linux/drivers/hwmon/lineage-pem.c
<<
>>
Prefs
   1/*
   2 * Driver for Lineage Compact Power Line series of power entry modules.
   3 *
   4 * Copyright (C) 2010, 2011 Ericsson AB.
   5 *
   6 * Documentation:
   7 *  http://www.lineagepower.com/oem/pdf/CPLI2C.pdf
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  22 */
  23
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/init.h>
  27#include <linux/err.h>
  28#include <linux/slab.h>
  29#include <linux/i2c.h>
  30#include <linux/hwmon.h>
  31#include <linux/hwmon-sysfs.h>
  32#include <linux/jiffies.h>
  33
  34/*
  35 * This driver supports various Lineage Compact Power Line DC/DC and AC/DC
  36 * converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others.
  37 *
  38 * The devices are nominally PMBus compliant. However, most standard PMBus
  39 * commands are not supported. Specifically, all hardware monitoring and
  40 * status reporting commands are non-standard. For this reason, a standard
  41 * PMBus driver can not be used.
  42 *
  43 * All Lineage CPL devices have a built-in I2C bus master selector (PCA9541).
  44 * To ensure device access, this driver should only be used as client driver
  45 * to the pca9541 I2C master selector driver.
  46 */
  47
  48/* Command codes */
  49#define PEM_OPERATION           0x01
  50#define PEM_CLEAR_INFO_FLAGS    0x03
  51#define PEM_VOUT_COMMAND        0x21
  52#define PEM_VOUT_OV_FAULT_LIMIT 0x40
  53#define PEM_READ_DATA_STRING    0xd0
  54#define PEM_READ_INPUT_STRING   0xdc
  55#define PEM_READ_FIRMWARE_REV   0xdd
  56#define PEM_READ_RUN_TIMER      0xde
  57#define PEM_FAN_HI_SPEED        0xdf
  58#define PEM_FAN_NORMAL_SPEED    0xe0
  59#define PEM_READ_FAN_SPEED      0xe1
  60
  61/* offsets in data string */
  62#define PEM_DATA_STATUS_2       0
  63#define PEM_DATA_STATUS_1       1
  64#define PEM_DATA_ALARM_2        2
  65#define PEM_DATA_ALARM_1        3
  66#define PEM_DATA_VOUT_LSB       4
  67#define PEM_DATA_VOUT_MSB       5
  68#define PEM_DATA_CURRENT        6
  69#define PEM_DATA_TEMP           7
  70
  71/* Virtual entries, to report constants */
  72#define PEM_DATA_TEMP_MAX       10
  73#define PEM_DATA_TEMP_CRIT      11
  74
  75/* offsets in input string */
  76#define PEM_INPUT_VOLTAGE       0
  77#define PEM_INPUT_POWER_LSB     1
  78#define PEM_INPUT_POWER_MSB     2
  79
  80/* offsets in fan data */
  81#define PEM_FAN_ADJUSTMENT      0
  82#define PEM_FAN_FAN1            1
  83#define PEM_FAN_FAN2            2
  84#define PEM_FAN_FAN3            3
  85
  86/* Status register bits */
  87#define STS1_OUTPUT_ON          (1 << 0)
  88#define STS1_LEDS_FLASHING      (1 << 1)
  89#define STS1_EXT_FAULT          (1 << 2)
  90#define STS1_SERVICE_LED_ON     (1 << 3)
  91#define STS1_SHUTDOWN_OCCURRED  (1 << 4)
  92#define STS1_INT_FAULT          (1 << 5)
  93#define STS1_ISOLATION_TEST_OK  (1 << 6)
  94
  95#define STS2_ENABLE_PIN_HI      (1 << 0)
  96#define STS2_DATA_OUT_RANGE     (1 << 1)
  97#define STS2_RESTARTED_OK       (1 << 1)
  98#define STS2_ISOLATION_TEST_FAIL (1 << 3)
  99#define STS2_HIGH_POWER_CAP     (1 << 4)
 100#define STS2_INVALID_INSTR      (1 << 5)
 101#define STS2_WILL_RESTART       (1 << 6)
 102#define STS2_PEC_ERR            (1 << 7)
 103
 104/* Alarm register bits */
 105#define ALRM1_VIN_OUT_LIMIT     (1 << 0)
 106#define ALRM1_VOUT_OUT_LIMIT    (1 << 1)
 107#define ALRM1_OV_VOLT_SHUTDOWN  (1 << 2)
 108#define ALRM1_VIN_OVERCURRENT   (1 << 3)
 109#define ALRM1_TEMP_WARNING      (1 << 4)
 110#define ALRM1_TEMP_SHUTDOWN     (1 << 5)
 111#define ALRM1_PRIMARY_FAULT     (1 << 6)
 112#define ALRM1_POWER_LIMIT       (1 << 7)
 113
 114#define ALRM2_5V_OUT_LIMIT      (1 << 1)
 115#define ALRM2_TEMP_FAULT        (1 << 2)
 116#define ALRM2_OV_LOW            (1 << 3)
 117#define ALRM2_DCDC_TEMP_HIGH    (1 << 4)
 118#define ALRM2_PRI_TEMP_HIGH     (1 << 5)
 119#define ALRM2_NO_PRIMARY        (1 << 6)
 120#define ALRM2_FAN_FAULT         (1 << 7)
 121
 122#define FIRMWARE_REV_LEN        4
 123#define DATA_STRING_LEN         9
 124#define INPUT_STRING_LEN        5       /* 4 for most devices   */
 125#define FAN_SPEED_LEN           5
 126
 127struct pem_data {
 128        struct i2c_client *client;
 129        const struct attribute_group *groups[4];
 130
