linux/arch/s390/kernel/kprobes.c
<<
>>
Prefs
   1/*
   2 *  Kernel Probes (KProbes)
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright IBM Corp. 2002, 2006
  19 *
  20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  21 */
  22
  23#include <linux/kprobes.h>
  24#include <linux/ptrace.h>
  25#include <linux/preempt.h>
  26#include <linux/stop_machine.h>
  27#include <linux/kdebug.h>
  28#include <linux/uaccess.h>
  29#include <linux/extable.h>
  30#include <linux/module.h>
  31#include <linux/slab.h>
  32#include <linux/hardirq.h>
  33#include <linux/ftrace.h>
  34#include <asm/cacheflush.h>
  35#include <asm/sections.h>
  36#include <asm/uaccess.h>
  37#include <asm/dis.h>
  38
  39DEFINE_PER_CPU(struct kprobe *, current_kprobe);
  40DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  41
  42struct kretprobe_blackpoint kretprobe_blacklist[] = { };
  43
  44DEFINE_INSN_CACHE_OPS(dmainsn);
  45
  46static void *alloc_dmainsn_page(void)
  47{
  48        return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  49}
  50
  51static void free_dmainsn_page(void *page)
  52{
  53        free_page((unsigned long)page);
  54}
  55
  56struct kprobe_insn_cache kprobe_dmainsn_slots = {
  57        .mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
  58        .alloc = alloc_dmainsn_page,
  59        .free = free_dmainsn_page,
  60        .pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
  61        .insn_size = MAX_INSN_SIZE,
  62};
  63
  64static void copy_instruction(struct kprobe *p)
  65{
  66        unsigned long ip = (unsigned long) p->addr;
  67        s64 disp, new_disp;
  68        u64 addr, new_addr;
  69
  70        if (ftrace_location(ip) == ip) {
  71                /*
  72                 * If kprobes patches the instruction that is morphed by
  73                 * ftrace make sure that kprobes always sees the branch
  74                 * "jg .+24" that skips the mcount block or the "brcl 0,0"
  75                 * in case of hotpatch.
  76                 */
  77                ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
  78                p->ainsn.is_ftrace_insn = 1;
  79        } else
  80                memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
  81        p->opcode = p->ainsn.insn[0];
  82        if (!probe_is_insn_relative_long(p->ainsn.insn))
  83                return;
  84        /*
  85         * For pc-relative instructions in RIL-b or RIL-c format patch the
  86         * RI2 displacement field. We have already made sure that the insn
  87         * slot for the patched instruction is within the same 2GB area
  88         * as the original instruction (either kernel image or module area).
  89         * Therefore the new displacement will always fit.
  90         */
  91        disp = *(s32 *)&p->ainsn.insn[1];
  92        addr = (u64)(unsigned long)p->addr;
  93        new_addr = (u64)(unsigned long)p->ainsn.insn;
  94        new_disp = ((addr + (disp * 2)) - new_addr) / 2;
  95        *(s32 *)&p->ainsn.insn[1] = new_disp;
  96}
  97NOKPROBE_SYMBOL(copy_instruction);
  98
  99static inline int is_kernel_addr(void *addr)
 100{
 101        return addr < (void *)_end;
 102}
 103
 104static int s390_get_insn_slot(struct kprobe *p)
 105{
 106        /*
 107         * Get an insn slot that is within the same 2GB area like the original
 108         * instruction. That way instructions with a 32bit signed displacement
 109         * field can be patched and executed within the insn slot.
