1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19#include <linux/cpu_pm.h>
20#include <linux/errno.h>
21#include <linux/err.h>
22#include <linux/kvm_host.h>
23#include <linux/list.h>
24#include <linux/module.h>
25#include <linux/vmalloc.h>
26#include <linux/fs.h>
27#include <linux/mman.h>
28#include <linux/sched.h>
29#include <linux/kvm.h>
30#include <trace/events/kvm.h>
31#include <kvm/arm_pmu.h>
32
33#define CREATE_TRACE_POINTS
34#include "trace.h"
35
36#include <asm/uaccess.h>
37#include <asm/ptrace.h>
38#include <asm/mman.h>
39#include <asm/tlbflush.h>
40#include <asm/cacheflush.h>
41#include <asm/virt.h>
42#include <asm/kvm_arm.h>
43#include <asm/kvm_asm.h>
44#include <asm/kvm_mmu.h>
45#include <asm/kvm_emulate.h>
46#include <asm/kvm_coproc.h>
47#include <asm/kvm_psci.h>
48#include <asm/sections.h>
49
50#ifdef REQUIRES_VIRT
51__asm__(".arch_extension virt");
52#endif
53
54static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56static unsigned long hyp_default_vectors;
57
58
59static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
60
61
62static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63static u32 kvm_next_vmid;
64static unsigned int kvm_vmid_bits __read_mostly;
65static DEFINE_SPINLOCK(kvm_vmid_lock);
66
67static bool vgic_present;
68
69static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
70
71static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
72{
73 BUG_ON(preemptible());
74 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
75}
76
77
78
79
80
81struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
82{
83 BUG_ON(preemptible());
84 return __this_cpu_read(kvm_arm_running_vcpu);
85}
86
87
88
89
90struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
91{
92 return &kvm_arm_running_vcpu;
93}
94
95int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96{
97 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98}
99
100int kvm_arch_hardware_setup(void)
101{
102 return 0;
103}
104
105void kvm_arch_check_processor_compat(void *rtn)
106{
107 *(int *)rtn = 0;
108}
109
110
111
112
113
114
115int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
116{
117 int ret, cpu;
118
119 if (type)
120 return -EINVAL;
121
122 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
123 if (!kvm->arch.last_vcpu_ran)
124 return -ENOMEM;
125
126 for_each_possible_cpu(cpu)
127 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
128
129 ret = kvm_alloc_stage2_pgd(kvm);
130 if (ret)
131 goto out_fail_alloc;
132
133 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
134 if (ret)
135 goto out_free_stage2_pgd;
136
137 kvm_vgic_early_init(kvm);
138 kvm_timer_init(kvm);
139
140
141 kvm->arch.vmid_gen = 0;
142
143
144 kvm->arch.max_vcpus = vgic_present ?
