linux/drivers/iio/accel/bmc150-accel-core.c
<<
>>
Prefs
   1/*
   2 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
   3 *  - BMC150
   4 *  - BMI055
   5 *  - BMA255
   6 *  - BMA250E
   7 *  - BMA222E
   8 *  - BMA280
   9 *
  10 * Copyright (c) 2014, Intel Corporation.
  11 *
  12 * This program is free software; you can redistribute it and/or modify it
  13 * under the terms and conditions of the GNU General Public License,
  14 * version 2, as published by the Free Software Foundation.
  15 *
  16 * This program is distributed in the hope it will be useful, but WITHOUT
  17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  18 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  19 * more details.
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/i2c.h>
  24#include <linux/interrupt.h>
  25#include <linux/delay.h>
  26#include <linux/slab.h>
  27#include <linux/acpi.h>
  28#include <linux/pm.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/iio/iio.h>
  31#include <linux/iio/sysfs.h>
  32#include <linux/iio/buffer.h>
  33#include <linux/iio/events.h>
  34#include <linux/iio/trigger.h>
  35#include <linux/iio/trigger_consumer.h>
  36#include <linux/iio/triggered_buffer.h>
  37#include <linux/regmap.h>
  38
  39#include "bmc150-accel.h"
  40
  41#define BMC150_ACCEL_DRV_NAME                   "bmc150_accel"
  42#define BMC150_ACCEL_IRQ_NAME                   "bmc150_accel_event"
  43
  44#define BMC150_ACCEL_REG_CHIP_ID                0x00
  45
  46#define BMC150_ACCEL_REG_INT_STATUS_2           0x0B
  47#define BMC150_ACCEL_ANY_MOTION_MASK            0x07
  48#define BMC150_ACCEL_ANY_MOTION_BIT_X           BIT(0)
  49#define BMC150_ACCEL_ANY_MOTION_BIT_Y           BIT(1)
  50#define BMC150_ACCEL_ANY_MOTION_BIT_Z           BIT(2)
  51#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN        BIT(3)
  52
  53#define BMC150_ACCEL_REG_PMU_LPW                0x11
  54#define BMC150_ACCEL_PMU_MODE_MASK              0xE0
  55#define BMC150_ACCEL_PMU_MODE_SHIFT             5
  56#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK     0x17
  57#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT    1
  58
  59#define BMC150_ACCEL_REG_PMU_RANGE              0x0F
  60
  61#define BMC150_ACCEL_DEF_RANGE_2G               0x03
  62#define BMC150_ACCEL_DEF_RANGE_4G               0x05
  63#define BMC150_ACCEL_DEF_RANGE_8G               0x08
  64#define BMC150_ACCEL_DEF_RANGE_16G              0x0C
  65
  66/* Default BW: 125Hz */
  67#define BMC150_ACCEL_REG_PMU_BW         0x10
  68#define BMC150_ACCEL_DEF_BW                     125
  69
  70#define BMC150_ACCEL_REG_RESET                  0x14
  71#define BMC150_ACCEL_RESET_VAL                  0xB6
  72
  73#define BMC150_ACCEL_REG_INT_MAP_0              0x19
  74#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE        BIT(2)
  75
  76#define BMC150_ACCEL_REG_INT_MAP_1              0x1A
  77#define BMC150_ACCEL_INT_MAP_1_BIT_DATA         BIT(0)
  78#define BMC150_ACCEL_INT_MAP_1_BIT_FWM          BIT(1)
  79#define BMC150_ACCEL_INT_MAP_1_BIT_FFULL        BIT(2)
  80
  81#define BMC150_ACCEL_REG_INT_RST_LATCH          0x21
  82#define BMC150_ACCEL_INT_MODE_LATCH_RESET       0x80
  83#define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
  84#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT     0x00
  85
  86#define BMC150_ACCEL_REG_INT_EN_0               0x16
  87#define BMC150_ACCEL_INT_EN_BIT_SLP_X           BIT(0)
  88#define BMC150_ACCEL_INT_EN_BIT_SLP_Y           BIT(1)
  89#define BMC150_ACCEL_INT_EN_BIT_SLP_Z           BIT(2)
  90
  91#define BMC150_ACCEL_REG_INT_EN_1               0x17
  92#define BMC150_ACCEL_INT_EN_BIT_DATA_EN         BIT(4)
  93#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN        BIT(5)
  94#define BMC150_ACCEL_INT_EN_BIT_FWM_EN          BIT(6)
  95
  96#define BMC150_ACCEL_REG_INT_OUT_CTRL           0x20
  97#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL      BIT(0)
  98
  99#define BMC150_ACCEL_REG_INT_5                  0x27
 100#define BMC150_ACCEL_SLOPE_DUR_MASK             0x03
 101
 102#define BMC150_ACCEL_REG_INT_6                  0x28
 103#define BMC150_ACCEL_SLOPE_THRES_MASK           0xFF
 104
 105/* Slope duration in terms of number of samples */
 106#define BMC150_ACCEL_DEF_SLOPE_DURATION         1
 107/* in terms of multiples of g's/LSB, based on range */
 108#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD        1
 109
 110#define BMC150_ACCEL_REG_XOUT_L         0x02
 111
 112#define BMC150_ACCEL_MAX_STARTUP_TIME_MS        100
 113
 114/* Sleep Duration values */
 115#define BMC150_ACCEL_SLEEP_500_MICRO            0x05
 116#define BMC150_ACCEL_SLEEP_1_MS         0x06
 117#define BMC150_ACCEL_SLEEP_2_MS         0x07
 118#define BMC150_ACCEL_SLEEP_4_MS         0x08
 119#define BMC150_ACCEL_SLEEP_6_MS         0x09
 120#define BMC150_ACCEL_SLEEP_10_MS                0x0A
 121#define BMC150_ACCEL_SLEEP_25_MS                0x0B
 122#define BMC150_ACCEL_SLEEP_50_MS                0x0C
 123#define BMC150_ACCEL_SLEEP_100_MS               0x0D
 124#define BMC150_ACCEL_SLEEP_500_MS               0x0E
 125#define BMC150_ACCEL_SLEEP_1_SEC                0x0F
 126
 127#define BMC150_ACCEL_REG_TEMP                   0x08
 128#define BMC150_ACCEL_TEMP_CENTER_VAL            24
 129
 130#define BMC150_ACCEL_AXIS_TO_REG(axis)  (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
 131#define BMC150_AUTO_SUSPEND_DELAY_MS            2000
 132
 133#define BMC150_ACCEL_REG_FIFO_STATUS            0x0E
 134#define BMC150_ACCEL_REG_FIFO_CONFIG0           0x30
 135#define BMC150_ACCEL_REG_FIFO_CONFIG1           0x3E
 136#define BMC150_ACCEL_REG_FIFO_DATA              0x3F
 137#define BMC150_ACCEL_FIFO_LENGTH                32
 138
 139enum bmc150_accel_axis {
 140        AXIS_X,
 141        AXIS_Y,
 142        AXIS_Z,
 143        AXIS_MAX,
 144};
 145
 146enum bmc150_power_modes {
 147        BMC150_ACCEL_SLEEP_MODE_NORMAL,
 148        BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
 149        BMC150_ACCEL_SLEEP_MODE_LPM,
 150        BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
 151};
 152
 153struct bmc150_scale_info {
 154        int scale;
 155        u8 reg_range;
 156};
 157
 158struct bmc150_accel_chip_info {
 159        const char *name;
 160        u8 chip_id;
 161        const struct iio_chan_spec *channels;
 162        int num_channels;
 163        const struct bmc150_scale_info scale_table[4];
 164};
 165
 166struct bmc150_accel_interrupt {
 167        const struct bmc150_accel_interrupt_info *info;
 168        atomic_t users;
 169};
 170
 171struct bmc150_accel_trigger {
 172        struct bmc150_accel_data *data;
 173        struct iio_trigger *indio_trig;
 174        int (*setup)(struct bmc150_accel_trigger *t, bool state);
 175        int intr;
 176        bool enabled;
 177};
 178
 179enum bmc150_accel_interrupt_id {
 180        BMC150_ACCEL_INT_DATA_READY,
 181        BMC150_ACCEL_INT_ANY_MOTION,
 182        BMC150_ACCEL_INT_WATERMARK,
 183        BMC150_ACCEL_INTERRUPTS,
 184};
 185
 186enum bmc150_accel_trigger_id {
 187        BMC150_ACCEL_TRIGGER_DATA_READY,
 188        BMC150_ACCEL_TRIGGER_ANY_MOTION,
 189        BMC150_ACCEL_TRIGGERS,
 190};
 191
 192struct bmc150_accel_data {
 193        struct regmap *regmap;
 194        int irq;
 195        struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
 196        atomic_t active_intr;
 197        struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
 198        struct mutex mutex;
 199        u8 fifo_mode, watermark;
 200        s16 buffer[8];
 201        u8 bw_bits;
 202        u32 slope_dur;
 203        u32 slope_thres;
 204        u32 range;
 205        int ev_enable_state;
 206        int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
 207        const struct bmc150_accel_chip_info *chip_info;
 208};
 209
 210static const struct {
 211        int val;
 212        int val2;
 213        u8 bw_bits;