 110         */
 111        p->ainsn.insn = NULL;
 112        if (is_kernel_addr(p->addr))
 113                p->ainsn.insn = get_dmainsn_slot();
 114        else if (is_module_addr(p->addr))
 115                p->ainsn.insn = get_insn_slot();
 116        return p->ainsn.insn ? 0 : -ENOMEM;
 117}
 118NOKPROBE_SYMBOL(s390_get_insn_slot);
 119
 120static void s390_free_insn_slot(struct kprobe *p)
 121{
 122        if (!p->ainsn.insn)
 123                return;
 124        if (is_kernel_addr(p->addr))
 125                free_dmainsn_slot(p->ainsn.insn, 0);
 126        else
 127                free_insn_slot(p->ainsn.insn, 0);
 128        p->ainsn.insn = NULL;
 129}
 130NOKPROBE_SYMBOL(s390_free_insn_slot);
 131
 132int arch_prepare_kprobe(struct kprobe *p)
 133{
 134        if ((unsigned long) p->addr & 0x01)
 135                return -EINVAL;
 136        /* Make sure the probe isn't going on a difficult instruction */
 137        if (probe_is_prohibited_opcode(p->addr))
 138                return -EINVAL;
 139        if (s390_get_insn_slot(p))
 140                return -ENOMEM;
 141        copy_instruction(p);
 142        return 0;
 143}
 144NOKPROBE_SYMBOL(arch_prepare_kprobe);
 145
 146int arch_check_ftrace_location(struct kprobe *p)
 147{
 148        return 0;
 149}
 150
 151struct swap_insn_args {
 152        struct kprobe *p;
 153        unsigned int arm_kprobe : 1;
 154};
 155
 156static int swap_instruction(void *data)
 157{
 158        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 159        unsigned long status = kcb->kprobe_status;
 160        struct swap_insn_args *args = data;
 161        struct ftrace_insn new_insn, *insn;
 162        struct kprobe *p = args->p;
 163        size_t len;
 164
 165        new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
 166        len = sizeof(new_insn.opc);
 167        if (!p->ainsn.is_ftrace_insn)
 168                goto skip_ftrace;
 169        len = sizeof(new_insn);
 170        insn = (struct ftrace_insn *) p->addr;
 171        if (args->arm_kprobe) {
 172                if (is_ftrace_nop(insn))
 173                        new_insn.disp = KPROBE_ON_FTRACE_NOP;
 174                else
 175                        new_insn.disp = KPROBE_ON_FTRACE_CALL;
 176        } else {
 177                ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
 178                if (insn->disp == KPROBE_ON_FTRACE_NOP)
 179                        ftrace_generate_nop_insn(&new_insn);
 180        }
 181skip_ftrace:
 182        kcb->kprobe_status = KPROBE_SWAP_INST;
 183        s390_kernel_write(p->addr, &new_insn, len);
 184        kcb->kprobe_status = status;
 185        return 0;
 186}
 187NOKPROBE_SYMBOL(swap_instruction);
 188
 189void arch_arm_kprobe(struct kprobe *p)
 190{
 191        struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
 192
 193        stop_machine(swap_instruction, &args, NULL);
 194}
 195NOKPROBE_SYMBOL(arch_arm_kprobe);
 196
 197void arch_disarm_kprobe(struct kprobe *p)
 198{
 199        struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
 200
 201        stop_machine(swap_instruction, &args, NULL);
 202}
 203NOKPROBE_SYMBOL(arch_disarm_kprobe);
 204
 205void arch_remove_kprobe(struct kprobe *p)
 206{
 207        s390_free_insn_slot(p);
 208}
 209NOKPROBE_SYMBOL(arch_remove_kprobe);
 210
 211static void enable_singlestep(struct kprobe_ctlblk *kcb,
 212                              struct pt_regs *regs,
 213                              unsigned long ip)
 214{
 215        struct per_regs per_kprobe;
 216
 217        /* Set up the PER control registers %cr9-%cr11 */
 218        per_kprobe.control = PER_EVENT_IFETCH;
 219        per_kprobe.start = ip;
 220        per_kprobe.end = ip;
 221
 222        /* Save control regs and psw mask */
 223        __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
 224        kcb->kprobe_saved_imask = regs->psw.mask &
 225                (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
 226
 227        /* Set PER control regs, turns on single step for the given address */
 228        __ctl_load(per_kprobe, 9, 11);
 229        regs->psw.mask |= PSW_MASK_PER;
 230        regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
 231        regs->psw.addr = ip;
 232}
 233NOKPROBE_SYMBOL(enable_singlestep);
 234
 235static void disable_singlestep(struct kprobe_ctlblk *kcb,
 236                               struct pt_regs *regs,
 237                               unsigned long ip)
 238{
 239        /* Restore control regs and psw mask, set new psw address */
 240        __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
 241        regs->psw.mask &= ~PSW_MASK_PER;
 242        regs->psw.mask |= kcb->kprobe_saved_imask;
 243        regs->psw.addr = ip;
 244}
 245NOKPROBE_SYMBOL(disable_singlestep);
 246
 247/*
 248 * Activate a kprobe by storing its pointer to current_kprobe. The
 249 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
 250 * two kprobes can be active, see KPROBE_REENTER.