 131        struct mutex update_lock;
 132        bool valid;
 133        bool fans_supported;
 134        int input_length;
 135        unsigned long last_updated;     /* in jiffies */
 136
 137        u8 firmware_rev[FIRMWARE_REV_LEN];
 138        u8 data_string[DATA_STRING_LEN];
 139        u8 input_string[INPUT_STRING_LEN];
 140        u8 fan_speed[FAN_SPEED_LEN];
 141};
 142
 143static int pem_read_block(struct i2c_client *client, u8 command, u8 *data,
 144                          int data_len)
 145{
 146        u8 block_buffer[I2C_SMBUS_BLOCK_MAX];
 147        int result;
 148
 149        result = i2c_smbus_read_block_data(client, command, block_buffer);
 150        if (unlikely(result < 0))
 151                goto abort;
 152        if (unlikely(result == 0xff || result != data_len)) {
 153                result = -EIO;
 154                goto abort;
 155        }
 156        memcpy(data, block_buffer, data_len);
 157        result = 0;
 158abort:
 159        return result;
 160}
 161
 162static struct pem_data *pem_update_device(struct device *dev)
 163{
 164        struct pem_data *data = dev_get_drvdata(dev);
 165        struct i2c_client *client = data->client;
 166        struct pem_data *ret = data;
 167
 168        mutex_lock(&data->update_lock);
 169
 170        if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
 171                int result;
 172
 173                /* Read data string */
 174                result = pem_read_block(client, PEM_READ_DATA_STRING,
 175                                        data->data_string,
 176                                        sizeof(data->data_string));
 177                if (unlikely(result < 0)) {
 178                        ret = ERR_PTR(result);
 179                        goto abort;
 180                }
 181
 182                /* Read input string */
 183                if (data->input_length) {
 184                        result = pem_read_block(client, PEM_READ_INPUT_STRING,
 185                                                data->input_string,
 186                                                data->input_length);
 187                        if (unlikely(result < 0)) {
 188                                ret = ERR_PTR(result);
 189                                goto abort;
 190                        }
 191                }
 192
 193                /* Read fan speeds */
 194                if (data->fans_supported) {
 195                        result = pem_read_block(client, PEM_READ_FAN_SPEED,
 196                                                data->fan_speed,
 197                                                sizeof(data->fan_speed));
 198                        if (unlikely(result < 0)) {
 199                                ret = ERR_PTR(result);
 200                                goto abort;
 201                        }
 202                }
 203
 204                i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
 205
 206                data->last_updated = jiffies;
 207                data->valid = 1;
 208        }
 209abort:
 210        mutex_unlock(&data->update_lock);
 211        return ret;
 212}
 213
 214static long pem_get_data(u8 *data, int len, int index)
 215{
 216        long val;
 217
 218        switch (index) {
 219        case PEM_DATA_VOUT_LSB:
 220                val = (data[index] + (data[index+1] << 8)) * 5 / 2;
 221                break;
 222        case PEM_DATA_CURRENT:
 223                val = data[index] * 200;
 224                break;
 225        case PEM_DATA_TEMP:
 226                val = data[index] * 1000;
 227                break;
 228        case PEM_DATA_TEMP_MAX:
 229                val = 97 * 1000;        /* 97 degrees C per datasheet */
 230                break;
 231        case PEM_DATA_TEMP_CRIT:
 232                val = 107 * 1000;       /* 107 degrees C per datasheet */
 233                break;
 234        default:
 235                WARN_ON_ONCE(1);
 236                val = 0;
 237        }
 238        return val;
 239}
 240
 241static long pem_get_input(u8 *data, int len, int index)
 242{
 243        long val;
 244
 245        switch (index) {
 246        case PEM_INPUT_VOLTAGE:
 247                if (len == INPUT_STRING_LEN)
 248                        val = (data[index] + (data[index+1] << 8) - 75) * 1000;