145 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146
147 return ret;
148out_free_stage2_pgd:
149 kvm_free_stage2_pgd(kvm);
150out_fail_alloc:
151 free_percpu(kvm->arch.last_vcpu_ran);
152 kvm->arch.last_vcpu_ran = NULL;
153 return ret;
154}
155
156bool kvm_arch_has_vcpu_debugfs(void)
157{
158 return false;
159}
160
161int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
162{
163 return 0;
164}
165
166int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167{
168 return VM_FAULT_SIGBUS;
169}
170
171
172
173
174
175
176void kvm_arch_destroy_vm(struct kvm *kvm)
177{
178 int i;
179
180 free_percpu(kvm->arch.last_vcpu_ran);
181 kvm->arch.last_vcpu_ran = NULL;
182
183 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
184 if (kvm->vcpus[i]) {
185 kvm_arch_vcpu_free(kvm->vcpus[i]);
186 kvm->vcpus[i] = NULL;
187 }
188 }
189
190 kvm_vgic_destroy(kvm);
191}
192
193int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194{
195 int r;
196 switch (ext) {
197 case KVM_CAP_IRQCHIP:
198 r = vgic_present;
199 break;
200 case KVM_CAP_IOEVENTFD:
201 case KVM_CAP_DEVICE_CTRL:
202 case KVM_CAP_USER_MEMORY:
203 case KVM_CAP_SYNC_MMU:
204 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
205 case KVM_CAP_ONE_REG:
206 case KVM_CAP_ARM_PSCI:
207 case KVM_CAP_ARM_PSCI_0_2:
208 case KVM_CAP_READONLY_MEM:
209 case KVM_CAP_MP_STATE:
210 r = 1;
211 break;
212 case KVM_CAP_COALESCED_MMIO:
213 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
214 break;
215 case KVM_CAP_ARM_SET_DEVICE_ADDR:
216 r = 1;
217 break;
218 case KVM_CAP_NR_VCPUS:
219 r = num_online_cpus();
220 break;
221 case KVM_CAP_MAX_VCPUS:
222 r = KVM_MAX_VCPUS;
223 break;
224 default:
225 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
226 break;
227 }
228 return r;
229}
230
231long kvm_arch_dev_ioctl(struct file *filp,
232 unsigned int ioctl, unsigned long arg)
233{
234 return -EINVAL;
235}
236
237
238struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
239{
240 int err;
241 struct kvm_vcpu *vcpu;
242
243 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
244 err = -EBUSY;
245 goto out;
246 }
247
248 if (id >= kvm->arch.max_vcpus) {
249 err = -EINVAL;
250 goto out;
251 }
252
253 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
254 if (!vcpu) {
255 err = -ENOMEM;
256 goto out;
257 }
258
259 err = kvm_vcpu_init(vcpu, kvm, id);
260 if (err)
261 goto free_vcpu;
262
263 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
264 if (err)
265 goto vcpu_uninit;
266
267 return vcpu;
268vcpu_uninit:
269 kvm_vcpu_uninit(vcpu);
270free_vcpu:
271 kmem_cache_free(kvm_vcpu_cache, vcpu);
272out:
273 return ERR_PTR(err);
274}
275
276void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
277{
278 kvm_vgic_vcpu_early_init(vcpu);
279}
280
281void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
282{
283 kvm_mmu_free_memory_caches(vcpu);
284 kvm_timer_vcpu_terminate(vcpu);
285 kvm_vgic_vcpu_destroy(vcpu);
286 kvm_pmu_vcpu_destroy(vcpu);
287 kvm_vcpu_uninit(vcpu);
288 kmem_cache_free(kvm_vcpu_cache, vcpu);
289}
290
291void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
292{
293 kvm_arch_vcpu_free(vcpu);
294}
295
296int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
297{
298 return kvm_timer_should_fire(vcpu);
299}
300
301void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
302{
303 kvm_timer_schedule(vcpu);
304}
305
306void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
307{
308 kvm_timer_unschedule(vcpu);
309}
310
311int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
312{
313
314 vcpu->arch.target = -1;
315 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
316
317
318 kvm_timer_vcpu_init(vcpu);
319