 251 */
 252static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
 253{
 254        kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
 255        kcb->prev_kprobe.status = kcb->kprobe_status;
 256        __this_cpu_write(current_kprobe, p);
 257}
 258NOKPROBE_SYMBOL(push_kprobe);
 259
 260/*
 261 * Deactivate a kprobe by backing up to the previous state. If the
 262 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
 263 * for any other state prev_kprobe.kp will be NULL.
 264 */
 265static void pop_kprobe(struct kprobe_ctlblk *kcb)
 266{
 267        __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 268        kcb->kprobe_status = kcb->prev_kprobe.status;
 269}
 270NOKPROBE_SYMBOL(pop_kprobe);
 271
 272void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
 273{
 274        ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
 275
 276        /* Replace the return addr with trampoline addr */
 277        regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
 278}
 279NOKPROBE_SYMBOL(arch_prepare_kretprobe);
 280
 281static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
 282{
 283        switch (kcb->kprobe_status) {
 284        case KPROBE_HIT_SSDONE:
 285        case KPROBE_HIT_ACTIVE:
 286                kprobes_inc_nmissed_count(p);
 287                break;
 288        case KPROBE_HIT_SS:
 289        case KPROBE_REENTER:
 290        default:
 291                /*
 292                 * A kprobe on the code path to single step an instruction
 293                 * is a BUG. The code path resides in the .kprobes.text
 294                 * section and is executed with interrupts disabled.
 295                 */
 296                printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
 297                dump_kprobe(p);
 298                BUG();
 299        }
 300}
 301NOKPROBE_SYMBOL(kprobe_reenter_check);
 302
 303static int kprobe_handler(struct pt_regs *regs)
 304{
 305        struct kprobe_ctlblk *kcb;
 306        struct kprobe *p;
 307
 308        /*
 309         * We want to disable preemption for the entire duration of kprobe
 310         * processing. That includes the calls to the pre/post handlers
 311         * and single stepping the kprobe instruction.
 312         */
 313        preempt_disable();
 314        kcb = get_kprobe_ctlblk();
 315        p = get_kprobe((void *)(regs->psw.addr - 2));
 316
 317        if (p) {
 318                if (kprobe_running()) {
 319                        /*
 320                         * We have hit a kprobe while another is still
 321                         * active. This can happen in the pre and post
 322                         * handler. Single step the instruction of the
 323                         * new probe but do not call any handler function
 324                         * of this secondary kprobe.
 325                         * push_kprobe and pop_kprobe saves and restores
 326                         * the currently active kprobe.
 327                         */
 328                        kprobe_reenter_check(kcb, p);
 329                        push_kprobe(kcb, p);
 330                        kcb->kprobe_status = KPROBE_REENTER;
 331                } else {
 332                        /*
 333                         * If we have no pre-handler or it returned 0, we
 334                         * continue with single stepping. If we have a
 335                         * pre-handler and it returned non-zero, it prepped
 336                         * for calling the break_handler below on re-entry
 337                         * for jprobe processing, so get out doing nothing
 338                         * more here.
 339                         */
 340                        push_kprobe(kcb, p);
 341                        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 342                        if (p->pre_handler && p->pre_handler(p, regs))
 343                                return 1;
 344                        kcb->kprobe_status = KPROBE_HIT_SS;
 345                }
 346                enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
 347                return 1;
 348        } else if (kprobe_running()) {
 349                p = __this_cpu_read(current_kprobe);
 350                if (p->break_handler && p->break_handler(p, regs)) {
 351                        /*
 352                         * Continuation after the jprobe completed and
 353                         * caused the jprobe_return trap. The jprobe
 354                         * break_handler "returns" to the original
 355                         * function that still has the kprobe breakpoint
 356                         * installed. We continue with single stepping.