 249                else
 250                        val = (data[index] - 75) * 1000;
 251                break;
 252        case PEM_INPUT_POWER_LSB:
 253                if (len == INPUT_STRING_LEN)
 254                        index++;
 255                val = (data[index] + (data[index+1] << 8)) * 1000000L;
 256                break;
 257        default:
 258                WARN_ON_ONCE(1);
 259                val = 0;
 260        }
 261        return val;
 262}
 263
 264static long pem_get_fan(u8 *data, int len, int index)
 265{
 266        long val;
 267
 268        switch (index) {
 269        case PEM_FAN_FAN1:
 270        case PEM_FAN_FAN2:
 271        case PEM_FAN_FAN3:
 272                val = data[index] * 100;
 273                break;
 274        default:
 275                WARN_ON_ONCE(1);
 276                val = 0;
 277        }
 278        return val;
 279}
 280
 281/*
 282 * Show boolean, either a fault or an alarm.
 283 * .nr points to the register, .index is the bit mask to check
 284 */
 285static ssize_t pem_show_bool(struct device *dev,
 286                             struct device_attribute *da, char *buf)
 287{
 288        struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(da);
 289        struct pem_data *data = pem_update_device(dev);
 290        u8 status;
 291
 292        if (IS_ERR(data))
 293                return PTR_ERR(data);
 294
 295        status = data->data_string[attr->nr] & attr->index;
 296        return snprintf(buf, PAGE_SIZE, "%d\n", !!status);
 297}
 298
 299static ssize_t pem_show_data(struct device *dev, struct device_attribute *da,
 300                             char *buf)
 301{
 302        struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 303        struct pem_data *data = pem_update_device(dev);
 304        long value;
 305
 306        if (IS_ERR(data))
 307                return PTR_ERR(data);
 308
 309        value = pem_get_data(data->data_string, sizeof(data->data_string),
 310                             attr->index);
 311
 312        return snprintf(buf, PAGE_SIZE, "%ld\n", value);
 313}
 314
 315static ssize_t pem_show_input(struct device *dev, struct device_attribute *da,
 316                              char *buf)
 317{
 318        struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 319        struct pem_data *data = pem_update_device(dev);
 320        long value;
 321
 322        if (IS_ERR(data))
 323                return PTR_ERR(data);
 324
 325        value = pem_get_input(data->input_string, sizeof(data->input_string),
 326                              attr->index);
 327
 328        return snprintf(buf, PAGE_SIZE, "%ld\n", value);
 329}
 330
 331static ssize_t pem_show_fan(struct device *dev, struct device_attribute *da,
 332                            char *buf)
 333{
 334        struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 335        struct pem_data *data = pem_update_device(dev);
 336        long value;
 337
 338        if (IS_ERR(data))
 339                return PTR_ERR(data);
 340
 341        value = pem_get_fan(data->fan_speed, sizeof(data->fan_speed),
 342                            attr->index);
 343
 344        return snprintf(buf, PAGE_SIZE, "%ld\n", value);
 345}
 346
 347/* Voltages */
 348static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, pem_show_data, NULL,
 349                          PEM_DATA_VOUT_LSB);
 350static SENSOR_DEVICE_ATTR_2(in1_alarm, S_IRUGO, pem_show_bool, NULL,
 351                            PEM_DATA_ALARM_1, ALRM1_VOUT_OUT_LIMIT);
 352static SENSOR_DEVICE_ATTR_2(in1_crit_alarm, S_IRUGO, pem_show_bool, NULL,
 353                            PEM_DATA_ALARM_1, ALRM1_OV_VOLT_SHUTDOWN);
 354static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, pem_show_input, NULL,
 355                          PEM_INPUT_VOLTAGE);
 356static SENSOR_DEVICE_ATTR_2(in2_alarm, S_IRUGO, pem_show_bool, NULL,
 357                            PEM_DATA_ALARM_1,
 358                            ALRM1_VIN_OUT_LIMIT | ALRM1_PRIMARY_FAULT);
 359
 360/* Currents */
 361static SENSOR_DEVICE_ATTR(curr1_input, S_IRUGO, pem_show_data, NULL,
 362                          PEM_DATA_CURRENT);
 363static SENSOR_DEVICE_ATTR_2(curr1_alarm, S_IRUGO, pem_show_bool, NULL,
