = -ENOMEM;
2649                if (!fpu)
2650                        goto out;
2651                r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2652                if (r)
2653                        goto out;
2654                r = -EFAULT;
2655                if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2656                        goto out;
2657                r = 0;
2658                break;
2659        }
2660        case KVM_SET_FPU: {
2661                fpu = memdup_user(argp, sizeof(*fpu));
2662                if (IS_ERR(fpu)) {
2663                        r = PTR_ERR(fpu);
2664                        fpu = NULL;
2665                        goto out;
2666                }
2667                r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2668                break;
2669        }
2670        default:
2671                r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2672        }
2673out:
2674        vcpu_put(vcpu);
2675        kfree(fpu);
2676        kfree(kvm_sregs);
2677        return r;
2678}
2679
2680#ifdef CONFIG_KVM_COMPAT
2681static long kvm_vcpu_compat_ioctl(struct file *filp,
2682                                  unsigned int ioctl, unsigned long arg)
2683{
2684        struct kvm_vcpu *vcpu = filp->private_data;
2685        void __user *argp = compat_ptr(arg);
2686        int r;
2687
2688        if (vcpu->kvm->mm != current->mm)
2689                return -EIO;
2690
2691        switch (ioctl) {
2692        case KVM_SET_SIGNAL_MASK: {
2693                struct kvm_signal_mask __user *sigmask_arg = argp;
2694                struct kvm_signal_mask kvm_sigmask;
2695                compat_sigset_t csigset;
2696                sigset_t sigset;
2697
2698                if (argp) {
2699                        r = -EFAULT;
2700                        if (copy_from_user(&kvm_sigmask, argp,
2701                                           sizeof(kvm_sigmask)))
2702                                goto out;
2703                        r = -EINVAL;
2704                        if (kvm_sigmask.len != sizeof(csigset))
2705                                goto out;
2706                        r = -EFAULT;
2707                        if (copy_from_user(&csigset, sigmask_arg->sigset,
2708                                           sizeof(csigset)))
2709                                goto out;
2710                        sigset_from_compat(&sigset, &csigset);
2711                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2712                } else
2713                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2714                break;
2715        }
2716        default:
2717                r = kvm_vcpu_ioctl(filp, ioctl, arg);
2718        }
2719
2720out:
2721        return r;
2722}
2723#endif
2724
2725static int kvm_device_ioctl_attr(struct kvm_device *dev,
2726                                 int (*accessor)(struct kvm_device *dev,
2727                                                 struct kvm_device_attr *attr),
2728                                 unsigned long arg)
2729{
2730        struct kvm_device_attr attr;
2731
2732        if (!accessor)
2733                return -EPERM;
2734
2735        if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2736                return -EFAULT;
2737
2738        return accessor(dev, &attr);
2739}
2740
2741static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2742                             unsigned long arg)
2743{
2744        struct kvm_device *dev = filp->private_data;
2745
2746        switch (ioctl) {
2747        case KVM_SET_DEVICE_ATTR:
2748                return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2749        case KVM_GET_DEVICE_ATTR:
2750                return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2751        case KVM_HAS_DEVICE_ATTR:
2752                return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2753        default:
2754                if (dev->ops->ioctl)
2755                        return dev->ops->ioctl(dev, ioctl, arg);
2756
2757                return -ENOTTY;
2758        }
2759}
2760
2761static int kvm_device_release(struct inode *inode, struct file *filp)
2762{
2763        struct kvm_device *dev = filp->private_data;
2764        struct kvm *kvm = dev->kvm;
2765
2766        kvm_put_kvm(kvm);
2767        return 0;
2768}
2769
2770static const struct file_operations kvm_device_fops = {
2771        .unlocked_ioctl = kvm_device_ioctl,
2772#ifdef CONFIG_KVM_COMPAT
2773        .compat_ioctl = kvm_device_ioctl,
2774#endif
2775        .release = kvm_device_release,
2776};
2777
2778struct kvm_device *kvm_device_from_filp(struct file *filp)
2779{
2780        if (filp->f_op != &kvm_device_fops)
2781                return NULL;
2782
2783        return filp->private_data;
2784}
2785
2786static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2787#ifdef CONFIG_KVM_MPIC
2788        [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2789        [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2790#endif
2791
2792#ifdef CONFIG_KVM_XICS
2793        [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2794#endif
2795};
2796
2797int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2798{
2799        if (type >= ARRAY_SIZE(kvm_device_ops_table))
2800                return -ENOSPC;
2801
2802        if (kvm_device_ops_table[type] != NULL)
2803                return -EEXIST;
2804
2805        kvm_device_ops_table[type] = ops;