 357                         */
 358                        kcb->kprobe_status = KPROBE_HIT_SS;
 359                        enable_singlestep(kcb, regs,
 360                                          (unsigned long) p->ainsn.insn);
 361                        return 1;
 362                } /* else:
 363                   * No kprobe at this address and the current kprobe
 364                   * has no break handler (no jprobe!). The kernel just
 365                   * exploded, let the standard trap handler pick up the
 366                   * pieces.
 367                   */
 368        } /* else:
 369           * No kprobe at this address and no active kprobe. The trap has
 370           * not been caused by a kprobe breakpoint. The race of breakpoint
 371           * vs. kprobe remove does not exist because on s390 as we use
 372           * stop_machine to arm/disarm the breakpoints.
 373           */
 374        preempt_enable_no_resched();
 375        return 0;
 376}
 377NOKPROBE_SYMBOL(kprobe_handler);
 378
 379/*
 380 * Function return probe trampoline:
 381 *      - init_kprobes() establishes a probepoint here
 382 *      - When the probed function returns, this probe
 383 *              causes the handlers to fire
 384 */
 385static void __used kretprobe_trampoline_holder(void)
 386{
 387        asm volatile(".global kretprobe_trampoline\n"
 388                     "kretprobe_trampoline: bcr 0,0\n");
 389}
 390
 391/*
 392 * Called when the probe at kretprobe trampoline is hit
 393 */
 394static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 395{
 396        struct kretprobe_instance *ri;
 397        struct hlist_head *head, empty_rp;
 398        struct hlist_node *tmp;
 399        unsigned long flags, orig_ret_address;
 400        unsigned long trampoline_address;
 401        kprobe_opcode_t *correct_ret_addr;
 402
 403        INIT_HLIST_HEAD(&empty_rp);
 404        kretprobe_hash_lock(current, &head, &flags);
 405
 406        /*
 407         * It is possible to have multiple instances associated with a given
 408         * task either because an multiple functions in the call path
 409         * have a return probe installed on them, and/or more than one return
 410         * return probe was registered for a target function.
 411         *
 412         * We can handle this because:
 413         *     - instances are always inserted at the head of the list
 414         *     - when multiple return probes are registered for the same
 415         *       function, the first instance's ret_addr will point to the
 416         *       real return address, and all the rest will point to
 417         *       kretprobe_trampoline
 418         */
 419        ri = NULL;
 420        orig_ret_address = 0;
 421        correct_ret_addr = NULL;
 422        trampoline_address = (unsigned long) &kretprobe_trampoline;
 423        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 424                if (ri->task != current)
 425                        /* another task is sharing our hash bucket */
 426                        continue;
 427
 428                orig_ret_address = (unsigned long) ri->ret_addr;
 429
 430                if (orig_ret_address != trampoline_address)
 431                        /*
 432                         * This is the real return address. Any other
 433                         * instances associated with this task are for
 434                         * other calls deeper on the call stack
 435                         */
 436                        break;
 437        }
 438
 439        kretprobe_assert(ri, orig_ret_address, trampoline_address);
 440
 441        correct_ret_addr = ri->ret_addr;
 442        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 443                if (ri->task != current)
 444                        /* another task is sharing our hash bucket */
 445                        continue;
 446
 447                orig_ret_address = (unsigned long) ri->ret_addr;
 448
 449                if (ri->rp && ri->rp->handler) {
 450                        ri->ret_addr = correct_ret_addr;
 451                        ri->rp->handler(ri, regs);
 452                }
 453
 454                recycle_rp_inst(ri, &empty_rp);
 455
 456                if (orig_ret_address != trampoline_address)
 457                        /*
 458                         * This is the real return address. Any other
 459                         * instances associated with this task are for
 460                         * other calls deeper on the call stack
 461                         */
 462                        break;
 463        }
 464
 465        regs->psw.addr = orig_ret_address;
 466
 467        pop_kprobe(get_kprobe_ctlblk());
 468        kretprobe_hash_unlock(current, &flags);
 469        preempt_enable_no_resched();
 470
 471        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 472                hlist_del(&ri->hlist);
 473                kfree(ri);
 474        }
 475        /*
 476         * By returning a non-zero value, we are telling
 477         * kprobe_handler() that we don't want the post_handler
 478         * to run (and have re-enabled preemption)
 479         */
 480        return 1;
 481}
 482NOKPROBE_SYMBOL(trampoline_probe_handler);
 483
 484/*
 485 * Called after single-stepping.  p->addr is the address of the
 486 * instruction whose first byte has been replaced by the "breakpoint"
 487 * instruction.  To avoid the SMP problems that can occur when we
 488 * temporarily put back the original opcode to single-step, we
 489 * single-stepped a copy of the instruction.  The address of this
 490 * copy is p->ainsn.insn.