 364                            PEM_DATA_ALARM_1, ALRM1_VIN_OVERCURRENT);
 365
 366/* Power */
 367static SENSOR_DEVICE_ATTR(power1_input, S_IRUGO, pem_show_input, NULL,
 368                          PEM_INPUT_POWER_LSB);
 369static SENSOR_DEVICE_ATTR_2(power1_alarm, S_IRUGO, pem_show_bool, NULL,
 370                            PEM_DATA_ALARM_1, ALRM1_POWER_LIMIT);
 371
 372/* Fans */
 373static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, pem_show_fan, NULL,
 374                          PEM_FAN_FAN1);
 375static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, pem_show_fan, NULL,
 376                          PEM_FAN_FAN2);
 377static SENSOR_DEVICE_ATTR(fan3_input, S_IRUGO, pem_show_fan, NULL,
 378                          PEM_FAN_FAN3);
 379static SENSOR_DEVICE_ATTR_2(fan1_alarm, S_IRUGO, pem_show_bool, NULL,
 380                            PEM_DATA_ALARM_2, ALRM2_FAN_FAULT);
 381
 382/* Temperatures */
 383static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, pem_show_data, NULL,
 384                          PEM_DATA_TEMP);
 385static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO, pem_show_data, NULL,
 386                          PEM_DATA_TEMP_MAX);
 387static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, pem_show_data, NULL,
 388                          PEM_DATA_TEMP_CRIT);
 389static SENSOR_DEVICE_ATTR_2(temp1_alarm, S_IRUGO, pem_show_bool, NULL,
 390                            PEM_DATA_ALARM_1, ALRM1_TEMP_WARNING);
 391static SENSOR_DEVICE_ATTR_2(temp1_crit_alarm, S_IRUGO, pem_show_bool, NULL,
 392                            PEM_DATA_ALARM_1, ALRM1_TEMP_SHUTDOWN);
 393static SENSOR_DEVICE_ATTR_2(temp1_fault, S_IRUGO, pem_show_bool, NULL,
 394                            PEM_DATA_ALARM_2, ALRM2_TEMP_FAULT);
 395
 396static struct attribute *pem_attributes[] = {
 397        &sensor_dev_attr_in1_input.dev_attr.attr,
 398        &sensor_dev_attr_in1_alarm.dev_attr.attr,
 399        &sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
 400        &sensor_dev_attr_in2_alarm.dev_attr.attr,
 401
 402        &sensor_dev_attr_curr1_alarm.dev_attr.attr,
 403
 404        &sensor_dev_attr_power1_alarm.dev_attr.attr,
 405
 406        &sensor_dev_attr_fan1_alarm.dev_attr.attr,
 407
 408        &sensor_dev_attr_temp1_input.dev_attr.attr,
 409        &sensor_dev_attr_temp1_max.dev_attr.attr,
 410        &sensor_dev_attr_temp1_crit.dev_attr.attr,
 411        &sensor_dev_attr_temp1_alarm.dev_attr.attr,
 412        &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
 413        &sensor_dev_attr_temp1_fault.dev_attr.attr,
 414
 415        NULL,
 416};
 417
 418static const struct attribute_group pem_group = {
 419        .attrs = pem_attributes,
 420};
 421
 422static struct attribute *pem_input_attributes[] = {
 423        &sensor_dev_attr_in2_input.dev_attr.attr,
 424        &sensor_dev_attr_curr1_input.dev_attr.attr,
 425        &sensor_dev_attr_power1_input.dev_attr.attr,
 426        NULL
 427};
 428
 429static const struct attribute_group pem_input_group = {
 430        .attrs = pem_input_attributes,
 431};
 432
 433static struct attribute *pem_fan_attributes[] = {
 434        &sensor_dev_attr_fan1_input.dev_attr.attr,
 435        &sensor_dev_attr_fan2_input.dev_attr.attr,
 436        &sensor_dev_attr_fan3_input.dev_attr.attr,
 437        NULL
 438};
 439
 440static const struct attribute_group pem_fan_group = {
 441        .attrs = pem_fan_attributes,
 442};
 443
 444static int pem_probe(struct i2c_client *client,
 445                     const struct i2c_device_id *id)
 446{
 447        struct i2c_adapter *adapter = client->adapter;
 448        struct device *dev = &client->dev;
 449        struct device *hwmon_dev;
 450        struct pem_data *data;
 451        int ret, idx = 0;
 452
 453        if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BLOCK_DATA
 454                                     | I2C_FUNC_SMBUS_WRITE_BYTE))
 455                return -ENODEV;
 456
 457        data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
 458        if (!data)
 459                return -ENOMEM;
 460
 461        data->client = client;
 462        mutex_init(&data->update_lock);
 463
 464        /*
 465         * We use the next two commands to determine if the device is really
 466         * there.