 214} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
 215                                     {31, 260000, 0x09},
 216                                     {62, 500000, 0x0A},
 217                                     {125, 0, 0x0B},
 218                                     {250, 0, 0x0C},
 219                                     {500, 0, 0x0D},
 220                                     {1000, 0, 0x0E},
 221                                     {2000, 0, 0x0F} };
 222
 223static const struct {
 224        int bw_bits;
 225        int msec;
 226} bmc150_accel_sample_upd_time[] = { {0x08, 64},
 227                                     {0x09, 32},
 228                                     {0x0A, 16},
 229                                     {0x0B, 8},
 230                                     {0x0C, 4},
 231                                     {0x0D, 2},
 232                                     {0x0E, 1},
 233                                     {0x0F, 1} };
 234
 235static const struct {
 236        int sleep_dur;
 237        u8 reg_value;
 238} bmc150_accel_sleep_value_table[] = { {0, 0},
 239                                       {500, BMC150_ACCEL_SLEEP_500_MICRO},
 240                                       {1000, BMC150_ACCEL_SLEEP_1_MS},
 241                                       {2000, BMC150_ACCEL_SLEEP_2_MS},
 242                                       {4000, BMC150_ACCEL_SLEEP_4_MS},
 243                                       {6000, BMC150_ACCEL_SLEEP_6_MS},
 244                                       {10000, BMC150_ACCEL_SLEEP_10_MS},
 245                                       {25000, BMC150_ACCEL_SLEEP_25_MS},
 246                                       {50000, BMC150_ACCEL_SLEEP_50_MS},
 247                                       {100000, BMC150_ACCEL_SLEEP_100_MS},
 248                                       {500000, BMC150_ACCEL_SLEEP_500_MS},
 249                                       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
 250
 251const struct regmap_config bmc150_regmap_conf = {
 252        .reg_bits = 8,
 253        .val_bits = 8,
 254        .max_register = 0x3f,
 255};
 256EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
 257
 258static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
 259                                 enum bmc150_power_modes mode,
 260                                 int dur_us)
 261{
 262        struct device *dev = regmap_get_device(data->regmap);
 263        int i;
 264        int ret;
 265        u8 lpw_bits;
 266        int dur_val = -1;
 267
 268        if (dur_us > 0) {
 269                for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
 270                                                                         ++i) {
 271                        if (bmc150_accel_sleep_value_table[i].sleep_dur ==
 272                                                                        dur_us)
 273                                dur_val =
 274                                bmc150_accel_sleep_value_table[i].reg_value;
 275                }
 276        } else {
 277                dur_val = 0;
 278        }
 279
 280        if (dur_val < 0)
 281                return -EINVAL;
 282
 283        lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
 284        lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
 285
 286        dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
 287
 288        ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
 289        if (ret < 0) {
 290                dev_err(dev, "Error writing reg_pmu_lpw\n");
 291                return ret;
 292        }
 293
 294        return 0;
 295}
 296
 297static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
 298                               int val2)
 299{
 300        int i;
 301        int ret;
 302
 303        for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
 304                if (bmc150_accel_samp_freq_table[i].val == val &&
 305                    bmc150_accel_samp_freq_table[i].val2 == val2) {
 306                        ret = regmap_write(data->regmap,
 307                                BMC150_ACCEL_REG_PMU_BW,
 308                                bmc150_accel_samp_freq_table[i].bw_bits);
 309                        if (ret < 0)
 310                                return ret;
 311
 312                        data->bw_bits =
 313                                bmc150_accel_samp_freq_table[i].bw_bits;
 314                        return 0;
 315                }
 316        }
 317
 318        return -EINVAL;
 319}
 320
 321static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
 322{
 323        struct device *dev = regmap_get_device(data->regmap);
 324        int ret;
 325
 326        ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
 327                                        data->slope_thres);
 328        if (ret < 0) {
 329                dev_err(dev, "Error writing reg_int_6\n");
 330                return ret;
 331        }
 332
 333        ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
 334                                 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
 335        if (ret < 0) {
 336                dev_err(dev, "Error updating reg_int_5\n");
 337                return ret;
 338        }
 339
 340        dev_dbg(dev, "%s: %x %x\n", __func__, data->slope_thres,
 341                data->slope_dur);
 342
 343        return ret;
 344}
 345
 346static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
 347                                         bool state)
 348{
 349        if (state)
 350                return bmc150_accel_update_slope(t->data);
 351
 352        return 0;
 353}
 354
 355static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
 356                               int *val2)
 357{
 358        int i;
 359
 360        for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
 361                if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
 362                        *val = bmc150_accel_samp_freq_table[i].val;
 363                        *val2 = bmc150_accel_samp_freq_table[i].val2;
 364                        return IIO_VAL_INT_PLUS_MICRO;
 365                }
 366        }
 367
 368        return -EINVAL;
 369}
 370
 371#ifdef CONFIG_PM
 372static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
 373{
 374        int i;
 375
 376        for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
 377                if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
 378                        return bmc150_accel_sample_upd_time[i].msec;
 379        }
 380
 381        return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
 382}
 383
 384static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
 385{
 386        struct device *dev = regmap_get_device(data->regmap);
 387        int ret;
 388
 389        if (on) {
 390                ret = pm_runtime_get_sync(dev);
 391        } else {
 392                pm_runtime_mark_last_busy(dev);
 393                ret = pm_runtime_put_autosuspend(dev);
 394        }
 395
 396        if (ret < 0) {
 397                dev_err(dev,
 398                        "Failed: bmc150_accel_set_power_state for %d\n", on);
 399                if (on)
 400                        pm_runtime_put_noidle(dev);
 401
 402                return ret;
 403        }
 404
 405        return 0;
 406}
 407#else
 408static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
 409{
 410        return 0;
 411}
 412#endif
 413
 414static const struct bmc150_accel_interrupt_info {
 415        u8 map_reg;
 416        u8 map_bitmask;
 417        u8 en_reg;
 418        u8 en_bitmask;
 419} bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
 420        { /* data ready interrupt */
 421                .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
 422                .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
 423                .en_reg = BMC150_ACCEL_REG_INT_EN_1,