 491 */
 492static void resume_execution(struct kprobe *p, struct pt_regs *regs)
 493{
 494        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 495        unsigned long ip = regs->psw.addr;
 496        int fixup = probe_get_fixup_type(p->ainsn.insn);
 497
 498        /* Check if the kprobes location is an enabled ftrace caller */
 499        if (p->ainsn.is_ftrace_insn) {
 500                struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
 501                struct ftrace_insn call_insn;
 502
 503                ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
 504                /*
 505                 * A kprobe on an enabled ftrace call site actually single
 506                 * stepped an unconditional branch (ftrace nop equivalent).
 507                 * Now we need to fixup things and pretend that a brasl r0,...
 508                 * was executed instead.
 509                 */
 510                if (insn->disp == KPROBE_ON_FTRACE_CALL) {
 511                        ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
 512                        regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
 513                }
 514        }
 515
 516        if (fixup & FIXUP_PSW_NORMAL)
 517                ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
 518
 519        if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
 520                int ilen = insn_length(p->ainsn.insn[0] >> 8);
 521                if (ip - (unsigned long) p->ainsn.insn == ilen)
 522                        ip = (unsigned long) p->addr + ilen;
 523        }
 524
 525        if (fixup & FIXUP_RETURN_REGISTER) {
 526                int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
 527                regs->gprs[reg] += (unsigned long) p->addr -
 528                                   (unsigned long) p->ainsn.insn;
 529        }
 530
 531        disable_singlestep(kcb, regs, ip);
 532}
 533NOKPROBE_SYMBOL(resume_execution);
 534
 535static int post_kprobe_handler(struct pt_regs *regs)
 536{
 537        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 538        struct kprobe *p = kprobe_running();
 539
 540        if (!p)
 541                return 0;
 542
 543        if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
 544                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 545                p->post_handler(p, regs, 0);
 546        }
 547
 548        resume_execution(p, regs);
 549        pop_kprobe(kcb);
 550        preempt_enable_no_resched();
 551
 552        /*
 553         * if somebody else is singlestepping across a probe point, psw mask
 554         * will have PER set, in which case, continue the remaining processing
 555         * of do_single_step, as if this is not a probe hit.
 556         */
 557        if (regs->psw.mask & PSW_MASK_PER)
 558                return 0;
 559
 560        return 1;
 561}
 562NOKPROBE_SYMBOL(post_kprobe_handler);
 563
 564static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
 565{
 566        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 567        struct kprobe *p = kprobe_running();
 568        const struct exception_table_entry *entry;
 569
 570        switch(kcb->kprobe_status) {
 571        case KPROBE_SWAP_INST:
 572                /* We are here because the instruction replacement failed */
 573                return 0;
 574        case KPROBE_HIT_SS:
 575        case KPROBE_REENTER:
 576                /*
 577                 * We are here because the instruction being single
 578                 * stepped caused a page fault. We reset the current
 579                 * kprobe and the nip points back to the probe address
 580                 * and allow the page fault handler to continue as a
 581                 * normal page fault.
 582                 */
 583                disable_singlestep(kcb, regs, (unsigned long) p->addr);
 584                pop_kprobe(kcb);
 585                preempt_enable_no_resched();
 586                break;
 587        case KPROBE_HIT_ACTIVE:
 588        case KPROBE_HIT_SSDONE:
 589                /*
 590                 * We increment the nmissed count for accounting,
 591                 * we can also use npre/npostfault count for accounting
 592                 * these specific fault cases.
 593                 */
 594                kprobes_inc_nmissed_count(p);
 595
 596                /*
 597                 * We come here because instructions in the pre/post
 598                 * handler caused the page_fault, this could happen
 599                 * if handler tries to access user space by
 600                 * copy_from_user(), get_user() etc. Let the
 601                 * user-specified handler try to fix it first.
