linux/drivers/infiniband/ulp/srpt/ib_srpt.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
   3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 *
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/err.h>
  39#include <linux/ctype.h>
  40#include <linux/kthread.h>
  41#include <linux/string.h>
  42#include <linux/delay.h>
  43#include <linux/atomic.h>
  44#include <scsi/scsi_proto.h>
  45#include <scsi/scsi_tcq.h>
  46#include <target/target_core_base.h>
  47#include <target/target_core_fabric.h>
  48#include "ib_srpt.h"
  49
  50/* Name of this kernel module. */
  51#define DRV_NAME                "ib_srpt"
  52#define DRV_VERSION             "2.0.0"
  53#define DRV_RELDATE             "2011-02-14"
  54
  55#define SRPT_ID_STRING  "Linux SRP target"
  56
  57#undef pr_fmt
  58#define pr_fmt(fmt) DRV_NAME " " fmt
  59
  60MODULE_AUTHOR("Vu Pham and Bart Van Assche");
  61MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
  62                   "v" DRV_VERSION " (" DRV_RELDATE ")");
  63MODULE_LICENSE("Dual BSD/GPL");
  64
  65/*
  66 * Global Variables
  67 */
  68
  69static u64 srpt_service_guid;
  70static DEFINE_SPINLOCK(srpt_dev_lock);  /* Protects srpt_dev_list. */
  71static LIST_HEAD(srpt_dev_list);        /* List of srpt_device structures. */
  72
  73static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
  74module_param(srp_max_req_size, int, 0444);
  75MODULE_PARM_DESC(srp_max_req_size,
  76                 "Maximum size of SRP request messages in bytes.");
  77
  78static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
  79module_param(srpt_srq_size, int, 0444);
  80MODULE_PARM_DESC(srpt_srq_size,
  81                 "Shared receive queue (SRQ) size.");
  82
  83static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
  84{
  85        return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
  86}
  87module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
  88                  0444);
  89MODULE_PARM_DESC(srpt_service_guid,
  90                 "Using this value for ioc_guid, id_ext, and cm_listen_id"
  91                 " instead of using the node_guid of the first HCA.");
  92
  93static struct ib_client srpt_client;
  94static void srpt_release_cmd(struct se_cmd *se_cmd);
  95static void srpt_free_ch(struct kref *kref);
  96static int srpt_queue_status(struct se_cmd *cmd);
  97static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
  98static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
  99static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
 100
 101/*
 102 * The only allowed channel state changes are those that change the channel
 103 * state into a state with a higher numerical value. Hence the new > prev test.
 104 */
 105static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
 106{
 107        unsigned long flags;
 108        enum rdma_ch_state prev;
 109        bool changed = false;
 110
 111        spin_lock_irqsave(&ch->spinlock, flags);
 112        prev = ch->state;
 113        if (new > prev) {
 114                ch->state = new;
 115                changed = true;
 116        }
 117        spin_unlock_irqrestore(&ch->spinlock, flags);
 118
 119        return changed;
 120}
 121
 122/**
 123 * srpt_event_handler() - Asynchronous IB event callback function.
 124 *
 125 * Callback function called by the InfiniBand core when an asynchronous IB
 126 * event occurs. This callback may occur in interrupt context. See also
 127 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
 128 * Architecture Specification.
 129 */
 130static void srpt_event_handler(struct ib_event_handler *handler,
 131                               struct ib_event *event)
 132{
 133        struct srpt_device *sdev;
 134        struct srpt_port *sport;
 135
 136        sdev = ib_get_client_data(event->device, &srpt_client);
 137        if (!sdev || sdev->device != event->device)
 138                return;
 139
 140        pr_debug("ASYNC event= %d on device= %s\n", event->event,
 141                 sdev->device->name);
 142
 143        switch (event->event) {
 144        case IB_EVENT_PORT_ERR:
 145                if (event->element.port_num <= sdev->device->phys_port_cnt) {
 146                        sport = &sdev->port[event->element.port_num - 1];
 147                        sport->lid = 0;
 148                        sport->sm_lid = 0;
 149                }
 150                break;
 151        case IB_EVENT_PORT_ACTIVE:
 152        case IB_EVENT_LID_CHANGE:
 153        case IB_EVENT_PKEY_CHANGE:
 154        case IB_EVENT_SM_CHANGE:
 155        case IB_EVENT_CLIENT_REREGISTER:
 156        case IB_EVENT_GID_CHANGE:
 157                /* Refresh port data asynchronously. */
 158                if (event->element.port_num <= sdev->device->phys_port_cnt) {
 159                        sport = &sdev->port[event->element.port_num - 1];
 160                        if (!sport->lid && !sport->sm_lid)
 161                                schedule_work(&sport->work);
 162                }
 163                break;
 164        default:
 165                pr_err("received unrecognized IB event %d\n",
 166                       event->event);
 167                break;
 168        }
 169}
 170
 171/**
 172 * srpt_srq_event() - SRQ event callback function.
 173 */
 174static void srpt_srq_event(struct ib_event *event, void *ctx)
 175{
 176        pr_info("SRQ event %d\n", event->event);
 177}
 178
 179static const char *get_ch_state_name(enum rdma_ch_state s)
 180{
 181        switch (s) {
 182        case CH_CONNECTING:
 183                return "connecting";
 184        case CH_LIVE:
 185                return "live";
 186        case CH_DISCONNECTING:
 187                return "disconnecting";
 188        case CH_DRAINING:
 189                return "draining";
 190        case CH_DISCONNECTED:
 191                return "disconnected";
 192        }
 193        return "???";
 194}
 195
 196/**
 197 * srpt_qp_event() - QP event callback function.
 198 */
 199static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
 200{
 201        pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
 202                 event->event, ch->cm_id, ch->sess_name, ch->state);
 203
 204        switch (event->event) {
 205        case IB_EVENT_COMM_EST:
 206                ib_cm_notify(ch->cm_id, event->event);
 207                break;
 208        case IB_EVENT_QP_LAST_WQE_REACHED:
 209                pr_debug("%s-%d, state %s: received Last WQE event.\n",
 210                         ch->sess_name, ch->qp->qp_num,
 211                         get_ch_state_name(ch->state));
 212                break;
 213        default:
 214                pr_err("received unrecognized IB QP event %d\n", event->event);
 215                break;
 216        }
 217}
 218
 219/**
 220 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
 221 *
 222 * @slot: one-based slot number.
 223 * @value: four-bit value.
 224 *
 225 * Copies the lowest four bits of value in element slot of the array of four
 226 * bit elements called c_list (controller list). The index slot is one-based.
 227 */
 228static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
 229{
 230        u16 id;
 231        u8 tmp;
 232
 233        id = (slot - 1) / 2;
 234        if (slot & 0x1) {
 235                tmp = c_list[id] & 0xf;
 236                c_list[id] = (value << 4) | tmp;
 237        } else {
 238                tmp = c_list[id] & 0xf0;
 239                c_list[id] = (value & 0xf) | tmp;
 240        }
 241}
 242
 243/**
 244 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
 245 *
 246 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
 247 * Specification.
 248 */
 249static void srpt_get_class_port_info(struct ib_dm_mad *mad)
 250{
 251        struct ib_class_port_info *cif;
 252
 253        cif = (struct ib_class_port_info *)mad->data;
 254        memset(cif, 0, sizeof(*cif));
 255        cif->base_version = 1;
 256        cif->class_version = 1;
 257
 258        ib_set_cpi_resp_time(cif, 20);
 259        mad->mad_hdr.status = 0;
 260}
 261
 262/**
 263 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
 264 *
 265 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
 266 * Specification. See also section B.7, table B.6 in the SRP r16a document.