2806        return 0;
2807}
2808
2809void kvm_unregister_device_ops(u32 type)
2810{
2811        if (kvm_device_ops_table[type] != NULL)
2812                kvm_device_ops_table[type] = NULL;
2813}
2814
2815static int kvm_ioctl_create_device(struct kvm *kvm,
2816                                   struct kvm_create_device *cd)
2817{
2818        struct kvm_device_ops *ops = NULL;
2819        struct kvm_device *dev;
2820        bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2821        int ret;
2822
2823        if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2824                return -ENODEV;
2825
2826        ops = kvm_device_ops_table[cd->type];
2827        if (ops == NULL)
2828                return -ENODEV;
2829
2830        if (test)
2831                return 0;
2832
2833        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2834        if (!dev)
2835                return -ENOMEM;
2836
2837        dev->ops = ops;
2838        dev->kvm = kvm;
2839
2840        mutex_lock(&kvm->lock);
2841        ret = ops->create(dev, cd->type);
2842        if (ret < 0) {
2843                mutex_unlock(&kvm->lock);
2844                kfree(dev);
2845                return ret;
2846        }
2847        list_add(&dev->vm_node, &kvm->devices);
2848        mutex_unlock(&kvm->lock);
2849
2850        if (ops->init)
2851                ops->init(dev);
2852
2853        ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2854        if (ret < 0) {
2855                ops->destroy(dev);
2856                mutex_lock(&kvm->lock);
2857                list_del(&dev->vm_node);
2858                mutex_unlock(&kvm->lock);
2859                return ret;
2860        }
2861
2862        kvm_get_kvm(kvm);
2863        cd->fd = ret;
2864        return 0;
2865}
2866
2867static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2868{
2869        switch (arg) {
2870        case KVM_CAP_USER_MEMORY:
2871        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2872        case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2873        case KVM_CAP_INTERNAL_ERROR_DATA:
2874#ifdef CONFIG_HAVE_KVM_MSI
2875        case KVM_CAP_SIGNAL_MSI:
2876#endif
2877#ifdef CONFIG_HAVE_KVM_IRQFD
2878        case KVM_CAP_IRQFD:
2879        case KVM_CAP_IRQFD_RESAMPLE:
2880#endif
2881        case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2882        case KVM_CAP_CHECK_EXTENSION_VM:
2883                return 1;
2884#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2885        case KVM_CAP_IRQ_ROUTING:
2886                return KVM_MAX_IRQ_ROUTES;
2887#endif
2888#if KVM_ADDRESS_SPACE_NUM > 1
2889        case KVM_CAP_MULTI_ADDRESS_SPACE:
2890                return KVM_ADDRESS_SPACE_NUM;
2891#endif
2892        case KVM_CAP_MAX_VCPU_ID:
2893                return KVM_MAX_VCPU_ID;
2894        default:
2895                break;
2896        }
2897        return kvm_vm_ioctl_check_extension(kvm, arg);
2898}
2899
2900static long kvm_vm_ioctl(struct file *filp,
2901                           unsigned int ioctl, unsigned long arg)
2902{
2903        struct kvm *kvm = filp->private_data;
2904        void __user *argp = (void __user *)arg;
2905        int r;
2906
2907        if (kvm->mm != current->mm)
2908                return -EIO;
2909        switch (ioctl) {
2910        case KVM_CREATE_VCPU:
2911                r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2912                break;
2913        case KVM_SET_USER_MEMORY_REGION: {
2914                struct kvm_userspace_memory_region kvm_userspace_mem;
2915
2916                r = -EFAULT;
2917                if (copy_from_user(&kvm_userspace_mem, argp,
2918                                                sizeof(kvm_userspace_mem)))
2919                        goto out;
2920
2921                r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2922                break;
2923        }
2924        case KVM_GET_DIRTY_LOG: {
2925                struct kvm_dirty_log log;
2926
2927                r = -EFAULT;
2928                if (copy_from_user(&log, argp, sizeof(log)))
2929                        goto out;
2930                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2931                break;
2932        }
2933#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2934        case KVM_REGISTER_COALESCED_MMIO: {
2935                struct kvm_coalesced_mmio_zone zone;
2936
2937                r = -EFAULT;
2938                if (copy_from_user(&zone, argp, sizeof(zone)))
2939                        goto out;
2940                r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2941                break;
2942        }
2943        case KVM_UNREGISTER_COALESCED_MMIO: {
2944                struct kvm_coalesced_mmio_zone zone;
2945
2946                r = -EFAULT;
2947                if (copy_from_user(&zone, argp, sizeof(zone)))
2948                        goto out;
2949                r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2950                break;
2951        }
2952#endif
2953        case KVM_IRQFD: {
2954                struct kvm_irqfd data;
2955
2956                r = -EFAULT;
2957                if (copy_from_user(&data, argp, sizeof(data)))
2958                        goto out;
2959                r = kvm_irqfd(kvm, &data);
2960                break;
2961        }
2962        case KVM_IOEVENTFD: {
2963                struct kvm_ioeventfd data;
2964
2965                r = -EFAULT;
