linux/arch/x86/platform/efi/quirks.c
<<
>>
Prefs
   1#define pr_fmt(fmt) "efi: " fmt
   2
   3#include <linux/init.h>
   4#include <linux/kernel.h>
   5#include <linux/string.h>
   6#include <linux/time.h>
   7#include <linux/types.h>
   8#include <linux/efi.h>
   9#include <linux/slab.h>
  10#include <linux/memblock.h>
  11#include <linux/bootmem.h>
  12#include <linux/acpi.h>
  13#include <linux/dmi.h>
  14#include <asm/efi.h>
  15#include <asm/uv/uv.h>
  16
  17#define EFI_MIN_RESERVE 5120
  18
  19#define EFI_DUMMY_GUID \
  20        EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
  21
  22static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
  23
  24static bool efi_no_storage_paranoia;
  25
  26/*
  27 * Some firmware implementations refuse to boot if there's insufficient
  28 * space in the variable store. The implementation of garbage collection
  29 * in some FW versions causes stale (deleted) variables to take up space
  30 * longer than intended and space is only freed once the store becomes
  31 * almost completely full.
  32 *
  33 * Enabling this option disables the space checks in
  34 * efi_query_variable_store() and forces garbage collection.
  35 *
  36 * Only enable this option if deleting EFI variables does not free up
  37 * space in your variable store, e.g. if despite deleting variables
  38 * you're unable to create new ones.
  39 */
  40static int __init setup_storage_paranoia(char *arg)
  41{
  42        efi_no_storage_paranoia = true;
  43        return 0;
  44}
  45early_param("efi_no_storage_paranoia", setup_storage_paranoia);
  46
  47/*
  48 * Deleting the dummy variable which kicks off garbage collection
  49*/
  50void efi_delete_dummy_variable(void)
  51{
  52        efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
  53                         EFI_VARIABLE_NON_VOLATILE |
  54                         EFI_VARIABLE_BOOTSERVICE_ACCESS |
  55                         EFI_VARIABLE_RUNTIME_ACCESS,
  56                         0, NULL);
  57}
  58
  59/*
  60 * In the nonblocking case we do not attempt to perform garbage
  61 * collection if we do not have enough free space. Rather, we do the
  62 * bare minimum check and give up immediately if the available space
  63 * is below EFI_MIN_RESERVE.
  64 *
  65 * This function is intended to be small and simple because it is
  66 * invoked from crash handler paths.
  67 */
  68static efi_status_t
  69query_variable_store_nonblocking(u32 attributes, unsigned long size)
  70{
  71        efi_status_t status;
  72        u64 storage_size, remaining_size, max_size;
  73
  74        status = efi.query_variable_info_nonblocking(attributes, &storage_size,
  75                                                     &remaining_size,
  76                                                     &max_size);
  77        if (status != EFI_SUCCESS)
  78                return status;
  79
  80        if (remaining_size - size < EFI_MIN_RESERVE)
  81                return EFI_OUT_OF_RESOURCES;
  82
  83        return EFI_SUCCESS;
  84}
  85
  86/*
  87 * Some firmware implementations refuse to boot if there's insufficient space
  88 * in the variable store. Ensure that we never use more than a safe limit.
  89 *
  90 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
  91 * store.
  92 */
  93efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
  94                                      bool nonblocking)
  95{
  96        efi_status_t status;
  97        u64 storage_size, remaining_size, max_size;
  98
  99        if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
 100                return 0;
 101
 102        if (nonblocking)
 103                return query_variable_store_nonblocking(attributes, size);
 104
 105        status = efi.query_variable_info(attributes, &storage_size,
 106                                         &remaining_size, &max_size);
 107        if (status != EFI_SUCCESS)
 108                return status;
 109
 110        /*
 111         * We account for that by refusing the write if permitting it would
 112         * reduce the available space to under 5KB. This figure was provided by
 113         * Samsung, so should be safe.
 114         */
 115        if ((remaining_size - size < EFI_MIN_RESERVE) &&
 116                !efi_no_storage_paranoia) {
 117
 118                /*
 119                 * Triggering garbage collection may require that the firmware
 120                 * generate a real EFI_OUT_OF_RESOURCES error. We can force
 121                 * that by attempting to use more space than is available.