 267 */
 268static void srpt_get_iou(struct ib_dm_mad *mad)
 269{
 270        struct ib_dm_iou_info *ioui;
 271        u8 slot;
 272        int i;
 273
 274        ioui = (struct ib_dm_iou_info *)mad->data;
 275        ioui->change_id = cpu_to_be16(1);
 276        ioui->max_controllers = 16;
 277
 278        /* set present for slot 1 and empty for the rest */
 279        srpt_set_ioc(ioui->controller_list, 1, 1);
 280        for (i = 1, slot = 2; i < 16; i++, slot++)
 281                srpt_set_ioc(ioui->controller_list, slot, 0);
 282
 283        mad->mad_hdr.status = 0;
 284}
 285
 286/**
 287 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
 288 *
 289 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
 290 * Architecture Specification. See also section B.7, table B.7 in the SRP
 291 * r16a document.
 292 */
 293static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
 294                         struct ib_dm_mad *mad)
 295{
 296        struct srpt_device *sdev = sport->sdev;
 297        struct ib_dm_ioc_profile *iocp;
 298
 299        iocp = (struct ib_dm_ioc_profile *)mad->data;
 300
 301        if (!slot || slot > 16) {
 302                mad->mad_hdr.status
 303                        = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
 304                return;
 305        }
 306
 307        if (slot > 2) {
 308                mad->mad_hdr.status
 309                        = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
 310                return;
 311        }
 312
 313        memset(iocp, 0, sizeof(*iocp));
 314        strcpy(iocp->id_string, SRPT_ID_STRING);
 315        iocp->guid = cpu_to_be64(srpt_service_guid);
 316        iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
 317        iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
 318        iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
 319        iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
 320        iocp->subsys_device_id = 0x0;
 321        iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
 322        iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
 323        iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
 324        iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
 325        iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
 326        iocp->rdma_read_depth = 4;
 327        iocp->send_size = cpu_to_be32(srp_max_req_size);
 328        iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
 329                                          1U << 24));
 330        iocp->num_svc_entries = 1;
 331        iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
 332                SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
 333
 334        mad->mad_hdr.status = 0;
 335}
 336
 337/**
 338 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
 339 *
 340 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
 341 * Specification. See also section B.7, table B.8 in the SRP r16a document.
 342 */
 343static void srpt_get_svc_entries(u64 ioc_guid,
 344                                 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
 345{
 346        struct ib_dm_svc_entries *svc_entries;
 347
 348        WARN_ON(!ioc_guid);
 349
 350        if (!slot || slot > 16) {
 351                mad->mad_hdr.status
 352                        = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
 353                return;
 354        }
 355
 356        if (slot > 2 || lo > hi || hi > 1) {
 357                mad->mad_hdr.status
 358                        = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
 359                return;
 360        }
 361
 362        svc_entries = (struct ib_dm_svc_entries *)mad->data;
 363        memset(svc_entries, 0, sizeof(*svc_entries));
 364        svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
 365        snprintf(svc_entries->service_entries[0].name,
 366                 sizeof(svc_entries->service_entries[0].name),
 367                 "%s%016llx",
 368                 SRP_SERVICE_NAME_PREFIX,
 369                 ioc_guid);
 370
 371        mad->mad_hdr.status = 0;
 372}
 373
 374/**
 375 * srpt_mgmt_method_get() - Process a received management datagram.
 376 * @sp:      source port through which the MAD has been received.
 377 * @rq_mad:  received MAD.
 378 * @rsp_mad: response MAD.
 379 */
 380static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
 381                                 struct ib_dm_mad *rsp_mad)
 382{
 383        u16 attr_id;
 384        u32 slot;
 385        u8 hi, lo;
 386
 387        attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
 388        switch (attr_id) {
 389        case DM_ATTR_CLASS_PORT_INFO:
 390                srpt_get_class_port_info(rsp_mad);
 391                break;
 392        case DM_ATTR_IOU_INFO:
 393                srpt_get_iou(rsp_mad);
 394                break;
 395        case DM_ATTR_IOC_PROFILE:
 396                slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
 397                srpt_get_ioc(sp, slot, rsp_mad);
 398                break;
 399        case DM_ATTR_SVC_ENTRIES:
 400                slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
 401                hi = (u8) ((slot >> 8) & 0xff);
 402                lo = (u8) (slot & 0xff);
 403                slot = (u16) ((slot >> 16) & 0xffff);
 404                srpt_get_svc_entries(srpt_service_guid,
 405                                     slot, hi, lo, rsp_mad);
 406                break;
 407        default:
 408                rsp_mad->mad_hdr.status =
 409                    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
 410                break;
 411        }
 412}
 413
 414/**
 415 * srpt_mad_send_handler() - Post MAD-send callback function.
 416 */
 417static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
 418                                  struct ib_mad_send_wc *mad_wc)
 419{
 420        ib_destroy_ah(mad_wc->send_buf->ah);
 421        ib_free_send_mad(mad_wc->send_buf);
 422}
 423
 424/**
 425 * srpt_mad_recv_handler() - MAD reception callback function.
 426 */
 427static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
 428                                  struct ib_mad_send_buf *send_buf,
 429                                  struct ib_mad_recv_wc *mad_wc)
 430{
 431        struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
 432        struct ib_ah *ah;
 433        struct ib_mad_send_buf *rsp;
 434        struct ib_dm_mad *dm_mad;
 435
 436        if (!mad_wc || !mad_wc->recv_buf.mad)
 437                return;
 438
 439        ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
 440                                  mad_wc->recv_buf.grh, mad_agent->port_num);
 441        if (IS_ERR(ah))
 442                goto err;
 443
 444        BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
 445
 446        rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
 447                                 mad_wc->wc->pkey_index, 0,
 448                                 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
 449                                 GFP_KERNEL,
 450                                 IB_MGMT_BASE_VERSION);
 451        if (IS_ERR(rsp))
 452                goto err_rsp;
 453
 454        rsp->ah = ah;
 455
 456        dm_mad = rsp->mad;
 457        memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
 458        dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
 459        dm_mad->mad_hdr.status = 0;
 460
 461        switch (mad_wc->recv_buf.mad->mad_hdr.method) {
 462        case IB_MGMT_METHOD_GET:
 463                srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
 464                break;
 465        case IB_MGMT_METHOD_SET:
 466                dm_mad->mad_hdr.status =
 467                    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
 468                break;
 469        default:
 470                dm_mad->mad_hdr.status =
 471                    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
 472                break;
 473        }
 474
 475        if (!ib_post_send_mad(rsp, NULL)) {
 476                ib_free_recv_mad(mad_wc);
 477                /* will destroy_ah & free_send_mad in send completion */
 478                return;
 479        }
 480
 481        ib_free_send_mad(rsp);
 482
 483err_rsp:
 484        ib_destroy_ah(ah);
 485err:
 486        ib_free_recv_mad(mad_wc);
 487}
 488
 489/**
 490 * srpt_refresh_port() - Configure a HCA port.
 491 *
 492 * Enable InfiniBand management datagram processing, update the cached sm_lid,
 493 * lid and gid values, and register a callback function for processing MADs
 494 * on the specified port.
 495 *
 496 * Note: It is safe to call this function more than once for the same port.