320 kvm_arm_reset_debug_ptr(vcpu);
321
322 return 0;
323}
324
325void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
326{
327 int *last_ran;
328
329 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
330
331
332
333
334
335 if (*last_ran != vcpu->vcpu_id) {
336 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
337 *last_ran = vcpu->vcpu_id;
338 }
339
340 vcpu->cpu = cpu;
341 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
342
343 kvm_arm_set_running_vcpu(vcpu);
344}
345
346void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
347{
348
349
350
351
352
353 vcpu->cpu = -1;
354
355 kvm_arm_set_running_vcpu(NULL);
356 kvm_timer_vcpu_put(vcpu);
357}
358
359int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
360 struct kvm_mp_state *mp_state)
361{
362 if (vcpu->arch.power_off)
363 mp_state->mp_state = KVM_MP_STATE_STOPPED;
364 else
365 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
366
367 return 0;
368}
369
370int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
371 struct kvm_mp_state *mp_state)
372{
373 switch (mp_state->mp_state) {
374 case KVM_MP_STATE_RUNNABLE:
375 vcpu->arch.power_off = false;
376 break;
377 case KVM_MP_STATE_STOPPED:
378 vcpu->arch.power_off = true;
379 break;
380 default:
381 return -EINVAL;
382 }
383
384 return 0;
385}
386
387
388
389
390
391
392
393
394int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
395{
396 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
397 && !v->arch.power_off && !v->arch.pause);
398}
399
400
401static void exit_vm_noop(void *info)
402{
403}
404
405void force_vm_exit(const cpumask_t *mask)
406{
407 preempt_disable();
408 smp_call_function_many(mask, exit_vm_noop, NULL, true);
409 preempt_enable();
410}
411
412
413
414
415
416
417
418
419
420
421
422
423
424static bool need_new_vmid_gen(struct kvm *kvm)
425{
426 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
427}
428
429
430
431
432
433
434
435
436
437static void update_vttbr(struct kvm *kvm)
438{
439 phys_addr_t pgd_phys;
440 u64 vmid;
441
442 if (!need_new_vmid_gen(kvm))
443 return;
444
445 spin_lock(&kvm_vmid_lock);
446
447
448
449
450
451
452 if (!need_new_vmid_gen(kvm)) {
453 spin_unlock(&kvm_vmid_lock);
454 return;
455 }
456
457
458 if (unlikely(kvm_next_vmid == 0)) {
459 atomic64_inc(&kvm_vmid_gen);
460 kvm_next_vmid = 1;
461
462
463
464
465
466
467 force_vm_exit(cpu_all_mask);
468
469
470
471
472
473 kvm_call_hyp(__kvm_flush_vm_context);
474 }
475
476 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
477 kvm->arch.vmid = kvm_next_vmid;
478 kvm_next_vmid++;
479 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
480
481
482 pgd_phys = virt_to_phys(kvm->arch.pgd);
483 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
484 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
485 kvm->arch.vttbr = pgd_phys | vmid;
486
487 spin_unlock(&kvm_vmid_lock);
488}
489
490static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
491{
492 struct kvm *kvm = vcpu->kvm;
493 int ret = 0;
494
495 if (likely(vcpu->arch.has_run_once))
496 return 0;
497
498 vcpu->arch.has_run_once = true;
499
500
501
502
503
504 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
505 ret = kvm_vgic_map_resources(kvm);
506 if (ret)
507 return ret;
508 }
509
510
511
512
513
514
515 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
516 ret = kvm_timer_enable(vcpu);
517
518 return ret;
519}
520
521bool kvm_arch_intc_initialized(struct kvm *kvm)
522{
523 return vgic_initialized(kvm);
524}
525
526void kvm_arm_halt_guest(struct kvm *kvm)
527{
528 int i;
529 struct kvm_vcpu *vcpu;
530
531 kvm_for_each_vcpu(i, vcpu, kvm)
532 vcpu->arch.pause = true;
533 kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