 122                 */
 123                unsigned long dummy_size = remaining_size + 1024;
 124                void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
 125
 126                if (!dummy)
 127                        return EFI_OUT_OF_RESOURCES;
 128
 129                status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
 130                                          EFI_VARIABLE_NON_VOLATILE |
 131                                          EFI_VARIABLE_BOOTSERVICE_ACCESS |
 132                                          EFI_VARIABLE_RUNTIME_ACCESS,
 133                                          dummy_size, dummy);
 134
 135                if (status == EFI_SUCCESS) {
 136                        /*
 137                         * This should have failed, so if it didn't make sure
 138                         * that we delete it...
 139                         */
 140                        efi_delete_dummy_variable();
 141                }
 142
 143                kfree(dummy);
 144
 145                /*
 146                 * The runtime code may now have triggered a garbage collection
 147                 * run, so check the variable info again
 148                 */
 149                status = efi.query_variable_info(attributes, &storage_size,
 150                                                 &remaining_size, &max_size);
 151
 152                if (status != EFI_SUCCESS)
 153                        return status;
 154
 155                /*
 156                 * There still isn't enough room, so return an error
 157                 */
 158                if (remaining_size - size < EFI_MIN_RESERVE)
 159                        return EFI_OUT_OF_RESOURCES;
 160        }
 161
 162        return EFI_SUCCESS;
 163}
 164EXPORT_SYMBOL_GPL(efi_query_variable_store);
 165
 166/*
 167 * The UEFI specification makes it clear that the operating system is
 168 * free to do whatever it wants with boot services code after
 169 * ExitBootServices() has been called. Ignoring this recommendation a
 170 * significant bunch of EFI implementations continue calling into boot
 171 * services code (SetVirtualAddressMap). In order to work around such
 172 * buggy implementations we reserve boot services region during EFI
 173 * init and make sure it stays executable. Then, after
 174 * SetVirtualAddressMap(), it is discarded.
 175 *
 176 * However, some boot services regions contain data that is required
 177 * by drivers, so we need to track which memory ranges can never be
 178 * freed. This is done by tagging those regions with the
 179 * EFI_MEMORY_RUNTIME attribute.
 180 *
 181 * Any driver that wants to mark a region as reserved must use
 182 * efi_mem_reserve() which will insert a new EFI memory descriptor
 183 * into efi.memmap (splitting existing regions if necessary) and tag
 184 * it with EFI_MEMORY_RUNTIME.
 185 */
 186void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
 187{
 188        phys_addr_t new_phys, new_size;
 189        struct efi_mem_range mr;
 190        efi_memory_desc_t md;
 191        int num_entries;
 192        void *new;
 193
 194        if (efi_mem_desc_lookup(addr, &md)) {
 195                pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
 196                return;
 197        }
 198
 199        if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
 200                pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
 201                return;
 202        }
 203
 204        size += addr % EFI_PAGE_SIZE;
 205        size = round_up(size, EFI_PAGE_SIZE);
 206        addr = round_down(addr, EFI_PAGE_SIZE);
 207
 208        mr.range.start = addr;
 209        mr.range.end = addr + size - 1;
 210        mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
 211
 212        num_entries = efi_memmap_split_count(&md, &mr.range);
 213        num_entries += efi.memmap.nr_map;
 214
 215        new_size = efi.memmap.desc_size * num_entries;
 216
 217        new_phys = memblock_alloc(new_size, 0);
 218        if (!new_phys) {
 219                pr_err("Could not allocate boot services memmap\n");
 220                return;
 221        }
 222
 223        new = early_memremap(new_phys, new_size);
 224        if (!new) {
 225                pr_err("Failed to map new boot services memmap\n");
 226                return;
 227        }
 228
 229        efi_memmap_insert(&efi.memmap, new, &mr);
 230        early_memunmap(new, new_size);
 231
 232        efi_memmap_install(new_phys, num_entries);
 233}
 234
 235/*
 236 * Helper function for efi_reserve_boot_services() to figure out if we
 237 * can free regions in efi_free_boot_services().