 424                .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
 425        },
 426        {  /* motion interrupt */
 427                .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
 428                .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
 429                .en_reg = BMC150_ACCEL_REG_INT_EN_0,
 430                .en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
 431                        BMC150_ACCEL_INT_EN_BIT_SLP_Y |
 432                        BMC150_ACCEL_INT_EN_BIT_SLP_Z
 433        },
 434        { /* fifo watermark interrupt */
 435                .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
 436                .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
 437                .en_reg = BMC150_ACCEL_REG_INT_EN_1,
 438                .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
 439        },
 440};
 441
 442static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
 443                                          struct bmc150_accel_data *data)
 444{
 445        int i;
 446
 447        for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
 448                data->interrupts[i].info = &bmc150_accel_interrupts[i];
 449}
 450
 451static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
 452                                      bool state)
 453{
 454        struct device *dev = regmap_get_device(data->regmap);
 455        struct bmc150_accel_interrupt *intr = &data->interrupts[i];
 456        const struct bmc150_accel_interrupt_info *info = intr->info;
 457        int ret;
 458
 459        if (state) {
 460                if (atomic_inc_return(&intr->users) > 1)
 461                        return 0;
 462        } else {
 463                if (atomic_dec_return(&intr->users) > 0)
 464                        return 0;
 465        }
 466
 467        /*
 468         * We will expect the enable and disable to do operation in reverse
 469         * order. This will happen here anyway, as our resume operation uses
 470         * sync mode runtime pm calls. The suspend operation will be delayed
 471         * by autosuspend delay.
 472         * So the disable operation will still happen in reverse order of
 473         * enable operation. When runtime pm is disabled the mode is always on,
 474         * so sequence doesn't matter.
 475         */
 476        ret = bmc150_accel_set_power_state(data, state);
 477        if (ret < 0)
 478                return ret;
 479
 480        /* map the interrupt to the appropriate pins */
 481        ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
 482                                 (state ? info->map_bitmask : 0));
 483        if (ret < 0) {
 484                dev_err(dev, "Error updating reg_int_map\n");
 485                goto out_fix_power_state;
 486        }
 487
 488        /* enable/disable the interrupt */
 489        ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
 490                                 (state ? info->en_bitmask : 0));
 491        if (ret < 0) {
 492                dev_err(dev, "Error updating reg_int_en\n");
 493                goto out_fix_power_state;
 494        }
 495
 496        if (state)
 497                atomic_inc(&data->active_intr);
 498        else
 499                atomic_dec(&data->active_intr);
 500
 501        return 0;
 502
 503out_fix_power_state:
 504        bmc150_accel_set_power_state(data, false);
 505        return ret;
 506}
 507
 508static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
 509{
 510        struct device *dev = regmap_get_device(data->regmap);
 511        int ret, i;
 512
 513        for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
 514                if (data->chip_info->scale_table[i].scale == val) {
 515                        ret = regmap_write(data->regmap,
 516                                     BMC150_ACCEL_REG_PMU_RANGE,
 517                                     data->chip_info->scale_table[i].reg_range);
 518                        if (ret < 0) {
 519                                dev_err(dev, "Error writing pmu_range\n");
 520                                return ret;
 521                        }
 522
 523                        data->range = data->chip_info->scale_table[i].reg_range;
 524                        return 0;
 525                }
 526        }
 527
 528        return -EINVAL;
 529}
 530
 531static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
 532{
 533        struct device *dev = regmap_get_device(data->regmap);
 534        int ret;
 535        unsigned int value;
 536
 537        mutex_lock(&data->mutex);
 538
 539        ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
 540        if (ret < 0) {
 541                dev_err(dev, "Error reading reg_temp\n");
 542                mutex_unlock(&data->mutex);
 543                return ret;
 544        }
 545        *val = sign_extend32(value, 7);
 546
 547        mutex_unlock(&data->mutex);
 548
 549        return IIO_VAL_INT;
 550}
 551
 552static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
 553                                 struct iio_chan_spec const *chan,
 554                                 int *val)
 555{
 556        struct device *dev = regmap_get_device(data->regmap);
 557        int ret;
 558        int axis = chan->scan_index;
 559        __le16 raw_val;
 560
 561        mutex_lock(&data->mutex);
 562        ret = bmc150_accel_set_power_state(data, true);
 563        if (ret < 0) {
 564                mutex_unlock(&data->mutex);
 565                return ret;
 566        }
 567
 568        ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
 569                               &raw_val, sizeof(raw_val));
 570        if (ret < 0) {
 571                dev_err(dev, "Error reading axis %d\n", axis);
 572                bmc150_accel_set_power_state(data, false);
 573                mutex_unlock(&data->mutex);
 574                return ret;
 575        }
 576        *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
 577                             chan->scan_type.realbits - 1);
 578        ret = bmc150_accel_set_power_state(data, false);
 579        mutex_unlock(&data->mutex);
 580        if (ret < 0)
 581                return ret;
 582
 583        return IIO_VAL_INT;
 584}
 585
 586static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
 587                                 struct iio_chan_spec const *chan,
 588                                 int *val, int *val2, long mask)
 589{
 590        struct bmc150_accel_data *data = iio_priv(indio_dev);
 591        int ret;
 592
 593        switch (mask) {
 594        case IIO_CHAN_INFO_RAW:
 595                switch (chan->type) {
 596                case IIO_TEMP:
 597                        return bmc150_accel_get_temp(data, val);
 598                case IIO_ACCEL:
 599                        if (iio_buffer_enabled(indio_dev))
 600                                return -EBUSY;
 601                        else
 602                                return bmc150_accel_get_axis(data, chan, val);
 603                default:
 604                        return -EINVAL;
 605                }
 606        case IIO_CHAN_INFO_OFFSET:
 607                if (chan->type == IIO_TEMP) {
 608                        *val = BMC150_ACCEL_TEMP_CENTER_VAL;
 609                        return IIO_VAL_INT;
 610                } else {
 611                        return -EINVAL;
 612                }
 613        case IIO_CHAN_INFO_SCALE:
 614                *val = 0;
 615                switch (chan->type) {
 616                case IIO_TEMP:
 617                        *val2 = 500000;
 618                        return IIO_VAL_INT_PLUS_MICRO;
 619                case IIO_ACCEL:
 620                {
 621                        int i;
 622                        const struct bmc150_scale_info *si;
 623                        int st_size = ARRAY_SIZE(data->chip_info->scale_table);