534}
535
536void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
537{
538 vcpu->arch.pause = true;
539 kvm_vcpu_kick(vcpu);
540}
541
542void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
543{
544 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
545
546 vcpu->arch.pause = false;
547 swake_up(wq);
548}
549
550void kvm_arm_resume_guest(struct kvm *kvm)
551{
552 int i;
553 struct kvm_vcpu *vcpu;
554
555 kvm_for_each_vcpu(i, vcpu, kvm)
556 kvm_arm_resume_vcpu(vcpu);
557}
558
559static void vcpu_sleep(struct kvm_vcpu *vcpu)
560{
561 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
562
563 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
564 (!vcpu->arch.pause)));
565}
566
567static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
568{
569 return vcpu->arch.target >= 0;
570}
571
572
573
574
575
576
577
578
579
580
581
582
583int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
584{
585 int ret;
586 sigset_t sigsaved;
587
588 if (unlikely(!kvm_vcpu_initialized(vcpu)))
589 return -ENOEXEC;
590
591 ret = kvm_vcpu_first_run_init(vcpu);
592 if (ret)
593 return ret;
594
595 if (run->exit_reason == KVM_EXIT_MMIO) {
596 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
597 if (ret)
598 return ret;
599 }
600
601 if (vcpu->sigset_active)
602 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
603
604 ret = 1;
605 run->exit_reason = KVM_EXIT_UNKNOWN;
606 while (ret > 0) {
607
608
609
610 cond_resched();
611
612 update_vttbr(vcpu->kvm);
613
614 if (vcpu->arch.power_off || vcpu->arch.pause)
615 vcpu_sleep(vcpu);
616
617
618
619
620
621
622 preempt_disable();
623 kvm_pmu_flush_hwstate(vcpu);
624 kvm_timer_flush_hwstate(vcpu);
625 kvm_vgic_flush_hwstate(vcpu);
626
627 local_irq_disable();
628
629
630
631
632 if (signal_pending(current)) {
633 ret = -EINTR;
634 run->exit_reason = KVM_EXIT_INTR;
635 }
636
637 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
638 vcpu->arch.power_off || vcpu->arch.pause) {
639 local_irq_enable();
640 kvm_pmu_sync_hwstate(vcpu);
641 kvm_timer_sync_hwstate(vcpu);
642 kvm_vgic_sync_hwstate(vcpu);
643 preempt_enable();
644 continue;
645 }
646
647 kvm_arm_setup_debug(vcpu);
648
649
650
651
652 trace_kvm_entry(*vcpu_pc(vcpu));
653 guest_enter_irqoff();
654 vcpu->mode = IN_GUEST_MODE;
655
656 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
657
658 vcpu->mode = OUTSIDE_GUEST_MODE;
659 vcpu->stat.exits++;
660
661
662
663
664 kvm_arm_clear_debug(vcpu);
665
666
667
668
669
670
671
672
673
674
675
676 local_irq_enable();
677
678
679
680
681
682
683
684
685
686 guest_exit();
687 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
688
689
690
691
692
693
694 kvm_pmu_sync_hwstate(vcpu);
695 kvm_timer_sync_hwstate(vcpu);
696
697 kvm_vgic_sync_hwstate(vcpu);
698
699 preempt_enable();
700
701 ret = handle_exit(vcpu, run, ret);
702 }
703
704 if (vcpu->sigset_active)
705 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
706 return ret;
707}
708
709static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
710{
711 int bit_index;
712 bool set;
713 unsigned long *ptr;
714
715 if (number == KVM_ARM_IRQ_CPU_IRQ)
716 bit_index = __ffs(HCR_VI);
717 else
718 bit_index = __ffs(HCR_VF);
719
720 ptr = (unsigned long *)&vcpu->arch.irq_lines;
721 if (level)
722 set = test_and_set_bit(bit_index, ptr);
723 else
724 set = test_and_clear_bit(bit_index, ptr);
725
726
727
728
729 if (set == level)
730 return 0;
731
732
733
734
735
736
737 kvm_vcpu_kick(vcpu);
738
739 return 0;
740}
741
742int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
743 bool line_status)
744{
745 u32 irq = irq_level->irq;
746 unsigned int irq_type, vcpu_idx, irq_num;
747 int nrcpus = atomic_read(&kvm->online_vcpus);