2966                if (copy_from_user(&data, argp, sizeof(data)))
2967                        goto out;
2968                r = kvm_ioeventfd(kvm, &data);
2969                break;
2970        }
2971#ifdef CONFIG_HAVE_KVM_MSI
2972        case KVM_SIGNAL_MSI: {
2973                struct kvm_msi msi;
2974
2975                r = -EFAULT;
2976                if (copy_from_user(&msi, argp, sizeof(msi)))
2977                        goto out;
2978                r = kvm_send_userspace_msi(kvm, &msi);
2979                break;
2980        }
2981#endif
2982#ifdef __KVM_HAVE_IRQ_LINE
2983        case KVM_IRQ_LINE_STATUS:
2984        case KVM_IRQ_LINE: {
2985                struct kvm_irq_level irq_event;
2986
2987                r = -EFAULT;
2988                if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2989                        goto out;
2990
2991                r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2992                                        ioctl == KVM_IRQ_LINE_STATUS);
2993                if (r)
2994                        goto out;
2995
2996                r = -EFAULT;
2997                if (ioctl == KVM_IRQ_LINE_STATUS) {
2998                        if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2999                                goto out;
3000                }
3001
3002                r = 0;
3003                break;
3004        }
3005#endif
3006#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3007        case KVM_SET_GSI_ROUTING: {
3008                struct kvm_irq_routing routing;
3009                struct kvm_irq_routing __user *urouting;
3010                struct kvm_irq_routing_entry *entries = NULL;
3011
3012                r = -EFAULT;
3013                if (copy_from_user(&routing, argp, sizeof(routing)))
3014                        goto out;
3015                r = -EINVAL;
3016                if (routing.nr > KVM_MAX_IRQ_ROUTES)
3017                        goto out;
3018                if (routing.flags)
3019                        goto out;
3020                if (routing.nr) {
3021                        r = -ENOMEM;
3022                        entries = vmalloc(routing.nr * sizeof(*entries));
3023                        if (!entries)
3024                                goto out;
3025                        r = -EFAULT;
3026                        urouting = argp;
3027                        if (copy_from_user(entries, urouting->entries,
3028                                           routing.nr * sizeof(*entries)))
3029                                goto out_free_irq_routing;
3030                }
3031                r = kvm_set_irq_routing(kvm, entries, routing.nr,
3032                                        routing.flags);
3033out_free_irq_routing:
3034                vfree(entries);
3035                break;
3036        }
3037#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3038        case KVM_CREATE_DEVICE: {
3039                struct kvm_create_device cd;
3040
3041                r = -EFAULT;
3042                if (copy_from_user(&cd, argp, sizeof(cd)))
3043                        goto out;
3044
3045                r = kvm_ioctl_create_device(kvm, &cd);
3046                if (r)
3047                        goto out;
3048
3049                r = -EFAULT;
3050                if (copy_to_user(argp, &cd, sizeof(cd)))
3051                        goto out;
3052
3053                r = 0;
3054                break;
3055        }
3056        case KVM_CHECK_EXTENSION:
3057                r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3058                break;
3059        default:
3060                r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3061        }
3062out:
3063        return r;
3064}
3065
3066#ifdef CONFIG_KVM_COMPAT
3067struct compat_kvm_dirty_log {
3068        __u32 slot;
3069        __u32 padding1;
3070        union {
3071                compat_uptr_t dirty_bitmap; /* one bit per page */
3072                __u64 padding2;
3073        };
3074};
3075
3076static long kvm_vm_compat_ioctl(struct file *filp,
3077                           unsigned int ioctl, unsigned long arg)
3078{
3079        struct kvm *kvm = filp->private_data;
3080        int r;
3081
3082        if (kvm->mm != current->mm)
3083                return -EIO;
3084        switch (ioctl) {
3085        case KVM_GET_DIRTY_LOG: {
3086                struct compat_kvm_dirty_log compat_log;
3087                struct kvm_dirty_log log;
3088
3089                r = -EFAULT;
3090                if (copy_from_user(&compat_log, (void __user *)arg,
3091                                   sizeof(compat_log)))
3092                        goto out;
3093                log.slot         = compat_log.slot;
3094                log.padding1     = compat_log.padding1;
3095                log.padding2     = compat_log.padding2;
3096                log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3097
3098                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3099                break;
3100        }
3101        default:
3102                r = kvm_vm_ioctl(filp, ioctl, arg);
3103        }
3104
3105out:
3106        return r;
3107}
3108#endif
3109
3110static struct file_operations kvm_vm_fops = {
3111        .release        = kvm_vm_release,
3112        .unlocked_ioctl = kvm_vm_ioctl,
3113#ifdef CONFIG_KVM_COMPAT
3114        .compat_ioctl   = kvm_vm_compat_ioctl,
3115#endif
3116        .llseek         = noop_llseek,
3117};
3118