 497 */
 498static int srpt_refresh_port(struct srpt_port *sport)
 499{
 500        struct ib_mad_reg_req reg_req;
 501        struct ib_port_modify port_modify;
 502        struct ib_port_attr port_attr;
 503        int ret;
 504
 505        memset(&port_modify, 0, sizeof(port_modify));
 506        port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
 507        port_modify.clr_port_cap_mask = 0;
 508
 509        ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
 510        if (ret)
 511                goto err_mod_port;
 512
 513        ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
 514        if (ret)
 515                goto err_query_port;
 516
 517        sport->sm_lid = port_attr.sm_lid;
 518        sport->lid = port_attr.lid;
 519
 520        ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
 521                           NULL);
 522        if (ret)
 523                goto err_query_port;
 524
 525        snprintf(sport->port_guid, sizeof(sport->port_guid),
 526                "0x%016llx%016llx",
 527                be64_to_cpu(sport->gid.global.subnet_prefix),
 528                be64_to_cpu(sport->gid.global.interface_id));
 529
 530        if (!sport->mad_agent) {
 531                memset(&reg_req, 0, sizeof(reg_req));
 532                reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
 533                reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
 534                set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
 535                set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
 536
 537                sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
 538                                                         sport->port,
 539                                                         IB_QPT_GSI,
 540                                                         &reg_req, 0,
 541                                                         srpt_mad_send_handler,
 542                                                         srpt_mad_recv_handler,
 543                                                         sport, 0);
 544                if (IS_ERR(sport->mad_agent)) {
 545                        ret = PTR_ERR(sport->mad_agent);
 546                        sport->mad_agent = NULL;
 547                        goto err_query_port;
 548                }
 549        }
 550
 551        return 0;
 552
 553err_query_port:
 554
 555        port_modify.set_port_cap_mask = 0;
 556        port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
 557        ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
 558
 559err_mod_port:
 560
 561        return ret;
 562}
 563
 564/**
 565 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
 566 *
 567 * Note: It is safe to call this function more than once for the same device.
 568 */
 569static void srpt_unregister_mad_agent(struct srpt_device *sdev)
 570{
 571        struct ib_port_modify port_modify = {
 572                .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
 573        };
 574        struct srpt_port *sport;
 575        int i;
 576
 577        for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
 578                sport = &sdev->port[i - 1];
 579                WARN_ON(sport->port != i);
 580                if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
 581                        pr_err("disabling MAD processing failed.\n");
 582                if (sport->mad_agent) {
 583                        ib_unregister_mad_agent(sport->mad_agent);
 584                        sport->mad_agent = NULL;
 585                }
 586        }
 587}
 588
 589/**
 590 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
 591 */
 592static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
 593                                           int ioctx_size, int dma_size,
 594                                           enum dma_data_direction dir)
 595{
 596        struct srpt_ioctx *ioctx;
 597
 598        ioctx = kmalloc(ioctx_size, GFP_KERNEL);
 599        if (!ioctx)
 600                goto err;
 601
 602        ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
 603        if (!ioctx->buf)
 604                goto err_free_ioctx;
 605
 606        ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
 607        if (ib_dma_mapping_error(sdev->device, ioctx->dma))
 608                goto err_free_buf;
 609
 610        return ioctx;
 611
 612err_free_buf:
 613        kfree(ioctx->buf);
 614err_free_ioctx:
 615        kfree(ioctx);
 616err:
 617        return NULL;
 618}
 619
 620/**
 621 * srpt_free_ioctx() - Free an SRPT I/O context structure.
 622 */
 623static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
 624                            int dma_size, enum dma_data_direction dir)
 625{
 626        if (!ioctx)
 627                return;
 628
 629        ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
 630        kfree(ioctx->buf);
 631        kfree(ioctx);
 632}
 633
 634/**
 635 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
 636 * @sdev:       Device to allocate the I/O context ring for.
 637 * @ring_size:  Number of elements in the I/O context ring.
 638 * @ioctx_size: I/O context size.
 639 * @dma_size:   DMA buffer size.
 640 * @dir:        DMA data direction.
 641 */
 642static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
 643                                int ring_size, int ioctx_size,
 644                                int dma_size, enum dma_data_direction dir)
 645{
 646        struct srpt_ioctx **ring;
 647        int i;
 648
 649        WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
 650                && ioctx_size != sizeof(struct srpt_send_ioctx));
 651
 652        ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
 653        if (!ring)
 654                goto out;
 655        for (i = 0; i < ring_size; ++i) {
 656                ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
 657                if (!ring[i])
 658                        goto err;
 659                ring[i]->index = i;
 660        }
 661        goto out;
 662
 663err:
 664        while (--i >= 0)
 665                srpt_free_ioctx(sdev, ring[i], dma_size, dir);
 666        kfree(ring);
 667        ring = NULL;
 668out:
 669        return ring;
 670}
 671
 672/**
 673 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
 674 */
 675static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
 676                                 struct srpt_device *sdev, int ring_size,
 677                                 int dma_size, enum dma_data_direction dir)
 678{
 679        int i;
 680
 681        for (i = 0; i < ring_size; ++i)
 682                srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
 683        kfree(ioctx_ring);
 684}
 685
 686/**
 687 * srpt_get_cmd_state() - Get the state of a SCSI command.
 688 */
 689static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
 690{
 691        enum srpt_command_state state;
 692        unsigned long flags;
 693
 694        BUG_ON(!ioctx);
 695
 696        spin_lock_irqsave(&ioctx->spinlock, flags);
 697        state = ioctx->state;
 698        spin_unlock_irqrestore(&ioctx->spinlock, flags);
 699        return state;
 700}
 701
 702/**
 703 * srpt_set_cmd_state() - Set the state of a SCSI command.
 704 *
 705 * Does not modify the state of aborted commands. Returns the previous command
 706 * state.
 707 */
 708static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
 709                                                  enum srpt_command_state new)
 710{
 711        enum srpt_command_state previous;
 712        unsigned long flags;
 713
 714        BUG_ON(!ioctx);
 715
 716        spin_lock_irqsave(&ioctx->spinlock, flags);
 717        previous = ioctx->state;
 718        if (previous != SRPT_STATE_DONE)
 719                ioctx->state = new;
 720        spin_unlock_irqrestore(&ioctx->spinlock, flags);
 721
 722        return previous;
 723}
 724
 725/**
 726 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
 727 *
 728 * Returns true if and only if the previous command state was equal to 'old'.
 729 */
 730static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
 731                                        enum srpt_command_state old,
 732                                        enum srpt_command_state new)
 733{
 734        enum srpt_command_state previous;
 735        unsigned long flags;
 736
 737        WARN_ON(!ioctx);
 738        WARN_ON(old == SRPT_STATE_DONE);
 739        WARN_ON(new == SRPT_STATE_NEW);
 740
 741        spin_lock_irqsave(&ioctx->spinlock, flags);
 742        previous = ioctx->state;
 743        if (previous == old)
 744                ioctx->state = new;
 745        spin_unlock_irqrestore(&ioctx->spinlock, flags);
 746        return previous == old;
 747}
 748
 749/**
 750 * srpt_post_recv() - Post an IB receive request.
 751 */
 752static int srpt_post_recv(struct srpt_device *sdev,
 753                          struct srpt_recv_ioctx *ioctx)
 754{
 755        struct ib_sge list;
 756        struct ib_recv_wr wr, *bad_wr;
 757
 758        BUG_ON(!sdev);
 759        list.addr = ioctx->ioctx.dma;
 760        list.length = srp_max_req_size;
 761        list.lkey = sdev->pd->local_dma_lkey;
 762
 763        ioctx->ioctx.cqe.done = srpt_recv_done;
 764        wr.wr_cqe = &ioctx->ioctx.cqe;
 765        wr.next = NULL;
 766        wr.sg_list = &list;
 767        wr.num_sge = 1;
 768
 769        return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
 770}
 771
 772/**
 773 * srpt_zerolength_write() - Perform a zero-length RDMA write.
 774 *
 775 * A quote from the InfiniBand specification: C9-88: For an HCA responder
 776 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
 777 * request, the R_Key shall not be validated, even if the request includes
 778 * Immediate data.