748 struct kvm_vcpu *vcpu = NULL;
749 bool level = irq_level->level;
750
751 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
752 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
753 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
754
755 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
756
757 switch (irq_type) {
758 case KVM_ARM_IRQ_TYPE_CPU:
759 if (irqchip_in_kernel(kvm))
760 return -ENXIO;
761
762 if (vcpu_idx >= nrcpus)
763 return -EINVAL;
764
765 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
766 if (!vcpu)
767 return -EINVAL;
768
769 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
770 return -EINVAL;
771
772 return vcpu_interrupt_line(vcpu, irq_num, level);
773 case KVM_ARM_IRQ_TYPE_PPI:
774 if (!irqchip_in_kernel(kvm))
775 return -ENXIO;
776
777 if (vcpu_idx >= nrcpus)
778 return -EINVAL;
779
780 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
781 if (!vcpu)
782 return -EINVAL;
783
784 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
785 return -EINVAL;
786
787 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
788 case KVM_ARM_IRQ_TYPE_SPI:
789 if (!irqchip_in_kernel(kvm))
790 return -ENXIO;
791
792 if (irq_num < VGIC_NR_PRIVATE_IRQS)
793 return -EINVAL;
794
795 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
796 }
797
798 return -EINVAL;
799}
800
801static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
802 const struct kvm_vcpu_init *init)
803{
804 unsigned int i;
805 int phys_target = kvm_target_cpu();
806
807 if (init->target != phys_target)
808 return -EINVAL;
809
810
811
812
813
814 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
815 return -EINVAL;
816
817
818 for (i = 0; i < sizeof(init->features) * 8; i++) {
819 bool set = (init->features[i / 32] & (1 << (i % 32)));
820
821 if (set && i >= KVM_VCPU_MAX_FEATURES)
822 return -ENOENT;
823
824
825
826
827
828 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
829 test_bit(i, vcpu->arch.features) != set)
830 return -EINVAL;
831
832 if (set)
833 set_bit(i, vcpu->arch.features);
834 }
835
836 vcpu->arch.target = phys_target;
837
838
839 return kvm_reset_vcpu(vcpu);
840}
841
842
843static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
844 struct kvm_vcpu_init *init)
845{
846 int ret;
847
848 ret = kvm_vcpu_set_target(vcpu, init);
849 if (ret)
850 return ret;
851
852
853
854
855
856 if (vcpu->arch.has_run_once)
857 stage2_unmap_vm(vcpu->kvm);
858
859 vcpu_reset_hcr(vcpu);
860
861
862
863
864 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
865 vcpu->arch.power_off = true;
866 else
867 vcpu->arch.power_off = false;
868
869 return 0;
870}
871
872static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
873 struct kvm_device_attr *attr)
874{
875 int ret = -ENXIO;
876
877 switch (attr->group) {
878 default:
879 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
880 break;
881 }
882
883 return ret;
884}
885
886static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
887 struct kvm_device_attr *attr)
888{
889 int ret = -ENXIO;
890
891 switch (attr->group) {
892 default:
893 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
894 break;
895 }
896
897 return ret;
898}
899
900static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
901 struct kvm_device_attr *attr)
902{
903 int ret = -ENXIO;
904
905 switch (attr->group) {
906 default:
907 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
908 break;
909 }
910
911 return ret;
912}
913
914long kvm_arch_vcpu_ioctl(struct file *filp,
915 unsigned int ioctl, unsigned long arg)
916{
917 struct kvm_vcpu *vcpu = filp->private_data;
918 void __user *argp = (void __user *)arg;
919 struct kvm_device_attr attr;