3119static int kvm_dev_ioctl_create_vm(unsigned long type)
3120{
3121        int r;
3122        struct kvm *kvm;
3123        struct file *file;
3124
3125        kvm = kvm_create_vm(type);
3126        if (IS_ERR(kvm))
3127                return PTR_ERR(kvm);
3128#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3129        r = kvm_coalesced_mmio_init(kvm);
3130        if (r < 0) {
3131                kvm_put_kvm(kvm);
3132                return r;
3133        }
3134#endif
3135        r = get_unused_fd_flags(O_CLOEXEC);
3136        if (r < 0) {
3137                kvm_put_kvm(kvm);
3138                return r;
3139        }
3140        file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3141        if (IS_ERR(file)) {
3142                put_unused_fd(r);
3143                kvm_put_kvm(kvm);
3144                return PTR_ERR(file);
3145        }
3146
3147        if (kvm_create_vm_debugfs(kvm, r) < 0) {
3148                put_unused_fd(r);
3149                fput(file);
3150                return -ENOMEM;
3151        }
3152
3153        fd_install(r, file);
3154        return r;
3155}
3156
3157static long kvm_dev_ioctl(struct file *filp,
3158                          unsigned int ioctl, unsigned long arg)
3159{
3160        long r = -EINVAL;
3161
3162        switch (ioctl) {
3163        case KVM_GET_API_VERSION:
3164                if (arg)
3165                        goto out;
3166                r = KVM_API_VERSION;
3167                break;
3168        case KVM_CREATE_VM:
3169                r = kvm_dev_ioctl_create_vm(arg);
3170                break;
3171        case KVM_CHECK_EXTENSION:
3172                r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3173                break;
3174        case KVM_GET_VCPU_MMAP_SIZE:
3175                if (arg)
3176                        goto out;
3177                r = PAGE_SIZE;     /* struct kvm_run */
3178#ifdef CONFIG_X86
3179                r += PAGE_SIZE;    /* pio data page */
3180#endif
3181#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3182                r += PAGE_SIZE;    /* coalesced mmio ring page */
3183#endif
3184                break;
3185        case KVM_TRACE_ENABLE:
3186        case KVM_TRACE_PAUSE:
3187        case KVM_TRACE_DISABLE:
3188                r = -EOPNOTSUPP;
3189                break;
3190        default:
3191                return kvm_arch_dev_ioctl(filp, ioctl, arg);
3192        }
3193out:
3194        return r;
3195}
3196
3197static struct file_operations kvm_chardev_ops = {
3198        .unlocked_ioctl = kvm_dev_ioctl,
3199        .compat_ioctl   = kvm_dev_ioctl,
3200        .llseek         = noop_llseek,
3201};
3202
3203static struct miscdevice kvm_dev = {
3204        KVM_MINOR,
3205        "kvm",
3206        &kvm_chardev_ops,
3207};
3208
3209static void hardware_enable_nolock(void *junk)
3210{
3211        int cpu = raw_smp_processor_id();
3212        int r;
3213
3214        if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3215                return;
3216
3217        cpumask_set_cpu(cpu, cpus_hardware_enabled);
3218
3219        r = kvm_arch_hardware_enable();
3220
3221        if (r) {
3222                cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3223                atomic_inc(&hardware_enable_failed);
3224                pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3225        }
3226}
3227
3228static int kvm_starting_cpu(unsigned int cpu)
3229{
3230        raw_spin_lock(&kvm_count_lock);
3231        if (kvm_usage_count)
3232                hardware_enable_nolock(NULL);
3233        raw_spin_unlock(&kvm_count_lock);
3234        return 0;
3235}
3236
3237static void hardware_disable_nolock(void *junk)
3238{
3239        int cpu = raw_smp_processor_id();
3240
3241        if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3242                return;
3243        cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3244        kvm_arch_hardware_disable();
3245}
3246
3247static int kvm_dying_cpu(unsigned int cpu)
3248{
3249        raw_spin_lock(&kvm_count_lock);
3250        if (kvm_usage_count)
3251                hardware_disable_nolock(NULL);
3252        raw_spin_unlock(&kvm_count_lock);
3253        return 0;
3254}
3255
3256static void hardware_disable_all_nolock(void)
3257{
3258        BUG_ON(!kvm_usage_count);
3259
3260        kvm_usage_count--;
3261        if (!kvm_usage_count)
3262                on_each_cpu(hardware_disable_nolock, NULL, 1);
3263}
3264
3265static void hardware_disable_all(void)
3266{
3267        raw_spin_lock(&kvm_count_lock);
3268        hardware_disable_all_nolock();
3269        raw_spin_unlock(&kvm_count_lock);
3270}
3271
3272static int hardware_enable_all(void)
3273{
3274        int r = 0;
3275
3276        raw_spin_lock(&kvm_count_lock);
3277
3278        kvm_usage_count++;
3279        if (kvm_usage_count == 1) {
3280                atomic_set(&hardware_enable_failed, 0);
3281                on_each_cpu(hardware_enable_nolock, NULL, 1);
3282
3283                if (atomic_read(&hardware_enable_failed)) {
3284                        hardware_disable_all_nolock();
3285                        r = -EBUSY;
3286                }
3287        }
3288
3289        raw_spin_unlock(&kvm_count_lock);
3290
3291        return r;
3292}
3293
3294static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3295                      void *v)
3296{
3297        /*
3298         * Some (well, at least mine) BIOSes hang on reboot if
3299         * in vmx root mode.