 779 */
 780static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
 781{
 782        struct ib_send_wr wr, *bad_wr;
 783
 784        memset(&wr, 0, sizeof(wr));
 785        wr.opcode = IB_WR_RDMA_WRITE;
 786        wr.wr_cqe = &ch->zw_cqe;
 787        wr.send_flags = IB_SEND_SIGNALED;
 788        return ib_post_send(ch->qp, &wr, &bad_wr);
 789}
 790
 791static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
 792{
 793        struct srpt_rdma_ch *ch = cq->cq_context;
 794
 795        if (wc->status == IB_WC_SUCCESS) {
 796                srpt_process_wait_list(ch);
 797        } else {
 798                if (srpt_set_ch_state(ch, CH_DISCONNECTED))
 799                        schedule_work(&ch->release_work);
 800                else
 801                        WARN_ONCE(1, "%s-%d\n", ch->sess_name, ch->qp->qp_num);
 802        }
 803}
 804
 805static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
 806                struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
 807                unsigned *sg_cnt)
 808{
 809        enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
 810        struct srpt_rdma_ch *ch = ioctx->ch;
 811        struct scatterlist *prev = NULL;
 812        unsigned prev_nents;
 813        int ret, i;
 814
 815        if (nbufs == 1) {
 816                ioctx->rw_ctxs = &ioctx->s_rw_ctx;
 817        } else {
 818                ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
 819                        GFP_KERNEL);
 820                if (!ioctx->rw_ctxs)
 821                        return -ENOMEM;
 822        }
 823
 824        for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
 825                struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
 826                u64 remote_addr = be64_to_cpu(db->va);
 827                u32 size = be32_to_cpu(db->len);
 828                u32 rkey = be32_to_cpu(db->key);
 829
 830                ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
 831                                i < nbufs - 1);
 832                if (ret)
 833                        goto unwind;
 834
 835                ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
 836                                ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
 837                if (ret < 0) {
 838                        target_free_sgl(ctx->sg, ctx->nents);
 839                        goto unwind;
 840                }
 841
 842                ioctx->n_rdma += ret;
 843                ioctx->n_rw_ctx++;
 844
 845                if (prev) {
 846                        sg_unmark_end(&prev[prev_nents - 1]);
 847                        sg_chain(prev, prev_nents + 1, ctx->sg);
 848                } else {
 849                        *sg = ctx->sg;
 850                }
 851
 852                prev = ctx->sg;
 853                prev_nents = ctx->nents;
 854
 855                *sg_cnt += ctx->nents;
 856        }
 857
 858        return 0;
 859
 860unwind:
 861        while (--i >= 0) {
 862                struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
 863
 864                rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
 865                                ctx->sg, ctx->nents, dir);
 866                target_free_sgl(ctx->sg, ctx->nents);
 867        }
 868        if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
 869                kfree(ioctx->rw_ctxs);
 870        return ret;
 871}
 872
 873static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
 874                                    struct srpt_send_ioctx *ioctx)
 875{
 876        enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
 877        int i;
 878
 879        for (i = 0; i < ioctx->n_rw_ctx; i++) {
 880                struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
 881
 882                rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
 883                                ctx->sg, ctx->nents, dir);
 884                target_free_sgl(ctx->sg, ctx->nents);
 885        }
 886
 887        if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
 888                kfree(ioctx->rw_ctxs);
 889}
 890
 891static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
 892{
 893        /*
 894         * The pointer computations below will only be compiled correctly
 895         * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
 896         * whether srp_cmd::add_data has been declared as a byte pointer.
 897         */
 898        BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
 899                     !__same_type(srp_cmd->add_data[0], (u8)0));
 900
 901        /*
 902         * According to the SRP spec, the lower two bits of the 'ADDITIONAL
 903         * CDB LENGTH' field are reserved and the size in bytes of this field
 904         * is four times the value specified in bits 3..7. Hence the "& ~3".
 905         */
 906        return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
 907}
 908
 909/**
 910 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
 911 * @ioctx: Pointer to the I/O context associated with the request.
 912 * @srp_cmd: Pointer to the SRP_CMD request data.
 913 * @dir: Pointer to the variable to which the transfer direction will be
 914 *   written.
 915 * @data_len: Pointer to the variable to which the total data length of all
 916 *   descriptors in the SRP_CMD request will be written.
 917 *
 918 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
 919 *
 920 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
 921 * -ENOMEM when memory allocation fails and zero upon success.
 922 */
 923static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
 924                struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
 925                struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len)
 926{
 927        BUG_ON(!dir);
 928        BUG_ON(!data_len);
 929
 930        /*
 931         * The lower four bits of the buffer format field contain the DATA-IN
 932         * buffer descriptor format, and the highest four bits contain the
 933         * DATA-OUT buffer descriptor format.
 934         */
 935        if (srp_cmd->buf_fmt & 0xf)
 936                /* DATA-IN: transfer data from target to initiator (read). */
 937                *dir = DMA_FROM_DEVICE;
 938        else if (srp_cmd->buf_fmt >> 4)
 939                /* DATA-OUT: transfer data from initiator to target (write). */
 940                *dir = DMA_TO_DEVICE;
 941        else
 942                *dir = DMA_NONE;
 943
 944        /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
 945        ioctx->cmd.data_direction = *dir;
 946
 947        if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
 948            ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
 949                struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
 950
 951                *data_len = be32_to_cpu(db->len);
 952                return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
 953        } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
 954                   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
 955                struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
 956                int nbufs = be32_to_cpu(idb->table_desc.len) /
 957                                sizeof(struct srp_direct_buf);
 958
 959                if (nbufs >
 960                    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
 961                        pr_err("received unsupported SRP_CMD request"
 962                               " type (%u out + %u in != %u / %zu)\n",
 963                               srp_cmd->data_out_desc_cnt,
 964                               srp_cmd->data_in_desc_cnt,
 965                               be32_to_cpu(idb->table_desc.len),
 966                               sizeof(struct srp_direct_buf));
 967                        return -EINVAL;
 968                }
 969
 970                *data_len = be32_to_cpu(idb->len);
 971                return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
 972                                sg, sg_cnt);
 973        } else {
 974                *data_len = 0;
 975                return 0;
 976        }
 977}
 978
 979/**
 980 * srpt_init_ch_qp() - Initialize queue pair attributes.
 981 *
 982 * Initialized the attributes of queue pair 'qp' by allowing local write,
 983 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
 984 */
 985static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
 986{
 987        struct ib_qp_attr *attr;
 988        int ret;
 989
 990        attr = kzalloc(sizeof(*attr), GFP_KERNEL);
 991        if (!attr)
 992                return -ENOMEM;
 993
 994        attr->qp_state = IB_QPS_INIT;
 995        attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
 996            IB_ACCESS_REMOTE_WRITE;
 997        attr->port_num = ch->sport->port;
 998        attr->pkey_index = 0;
 999
1000        ret = ib_modify_qp(qp, attr,
1001                           IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1002                           IB_QP_PKEY_INDEX);
1003
1004        kfree(attr);
1005        return ret;
1006}
1007
1008/**
1009 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
1010 * @ch: channel of the queue pair.
1011 * @qp: queue pair to change the state of.
1012 *
1013 * Returns zero upon success and a negative value upon failure.
1014 *
1015 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1016 * If this structure ever becomes larger, it might be necessary to allocate
1017 * it dynamically instead of on the stack.
1018 */
1019static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1020{
1021        struct ib_qp_attr qp_attr;
1022        int attr_mask;
1023        int ret;
1024
1025        qp_attr.qp_state = IB_QPS_RTR;
1026        ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1027        if (ret)
1028                goto out;
1029
1030        qp_attr.max_dest_rd_atomic = 4;
1031
1032        ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1033
1034out:
1035        return ret;
1036}
1037
1038/**
1039 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1040 * @ch: channel of the queue pair.
1041 * @qp: queue pair to change the state of.
1042 *
1043 * Returns zero upon success and a negative value upon failure.