 624
 625                        for (i = 0; i < st_size; ++i) {
 626                                si = &data->chip_info->scale_table[i];
 627                                if (si->reg_range == data->range) {
 628                                        *val2 = si->scale;
 629                                        return IIO_VAL_INT_PLUS_MICRO;
 630                                }
 631                        }
 632                        return -EINVAL;
 633                }
 634                default:
 635                        return -EINVAL;
 636                }
 637        case IIO_CHAN_INFO_SAMP_FREQ:
 638                mutex_lock(&data->mutex);
 639                ret = bmc150_accel_get_bw(data, val, val2);
 640                mutex_unlock(&data->mutex);
 641                return ret;
 642        default:
 643                return -EINVAL;
 644        }
 645}
 646
 647static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
 648                                  struct iio_chan_spec const *chan,
 649                                  int val, int val2, long mask)
 650{
 651        struct bmc150_accel_data *data = iio_priv(indio_dev);
 652        int ret;
 653
 654        switch (mask) {
 655        case IIO_CHAN_INFO_SAMP_FREQ:
 656                mutex_lock(&data->mutex);
 657                ret = bmc150_accel_set_bw(data, val, val2);
 658                mutex_unlock(&data->mutex);
 659                break;
 660        case IIO_CHAN_INFO_SCALE:
 661                if (val)
 662                        return -EINVAL;
 663
 664                mutex_lock(&data->mutex);
 665                ret = bmc150_accel_set_scale(data, val2);
 666                mutex_unlock(&data->mutex);
 667                return ret;
 668        default:
 669                ret = -EINVAL;
 670        }
 671
 672        return ret;
 673}
 674
 675static int bmc150_accel_read_event(struct iio_dev *indio_dev,
 676                                   const struct iio_chan_spec *chan,
 677                                   enum iio_event_type type,
 678                                   enum iio_event_direction dir,
 679                                   enum iio_event_info info,
 680                                   int *val, int *val2)
 681{
 682        struct bmc150_accel_data *data = iio_priv(indio_dev);
 683
 684        *val2 = 0;
 685        switch (info) {
 686        case IIO_EV_INFO_VALUE:
 687                *val = data->slope_thres;
 688                break;
 689        case IIO_EV_INFO_PERIOD:
 690                *val = data->slope_dur;
 691                break;
 692        default:
 693                return -EINVAL;
 694        }
 695
 696        return IIO_VAL_INT;
 697}
 698
 699static int bmc150_accel_write_event(struct iio_dev *indio_dev,
 700                                    const struct iio_chan_spec *chan,
 701                                    enum iio_event_type type,
 702                                    enum iio_event_direction dir,
 703                                    enum iio_event_info info,
 704                                    int val, int val2)
 705{
 706        struct bmc150_accel_data *data = iio_priv(indio_dev);
 707
 708        if (data->ev_enable_state)
 709                return -EBUSY;
 710
 711        switch (info) {
 712        case IIO_EV_INFO_VALUE:
 713                data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
 714                break;
 715        case IIO_EV_INFO_PERIOD:
 716                data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
 717                break;
 718        default:
 719                return -EINVAL;
 720        }
 721
 722        return 0;
 723}
 724
 725static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
 726                                          const struct iio_chan_spec *chan,
 727                                          enum iio_event_type type,
 728                                          enum iio_event_direction dir)
 729{
 730        struct bmc150_accel_data *data = iio_priv(indio_dev);
 731
 732        return data->ev_enable_state;
 733}
 734
 735static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
 736                                           const struct iio_chan_spec *chan,
 737                                           enum iio_event_type type,
 738                                           enum iio_event_direction dir,
 739                                           int state)
 740{
 741        struct bmc150_accel_data *data = iio_priv(indio_dev);
 742        int ret;
 743
 744        if (state == data->ev_enable_state)
 745                return 0;
 746
 747        mutex_lock(&data->mutex);
 748
 749        ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
 750                                         state);
 751        if (ret < 0) {
 752                mutex_unlock(&data->mutex);
 753                return ret;
 754        }
 755
 756        data->ev_enable_state = state;
 757        mutex_unlock(&data->mutex);
 758
 759        return 0;
 760}
 761
 762static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
 763                                         struct iio_trigger *trig)
 764{
 765        struct bmc150_accel_data *data = iio_priv(indio_dev);
 766        int i;
 767
 768        for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
 769                if (data->triggers[i].indio_trig == trig)
 770                        return 0;
 771        }
 772
 773        return -EINVAL;
 774}
 775
 776static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
 777                                               struct device_attribute *attr,
 778                                               char *buf)
 779{
 780        struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 781        struct bmc150_accel_data *data = iio_priv(indio_dev);
 782        int wm;
 783
 784        mutex_lock(&data->mutex);
 785        wm = data->watermark;
 786        mutex_unlock(&data->mutex);
 787
 788        return sprintf(buf, "%d\n", wm);
 789}
 790
 791static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
 792                                           struct device_attribute *attr,
 793                                           char *buf)
 794{
 795        struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 796        struct bmc150_accel_data *data = iio_priv(indio_dev);
 797        bool state;
 798
 799        mutex_lock(&data->mutex);
 800        state = data->fifo_mode;
 801        mutex_unlock(&data->mutex);
 802
 803        return sprintf(buf, "%d\n", state);
 804}
 805
 806static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
 807static IIO_CONST_ATTR(hwfifo_watermark_max,
 808                      __stringify(BMC150_ACCEL_FIFO_LENGTH));
 809static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
 810                       bmc150_accel_get_fifo_state, NULL, 0);
 811static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
 812                       bmc150_accel_get_fifo_watermark, NULL, 0);
 813
 814static const struct attribute *bmc150_accel_fifo_attributes[] = {
 815        &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
 816        &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
 817        &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
 818        &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
 819        NULL,
 820};
 821
 822static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
 823{
 824        struct bmc150_accel_data *data = iio_priv(indio_dev);
 825
 826        if (val > BMC150_ACCEL_FIFO_LENGTH)
 827                val = BMC150_ACCEL_FIFO_LENGTH;
 828
 829        mutex_lock(&data->mutex);
 830        data->watermark = val;
 831        mutex_unlock(&data->mutex);
 832
 833        return 0;
 834}
 835
 836/*
 837 * We must read at least one full frame in one burst, otherwise the rest of the
 838 * frame data is discarded.