920
921 switch (ioctl) {
922 case KVM_ARM_VCPU_INIT: {
923 struct kvm_vcpu_init init;
924
925 if (copy_from_user(&init, argp, sizeof(init)))
926 return -EFAULT;
927
928 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
929 }
930 case KVM_SET_ONE_REG:
931 case KVM_GET_ONE_REG: {
932 struct kvm_one_reg reg;
933
934 if (unlikely(!kvm_vcpu_initialized(vcpu)))
935 return -ENOEXEC;
936
937 if (copy_from_user(®, argp, sizeof(reg)))
938 return -EFAULT;
939 if (ioctl == KVM_SET_ONE_REG)
940 return kvm_arm_set_reg(vcpu, ®);
941 else
942 return kvm_arm_get_reg(vcpu, ®);
943 }
944 case KVM_GET_REG_LIST: {
945 struct kvm_reg_list __user *user_list = argp;
946 struct kvm_reg_list reg_list;
947 unsigned n;
948
949 if (unlikely(!kvm_vcpu_initialized(vcpu)))
950 return -ENOEXEC;
951
952 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
953 return -EFAULT;
954 n = reg_list.n;
955 reg_list.n = kvm_arm_num_regs(vcpu);
956 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
957 return -EFAULT;
958 if (n < reg_list.n)
959 return -E2BIG;
960 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
961 }
962 case KVM_SET_DEVICE_ATTR: {
963 if (copy_from_user(&attr, argp, sizeof(attr)))
964 return -EFAULT;
965 return kvm_arm_vcpu_set_attr(vcpu, &attr);
966 }
967 case KVM_GET_DEVICE_ATTR: {
968 if (copy_from_user(&attr, argp, sizeof(attr)))
969 return -EFAULT;
970 return kvm_arm_vcpu_get_attr(vcpu, &attr);
971 }
972 case KVM_HAS_DEVICE_ATTR: {
973 if (copy_from_user(&attr, argp, sizeof(attr)))
974 return -EFAULT;
975 return kvm_arm_vcpu_has_attr(vcpu, &attr);
976 }
977 default:
978 return -EINVAL;
979 }
980}
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1002{
1003 bool is_dirty = false;
1004 int r;
1005
1006 mutex_lock(&kvm->slots_lock);
1007
1008 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1009
1010 if (is_dirty)
1011 kvm_flush_remote_tlbs(kvm);
1012
1013 mutex_unlock(&kvm->slots_lock);
1014 return r;
1015}
1016
1017static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1018 struct kvm_arm_device_addr *dev_addr)
1019{
1020 unsigned long dev_id, type;
1021
1022 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1023 KVM_ARM_DEVICE_ID_SHIFT;
1024 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1025 KVM_ARM_DEVICE_TYPE_SHIFT;
1026
1027 switch (dev_id) {
1028 case KVM_ARM_DEVICE_VGIC_V2:
1029 if (!vgic_present)
1030 return -ENXIO;
1031 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1032 default:
1033 return -ENODEV;
1034 }
1035}
1036
1037long kvm_arch_vm_ioctl(struct file *filp,
1038 unsigned int ioctl, unsigned long arg)
1039{
1040 struct kvm *kvm = filp->private_data;
1041 void __user *argp = (void __user *)arg;
1042
1043 switch (ioctl) {
1044 case KVM_CREATE_IRQCHIP: {
1045 int ret;
1046 if (!vgic_present)
1047 return -ENXIO;
1048 mutex_lock(&kvm->lock);
1049 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1050 mutex_unlock(&kvm->lock);
1051 return ret;
1052 }
1053 case KVM_ARM_SET_DEVICE_ADDR: {
1054 struct kvm_arm_device_addr dev_addr;
1055
1056 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1057 return -EFAULT;
1058 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1059 }
1060 case KVM_ARM_PREFERRED_TARGET: {
1061 int err;
1062 struct kvm_vcpu_init init;
1063
1064 err = kvm_vcpu_preferred_target(&init);
1065 if (err)
1066 return err;
1067
1068 if (copy_to_user(argp, &init, sizeof(init)))
1069 return -EFAULT;
1070
1071 return 0;
1072 }
1073 default:
1074 return -EINVAL;
1075 }
1076}
1077
1078static void cpu_init_hyp_mode(void *dummy)
1079{
1080 phys_addr_t pgd_ptr;
1081 unsigned long hyp_stack_ptr;
1082 unsigned long stack_page;
1083 unsigned long vector_ptr;
1084
1085