3300         *
3301         * And Intel TXT required VMX off for all cpu when system shutdown.
3302         */
3303        pr_info("kvm: exiting hardware virtualization\n");
3304        kvm_rebooting = true;
3305        on_each_cpu(hardware_disable_nolock, NULL, 1);
3306        return NOTIFY_OK;
3307}
3308
3309static struct notifier_block kvm_reboot_notifier = {
3310        .notifier_call = kvm_reboot,
3311        .priority = 0,
3312};
3313
3314static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3315{
3316        int i;
3317
3318        for (i = 0; i < bus->dev_count; i++) {
3319                struct kvm_io_device *pos = bus->range[i].dev;
3320
3321                kvm_iodevice_destructor(pos);
3322        }
3323        kfree(bus);
3324}
3325
3326static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3327                                 const struct kvm_io_range *r2)
3328{
3329        gpa_t addr1 = r1->addr;
3330        gpa_t addr2 = r2->addr;
3331
3332        if (addr1 < addr2)
3333                return -1;
3334
3335        /* If r2->len == 0, match the exact address.  If r2->len != 0,
3336         * accept any overlapping write.  Any order is acceptable for
3337         * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3338         * we process all of them.
3339         */
3340        if (r2->len) {
3341                addr1 += r1->len;
3342                addr2 += r2->len;
3343        }
3344
3345        if (addr1 > addr2)
3346                return 1;
3347
3348        return 0;
3349}
3350
3351static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3352{
3353        return kvm_io_bus_cmp(p1, p2);
3354}
3355
3356static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3357                          gpa_t addr, int len)
3358{
3359        bus->range[bus->dev_count++] = (struct kvm_io_range) {
3360                .addr = addr,
3361                .len = len,
3362                .dev = dev,
3363        };
3364
3365        sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3366                kvm_io_bus_sort_cmp, NULL);
3367
3368        return 0;
3369}
3370
3371static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3372                             gpa_t addr, int len)
3373{
3374        struct kvm_io_range *range, key;
3375        int off;
3376
3377        key = (struct kvm_io_range) {
3378                .addr = addr,
3379                .len = len,
3380        };
3381
3382        range = bsearch(&key, bus->range, bus->dev_count,
3383                        sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3384        if (range == NULL)
3385                return -ENOENT;
3386
3387        off = range - bus->range;
3388
3389        while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3390                off--;
3391
3392        return off;
3393}
3394
3395static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3396                              struct kvm_io_range *range, const void *val)
3397{
3398        int idx;
3399
3400        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3401        if (idx < 0)
3402                return -EOPNOTSUPP;
3403
3404        while (idx < bus->dev_count &&
3405                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3406                if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3407                                        range->len, val))
3408                        return idx;
3409                idx++;
3410        }
3411
3412        return -EOPNOTSUPP;
3413}
3414
3415/* kvm_io_bus_write - called under kvm->slots_lock */
3416int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3417                     int len, const void *val)
3418{
3419        struct kvm_io_bus *bus;
3420        struct kvm_io_range range;
3421        int r;
3422
3423        range = (struct kvm_io_range) {
3424                .addr = addr,
3425                .len = len,
3426        };
3427
3428        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3429        r = __kvm_io_bus_write(vcpu, bus, &range, val);
3430        return r < 0 ? r : 0;
3431}
3432
3433/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3434int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3435                            gpa_t addr, int len, const void *val, long cookie)
3436{
3437        struct kvm_io_bus *bus;
3438        struct kvm_io_range range;
3439
3440        range = (struct kvm_io_range) {
3441                .addr = addr,
3442                .len = len,
3443        };
3444
3445        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3446
3447        /* First try the device referenced by cookie. */
3448        if ((cookie >= 0) && (cookie < bus->dev_count) &&
3449            (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3450                if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3451                                        val))
3452                        return cookie;
3453
3454        /*
3455         * cookie contained garbage; fall back to search and return the
3456         * correct cookie value.