 839 */
 840static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
 841                                      char *buffer, int samples)
 842{
 843        struct device *dev = regmap_get_device(data->regmap);
 844        int sample_length = 3 * 2;
 845        int ret;
 846        int total_length = samples * sample_length;
 847        int i;
 848        size_t step = regmap_get_raw_read_max(data->regmap);
 849
 850        if (!step || step > total_length)
 851                step = total_length;
 852        else if (step < total_length)
 853                step = sample_length;
 854
 855        /*
 856         * Seems we have a bus with size limitation so we have to execute
 857         * multiple reads
 858         */
 859        for (i = 0; i < total_length; i += step) {
 860                ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
 861                                      &buffer[i], step);
 862                if (ret)
 863                        break;
 864        }
 865
 866        if (ret)
 867                dev_err(dev,
 868                        "Error transferring data from fifo in single steps of %zu\n",
 869                        step);
 870
 871        return ret;
 872}
 873
 874static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
 875                                     unsigned samples, bool irq)
 876{
 877        struct bmc150_accel_data *data = iio_priv(indio_dev);
 878        struct device *dev = regmap_get_device(data->regmap);
 879        int ret, i;
 880        u8 count;
 881        u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
 882        int64_t tstamp;
 883        uint64_t sample_period;
 884        unsigned int val;
 885
 886        ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
 887        if (ret < 0) {
 888                dev_err(dev, "Error reading reg_fifo_status\n");
 889                return ret;
 890        }
 891
 892        count = val & 0x7F;
 893
 894        if (!count)
 895                return 0;
 896
 897        /*
 898         * If we getting called from IRQ handler we know the stored timestamp is
 899         * fairly accurate for the last stored sample. Otherwise, if we are
 900         * called as a result of a read operation from userspace and hence
 901         * before the watermark interrupt was triggered, take a timestamp
 902         * now. We can fall anywhere in between two samples so the error in this
 903         * case is at most one sample period.
 904         */
 905        if (!irq) {
 906                data->old_timestamp = data->timestamp;
 907                data->timestamp = iio_get_time_ns(indio_dev);
 908        }
 909
 910        /*
 911         * Approximate timestamps for each of the sample based on the sampling
 912         * frequency, timestamp for last sample and number of samples.
 913         *
 914         * Note that we can't use the current bandwidth settings to compute the
 915         * sample period because the sample rate varies with the device
 916         * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
 917         * small variation adds when we store a large number of samples and
 918         * creates significant jitter between the last and first samples in
 919         * different batches (e.g. 32ms vs 21ms).
 920         *
 921         * To avoid this issue we compute the actual sample period ourselves
 922         * based on the timestamp delta between the last two flush operations.
 923         */
 924        sample_period = (data->timestamp - data->old_timestamp);
 925        do_div(sample_period, count);
 926        tstamp = data->timestamp - (count - 1) * sample_period;
 927
 928        if (samples && count > samples)
 929                count = samples;
 930
 931        ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
 932        if (ret)
 933                return ret;
 934
 935        /*
 936         * Ideally we want the IIO core to handle the demux when running in fifo
 937         * mode but not when running in triggered buffer mode. Unfortunately
 938         * this does not seem to be possible, so stick with driver demux for
 939         * now.
 940         */
 941        for (i = 0; i < count; i++) {
 942                u16 sample[8];
 943                int j, bit;
 944
 945                j = 0;
 946                for_each_set_bit(bit, indio_dev->active_scan_mask,
 947                                 indio_dev->masklength)
 948                        memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
 949
 950                iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
 951
 952                tstamp += sample_period;
 953        }
 954
 955        return count;
 956}
 957
 958static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
 959{
 960        struct bmc150_accel_data *data = iio_priv(indio_dev);
 961        int ret;
 962
 963        mutex_lock(&data->mutex);
 964        ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
 965        mutex_unlock(&data->mutex);
 966
 967        return ret;
 968}
 969
 970static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
 971                "15.620000 31.260000 62.50000 125 250 500 1000 2000");
 972
 973static struct attribute *bmc150_accel_attributes[] = {
 974        &iio_const_attr_sampling_frequency_available.dev_attr.attr,
 975        NULL,
 976};
 977
 978static const struct attribute_group bmc150_accel_attrs_group = {
 979        .attrs = bmc150_accel_attributes,
 980};
 981
 982static const struct iio_event_spec bmc150_accel_event = {
 983                .type = IIO_EV_TYPE_ROC,
 984                .dir = IIO_EV_DIR_EITHER,
 985                .mask_separate = BIT(IIO_EV_INFO_VALUE) |
 986                                 BIT(IIO_EV_INFO_ENABLE) |
 987                                 BIT(IIO_EV_INFO_PERIOD)
 988};
 989
 990#define BMC150_ACCEL_CHANNEL(_axis, bits) {                             \
 991        .type = IIO_ACCEL,                                              \
 992        .modified = 1,                                                  \
 993        .channel2 = IIO_MOD_##_axis,                                    \
 994        .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),                   \
 995        .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |          \
 996                                BIT(IIO_CHAN_INFO_SAMP_FREQ),           \
 997        .scan_index = AXIS_##_axis,                                     \
 998        .scan_type = {                                                  \
 999                .sign = 's',                                            \
1000                .realbits = (bits),                                     \
1001                .storagebits = 16,                                      \
1002                .shift = 16 - (bits),                                   \
1003                .endianness = IIO_LE,                                   \
1004        },                                                              \
1005        .event_spec = &bmc150_accel_event,                              \
1006        .num_event_specs = 1                                            \
1007}
1008
1009#define BMC150_ACCEL_CHANNELS(bits) {                                   \
1010        {                                                               \
1011                .type = IIO_TEMP,                                       \
1012                .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |          \
1013                                      BIT(IIO_CHAN_INFO_SCALE) |        \
1014                                      BIT(IIO_CHAN_INFO_OFFSET),        \
1015                .scan_index = -1,                                       \
1016        },                                                              \
1017        BMC150_ACCEL_CHANNEL(X, bits),                                  \
1018        BMC150_ACCEL_CHANNEL(Y, bits),                                  \
1019        BMC150_ACCEL_CHANNEL(Z, bits),                                  \
1020        IIO_CHAN_SOFT_TIMESTAMP(3),                                     \
1021}
1022
1023static const struct iio_chan_spec bma222e_accel_channels[] =
1024        BMC150_ACCEL_CHANNELS(8);
1025static const struct iio_chan_spec bma250e_accel_channels[] =
1026        BMC150_ACCEL_CHANNELS(10);
1027static const struct iio_chan_spec bmc150_accel_channels[] =
1028        BMC150_ACCEL_CHANNELS(12);
1029static const struct iio_chan_spec bma280_accel_channels[] =
1030        BMC150_ACCEL_CHANNELS(14);
1031
1032static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1033        [bmc150] = {
1034                .name = "BMC150A",
1035                .chip_id = 0xFA,
1036                .channels = bmc150_accel_channels,
1037                .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1038                .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1039                                 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1040                                 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1041                                 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1042        },
