linux/arch/x86/mm/tlb.c
<<
>>
Prefs
   1#include <linux/init.h>
   2
   3#include <linux/mm.h>
   4#include <linux/spinlock.h>
   5#include <linux/smp.h>
   6#include <linux/interrupt.h>
   7#include <linux/export.h>
   8#include <linux/cpu.h>
   9
  10#include <asm/tlbflush.h>
  11#include <asm/mmu_context.h>
  12#include <asm/cache.h>
  13#include <asm/apic.h>
  14#include <asm/uv/uv.h>
  15#include <linux/debugfs.h>
  16
  17/*
  18 *      Smarter SMP flushing macros.
  19 *              c/o Linus Torvalds.
  20 *
  21 *      These mean you can really definitely utterly forget about
  22 *      writing to user space from interrupts. (Its not allowed anyway).
  23 *
  24 *      Optimizations Manfred Spraul <manfred@colorfullife.com>
  25 *
  26 *      More scalable flush, from Andi Kleen
  27 *
  28 *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
  29 */
  30
  31#ifdef CONFIG_SMP
  32
  33struct flush_tlb_info {
  34        struct mm_struct *flush_mm;
  35        unsigned long flush_start;
  36        unsigned long flush_end;
  37};
  38
  39/*
  40 * We cannot call mmdrop() because we are in interrupt context,
  41 * instead update mm->cpu_vm_mask.
  42 */
  43void leave_mm(int cpu)
  44{
  45        struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
  46        if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
  47                BUG();
  48        if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
  49                cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
  50                load_cr3(swapper_pg_dir);
  51                /*
  52                 * This gets called in the idle path where RCU
  53                 * functions differently.  Tracing normally
  54                 * uses RCU, so we have to call the tracepoint
  55                 * specially here.
  56                 */
  57                trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
  58        }
  59}
  60EXPORT_SYMBOL_GPL(leave_mm);
  61
  62#endif /* CONFIG_SMP */
  63
  64void switch_mm(struct mm_struct *prev, struct mm_struct *next,
  65               struct task_struct *tsk)
  66{
  67        unsigned long flags;
  68
  69        local_irq_save(flags);
  70        switch_mm_irqs_off(prev, next, tsk);
  71        local_irq_restore(flags);
  72}
  73
  74void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
  75                        struct task_struct *tsk)
  76{
  77        unsigned cpu = smp_processor_id();
  78
  79        if (likely(prev != next)) {
  80                if (IS_ENABLED(CONFIG_VMAP_STACK)) {
  81                        /*
  82                         * If our current stack is in vmalloc space and isn't
  83                         * mapped in the new pgd, we'll double-fault.  Forcibly
  84                         * map it.
  85                         */
  86                        unsigned int stack_pgd_index = pgd_index(current_stack_pointer());
  87
  88                        pgd_t *pgd = next->pgd + stack_pgd_index;
  89
  90                        if (unlikely(pgd_none(*pgd)))
  91                                set_pgd(pgd, init_mm.pgd[stack_pgd_index]);
  92                }
  93
  94#ifdef CONFIG_SMP
  95                this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
  96                this_cpu_write(cpu_tlbstate.active_mm, next);
  97#endif
  98
  99                cpumask_set_cpu(cpu, mm_cpumask(next));
 100
 101                /*
 102                 * Re-load page tables.
 103                 *
 104                 * This logic has an ordering constraint:
 105                 *
 106                 *  CPU 0: Write to a PTE for 'next'
 107                 *  CPU 0: load bit 1 in mm_cpumask.  if nonzero, send IPI.
 108                 *  CPU 1: set bit 1 in next's mm_cpumask
 109                 *  CPU 1: load from the PTE that CPU 0 writes (implicit)
 110                 *
 111                 * We need to prevent an outcome in which CPU 1 observes
 112                 * the new PTE value and CPU 0 observes bit 1 clear in
 113                 * mm_cpumask.  (If that occurs, then the IPI will never
 114                 * be sent, and CPU 0's TLB will contain a stale entry.)