1044 *
1045 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1046 * If this structure ever becomes larger, it might be necessary to allocate
1047 * it dynamically instead of on the stack.
1048 */
1049static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1050{
1051        struct ib_qp_attr qp_attr;
1052        int attr_mask;
1053        int ret;
1054
1055        qp_attr.qp_state = IB_QPS_RTS;
1056        ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1057        if (ret)
1058                goto out;
1059
1060        qp_attr.max_rd_atomic = 4;
1061
1062        ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1063
1064out:
1065        return ret;
1066}
1067
1068/**
1069 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1070 */
1071static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1072{
1073        struct ib_qp_attr qp_attr;
1074
1075        qp_attr.qp_state = IB_QPS_ERR;
1076        return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1077}
1078
1079/**
1080 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1081 */
1082static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1083{
1084        struct srpt_send_ioctx *ioctx;
1085        unsigned long flags;
1086
1087        BUG_ON(!ch);
1088
1089        ioctx = NULL;
1090        spin_lock_irqsave(&ch->spinlock, flags);
1091        if (!list_empty(&ch->free_list)) {
1092                ioctx = list_first_entry(&ch->free_list,
1093                                         struct srpt_send_ioctx, free_list);
1094                list_del(&ioctx->free_list);
1095        }
1096        spin_unlock_irqrestore(&ch->spinlock, flags);
1097
1098        if (!ioctx)
1099                return ioctx;
1100
1101        BUG_ON(ioctx->ch != ch);
1102        spin_lock_init(&ioctx->spinlock);
1103        ioctx->state = SRPT_STATE_NEW;
1104        ioctx->n_rdma = 0;
1105        ioctx->n_rw_ctx = 0;
1106        init_completion(&ioctx->tx_done);
1107        ioctx->queue_status_only = false;
1108        /*
1109         * transport_init_se_cmd() does not initialize all fields, so do it
1110         * here.
1111         */
1112        memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1113        memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1114
1115        return ioctx;
1116}
1117
1118/**
1119 * srpt_abort_cmd() - Abort a SCSI command.
1120 * @ioctx:   I/O context associated with the SCSI command.
1121 * @context: Preferred execution context.
1122 */
1123static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1124{
1125        enum srpt_command_state state;
1126        unsigned long flags;
1127
1128        BUG_ON(!ioctx);
1129
1130        /*
1131         * If the command is in a state where the target core is waiting for
1132         * the ib_srpt driver, change the state to the next state.
1133         */
1134
1135        spin_lock_irqsave(&ioctx->spinlock, flags);
1136        state = ioctx->state;
1137        switch (state) {
1138        case SRPT_STATE_NEED_DATA:
1139                ioctx->state = SRPT_STATE_DATA_IN;
1140                break;
1141        case SRPT_STATE_CMD_RSP_SENT:
1142        case SRPT_STATE_MGMT_RSP_SENT:
1143                ioctx->state = SRPT_STATE_DONE;
1144                break;
1145        default:
1146                WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1147                          __func__, state);
1148                break;
1149        }
1150        spin_unlock_irqrestore(&ioctx->spinlock, flags);
1151
1152        pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1153                 ioctx->cmd.tag);
1154
1155        switch (state) {
1156        case SRPT_STATE_NEW:
1157        case SRPT_STATE_DATA_IN:
1158        case SRPT_STATE_MGMT:
1159        case SRPT_STATE_DONE:
1160                /*
1161                 * Do nothing - defer abort processing until
1162                 * srpt_queue_response() is invoked.
1163                 */
1164                break;
1165        case SRPT_STATE_NEED_DATA:
1166                pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1167                transport_generic_request_failure(&ioctx->cmd,
1168                                        TCM_CHECK_CONDITION_ABORT_CMD);
1169                break;
1170        case SRPT_STATE_CMD_RSP_SENT:
1171                /*
1172                 * SRP_RSP sending failed or the SRP_RSP send completion has
1173                 * not been received in time.
1174                 */
1175                transport_generic_free_cmd(&ioctx->cmd, 0);
1176                break;
1177        case SRPT_STATE_MGMT_RSP_SENT:
1178                transport_generic_free_cmd(&ioctx->cmd, 0);
1179                break;
1180        default:
1181                WARN(1, "Unexpected command state (%d)", state);
1182                break;
1183        }
1184
1185        return state;
1186}
1187
1188/**
1189 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1190 * the data that has been transferred via IB RDMA had to be postponed until the
1191 * check_stop_free() callback.  None of this is necessary anymore and needs to
1192 * be cleaned up.
1193 */
1194static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1195{
1196        struct srpt_rdma_ch *ch = cq->cq_context;
1197        struct srpt_send_ioctx *ioctx =
1198                container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1199
1200        WARN_ON(ioctx->n_rdma <= 0);
1201        atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1202        ioctx->n_rdma = 0;
1203
1204        if (unlikely(wc->status != IB_WC_SUCCESS)) {
1205                pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1206                        ioctx, wc->status);
1207                srpt_abort_cmd(ioctx);
1208                return;
1209        }
1210
1211        if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1212                                        SRPT_STATE_DATA_IN))
1213                target_execute_cmd(&ioctx->cmd);
1214        else
1215                pr_err("%s[%d]: wrong state = %d\n", __func__,
1216                       __LINE__, srpt_get_cmd_state(ioctx));
1217}
1218
1219/**
1220 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1221 * @ch: RDMA channel through which the request has been received.
1222 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1223 *   be built in the buffer ioctx->buf points at and hence this function will
1224 *   overwrite the request data.
1225 * @tag: tag of the request for which this response is being generated.
1226 * @status: value for the STATUS field of the SRP_RSP information unit.
1227 *
1228 * Returns the size in bytes of the SRP_RSP response.
1229 *
1230 * An SRP_RSP response contains a SCSI status or service response. See also
1231 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1232 * response. See also SPC-2 for more information about sense data.
1233 */
1234static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1235                              struct srpt_send_ioctx *ioctx, u64 tag,
1236                              int status)
1237{
1238        struct srp_rsp *srp_rsp;
1239        const u8 *sense_data;
1240        int sense_data_len, max_sense_len;
1241
1242        /*
1243         * The lowest bit of all SAM-3 status codes is zero (see also
1244         * paragraph 5.3 in SAM-3).
1245         */
1246        WARN_ON(status & 1);
1247
1248        srp_rsp = ioctx->ioctx.buf;
1249        BUG_ON(!srp_rsp);
1250
1251        sense_data = ioctx->sense_data;
1252        sense_data_len = ioctx->cmd.scsi_sense_length;
1253        WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1254
1255        memset(srp_rsp, 0, sizeof(*srp_rsp));
1256        srp_rsp->opcode = SRP_RSP;
1257        srp_rsp->req_lim_delta =
1258                cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1259        srp_rsp->tag = tag;
1260        srp_rsp->status = status;
1261
1262        if (sense_data_len) {
1263                BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1264                max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1265                if (sense_data_len > max_sense_len) {
1266                        pr_warn("truncated sense data from %d to %d"
1267                                " bytes\n", sense_data_len, max_sense_len);
1268                        sense_data_len = max_sense_len;
1269                }
1270
1271                srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1272                srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1273                memcpy(srp_rsp + 1, sense_data, sense_data_len);
1274        }
1275
1276        return sizeof(*srp_rsp) + sense_data_len;
1277}
1278
1279/**
1280 * srpt_build_tskmgmt_rsp() - Build a task management response.
1281 * @ch:       RDMA channel through which the request has been received.
1282 * @ioctx:    I/O context in which the SRP_RSP response will be built.
1283 * @rsp_code: RSP_CODE that will be stored in the response.
1284 * @tag:      Tag of the request for which this response is being generated.