3457         */
3458        return __kvm_io_bus_write(vcpu, bus, &range, val);
3459}
3460
3461static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3462                             struct kvm_io_range *range, void *val)
3463{
3464        int idx;
3465
3466        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3467        if (idx < 0)
3468                return -EOPNOTSUPP;
3469
3470        while (idx < bus->dev_count &&
3471                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3472                if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3473                                       range->len, val))
3474                        return idx;
3475                idx++;
3476        }
3477
3478        return -EOPNOTSUPP;
3479}
3480EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3481
3482/* kvm_io_bus_read - called under kvm->slots_lock */
3483int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3484                    int len, void *val)
3485{
3486        struct kvm_io_bus *bus;
3487        struct kvm_io_range range;
3488        int r;
3489
3490        range = (struct kvm_io_range) {
3491                .addr = addr,
3492                .len = len,
3493        };
3494
3495        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3496        r = __kvm_io_bus_read(vcpu, bus, &range, val);
3497        return r < 0 ? r : 0;
3498}
3499
3500
3501/* Caller must hold slots_lock. */
3502int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3503                            int len, struct kvm_io_device *dev)
3504{
3505        struct kvm_io_bus *new_bus, *bus;
3506
3507        bus = kvm->buses[bus_idx];
3508        /* exclude ioeventfd which is limited by maximum fd */
3509        if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3510                return -ENOSPC;
3511
3512        new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3513                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3514        if (!new_bus)
3515                return -ENOMEM;
3516        memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3517               sizeof(struct kvm_io_range)));
3518        kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3519        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3520        synchronize_srcu_expedited(&kvm->srcu);
3521        kfree(bus);
3522
3523        return 0;
3524}
3525
3526/* Caller must hold slots_lock. */
3527int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3528                              struct kvm_io_device *dev)
3529{
3530        int i, r;
3531        struct kvm_io_bus *new_bus, *bus;
3532
3533        bus = kvm->buses[bus_idx];
3534        r = -ENOENT;
3535        for (i = 0; i < bus->dev_count; i++)
3536                if (bus->range[i].dev == dev) {
3537                        r = 0;
3538                        break;
3539                }
3540
3541        if (r)
3542                return r;
3543
3544        new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3545                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3546        if (!new_bus)
3547                return -ENOMEM;
3548
3549        memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3550        new_bus->dev_count--;
3551        memcpy(new_bus->range + i, bus->range + i + 1,
3552               (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3553
3554        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3555        synchronize_srcu_expedited(&kvm->srcu);
3556        kfree(bus);
3557        return r;
3558}
3559
3560struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3561                                         gpa_t addr)
3562{
3563        struct kvm_io_bus *bus;
3564        int dev_idx, srcu_idx;
3565        struct kvm_io_device *iodev = NULL;
3566
3567        srcu_idx = srcu_read_lock(&kvm->srcu);
3568
3569        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3570
3571        dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3572        if (dev_idx < 0)
3573                goto out_unlock;
3574
3575        iodev = bus->range[dev_idx].dev;
3576
3577out_unlock:
3578        srcu_read_unlock(&kvm->srcu, srcu_idx);
3579
3580        return iodev;
3581}
3582EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3583
3584static int kvm_debugfs_open(struct inode *inode, struct file *file,
3585                           int (*get)(void *, u64 *), int (*set)(void *, u64),
3586                           const char *fmt)
3587{
3588        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3589                                          inode->i_private;
3590
3591        /* The debugfs files are a reference to the kvm struct which
3592         * is still valid when kvm_destroy_vm is called.
3593         * To avoid the race between open and the removal of the debugfs
3594         * directory we test against the users count.