1086 __hyp_set_vectors(kvm_get_idmap_vector());
1087
1088 pgd_ptr = kvm_mmu_get_httbr();
1089 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1090 hyp_stack_ptr = stack_page + PAGE_SIZE;
1091 vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1092
1093 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1094 __cpu_init_stage2();
1095
1096 kvm_arm_init_debug();
1097}
1098
1099static void cpu_hyp_reinit(void)
1100{
1101 if (is_kernel_in_hyp_mode()) {
1102
1103
1104
1105
1106 __cpu_init_stage2();
1107 } else {
1108 if (__hyp_get_vectors() == hyp_default_vectors)
1109 cpu_init_hyp_mode(NULL);
1110 }
1111}
1112
1113static void cpu_hyp_reset(void)
1114{
1115 if (!is_kernel_in_hyp_mode())
1116 __cpu_reset_hyp_mode(hyp_default_vectors,
1117 kvm_get_idmap_start());
1118}
1119
1120static void _kvm_arch_hardware_enable(void *discard)
1121{
1122 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1123 cpu_hyp_reinit();
1124 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1125 }
1126}
1127
1128int kvm_arch_hardware_enable(void)
1129{
1130 _kvm_arch_hardware_enable(NULL);
1131 return 0;
1132}
1133
1134static void _kvm_arch_hardware_disable(void *discard)
1135{
1136 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1137 cpu_hyp_reset();
1138 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1139 }
1140}
1141
1142void kvm_arch_hardware_disable(void)
1143{
1144 _kvm_arch_hardware_disable(NULL);
1145}
1146
1147#ifdef CONFIG_CPU_PM
1148static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1149 unsigned long cmd,
1150 void *v)
1151{
1152
1153
1154
1155
1156
1157 switch (cmd) {
1158 case CPU_PM_ENTER:
1159 if (__this_cpu_read(kvm_arm_hardware_enabled))
1160
1161
1162
1163
1164
1165 cpu_hyp_reset();
1166
1167 return NOTIFY_OK;
1168 case CPU_PM_EXIT:
1169 if (__this_cpu_read(kvm_arm_hardware_enabled))
1170
1171 cpu_hyp_reinit();
1172
1173 return NOTIFY_OK;
1174
1175 default:
1176 return NOTIFY_DONE;
1177 }
1178}
1179
1180static struct notifier_block hyp_init_cpu_pm_nb = {
1181 .notifier_call = hyp_init_cpu_pm_notifier,
1182};
1183
1184static void __init hyp_cpu_pm_init(void)
1185{
1186 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1187}
1188static void __init hyp_cpu_pm_exit(void)
1189{
1190 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1191}
1192#else
1193static inline void hyp_cpu_pm_init(void)
1194{
1195}
1196static inline void hyp_cpu_pm_exit(void)
1197{
1198}
1199#endif
1200
1201static void teardown_common_resources(void)
1202{
1203 free_percpu(kvm_host_cpu_state);
1204}
1205
1206static int init_common_resources(void)
1207{
1208 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1209 if (!kvm_host_cpu_state) {
1210 kvm_err("Cannot allocate host CPU state\n");
1211 return -ENOMEM;
1212 }
1213
1214
1215 kvm_vmid_bits = kvm_get_vmid_bits();
1216 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1217
1218 return 0;
1219}
1220
1221static int init_subsystems(void)
1222{
1223 int err = 0;
1224
1225
1226
1227
1228 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1229
1230
1231
1232
1233 hyp_cpu_pm_init();
1234
1235
1236
1237
1238 err = kvm_vgic_hyp_init();
1239 switch (err) {
1240 case 0:
1241 vgic_present = true;
1242 break;
1243 case -ENODEV:
1244 case -ENXIO:
1245 vgic_present = false;
1246 err = 0;
1247 break;
1248 default:
1249 goto out;
1250 }
1251
1252
1253
1254
1255 err = kvm_timer_hyp_init();
1256 if (err)
1257 goto out;
1258
1259 kvm_perf_init();
1260 kvm_coproc_table_init();
1261
1262out:
1263 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1264
1265 return err;
1266}
1267
1268static void teardown_hyp_mode(void)
1269{
1270 int cpu;
1271
1272 if (is_kernel_in_hyp_mode())