1285 *
1286 * Returns the size in bytes of the SRP_RSP response.
1287 *
1288 * An SRP_RSP response contains a SCSI status or service response. See also
1289 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1290 * response.
1291 */
1292static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1293                                  struct srpt_send_ioctx *ioctx,
1294                                  u8 rsp_code, u64 tag)
1295{
1296        struct srp_rsp *srp_rsp;
1297        int resp_data_len;
1298        int resp_len;
1299
1300        resp_data_len = 4;
1301        resp_len = sizeof(*srp_rsp) + resp_data_len;
1302
1303        srp_rsp = ioctx->ioctx.buf;
1304        BUG_ON(!srp_rsp);
1305        memset(srp_rsp, 0, sizeof(*srp_rsp));
1306
1307        srp_rsp->opcode = SRP_RSP;
1308        srp_rsp->req_lim_delta =
1309                cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1310        srp_rsp->tag = tag;
1311
1312        srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1313        srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1314        srp_rsp->data[3] = rsp_code;
1315
1316        return resp_len;
1317}
1318
1319static int srpt_check_stop_free(struct se_cmd *cmd)
1320{
1321        struct srpt_send_ioctx *ioctx = container_of(cmd,
1322                                struct srpt_send_ioctx, cmd);
1323
1324        return target_put_sess_cmd(&ioctx->cmd);
1325}
1326
1327/**
1328 * srpt_handle_cmd() - Process SRP_CMD.
1329 */
1330static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1331                            struct srpt_recv_ioctx *recv_ioctx,
1332                            struct srpt_send_ioctx *send_ioctx)
1333{
1334        struct se_cmd *cmd;
1335        struct srp_cmd *srp_cmd;
1336        struct scatterlist *sg = NULL;
1337        unsigned sg_cnt = 0;
1338        u64 data_len;
1339        enum dma_data_direction dir;
1340        int rc;
1341
1342        BUG_ON(!send_ioctx);
1343
1344        srp_cmd = recv_ioctx->ioctx.buf;
1345        cmd = &send_ioctx->cmd;
1346        cmd->tag = srp_cmd->tag;
1347
1348        switch (srp_cmd->task_attr) {
1349        case SRP_CMD_SIMPLE_Q:
1350                cmd->sam_task_attr = TCM_SIMPLE_TAG;
1351                break;
1352        case SRP_CMD_ORDERED_Q:
1353        default:
1354                cmd->sam_task_attr = TCM_ORDERED_TAG;
1355                break;
1356        case SRP_CMD_HEAD_OF_Q:
1357                cmd->sam_task_attr = TCM_HEAD_TAG;
1358                break;
1359        case SRP_CMD_ACA:
1360                cmd->sam_task_attr = TCM_ACA_TAG;
1361                break;
1362        }
1363
1364        rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt,
1365                        &data_len);
1366        if (rc) {
1367                if (rc != -EAGAIN) {
1368                        pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1369                               srp_cmd->tag);
1370                }
1371                goto release_ioctx;
1372        }
1373
1374        rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
1375                               &send_ioctx->sense_data[0],
1376                               scsilun_to_int(&srp_cmd->lun), data_len,
1377                               TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
1378                               sg, sg_cnt, NULL, 0, NULL, 0);
1379        if (rc != 0) {
1380                pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1381                         srp_cmd->tag);
1382                goto release_ioctx;
1383        }
1384        return;
1385
1386release_ioctx:
1387        send_ioctx->state = SRPT_STATE_DONE;
1388        srpt_release_cmd(cmd);
1389}
1390
1391static int srp_tmr_to_tcm(int fn)
1392{
1393        switch (fn) {
1394        case SRP_TSK_ABORT_TASK:
1395                return TMR_ABORT_TASK;
1396        case SRP_TSK_ABORT_TASK_SET:
1397                return TMR_ABORT_TASK_SET;
1398        case SRP_TSK_CLEAR_TASK_SET:
1399                return TMR_CLEAR_TASK_SET;
1400        case SRP_TSK_LUN_RESET:
1401                return TMR_LUN_RESET;
1402        case SRP_TSK_CLEAR_ACA:
1403                return TMR_CLEAR_ACA;
1404        default:
1405                return -1;
1406        }
1407}
1408
1409/**
1410 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1411 *
1412 * Returns 0 if and only if the request will be processed by the target core.
1413 *
1414 * For more information about SRP_TSK_MGMT information units, see also section
1415 * 6.7 in the SRP r16a document.
1416 */
1417static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1418                                 struct srpt_recv_ioctx *recv_ioctx,
1419                                 struct srpt_send_ioctx *send_ioctx)
1420{
1421        struct srp_tsk_mgmt *srp_tsk;
1422        struct se_cmd *cmd;
1423        struct se_session *sess = ch->sess;
1424        int tcm_tmr;
1425        int rc;
1426
1427        BUG_ON(!send_ioctx);
1428
1429        srp_tsk = recv_ioctx->ioctx.buf;
1430        cmd = &send_ioctx->cmd;
1431
1432        pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1433                 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1434                 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1435
1436        srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1437        send_ioctx->cmd.tag = srp_tsk->tag;
1438        tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1439        rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1440                               scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1441                               GFP_KERNEL, srp_tsk->task_tag,
1442                               TARGET_SCF_ACK_KREF);
1443        if (rc != 0) {
1444                send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1445                goto fail;
1446        }
1447        return;
1448fail:
1449        transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1450}
1451
1452/**
1453 * srpt_handle_new_iu() - Process a newly received information unit.
1454 * @ch:    RDMA channel through which the information unit has been received.
1455 * @ioctx: SRPT I/O context associated with the information unit.
1456 */
1457static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1458                               struct srpt_recv_ioctx *recv_ioctx,
1459                               struct srpt_send_ioctx *send_ioctx)
1460{
1461        struct srp_cmd *srp_cmd;
1462
1463        BUG_ON(!ch);
1464        BUG_ON(!recv_ioctx);
1465
1466        ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1467                                   recv_ioctx->ioctx.dma, srp_max_req_size,
1468                                   DMA_FROM_DEVICE);
1469
1470        if (unlikely(ch->state == CH_CONNECTING))
1471                goto out_wait;
1472
1473        if (unlikely(ch->state != CH_LIVE))
1474                return;
1475
1476        srp_cmd = recv_ioctx->ioctx.buf;
1477        if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1478                if (!send_ioctx) {
1479                        if (!list_empty(&ch->cmd_wait_list))
1480                                goto out_wait;
1481                        send_ioctx = srpt_get_send_ioctx(ch);
1482                }
1483                if (unlikely(!send_ioctx))
1484                        goto out_wait;
1485        }
1486
1487        switch (srp_cmd->opcode) {
1488        case SRP_CMD:
1489                srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1490                break;
1491        case SRP_TSK_MGMT:
1492                srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1493                break;
1494        case SRP_I_LOGOUT:
1495                pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1496                break;
1497        case SRP_CRED_RSP:
1498                pr_debug("received SRP_CRED_RSP\n");
1499                break;
1500        case SRP_AER_RSP:
1501                pr_debug("received SRP_AER_RSP\n");
1502                break;
1503        case SRP_RSP:
1504                pr_err("Received SRP_RSP\n");
1505                break;
1506        default:
1507                pr_err("received IU with unknown opcode 0x%x\n",
1508                       srp_cmd->opcode);
1509                break;
1510        }
1511
1512        srpt_post_recv(ch->sport->sdev, recv_ioctx);
1513        return;
1514
1515out_wait:
1516        list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1517}
1518
1519static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1520{
1521        struct srpt_rdma_ch *ch = cq->cq_context;
1522        struct srpt_recv_ioctx *ioctx =
1523                container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1524
1525        if (wc->status == IB_WC_SUCCESS) {
1526                int req_lim;
1527
1528                req_lim = atomic_dec_return(&ch->req_lim);
1529                if (unlikely(req_lim < 0))
1530                        pr_err("req_lim = %d < 0\n", req_lim);
1531                srpt_handle_new_iu(ch, ioctx, NULL);
1532        } else {
1533                pr_info("receiving failed for ioctx %p with status %d\n",
1534                        ioctx, wc->status);
1535        }
1536}
1537
1538/*
1539 * This function must be called from the context in which RDMA completions are
1540 * processed because it accesses the wait list without protection against
1541 * access from other threads.