3595         */
3596        if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3597                return -ENOENT;
3598
3599        if (simple_attr_open(inode, file, get, set, fmt)) {
3600                kvm_put_kvm(stat_data->kvm);
3601                return -ENOMEM;
3602        }
3603
3604        return 0;
3605}
3606
3607static int kvm_debugfs_release(struct inode *inode, struct file *file)
3608{
3609        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3610                                          inode->i_private;
3611
3612        simple_attr_release(inode, file);
3613        kvm_put_kvm(stat_data->kvm);
3614
3615        return 0;
3616}
3617
3618static int vm_stat_get_per_vm(void *data, u64 *val)
3619{
3620        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3621
3622        *val = *(u32 *)((void *)stat_data->kvm + stat_data->offset);
3623
3624        return 0;
3625}
3626
3627static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3628{
3629        __simple_attr_check_format("%llu\n", 0ull);
3630        return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3631                                NULL, "%llu\n");
3632}
3633
3634static const struct file_operations vm_stat_get_per_vm_fops = {
3635        .owner   = THIS_MODULE,
3636        .open    = vm_stat_get_per_vm_open,
3637        .release = kvm_debugfs_release,
3638        .read    = simple_attr_read,
3639        .write   = simple_attr_write,
3640        .llseek  = generic_file_llseek,
3641};
3642
3643static int vcpu_stat_get_per_vm(void *data, u64 *val)
3644{
3645        int i;
3646        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3647        struct kvm_vcpu *vcpu;
3648
3649        *val = 0;
3650
3651        kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3652                *val += *(u32 *)((void *)vcpu + stat_data->offset);
3653
3654        return 0;
3655}
3656
3657static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3658{
3659        __simple_attr_check_format("%llu\n", 0ull);
3660        return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3661                                 NULL, "%llu\n");
3662}
3663
3664static const struct file_operations vcpu_stat_get_per_vm_fops = {
3665        .owner   = THIS_MODULE,
3666        .open    = vcpu_stat_get_per_vm_open,
3667        .release = kvm_debugfs_release,
3668        .read    = simple_attr_read,
3669        .write   = simple_attr_write,
3670        .llseek  = generic_file_llseek,
3671};
3672
3673static const struct file_operations *stat_fops_per_vm[] = {
3674        [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3675        [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3676};
3677
3678static int vm_stat_get(void *_offset, u64 *val)
3679{
3680        unsigned offset = (long)_offset;
3681        struct kvm *kvm;
3682        struct kvm_stat_data stat_tmp = {.offset = offset};
3683        u64 tmp_val;
3684
3685        *val = 0;
3686        spin_lock(&kvm_lock);
3687        list_for_each_entry(kvm, &vm_list, vm_list) {
3688                stat_tmp.kvm = kvm;
3689                vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3690                *val += tmp_val;
3691        }
3692        spin_unlock(&kvm_lock);
3693        return 0;
3694}
3695
3696DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3697
3698static int vcpu_stat_get(void *_offset, u64 *val)
3699{
3700        unsigned offset = (long)_offset;
3701        struct kvm *kvm;
3702        struct kvm_stat_data stat_tmp = {.offset = offset};
3703        u64 tmp_val;
3704
3705        *val = 0;
3706        spin_lock(&kvm_lock);
3707        list_for_each_entry(kvm, &vm_list, vm_list) {
3708                stat_tmp.kvm = kvm;
3709                vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3710                *val += tmp_val;
3711        }
3712        spin_unlock(&kvm_lock);
3713        return 0;
3714}
3715
3716DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3717
3718static const struct file_operations *stat_fops[] = {
3719        [KVM_STAT_VCPU] = &vcpu_stat_fops,
3720        [KVM_STAT_VM]   = &vm_stat_fops,
3721};
3722
3723static int kvm_init_debug(void)
3724{
3725        int r = -EEXIST;
3726        struct kvm_stats_debugfs_item *p;
3727
3728        kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3729        if (kvm_debugfs_dir == NULL)
3730                goto out;
3731
3732        kvm_debugfs_num_entries = 0;
3733        for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3734                if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3735                                         (void *)(long)p->offset,
3736                                         stat_fops[p->kind]))
3737                        goto out_dir;
3738        }
3739
3740        return 0;
3741
3742out_dir:
3743        debugfs_remove_recursive(kvm_debugfs_dir);
3744out:
3745        return r;
3746}
3747
3748static int kvm_suspend(void)
3749{
3750        if (kvm_usage_count)
3751                hardware_disable_nolock(NULL);
3752        return 0;
3753}
3754
3755static void kvm_resume(void)
3756{
3757        if (kvm_usage_count) {
3758                WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3759                hardware_enable_nolock(NULL);
3760        }
3761}
3762
3763static struct syscore_ops kvm_syscore_ops = {
3764        .suspend = kvm_suspend,
3765        .resume = kvm_resume,
3766};
3767
3768static inline
3769struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3770{
3771        return container_of(pn, struct kvm_vcpu, preempt_notifier);
3772}
3773
3774static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3775{
3776        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3777
3778        if (vcpu->preempted)
3779                vcpu->preempted = false;
3780
3781        kvm_arch_sched_in(vcpu, cpu);
3782
3783        kvm_arch_vcpu_load(vcpu, cpu);
3784}
3785
3786static void kvm_sched_out(struct preempt_notifier *pn,
3787                          struct task_struct *next)
3788{
3789        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3790
3791        if (current->state == TASK_RUNNING)
3792                vcpu->preempted = true;
3793        kvm_arch_vcpu_put(vcpu);
3794}
3795
3796int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3797                  struct module *module)
3798{
3799        int r;
3800        int cpu;
3801
3802        r = kvm_arch_init(opaque);
3803        if (r)
3804                goto out_fail;
3805
3806        /*
3807         * kvm_arch_init makes sure there's at most one caller
3808         * for architectures that support multiple implementations,
3809         * like intel and amd on x86.