 115                 *
 116                 * The bad outcome can occur if either CPU's load is
 117                 * reordered before that CPU's store, so both CPUs must
 118                 * execute full barriers to prevent this from happening.
 119                 *
 120                 * Thus, switch_mm needs a full barrier between the
 121                 * store to mm_cpumask and any operation that could load
 122                 * from next->pgd.  TLB fills are special and can happen
 123                 * due to instruction fetches or for no reason at all,
 124                 * and neither LOCK nor MFENCE orders them.
 125                 * Fortunately, load_cr3() is serializing and gives the
 126                 * ordering guarantee we need.
 127                 *
 128                 */
 129                load_cr3(next->pgd);
 130
 131                trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
 132
 133                /* Stop flush ipis for the previous mm */
 134                cpumask_clear_cpu(cpu, mm_cpumask(prev));
 135
 136                /* Load per-mm CR4 state */
 137                load_mm_cr4(next);
 138
 139#ifdef CONFIG_MODIFY_LDT_SYSCALL
 140                /*
 141                 * Load the LDT, if the LDT is different.
 142                 *
 143                 * It's possible that prev->context.ldt doesn't match
 144                 * the LDT register.  This can happen if leave_mm(prev)
 145                 * was called and then modify_ldt changed
 146                 * prev->context.ldt but suppressed an IPI to this CPU.
 147                 * In this case, prev->context.ldt != NULL, because we
 148                 * never set context.ldt to NULL while the mm still
 149                 * exists.  That means that next->context.ldt !=
 150                 * prev->context.ldt, because mms never share an LDT.
 151                 */
 152                if (unlikely(prev->context.ldt != next->context.ldt))
 153                        load_mm_ldt(next);
 154#endif
 155        }
 156#ifdef CONFIG_SMP
 157          else {
 158                this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
 159                BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
 160
 161                if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
 162                        /*
 163                         * On established mms, the mm_cpumask is only changed
 164                         * from irq context, from ptep_clear_flush() while in
 165                         * lazy tlb mode, and here. Irqs are blocked during
 166                         * schedule, protecting us from simultaneous changes.
 167                         */
 168                        cpumask_set_cpu(cpu, mm_cpumask(next));
 169
 170                        /*
 171                         * We were in lazy tlb mode and leave_mm disabled
 172                         * tlb flush IPI delivery. We must reload CR3
 173                         * to make sure to use no freed page tables.
 174                         *
 175                         * As above, load_cr3() is serializing and orders TLB
 176                         * fills with respect to the mm_cpumask write.
 177                         */
 178                        load_cr3(next->pgd);
 179                        trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
 180                        load_mm_cr4(next);
 181                        load_mm_ldt(next);
 182                }
 183        }
 184#endif
 185}
 186
 187#ifdef CONFIG_SMP
 188
 189/*
 190 * The flush IPI assumes that a thread switch happens in this order:
 191 * [cpu0: the cpu that switches]
 192 * 1) switch_mm() either 1a) or 1b)
 193 * 1a) thread switch to a different mm
 194 * 1a1) set cpu_tlbstate to TLBSTATE_OK
 195 *      Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
 196 *      if cpu0 was in lazy tlb mode.
 197 * 1a2) update cpu active_mm
 198 *      Now cpu0 accepts tlb flushes for the new mm.
 199 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
 200 *      Now the other cpus will send tlb flush ipis.
 201 * 1a4) change cr3.
 202 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
 203 *      Stop ipi delivery for the old mm. This is not synchronized with
 204 *      the other cpus, but flush_tlb_func ignore flush ipis for the wrong
 205 *      mm, and in the worst case we perform a superfluous tlb flush.
 206 * 1b) thread switch without mm change
 207 *      cpu active_mm is correct, cpu0 already handles flush ipis.
 208 * 1b1) set cpu_tlbstate to TLBSTATE_OK
 209 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
 210 *      Atomically set the bit [other cpus will start sending flush ipis],
 211 *      and test the bit.