1043        [bmi055] = {
1044                .name = "BMI055A",
1045                .chip_id = 0xFA,
1046                .channels = bmc150_accel_channels,
1047                .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1048                .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1049                                 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1050                                 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1051                                 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1052        },
1053        [bma255] = {
1054                .name = "BMA0255",
1055                .chip_id = 0xFA,
1056                .channels = bmc150_accel_channels,
1057                .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1058                .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1059                                 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1060                                 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1061                                 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1062        },
1063        [bma250e] = {
1064                .name = "BMA250E",
1065                .chip_id = 0xF9,
1066                .channels = bma250e_accel_channels,
1067                .num_channels = ARRAY_SIZE(bma250e_accel_channels),
1068                .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1069                                 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1070                                 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1071                                 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1072        },
1073        [bma222e] = {
1074                .name = "BMA222E",
1075                .chip_id = 0xF8,
1076                .channels = bma222e_accel_channels,
1077                .num_channels = ARRAY_SIZE(bma222e_accel_channels),
1078                .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1079                                 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1080                                 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1081                                 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1082        },
1083        [bma280] = {
1084                .name = "BMA0280",
1085                .chip_id = 0xFB,
1086                .channels = bma280_accel_channels,
1087                .num_channels = ARRAY_SIZE(bma280_accel_channels),
1088                .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1089                                 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1090                                 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1091                                 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1092        },
1093};
1094
1095static const struct iio_info bmc150_accel_info = {
1096        .attrs                  = &bmc150_accel_attrs_group,
1097        .read_raw               = bmc150_accel_read_raw,
1098        .write_raw              = bmc150_accel_write_raw,
1099        .read_event_value       = bmc150_accel_read_event,
1100        .write_event_value      = bmc150_accel_write_event,
1101        .write_event_config     = bmc150_accel_write_event_config,
1102        .read_event_config      = bmc150_accel_read_event_config,
1103        .driver_module          = THIS_MODULE,
1104};
1105
1106static const struct iio_info bmc150_accel_info_fifo = {
1107        .attrs                  = &bmc150_accel_attrs_group,
1108        .read_raw               = bmc150_accel_read_raw,
1109        .write_raw              = bmc150_accel_write_raw,
1110        .read_event_value       = bmc150_accel_read_event,
1111        .write_event_value      = bmc150_accel_write_event,
1112        .write_event_config     = bmc150_accel_write_event_config,
1113        .read_event_config      = bmc150_accel_read_event_config,
1114        .validate_trigger       = bmc150_accel_validate_trigger,
1115        .hwfifo_set_watermark   = bmc150_accel_set_watermark,
1116        .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
1117        .driver_module          = THIS_MODULE,
1118};
1119
1120static const unsigned long bmc150_accel_scan_masks[] = {
1121                                        BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1122                                        0};
1123
1124static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1125{
1126        struct iio_poll_func *pf = p;
1127        struct iio_dev *indio_dev = pf->indio_dev;
1128        struct bmc150_accel_data *data = iio_priv(indio_dev);
1129        int ret;
1130
1131        mutex_lock(&data->mutex);
1132        ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1133                               data->buffer, AXIS_MAX * 2);
1134        mutex_unlock(&data->mutex);
1135        if (ret < 0)
1136                goto err_read;
1137
1138        iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1139                                           pf->timestamp);
1140err_read:
1141        iio_trigger_notify_done(indio_dev->trig);
1142
1143        return IRQ_HANDLED;
1144}
1145
1146static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1147{
1148        struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1149        struct bmc150_accel_data *data = t->data;
1150        struct device *dev = regmap_get_device(data->regmap);
1151        int ret;
1152
1153        /* new data interrupts don't need ack */
1154        if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1155                return 0;
1156
1157        mutex_lock(&data->mutex);
1158        /* clear any latched interrupt */
1159        ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1160                           BMC150_ACCEL_INT_MODE_LATCH_INT |
1161                           BMC150_ACCEL_INT_MODE_LATCH_RESET);
1162        mutex_unlock(&data->mutex);
1163        if (ret < 0) {
1164                dev_err(dev, "Error writing reg_int_rst_latch\n");
1165                return ret;
1166        }
1167
1168        return 0;
1169}
1170
1171static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1172                                          bool state)
1173{
1174        struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1175        struct bmc150_accel_data *data = t->data;
1176        int ret;
1177
1178        mutex_lock(&data->mutex);
1179
1180        if (t->enabled == state) {
1181                mutex_unlock(&data->mutex);
1182                return 0;
1183        }
1184
1185        if (t->setup) {
1186                ret = t->setup(t, state);
1187                if (ret < 0) {
1188                        mutex_unlock(&data->mutex);
1189                        return ret;
1190                }
1191        }
1192
1193        ret = bmc150_accel_set_interrupt(data, t->intr, state);
1194        if (ret < 0) {
1195                mutex_unlock(&data->mutex);
1196                return ret;
1197        }
1198
1199        t->enabled = state;
1200
1201        mutex_unlock(&data->mutex);
1202
1203        return ret;
1204}
1205
1206static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1207        .set_trigger_state = bmc150_accel_trigger_set_state,
1208        .try_reenable = bmc150_accel_trig_try_reen,
1209        .owner = THIS_MODULE,
1210};
1211
1212static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1213{
1214        struct bmc150_accel_data *data = iio_priv(indio_dev);
1215        struct device *dev = regmap_get_device(data->regmap);
1216        int dir;
1217        int ret;
1218        unsigned int val;
1219
1220        ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1221        if (ret < 0) {
1222                dev_err(dev, "Error reading reg_int_status_2\n");
1223                return ret;
1224        }
1225
1226        if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1227                dir = IIO_EV_DIR_FALLING;
1228        else
1229                dir = IIO_EV_DIR_RISING;
1230
1231        if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1232                iio_push_event(indio_dev,
1233                               IIO_MOD_EVENT_CODE(IIO_ACCEL,
1234                                                  0,
1235                                                  IIO_MOD_X,
1236                                                  IIO_EV_TYPE_ROC,
1237                                                  dir),
1238                               data->timestamp);
1239
1240        if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1241                iio_push_event(indio_dev,
1242                               IIO_MOD_EVENT_CODE(IIO_ACCEL,
1243                                                  0,
1244                                                  IIO_MOD_Y,
1245                                                  IIO_EV_TYPE_ROC,