 602                 */
 603                if (p->fault_handler && p->fault_handler(p, regs, trapnr))
 604                        return 1;
 605
 606                /*
 607                 * In case the user-specified fault handler returned
 608                 * zero, try to fix up.
 609                 */
 610                entry = search_exception_tables(regs->psw.addr);
 611                if (entry) {
 612                        regs->psw.addr = extable_fixup(entry);
 613                        return 1;
 614                }
 615
 616                /*
 617                 * fixup_exception() could not handle it,
 618                 * Let do_page_fault() fix it.
 619                 */
 620                break;
 621        default:
 622                break;
 623        }
 624        return 0;
 625}
 626NOKPROBE_SYMBOL(kprobe_trap_handler);
 627
 628int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 629{
 630        int ret;
 631
 632        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 633                local_irq_disable();
 634        ret = kprobe_trap_handler(regs, trapnr);
 635        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 636                local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
 637        return ret;
 638}
 639NOKPROBE_SYMBOL(kprobe_fault_handler);
 640
 641/*
 642 * Wrapper routine to for handling exceptions.
 643 */
 644int kprobe_exceptions_notify(struct notifier_block *self,
 645                             unsigned long val, void *data)
 646{
 647        struct die_args *args = (struct die_args *) data;
 648        struct pt_regs *regs = args->regs;
 649        int ret = NOTIFY_DONE;
 650
 651        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 652                local_irq_disable();
 653
 654        switch (val) {
 655        case DIE_BPT:
 656                if (kprobe_handler(regs))
 657                        ret = NOTIFY_STOP;
 658                break;
 659        case DIE_SSTEP:
 660                if (post_kprobe_handler(regs))
 661                        ret = NOTIFY_STOP;
 662                break;
 663        case DIE_TRAP:
 664                if (!preemptible() && kprobe_running() &&
 665                    kprobe_trap_handler(regs, args->trapnr))
 666                        ret = NOTIFY_STOP;
 667                break;
 668        default:
 669                break;
 670        }
 671
 672        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 673                local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
 674
 675        return ret;
 676}
 677NOKPROBE_SYMBOL(kprobe_exceptions_notify);
 678
 679int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 680{
 681        struct jprobe *jp = container_of(p, struct jprobe, kp);
 682        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 683        unsigned long stack;
 684
 685        memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
 686
 687        /* setup return addr to the jprobe handler routine */
 688        regs->psw.addr = (unsigned long) jp->entry;
 689        regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
 690
 691        /* r15 is the stack pointer */
 692        stack = (unsigned long) regs->gprs[15];
 693
 694        memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
 695
 696        /*
 697         * jprobes use jprobe_return() which skips the normal return
 698         * path of the function, and this messes up the accounting of the
 699         * function graph tracer to get messed up.
 700         *
 701         * Pause function graph tracing while performing the jprobe function.
 702         */
 703        pause_graph_tracing();
 704        return 1;
 705}
 706NOKPROBE_SYMBOL(setjmp_pre_handler);
 707
 708void jprobe_return(void)
 709{
 710        asm volatile(".word 0x0002");
 711}
 712NOKPROBE_SYMBOL(jprobe_return);
 713
 714int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 715{
 716        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 717        unsigned long stack;
 718
 719        /* It's OK to start function graph tracing again */
 720        unpause_graph_tracing();
 721
 722        stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
 723
 724        /* Put the regs back */
 725        memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
 726        /* put the stack back */
 727        memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
 728        preempt_enable_no_resched();
 729        return 1;
 730}
 731NOKPROBE_SYMBOL(longjmp_break_handler);
 732
 733static struct kprobe trampoline = {
 734        .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
 735        .pre_handler = trampoline_probe_handler
 736};
 737
 738int __init arch_init_kprobes(void)
 739{
 740        return register_kprobe(&trampoline);
 741}
 742
 743int arch_trampoline_kprobe(struct kprobe *p)
 744{
 745        return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
 746}
 747NOKPROBE_SYMBOL(arch_trampoline_kprobe);
 748