1273 return;
1274
1275 free_hyp_pgds();
1276 for_each_possible_cpu(cpu)
1277 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1278 hyp_cpu_pm_exit();
1279}
1280
1281static int init_vhe_mode(void)
1282{
1283 kvm_info("VHE mode initialized successfully\n");
1284 return 0;
1285}
1286
1287
1288
1289
1290static int init_hyp_mode(void)
1291{
1292 int cpu;
1293 int err = 0;
1294
1295
1296
1297
1298 err = kvm_mmu_init();
1299 if (err)
1300 goto out_err;
1301
1302
1303
1304
1305
1306 hyp_default_vectors = __hyp_get_vectors();
1307
1308
1309
1310
1311 for_each_possible_cpu(cpu) {
1312 unsigned long stack_page;
1313
1314 stack_page = __get_free_page(GFP_KERNEL);
1315 if (!stack_page) {
1316 err = -ENOMEM;
1317 goto out_err;
1318 }
1319
1320 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1321 }
1322
1323
1324
1325
1326 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1327 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1328 if (err) {
1329 kvm_err("Cannot map world-switch code\n");
1330 goto out_err;
1331 }
1332
1333 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1334 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1335 if (err) {
1336 kvm_err("Cannot map rodata section\n");
1337 goto out_err;
1338 }
1339
1340 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1341 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1342 if (err) {
1343 kvm_err("Cannot map bss section\n");
1344 goto out_err;
1345 }
1346
1347
1348
1349
1350 for_each_possible_cpu(cpu) {
1351 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1352 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1353 PAGE_HYP);
1354
1355 if (err) {
1356 kvm_err("Cannot map hyp stack\n");
1357 goto out_err;
1358 }
1359 }
1360
1361 for_each_possible_cpu(cpu) {
1362 kvm_cpu_context_t *cpu_ctxt;
1363
1364 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1365 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1366
1367 if (err) {
1368 kvm_err("Cannot map host CPU state: %d\n", err);
1369 goto out_err;
1370 }
1371 }
1372
1373 kvm_info("Hyp mode initialized successfully\n");
1374
1375 return 0;
1376
1377out_err:
1378 teardown_hyp_mode();
1379 kvm_err("error initializing Hyp mode: %d\n", err);
1380 return err;
1381}
1382
1383static void check_kvm_target_cpu(void *ret)
1384{
1385 *(int *)ret = kvm_target_cpu();
1386}
1387
1388struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1389{
1390 struct kvm_vcpu *vcpu;
1391 int i;
1392
1393 mpidr &= MPIDR_HWID_BITMASK;
1394 kvm_for_each_vcpu(i, vcpu, kvm) {
1395 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1396 return vcpu;
1397 }
1398 return NULL;
1399}
1400
1401
1402
1403
1404int kvm_arch_init(void *opaque)
1405{
1406 int err;
1407 int ret, cpu;
1408
1409 if (!is_hyp_mode_available()) {
1410 kvm_err("HYP mode not available\n");
1411 return -ENODEV;
1412 }
1413
1414 for_each_online_cpu(cpu) {
1415 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1416 if (ret < 0) {
1417 kvm_err("Error, CPU %d not supported!\n", cpu);
1418 return -ENODEV;
1419 }
1420 }
1421
1422 err = init_common_resources();
1423 if (err)
1424 return err;
1425
1426 if (is_kernel_in_hyp_mode())
1427 err = init_vhe_mode();
1428 else
1429 err = init_hyp_mode();
1430 if (err)
1431 goto out_err;
1432
1433 err = init_subsystems();
1434 if (err)
1435 goto out_hyp;
1436
1437 return 0;
1438
1439out_hyp:
1440 teardown_hyp_mode();
1441out_err:
1442 teardown_common_resources();
1443 return err;
1444}
1445
1446
1447void kvm_arch_exit(void)
1448{
1449 kvm_perf_teardown();
1450}
1451
1452static int arm_init(void)
1453{
1454 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1455 return rc;
1456}
1457
1458module_init(arm_init);
1459