1542 */
1543static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1544{
1545        struct srpt_send_ioctx *ioctx;
1546
1547        while (!list_empty(&ch->cmd_wait_list) &&
1548               ch->state >= CH_LIVE &&
1549               (ioctx = srpt_get_send_ioctx(ch)) != NULL) {
1550                struct srpt_recv_ioctx *recv_ioctx;
1551
1552                recv_ioctx = list_first_entry(&ch->cmd_wait_list,
1553                                              struct srpt_recv_ioctx,
1554                                              wait_list);
1555                list_del(&recv_ioctx->wait_list);
1556                srpt_handle_new_iu(ch, recv_ioctx, ioctx);
1557        }
1558}
1559
1560/**
1561 * Note: Although this has not yet been observed during tests, at least in
1562 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1563 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1564 * value in each response is set to one, and it is possible that this response
1565 * makes the initiator send a new request before the send completion for that
1566 * response has been processed. This could e.g. happen if the call to
1567 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1568 * if IB retransmission causes generation of the send completion to be
1569 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1570 * are queued on cmd_wait_list. The code below processes these delayed
1571 * requests one at a time.
1572 */
1573static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1574{
1575        struct srpt_rdma_ch *ch = cq->cq_context;
1576        struct srpt_send_ioctx *ioctx =
1577                container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1578        enum srpt_command_state state;
1579
1580        state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1581
1582        WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1583                state != SRPT_STATE_MGMT_RSP_SENT);
1584
1585        atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1586
1587        if (wc->status != IB_WC_SUCCESS)
1588                pr_info("sending response for ioctx 0x%p failed"
1589                        " with status %d\n", ioctx, wc->status);
1590
1591        if (state != SRPT_STATE_DONE) {
1592                transport_generic_free_cmd(&ioctx->cmd, 0);
1593        } else {
1594                pr_err("IB completion has been received too late for"
1595                       " wr_id = %u.\n", ioctx->ioctx.index);
1596        }
1597
1598        srpt_process_wait_list(ch);
1599}
1600
1601/**
1602 * srpt_create_ch_ib() - Create receive and send completion queues.
1603 */
1604static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1605{
1606        struct ib_qp_init_attr *qp_init;
1607        struct srpt_port *sport = ch->sport;
1608        struct srpt_device *sdev = sport->sdev;
1609        const struct ib_device_attr *attrs = &sdev->device->attrs;
1610        u32 srp_sq_size = sport->port_attrib.srp_sq_size;
1611        int ret;
1612
1613        WARN_ON(ch->rq_size < 1);
1614
1615        ret = -ENOMEM;
1616        qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1617        if (!qp_init)
1618                goto out;
1619
1620retry:
1621        ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + srp_sq_size,
1622                        0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1623        if (IS_ERR(ch->cq)) {
1624                ret = PTR_ERR(ch->cq);
1625                pr_err("failed to create CQ cqe= %d ret= %d\n",
1626                       ch->rq_size + srp_sq_size, ret);
1627                goto out;
1628        }
1629
1630        qp_init->qp_context = (void *)ch;
1631        qp_init->event_handler
1632                = (void(*)(struct ib_event *, void*))srpt_qp_event;
1633        qp_init->send_cq = ch->cq;
1634        qp_init->recv_cq = ch->cq;
1635        qp_init->srq = sdev->srq;
1636        qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1637        qp_init->qp_type = IB_QPT_RC;
1638        /*
1639         * We divide up our send queue size into half SEND WRs to send the
1640         * completions, and half R/W contexts to actually do the RDMA
1641         * READ/WRITE transfers.  Note that we need to allocate CQ slots for
1642         * both both, as RDMA contexts will also post completions for the
1643         * RDMA READ case.
1644         */
1645        qp_init->cap.max_send_wr = srp_sq_size / 2;
1646        qp_init->cap.max_rdma_ctxs = srp_sq_size / 2;
1647        qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE);
1648        qp_init->port_num = ch->sport->port;
1649
1650        ch->qp = ib_create_qp(sdev->pd, qp_init);
1651        if (IS_ERR(ch->qp)) {
1652                ret = PTR_ERR(ch->qp);
1653                if (ret == -ENOMEM) {
1654                        srp_sq_size /= 2;
1655                        if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
1656                                ib_destroy_cq(ch->cq);
1657                                goto retry;
1658                        }
1659                }
1660                pr_err("failed to create_qp ret= %d\n", ret);
1661                goto err_destroy_cq;
1662        }
1663
1664        atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1665
1666        pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1667                 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1668                 qp_init->cap.max_send_wr, ch->cm_id);
1669
1670        ret = srpt_init_ch_qp(ch, ch->qp);
1671        if (ret)
1672                goto err_destroy_qp;
1673
1674out:
1675        kfree(qp_init);
1676        return ret;
1677
1678err_destroy_qp:
1679        ib_destroy_qp(ch->qp);
1680err_destroy_cq:
1681        ib_free_cq(ch->cq);
1682        goto out;
1683}
1684
1685static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1686{
1687        ib_destroy_qp(ch->qp);
1688        ib_free_cq(ch->cq);
1689}
1690
1691/**
1692 * srpt_close_ch() - Close an RDMA channel.
1693 *
1694 * Make sure all resources associated with the channel will be deallocated at
1695 * an appropriate time.
1696 *
1697 * Returns true if and only if the channel state has been modified into
1698 * CH_DRAINING.
1699 */
1700static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1701{
1702        int ret;
1703
1704        if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1705                pr_debug("%s-%d: already closed\n", ch->sess_name,
1706                         ch->qp->qp_num);
1707                return false;
1708        }
1709
1710        kref_get(&ch->kref);
1711
1712        ret = srpt_ch_qp_err(ch);
1713        if (ret < 0)
1714                pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1715                       ch->sess_name, ch->qp->qp_num, ret);
1716
1717        pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
1718                 ch->qp->qp_num);
1719        ret = srpt_zerolength_write(ch);
1720        if (ret < 0) {
1721                pr_err("%s-%d: queuing zero-length write failed: %d\n",
1722                       ch->sess_name, ch->qp->qp_num, ret);
1723                if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1724                        schedule_work(&ch->release_work);
1725                else
1726                        WARN_ON_ONCE(true);
1727        }
1728
1729        kref_put(&ch->kref, srpt_free_ch);
1730
1731        return true;
1732}
1733
1734/*
1735 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1736 * reached the connected state, close it. If a channel is in the connected
1737 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1738 * the responsibility of the caller to ensure that this function is not
1739 * invoked concurrently with the code that accepts a connection. This means
1740 * that this function must either be invoked from inside a CM callback
1741 * function or that it must be invoked with the srpt_port.mutex held.