 238 *
 239 * Use this function to ensure we do not free regions owned by somebody
 240 * else. We must only reserve (and then free) regions:
 241 *
 242 * - Not within any part of the kernel
 243 * - Not the BIOS reserved area (E820_RESERVED, E820_NVS, etc)
 244 */
 245static bool can_free_region(u64 start, u64 size)
 246{
 247        if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
 248                return false;
 249
 250        if (!e820_all_mapped(start, start+size, E820_RAM))
 251                return false;
 252
 253        return true;
 254}
 255
 256void __init efi_reserve_boot_services(void)
 257{
 258        efi_memory_desc_t *md;
 259
 260        for_each_efi_memory_desc(md) {
 261                u64 start = md->phys_addr;
 262                u64 size = md->num_pages << EFI_PAGE_SHIFT;
 263                bool already_reserved;
 264
 265                if (md->type != EFI_BOOT_SERVICES_CODE &&
 266                    md->type != EFI_BOOT_SERVICES_DATA)
 267                        continue;
 268
 269                already_reserved = memblock_is_region_reserved(start, size);
 270
 271                /*
 272                 * Because the following memblock_reserve() is paired
 273                 * with free_bootmem_late() for this region in
 274                 * efi_free_boot_services(), we must be extremely
 275                 * careful not to reserve, and subsequently free,
 276                 * critical regions of memory (like the kernel image) or
 277                 * those regions that somebody else has already
 278                 * reserved.
 279                 *
 280                 * A good example of a critical region that must not be
 281                 * freed is page zero (first 4Kb of memory), which may
 282                 * contain boot services code/data but is marked
 283                 * E820_RESERVED by trim_bios_range().
 284                 */
 285                if (!already_reserved) {
 286                        memblock_reserve(start, size);
 287
 288                        /*
 289                         * If we are the first to reserve the region, no
 290                         * one else cares about it. We own it and can
 291                         * free it later.
 292                         */
 293                        if (can_free_region(start, size))
 294                                continue;
 295                }
 296
 297                /*
 298                 * We don't own the region. We must not free it.
 299                 *
 300                 * Setting this bit for a boot services region really
 301                 * doesn't make sense as far as the firmware is
 302                 * concerned, but it does provide us with a way to tag
 303                 * those regions that must not be paired with
 304                 * free_bootmem_late().
 305                 */
 306                md->attribute |= EFI_MEMORY_RUNTIME;
 307        }
 308}
 309
 310void __init efi_free_boot_services(void)
 311{
 312        phys_addr_t new_phys, new_size;
 313        efi_memory_desc_t *md;
 314        int num_entries = 0;
 315        void *new, *new_md;
 316
 317        for_each_efi_memory_desc(md) {
 318                unsigned long long start = md->phys_addr;
 319                unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 320                size_t rm_size;
 321
 322                if (md->type != EFI_BOOT_SERVICES_CODE &&
 323                    md->type != EFI_BOOT_SERVICES_DATA) {
 324                        num_entries++;
 325                        continue;
 326                }
 327
 328                /* Do not free, someone else owns it: */
 329                if (md->attribute & EFI_MEMORY_RUNTIME) {
 330                        num_entries++;
 331                        continue;
 332                }
 333
 334                /*
 335                 * Nasty quirk: if all sub-1MB memory is used for boot
 336                 * services, we can get here without having allocated the
 337                 * real mode trampoline.  It's too late to hand boot services
 338                 * memory back to the memblock allocator, so instead
 339                 * try to manually allocate the trampoline if needed.
 340                 *
 341                 * I've seen this on a Dell XPS 13 9350 with firmware
 342                 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
 343                 * grub2-efi on a hard disk.  (And no, I don't know why
 344                 * this happened, but Linux should still try to boot rather
 345                 * panicing early.)
 346                 */
 347                rm_size = real_mode_size_needed();
 348                if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
 349                        set_real_mode_mem(start, rm_size);
 350                        start += rm_size;
 351                        size -= rm_size;
 352                }
 353
 354                free_bootmem_late(start, size);
 355        }
 356
 357        new_size = efi.memmap.desc_size * num_entries;
 358        new_phys = memblock_alloc(new_size, 0);
 359        if (!new_phys) {
 360                pr_err("Failed to allocate new EFI memmap\n");
 361                return;
 362        }
 363
 364        new = memremap(new_phys, new_size, MEMREMAP_WB);
 365        if (!new) {
 366                pr_err("Failed to map new EFI memmap\n");
 367                return;
 368        }
 369
 370        /*
 371         * Build a new EFI memmap that excludes any boot services
 372         * regions that are not tagged EFI_MEMORY_RUNTIME, since those
 373         * regions have now been freed.