 212 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
 213 * 2) switch %%esp, ie current
 214 *
 215 * The interrupt must handle 2 special cases:
 216 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
 217 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
 218 *   runs in kernel space, the cpu could load tlb entries for user space
 219 *   pages.
 220 *
 221 * The good news is that cpu_tlbstate is local to each cpu, no
 222 * write/read ordering problems.
 223 */
 224
 225/*
 226 * TLB flush funcation:
 227 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
 228 * 2) Leave the mm if we are in the lazy tlb mode.
 229 */
 230static void flush_tlb_func(void *info)
 231{
 232        struct flush_tlb_info *f = info;
 233
 234        inc_irq_stat(irq_tlb_count);
 235
 236        if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
 237                return;
 238
 239        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 240        if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
 241                if (f->flush_end == TLB_FLUSH_ALL) {
 242                        local_flush_tlb();
 243                        trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
 244                } else {
 245                        unsigned long addr;
 246                        unsigned long nr_pages =
 247                                (f->flush_end - f->flush_start) / PAGE_SIZE;
 248                        addr = f->flush_start;
 249                        while (addr < f->flush_end) {
 250                                __flush_tlb_single(addr);
 251                                addr += PAGE_SIZE;
 252                        }
 253                        trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
 254                }
 255        } else
 256                leave_mm(smp_processor_id());
 257
 258}
 259
 260void native_flush_tlb_others(const struct cpumask *cpumask,
 261                                 struct mm_struct *mm, unsigned long start,
 262                                 unsigned long end)
 263{
 264        struct flush_tlb_info info;
 265
 266        if (end == 0)
 267                end = start + PAGE_SIZE;
 268        info.flush_mm = mm;
 269        info.flush_start = start;
 270        info.flush_end = end;
 271
 272        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 273        if (end == TLB_FLUSH_ALL)
 274                trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
 275        else
 276                trace_tlb_flush(TLB_REMOTE_SEND_IPI,
 277                                (end - start) >> PAGE_SHIFT);
 278
 279        if (is_uv_system()) {
 280                unsigned int cpu;
 281
 282                cpu = smp_processor_id();
 283                cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
 284                if (cpumask)
 285                        smp_call_function_many(cpumask, flush_tlb_func,
 286                                                                &info, 1);
 287                return;
 288        }
 289        smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
 290}
 291
 292void flush_tlb_current_task(void)
 293{
 294        struct mm_struct *mm = current->mm;
 295
 296        preempt_disable();
 297
 298        count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 299
 300        /* This is an implicit full barrier that synchronizes with switch_mm. */
 301        local_flush_tlb();
 302
 303        trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
 304        if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
 305                flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
 306        preempt_enable();
 307}
 308
 309/*
 310 * See Documentation/x86/tlb.txt for details.  We choose 33
 311 * because it is large enough to cover the vast majority (at
 312 * least 95%) of allocations, and is small enough that we are
 313 * confident it will not cause too much overhead.  Each single
 314 * flush is about 100 ns, so this caps the maximum overhead at
 315 * _about_ 3,000 ns.
 316 *
 317 * This is in units of pages.
 318 */
 319static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
 320
 321void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
 322                                unsigned long end, unsigned long vmflag)
 323{
 324        unsigned long addr;
 325        /* do a global flush by default */
 326        unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
 327
 328        preempt_disable();
 329        if (current->active_mm != mm) {
 330                /* Synchronize with switch_mm. */
 331                smp_mb();
 332
 333                goto out;
 334        }
 335
 336        if (!current->mm) {
 337                leave_mm(smp_processor_id());
 338
 339                /* Synchronize with switch_mm. */
 340                smp_mb();
 341
 342                goto out;
 343        }
 344
 345        if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
 346                base_pages_to_flush = (end - start) >> PAGE_SHIFT;
 347
 348        /*
 349         * Both branches below are implicit full barriers (MOV to CR or
 350         * INVLPG) that synchronize with switch_mm.