1246                                                  dir),
1247                               data->timestamp);
1248
1249        if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1250                iio_push_event(indio_dev,
1251                               IIO_MOD_EVENT_CODE(IIO_ACCEL,
1252                                                  0,
1253                                                  IIO_MOD_Z,
1254                                                  IIO_EV_TYPE_ROC,
1255                                                  dir),
1256                               data->timestamp);
1257
1258        return ret;
1259}
1260
1261static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1262{
1263        struct iio_dev *indio_dev = private;
1264        struct bmc150_accel_data *data = iio_priv(indio_dev);
1265        struct device *dev = regmap_get_device(data->regmap);
1266        bool ack = false;
1267        int ret;
1268
1269        mutex_lock(&data->mutex);
1270
1271        if (data->fifo_mode) {
1272                ret = __bmc150_accel_fifo_flush(indio_dev,
1273                                                BMC150_ACCEL_FIFO_LENGTH, true);
1274                if (ret > 0)
1275                        ack = true;
1276        }
1277
1278        if (data->ev_enable_state) {
1279                ret = bmc150_accel_handle_roc_event(indio_dev);
1280                if (ret > 0)
1281                        ack = true;
1282        }
1283
1284        if (ack) {
1285                ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1286                                   BMC150_ACCEL_INT_MODE_LATCH_INT |
1287                                   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1288                if (ret)
1289                        dev_err(dev, "Error writing reg_int_rst_latch\n");
1290
1291                ret = IRQ_HANDLED;
1292        } else {
1293                ret = IRQ_NONE;
1294        }
1295
1296        mutex_unlock(&data->mutex);
1297
1298        return ret;
1299}
1300
1301static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1302{
1303        struct iio_dev *indio_dev = private;
1304        struct bmc150_accel_data *data = iio_priv(indio_dev);
1305        bool ack = false;
1306        int i;
1307
1308        data->old_timestamp = data->timestamp;
1309        data->timestamp = iio_get_time_ns(indio_dev);
1310
1311        for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1312                if (data->triggers[i].enabled) {
1313                        iio_trigger_poll(data->triggers[i].indio_trig);
1314                        ack = true;
1315                        break;
1316                }
1317        }
1318
1319        if (data->ev_enable_state || data->fifo_mode)
1320                return IRQ_WAKE_THREAD;
1321
1322        if (ack)
1323                return IRQ_HANDLED;
1324
1325        return IRQ_NONE;
1326}
1327
1328static const struct {
1329        int intr;
1330        const char *name;
1331        int (*setup)(struct bmc150_accel_trigger *t, bool state);
1332} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1333        {
1334                .intr = 0,
1335                .name = "%s-dev%d",
1336        },
1337        {
1338                .intr = 1,
1339                .name = "%s-any-motion-dev%d",
1340                .setup = bmc150_accel_any_motion_setup,
1341        },
1342};
1343
1344static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1345                                             int from)
1346{
1347        int i;
1348
1349        for (i = from; i >= 0; i--) {
1350                if (data->triggers[i].indio_trig) {
1351                        iio_trigger_unregister(data->triggers[i].indio_trig);
1352                        data->triggers[i].indio_trig = NULL;
1353                }
1354        }
1355}
1356
1357static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1358                                       struct bmc150_accel_data *data)
1359{
1360        struct device *dev = regmap_get_device(data->regmap);
1361        int i, ret;
1362
1363        for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1364                struct bmc150_accel_trigger *t = &data->triggers[i];
1365
1366                t->indio_trig = devm_iio_trigger_alloc(dev,
1367                                        bmc150_accel_triggers[i].name,
1368                                                       indio_dev->name,
1369                                                       indio_dev->id);
1370                if (!t->indio_trig) {
1371                        ret = -ENOMEM;
1372                        break;
1373                }
1374
1375                t->indio_trig->dev.parent = dev;
1376                t->indio_trig->ops = &bmc150_accel_trigger_ops;
1377                t->intr = bmc150_accel_triggers[i].intr;
1378                t->data = data;
1379                t->setup = bmc150_accel_triggers[i].setup;
1380                iio_trigger_set_drvdata(t->indio_trig, t);
1381
1382                ret = iio_trigger_register(t->indio_trig);
1383                if (ret)
1384                        break;
1385        }
1386
1387        if (ret)
1388                bmc150_accel_unregister_triggers(data, i - 1);
1389
1390        return ret;
1391}
1392
1393#define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1394#define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1395#define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1396
1397static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1398{
1399        struct device *dev = regmap_get_device(data->regmap);
1400        u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1401        int ret;
1402
1403        ret = regmap_write(data->regmap, reg, data->fifo_mode);
1404        if (ret < 0) {
1405                dev_err(dev, "Error writing reg_fifo_config1\n");
1406                return ret;
1407        }
1408
1409        if (!data->fifo_mode)
1410                return 0;
1411
1412        ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1413                           data->watermark);
1414        if (ret < 0)
1415                dev_err(dev, "Error writing reg_fifo_config0\n");
1416
1417        return ret;
1418}
1419
1420static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1421{
1422        struct bmc150_accel_data *data = iio_priv(indio_dev);
1423
1424        return bmc150_accel_set_power_state(data, true);
1425}
1426
1427static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1428{
1429        struct bmc150_accel_data *data = iio_priv(indio_dev);
1430        int ret = 0;
1431
1432        if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1433                return iio_triggered_buffer_postenable(indio_dev);
1434
1435        mutex_lock(&data->mutex);
1436
1437        if (!data->watermark)
1438                goto out;
1439
1440        ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1441                                         true);
1442        if (ret)
1443                goto out;
1444
1445        data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1446
1447        ret = bmc150_accel_fifo_set_mode(data);
1448        if (ret) {
1449                data->fifo_mode = 0;
1450                bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1451                                           false);
1452        }
1453
1454out:
1455        mutex_unlock(&data->mutex);
1456
1457        return ret;
1458}
1459
1460static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1461{
1462        struct bmc150_accel_data *data = iio_priv(indio_dev);
1463
1464        if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1465                return iio_triggered_buffer_predisable(indio_dev);
1466
1467        mutex_lock(&data->mutex);
1468
1469        if (!data->fifo_mode)
1470                goto out;
1471
1472        bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1473        __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1474        data->fifo_mode = 0;
1475        bmc150_accel_fifo_set_mode(data);
1476
1477out:
1478        mutex_unlock(&data->mutex);
1479
1480        return 0;
1481}
1482
1483static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1484{
1485        struct bmc150_accel_data *data = iio_priv(indio_dev);
1486
1487        return bmc150_accel_set_power_state(data, false);
1488}
1489
1490static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1491        .preenable = bmc150_accel_buffer_preenable,
1492        .postenable = bmc150_accel_buffer_postenable,
1493        .predisable = bmc150_accel_buffer_predisable,
1494        .postdisable = bmc150_accel_buffer_postdisable,
1495};
1496
1497static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1498{
1499        struct device *dev = regmap_get_device(data->regmap);
1500        int ret, i;
1501        unsigned int val;
1502
1503        /*
1504         * Reset chip to get it in a known good state. A delay of 1.8ms after
1505         * reset is required according to the data sheets of supported chips.