3810         * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3811         * conflicts in case kvm is already setup for another implementation.
3812         */
3813        r = kvm_irqfd_init();
3814        if (r)
3815                goto out_irqfd;
3816
3817        if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3818                r = -ENOMEM;
3819                goto out_free_0;
3820        }
3821
3822        r = kvm_arch_hardware_setup();
3823        if (r < 0)
3824                goto out_free_0a;
3825
3826        for_each_online_cpu(cpu) {
3827                smp_call_function_single(cpu,
3828                                kvm_arch_check_processor_compat,
3829                                &r, 1);
3830                if (r < 0)
3831                        goto out_free_1;
3832        }
3833
3834        r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3835                                      kvm_starting_cpu, kvm_dying_cpu);
3836        if (r)
3837                goto out_free_2;
3838        register_reboot_notifier(&kvm_reboot_notifier);
3839
3840        /* A kmem cache lets us meet the alignment requirements of fx_save. */
3841        if (!vcpu_align)
3842                vcpu_align = __alignof__(struct kvm_vcpu);
3843        kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3844                                           0, NULL);
3845        if (!kvm_vcpu_cache) {
3846                r = -ENOMEM;
3847                goto out_free_3;
3848        }
3849
3850        r = kvm_async_pf_init();
3851        if (r)
3852                goto out_free;
3853
3854        kvm_chardev_ops.owner = module;
3855        kvm_vm_fops.owner = module;
3856        kvm_vcpu_fops.owner = module;
3857
3858        r = misc_register(&kvm_dev);
3859        if (r) {
3860                pr_err("kvm: misc device register failed\n");
3861                goto out_unreg;
3862        }
3863
3864        register_syscore_ops(&kvm_syscore_ops);
3865
3866        kvm_preempt_ops.sched_in = kvm_sched_in;
3867        kvm_preempt_ops.sched_out = kvm_sched_out;
3868
3869        r = kvm_init_debug();
3870        if (r) {
3871                pr_err("kvm: create debugfs files failed\n");
3872                goto out_undebugfs;
3873        }
3874
3875        r = kvm_vfio_ops_init();
3876        WARN_ON(r);
3877
3878        return 0;
3879
3880out_undebugfs:
3881        unregister_syscore_ops(&kvm_syscore_ops);
3882        misc_deregister(&kvm_dev);
3883out_unreg:
3884        kvm_async_pf_deinit();
3885out_free:
3886        kmem_cache_destroy(kvm_vcpu_cache);
3887out_free_3:
3888        unregister_reboot_notifier(&kvm_reboot_notifier);
3889        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3890out_free_2:
3891out_free_1:
3892        kvm_arch_hardware_unsetup();
3893out_free_0a:
3894        free_cpumask_var(cpus_hardware_enabled);
3895out_free_0:
3896        kvm_irqfd_exit();
3897out_irqfd:
3898        kvm_arch_exit();
3899out_fail:
3900        return r;
3901}
3902EXPORT_SYMBOL_GPL(kvm_init);
3903
3904void kvm_exit(void)
3905{
3906        debugfs_remove_recursive(kvm_debugfs_dir);
3907        misc_deregister(&kvm_dev);
3908        kmem_cache_destroy(kvm_vcpu_cache);
3909        kvm_async_pf_deinit();
3910        unregister_syscore_ops(&kvm_syscore_ops);
3911        unregister_reboot_notifier(&kvm_reboot_notifier);
3912        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3913        on_each_cpu(hardware_disable_nolock, NULL, 1);
3914        kvm_arch_hardware_unsetup();
3915        kvm_arch_exit();
3916        kvm_irqfd_exit();
3917        free_cpumask_var(cpus_hardware_enabled);
3918        kvm_vfio_ops_exit();
3919}
3920EXPORT_SYMBOL_GPL(kvm_exit);
3921