 467         */
 468        ret = pem_read_block(client, PEM_READ_FIRMWARE_REV,
 469                             data->firmware_rev, sizeof(data->firmware_rev));
 470        if (ret < 0)
 471                return ret;
 472
 473        ret = i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
 474        if (ret < 0)
 475                return ret;
 476
 477        dev_info(dev, "Firmware revision %d.%d.%d\n",
 478                 data->firmware_rev[0], data->firmware_rev[1],
 479                 data->firmware_rev[2]);
 480
 481        /* sysfs hooks */
 482        data->groups[idx++] = &pem_group;
 483
 484        /*
 485         * Check if input readings are supported.
 486         * This is the case if we can read input data,
 487         * and if the returned data is not all zeros.
 488         * Note that input alarms are always supported.
 489         */
 490        ret = pem_read_block(client, PEM_READ_INPUT_STRING,
 491                             data->input_string,
 492                             sizeof(data->input_string) - 1);
 493        if (!ret && (data->input_string[0] || data->input_string[1] ||
 494                     data->input_string[2]))
 495                data->input_length = sizeof(data->input_string) - 1;
 496        else if (ret < 0) {
 497                /* Input string is one byte longer for some devices */
 498                ret = pem_read_block(client, PEM_READ_INPUT_STRING,
 499                                    data->input_string,
 500                                    sizeof(data->input_string));
 501                if (!ret && (data->input_string[0] || data->input_string[1] ||
 502                            data->input_string[2] || data->input_string[3]))
 503                        data->input_length = sizeof(data->input_string);
 504        }
 505
 506        if (data->input_length)
 507                data->groups[idx++] = &pem_input_group;
 508
 509        /*
 510         * Check if fan speed readings are supported.
 511         * This is the case if we can read fan speed data,
 512         * and if the returned data is not all zeros.
 513         * Note that the fan alarm is always supported.
 514         */
 515        ret = pem_read_block(client, PEM_READ_FAN_SPEED,
 516                             data->fan_speed,
 517                             sizeof(data->fan_speed));
 518        if (!ret && (data->fan_speed[0] || data->fan_speed[1] ||
 519                     data->fan_speed[2] || data->fan_speed[3])) {
 520                data->fans_supported = true;
 521                data->groups[idx++] = &pem_fan_group;
 522        }
 523
 524        hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
 525                                                           data, data->groups);
 526        return PTR_ERR_OR_ZERO(hwmon_dev);
 527}
 528
 529static const struct i2c_device_id pem_id[] = {
 530        {"lineage_pem", 0},
 531        {}
 532};
 533MODULE_DEVICE_TABLE(i2c, pem_id);
 534
 535static struct i2c_driver pem_driver = {
 536        .driver = {
 537                   .name = "lineage_pem",
 538                   },
 539        .probe = pem_probe,
 540        .id_table = pem_id,
 541};
 542
 543module_i2c_driver(pem_driver);
 544
 545MODULE_AUTHOR("Guenter Roeck <linux@roeck-us.net>");
 546MODULE_DESCRIPTION("Lineage CPL PEM hardware monitoring driver");
 547MODULE_LICENSE("GPL");
 548