1506         */
1507        regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1508                     BMC150_ACCEL_RESET_VAL);
1509        usleep_range(1800, 2500);
1510
1511        ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1512        if (ret < 0) {
1513                dev_err(dev, "Error: Reading chip id\n");
1514                return ret;
1515        }
1516
1517        dev_dbg(dev, "Chip Id %x\n", val);
1518        for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1519                if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1520                        data->chip_info = &bmc150_accel_chip_info_tbl[i];
1521                        break;
1522                }
1523        }
1524
1525        if (!data->chip_info) {
1526                dev_err(dev, "Invalid chip %x\n", val);
1527                return -ENODEV;
1528        }
1529
1530        ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1531        if (ret < 0)
1532                return ret;
1533
1534        /* Set Bandwidth */
1535        ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1536        if (ret < 0)
1537                return ret;
1538
1539        /* Set Default Range */
1540        ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1541                           BMC150_ACCEL_DEF_RANGE_4G);
1542        if (ret < 0) {
1543                dev_err(dev, "Error writing reg_pmu_range\n");
1544                return ret;
1545        }
1546
1547        data->range = BMC150_ACCEL_DEF_RANGE_4G;
1548
1549        /* Set default slope duration and thresholds */
1550        data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1551        data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1552        ret = bmc150_accel_update_slope(data);
1553        if (ret < 0)
1554                return ret;
1555
1556        /* Set default as latched interrupts */
1557        ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1558                           BMC150_ACCEL_INT_MODE_LATCH_INT |
1559                           BMC150_ACCEL_INT_MODE_LATCH_RESET);
1560        if (ret < 0) {
1561                dev_err(dev, "Error writing reg_int_rst_latch\n");
1562                return ret;
1563        }
1564
1565        return 0;
1566}
1567
1568int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1569                            const char *name, bool block_supported)
1570{
1571        struct bmc150_accel_data *data;
1572        struct iio_dev *indio_dev;
1573        int ret;
1574
1575        indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1576        if (!indio_dev)
1577                return -ENOMEM;
1578
1579        data = iio_priv(indio_dev);
1580        dev_set_drvdata(dev, indio_dev);
1581        data->irq = irq;
1582
1583        data->regmap = regmap;
1584
1585        ret = bmc150_accel_chip_init(data);
1586        if (ret < 0)
1587                return ret;
1588
1589        mutex_init(&data->mutex);
1590
1591        indio_dev->dev.parent = dev;
1592        indio_dev->channels = data->chip_info->channels;
1593        indio_dev->num_channels = data->chip_info->num_channels;
1594        indio_dev->name = name ? name : data->chip_info->name;
1595        indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1596        indio_dev->modes = INDIO_DIRECT_MODE;
1597        indio_dev->info = &bmc150_accel_info;
1598
1599        ret = iio_triggered_buffer_setup(indio_dev,
1600                                         &iio_pollfunc_store_time,
1601                                         bmc150_accel_trigger_handler,
1602                                         &bmc150_accel_buffer_ops);
1603        if (ret < 0) {
1604                dev_err(dev, "Failed: iio triggered buffer setup\n");
1605                return ret;
1606        }
1607
1608        if (data->irq > 0) {
1609                ret = devm_request_threaded_irq(
1610                                                dev, data->irq,
1611                                                bmc150_accel_irq_handler,
1612                                                bmc150_accel_irq_thread_handler,
1613                                                IRQF_TRIGGER_RISING,
1614                                                BMC150_ACCEL_IRQ_NAME,
1615                                                indio_dev);
1616                if (ret)
1617                        goto err_buffer_cleanup;
1618
1619                /*
1620                 * Set latched mode interrupt. While certain interrupts are
1621                 * non-latched regardless of this settings (e.g. new data) we
1622                 * want to use latch mode when we can to prevent interrupt
1623                 * flooding.
1624                 */
1625                ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1626                                   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1627                if (ret < 0) {
1628                        dev_err(dev, "Error writing reg_int_rst_latch\n");
1629                        goto err_buffer_cleanup;
1630                }
1631
1632                bmc150_accel_interrupts_setup(indio_dev, data);
1633
1634                ret = bmc150_accel_triggers_setup(indio_dev, data);
1635                if (ret)
1636                        goto err_buffer_cleanup;
1637
1638                if (block_supported) {
1639                        indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1640                        indio_dev->info = &bmc150_accel_info_fifo;
1641                        indio_dev->buffer->attrs = bmc150_accel_fifo_attributes;
1642                }
1643        }
1644
1645        ret = pm_runtime_set_active(dev);
1646        if (ret)
1647                goto err_trigger_unregister;
1648
1649        pm_runtime_enable(dev);
1650        pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1651        pm_runtime_use_autosuspend(dev);
1652
1653        ret = iio_device_register(indio_dev);
1654        if (ret < 0) {
1655                dev_err(dev, "Unable to register iio device\n");
1656                goto err_trigger_unregister;
1657        }
1658
1659        return 0;
1660
1661err_trigger_unregister:
1662        bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1663err_buffer_cleanup:
1664        iio_triggered_buffer_cleanup(indio_dev);
1665
1666        return ret;
1667}
1668EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1669
1670int bmc150_accel_core_remove(struct device *dev)
1671{
1672        struct iio_dev *indio_dev = dev_get_drvdata(dev);
1673        struct bmc150_accel_data *data = iio_priv(indio_dev);
1674
1675        iio_device_unregister(indio_dev);
1676
1677        pm_runtime_disable(dev);
1678        pm_runtime_set_suspended(dev);
1679        pm_runtime_put_noidle(dev);
1680
1681        bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1682
1683        iio_triggered_buffer_cleanup(indio_dev);
1684
1685        mutex_lock(&data->mutex);
1686        bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1687        mutex_unlock(&data->mutex);
1688
1689        return 0;
1690}
1691EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1692
1693#ifdef CONFIG_PM_SLEEP
1694static int bmc150_accel_suspend(struct device *dev)
1695{
1696        struct iio_dev *indio_dev = dev_get_drvdata(dev);
1697        struct bmc150_accel_data *data = iio_priv(indio_dev);
1698
1699        mutex_lock(&data->mutex);
1700        bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1701        mutex_unlock(&data->mutex);
1702
1703        return 0;
1704}
1705
1706static int bmc150_accel_resume(struct device *dev)
1707{
1708        struct iio_dev *indio_dev = dev_get_drvdata(dev);
1709        struct bmc150_accel_data *data = iio_priv(indio_dev);
1710
1711        mutex_lock(&data->mutex);
1712        if (atomic_read(&data->active_intr))
1713                bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1714        bmc150_accel_fifo_set_mode(data);
1715        mutex_unlock(&data->mutex);
1716
1717        return 0;
1718}
1719#endif
1720
1721#ifdef CONFIG_PM
1722static int bmc150_accel_runtime_suspend(struct device *dev)
1723{
1724        struct iio_dev *indio_dev = dev_get_drvdata(dev);
1725        struct bmc150_accel_data *data = iio_priv(indio_dev);
1726        int ret;
1727
1728        dev_dbg(dev,  __func__);
1729        ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1730        if (ret < 0)
1731                return -EAGAIN;
1732
1733        return 0;
1734}
1735
1736static int bmc150_accel_runtime_resume(struct device *dev)
1737{
1738        struct iio_dev *indio_dev = dev_get_drvdata(dev);
1739        struct bmc150_accel_data *data = iio_priv(indio_dev);
1740        int ret;
1741        int sleep_val;
1742
1743        dev_dbg(dev,  __func__);
1744
1745        ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1746        if (ret < 0)
1747                return ret;
1748        ret = bmc150_accel_fifo_set_mode(data);
1749        if (ret < 0)
1750                return ret;
1751
1752        sleep_val = bmc150_accel_get_startup_times(data);
1753        if (sleep_val < 20)
1754                usleep_range(sleep_val * 1000, 20000);
1755        else
1756                msleep_interruptible(sleep_val);
1757
1758        return 0;
1759}
1760#endif
1761
1762const struct dev_pm_ops bmc150_accel_pm_ops = {
1763        SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1764        SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1765                           bmc150_accel_runtime_resume, NULL)
1766};
1767EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1768
1769MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1770MODULE_LICENSE("GPL v2");
1771MODULE_DESCRIPTION("BMC150 accelerometer driver");
1772