 374         */
 375        new_md = new;
 376        for_each_efi_memory_desc(md) {
 377                if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
 378                    (md->type == EFI_BOOT_SERVICES_CODE ||
 379                     md->type == EFI_BOOT_SERVICES_DATA))
 380                        continue;
 381
 382                memcpy(new_md, md, efi.memmap.desc_size);
 383                new_md += efi.memmap.desc_size;
 384        }
 385
 386        memunmap(new);
 387
 388        if (efi_memmap_install(new_phys, num_entries)) {
 389                pr_err("Could not install new EFI memmap\n");
 390                return;
 391        }
 392}
 393
 394/*
 395 * A number of config table entries get remapped to virtual addresses
 396 * after entering EFI virtual mode. However, the kexec kernel requires
 397 * their physical addresses therefore we pass them via setup_data and
 398 * correct those entries to their respective physical addresses here.
 399 *
 400 * Currently only handles smbios which is necessary for some firmware
 401 * implementation.
 402 */
 403int __init efi_reuse_config(u64 tables, int nr_tables)
 404{
 405        int i, sz, ret = 0;
 406        void *p, *tablep;
 407        struct efi_setup_data *data;
 408
 409        if (!efi_setup)
 410                return 0;
 411
 412        if (!efi_enabled(EFI_64BIT))
 413                return 0;
 414
 415        data = early_memremap(efi_setup, sizeof(*data));
 416        if (!data) {
 417                ret = -ENOMEM;
 418                goto out;
 419        }
 420
 421        if (!data->smbios)
 422                goto out_memremap;
 423
 424        sz = sizeof(efi_config_table_64_t);
 425
 426        p = tablep = early_memremap(tables, nr_tables * sz);
 427        if (!p) {
 428                pr_err("Could not map Configuration table!\n");
 429                ret = -ENOMEM;
 430                goto out_memremap;
 431        }
 432
 433        for (i = 0; i < efi.systab->nr_tables; i++) {
 434                efi_guid_t guid;
 435
 436                guid = ((efi_config_table_64_t *)p)->guid;
 437
 438                if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
 439                        ((efi_config_table_64_t *)p)->table = data->smbios;
 440                p += sz;
 441        }
 442        early_memunmap(tablep, nr_tables * sz);
 443
 444out_memremap:
 445        early_memunmap(data, sizeof(*data));
 446out:
 447        return ret;
 448}
 449
 450static const struct dmi_system_id sgi_uv1_dmi[] = {
 451        { NULL, "SGI UV1",
 452                {       DMI_MATCH(DMI_PRODUCT_NAME,     "Stoutland Platform"),
 453                        DMI_MATCH(DMI_PRODUCT_VERSION,  "1.0"),
 454                        DMI_MATCH(DMI_BIOS_VENDOR,      "SGI.COM"),
 455                }
 456        },
 457        { } /* NULL entry stops DMI scanning */
 458};
 459
 460void __init efi_apply_memmap_quirks(void)
 461{
 462        /*
 463         * Once setup is done earlier, unmap the EFI memory map on mismatched
 464         * firmware/kernel architectures since there is no support for runtime
 465         * services.
 466         */
 467        if (!efi_runtime_supported()) {
 468                pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
 469                efi_memmap_unmap();
 470        }
 471
 472        /* UV2+ BIOS has a fix for this issue.  UV1 still needs the quirk. */
 473        if (dmi_check_system(sgi_uv1_dmi))
 474                set_bit(EFI_OLD_MEMMAP, &efi.flags);
 475}
 476
 477/*
 478 * For most modern platforms the preferred method of powering off is via
 479 * ACPI. However, there are some that are known to require the use of
 480 * EFI runtime services and for which ACPI does not work at all.
 481 *
 482 * Using EFI is a last resort, to be used only if no other option
 483 * exists.
 484 */
 485bool efi_reboot_required(void)
 486{
 487        if (!acpi_gbl_reduced_hardware)
 488                return false;
 489
 490        efi_reboot_quirk_mode = EFI_RESET_WARM;
 491        return true;
 492}
 493
 494bool efi_poweroff_required(void)
 495{
 496        return acpi_gbl_reduced_hardware || acpi_no_s5;
 497}
 498