 351         */
 352        if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
 353                base_pages_to_flush = TLB_FLUSH_ALL;
 354                count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 355                local_flush_tlb();
 356        } else {
 357                /* flush range by one by one 'invlpg' */
 358                for (addr = start; addr < end;  addr += PAGE_SIZE) {
 359                        count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
 360                        __flush_tlb_single(addr);
 361                }
 362        }
 363        trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
 364out:
 365        if (base_pages_to_flush == TLB_FLUSH_ALL) {
 366                start = 0UL;
 367                end = TLB_FLUSH_ALL;
 368        }
 369        if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
 370                flush_tlb_others(mm_cpumask(mm), mm, start, end);
 371        preempt_enable();
 372}
 373
 374void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
 375{
 376        struct mm_struct *mm = vma->vm_mm;
 377
 378        preempt_disable();
 379
 380        if (current->active_mm == mm) {
 381                if (current->mm) {
 382                        /*
 383                         * Implicit full barrier (INVLPG) that synchronizes
 384                         * with switch_mm.
 385                         */
 386                        __flush_tlb_one(start);
 387                } else {
 388                        leave_mm(smp_processor_id());
 389
 390                        /* Synchronize with switch_mm. */
 391                        smp_mb();
 392                }
 393        }
 394
 395        if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
 396                flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
 397
 398        preempt_enable();
 399}
 400
 401static void do_flush_tlb_all(void *info)
 402{
 403        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 404        __flush_tlb_all();
 405        if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
 406                leave_mm(smp_processor_id());
 407}
 408
 409void flush_tlb_all(void)
 410{
 411        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 412        on_each_cpu(do_flush_tlb_all, NULL, 1);
 413}
 414
 415static void do_kernel_range_flush(void *info)
 416{
 417        struct flush_tlb_info *f = info;
 418        unsigned long addr;
 419
 420        /* flush range by one by one 'invlpg' */
 421        for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
 422                __flush_tlb_single(addr);
 423}
 424
 425void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 426{
 427
 428        /* Balance as user space task's flush, a bit conservative */
 429        if (end == TLB_FLUSH_ALL ||
 430            (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
 431                on_each_cpu(do_flush_tlb_all, NULL, 1);
 432        } else {
 433                struct flush_tlb_info info;
 434                info.flush_start = start;
 435                info.flush_end = end;
 436                on_each_cpu(do_kernel_range_flush, &info, 1);
 437        }
 438}
 439
 440static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
 441                             size_t count, loff_t *ppos)
 442{
 443        char buf[32];
 444        unsigned int len;
 445
 446        len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
 447        return simple_read_from_buffer(user_buf, count, ppos, buf, len);
 448}
 449
 450static ssize_t tlbflush_write_file(struct file *file,
 451                 const char __user *user_buf, size_t count, loff_t *ppos)
 452{
 453        char buf[32];
 454        ssize_t len;
 455        int ceiling;
 456
 457        len = min(count, sizeof(buf) - 1);
 458        if (copy_from_user(buf, user_buf, len))
 459                return -EFAULT;
 460
 461        buf[len] = '\0';
 462        if (kstrtoint(buf, 0, &ceiling))
 463                return -EINVAL;
 464
 465        if (ceiling < 0)
 466                return -EINVAL;
 467
 468        tlb_single_page_flush_ceiling = ceiling;
 469        return count;
 470}
 471
 472static const struct file_operations fops_tlbflush = {
 473        .read = tlbflush_read_file,
 474        .write = tlbflush_write_file,
 475        .llseek = default_llseek,
 476};
 477
 478static int __init create_tlb_single_page_flush_ceiling(void)
 479{
 480        debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
 481                            arch_debugfs_dir, NULL, &fops_tlbflush);
 482        return 0;
 483}
 484late_initcall(create_tlb_single_page_flush_ceiling);
 485
 486#endif /* CONFIG_SMP */
 487