1742 */
1743static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1744{
1745        int ret;
1746
1747        if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1748                return -ENOTCONN;
1749
1750        ret = ib_send_cm_dreq(ch->cm_id, NULL, 0);
1751        if (ret < 0)
1752                ret = ib_send_cm_drep(ch->cm_id, NULL, 0);
1753
1754        if (ret < 0 && srpt_close_ch(ch))
1755                ret = 0;
1756
1757        return ret;
1758}
1759
1760static void __srpt_close_all_ch(struct srpt_device *sdev)
1761{
1762        struct srpt_rdma_ch *ch;
1763
1764        lockdep_assert_held(&sdev->mutex);
1765
1766        list_for_each_entry(ch, &sdev->rch_list, list) {
1767                if (srpt_disconnect_ch(ch) >= 0)
1768                        pr_info("Closing channel %s-%d because target %s has been disabled\n",
1769                                ch->sess_name, ch->qp->qp_num,
1770                                sdev->device->name);
1771                srpt_close_ch(ch);
1772        }
1773}
1774
1775static void srpt_free_ch(struct kref *kref)
1776{
1777        struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
1778
1779        kfree(ch);
1780}
1781
1782static void srpt_release_channel_work(struct work_struct *w)
1783{
1784        struct srpt_rdma_ch *ch;
1785        struct srpt_device *sdev;
1786        struct se_session *se_sess;
1787
1788        ch = container_of(w, struct srpt_rdma_ch, release_work);
1789        pr_debug("%s: %s-%d; release_done = %p\n", __func__, ch->sess_name,
1790                 ch->qp->qp_num, ch->release_done);
1791
1792        sdev = ch->sport->sdev;
1793        BUG_ON(!sdev);
1794
1795        se_sess = ch->sess;
1796        BUG_ON(!se_sess);
1797
1798        target_sess_cmd_list_set_waiting(se_sess);
1799        target_wait_for_sess_cmds(se_sess);
1800
1801        transport_deregister_session_configfs(se_sess);
1802        transport_deregister_session(se_sess);
1803        ch->sess = NULL;
1804
1805        ib_destroy_cm_id(ch->cm_id);
1806
1807        srpt_destroy_ch_ib(ch);
1808
1809        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
1810                             ch->sport->sdev, ch->rq_size,
1811                             ch->rsp_size, DMA_TO_DEVICE);
1812
1813        mutex_lock(&sdev->mutex);
1814        list_del_init(&ch->list);
1815        if (ch->release_done)
1816                complete(ch->release_done);
1817        mutex_unlock(&sdev->mutex);
1818
1819        wake_up(&sdev->ch_releaseQ);
1820
1821        kref_put(&ch->kref, srpt_free_ch);
1822}
1823
1824/**
1825 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
1826 *
1827 * Ownership of the cm_id is transferred to the target session if this
1828 * functions returns zero. Otherwise the caller remains the owner of cm_id.
1829 */
1830static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
1831                            struct ib_cm_req_event_param *param,
1832                            void *private_data)
1833{
1834        struct srpt_device *sdev = cm_id->context;
1835        struct srpt_port *sport = &sdev->port[param->port - 1];
1836        struct srp_login_req *req;
1837        struct srp_login_rsp *rsp;
1838        struct srp_login_rej *rej;
1839        struct ib_cm_rep_param *rep_param;
1840        struct srpt_rdma_ch *ch, *tmp_ch;
1841        u32 it_iu_len;
1842        int i, ret = 0;
1843        unsigned char *p;
1844
1845        WARN_ON_ONCE(irqs_disabled());
1846
1847        if (WARN_ON(!sdev || !private_data))
1848                return -EINVAL;
1849
1850        req = (struct srp_login_req *)private_data;
1851
1852        it_iu_len = be32_to_cpu(req->req_it_iu_len);
1853
1854        pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
1855                " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
1856                " (guid=0x%llx:0x%llx)\n",
1857                be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
1858                be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
1859                be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
1860                be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
1861                it_iu_len,
1862                param->port,
1863                be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
1864                be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
1865
1866        rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
1867        rej = kzalloc(sizeof(*rej), GFP_KERNEL);
1868        rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
1869
1870        if (!rsp || !rej || !rep_param) {
1871                ret = -ENOMEM;
1872                goto out;
1873        }
1874
1875        if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
1876                rej->reason = cpu_to_be32(
1877                              SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
1878                ret = -EINVAL;
1879                pr_err("rejected SRP_LOGIN_REQ because its"
1880                       " length (%d bytes) is out of range (%d .. %d)\n",
1881                       it_iu_len, 64, srp_max_req_size);
1882                goto reject;
1883        }
1884
1885        if (!sport->enabled) {
1886                rej->reason = cpu_to_be32(
1887                              SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
1888                ret = -EINVAL;
1889                pr_err("rejected SRP_LOGIN_REQ because the target port"
1890                       " has not yet been enabled\n");
1891                goto reject;
1892        }
1893
1894        if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
1895                rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
1896
1897                mutex_lock(&sdev->mutex);
1898
1899                list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
1900                        if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
1901                            && !memcmp(ch->t_port_id, req->target_port_id, 16)
1902                            && param->port == ch->sport->port
1903                            && param->listen_id == ch->sport->sdev->cm_id
1904                            && ch->cm_id) {
1905                                if (srpt_disconnect_ch(ch) < 0)
1906                                        continue;
1907                                pr_info("Relogin - closed existing channel %s\n",
1908                                        ch->sess_name);
1909                                rsp->rsp_flags =
1910                                        SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
1911                        }
1912                }
1913
1914                mutex_unlock(&sdev->mutex);
1915
1916        } else
1917                rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
1918
1919        if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
1920            || *(__be64 *)(req->target_port_id + 8) !=
1921               cpu_to_be64(srpt_service_guid)) {
1922                rej->reason = cpu_to_be32(
1923                              SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
1924                ret = -ENOMEM;
1925                pr_err("rejected SRP_LOGIN_REQ because it"
1926                       " has an invalid target port identifier.\n");
1927                goto reject;
1928        }
1929
1930        ch = kzalloc(sizeof(*ch), GFP_KERNEL);
1931        if (!ch) {
1932                rej->reason = cpu_to_be32(
1933                              SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
1934                pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
1935                ret = -ENOMEM;
1936                goto reject;
1937        }
1938
1939        kref_init(&ch->kref);
1940        ch->zw_cqe.done = srpt_zerolength_write_done;
1941        INIT_WORK(&ch->release_work, srpt_release_channel_work);
1942        memcpy(ch->i_port_id, req->initiator_port_id, 16);
1943        memcpy(ch->t_port_id, req->target_port_id, 16);
1944        ch->sport = &sdev->port[param->port - 1];
1945        ch->cm_id = cm_id;
1946        cm_id->context = ch;
1947        /*
1948         * Avoid QUEUE_FULL conditions by limiting the number of buffers used
1949         * for the SRP protocol to the command queue size.
1950         */
1951        ch->rq_size = SRPT_RQ_SIZE;
1952        spin_lock_init(&ch->spinlock);
1953        ch->state = CH_CONNECTING;
1954        INIT_LIST_HEAD(&ch->cmd_wait_list);
1955        ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
1956
1957        ch->ioctx_ring = (struct srpt_send_ioctx **)
1958                srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
1959                                      sizeof(*ch->ioctx_ring[0]),
1960                                      ch->rsp_size, DMA_TO_DEVICE);
1961        if (!ch->ioctx_ring)
1962                goto free_ch;
1963
1964        INIT_LIST_HEAD(&ch->free_list);
1965        for (i = 0; i < ch->rq_size; i++) {
1966                ch->ioctx_ring[i]->ch = ch;
1967                list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
1968        }
1969
1970        ret = srpt_create_ch_ib(ch);
1971        if (ret) {
1972                rej->reason = cpu_to_be32(
1973                              SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
1974                pr_err("rejected SRP_LOGIN_REQ because creating"
1975                       " a new RDMA channel failed.\n");
1976                goto free_ring;
1977        }
1978
1979        ret = srpt_ch_qp_rtr(ch, ch->qp);
1980        if (ret) {
1981                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
1982                pr_err("rejected SRP_LOGIN_REQ because enabling"
1983                       " RTR failed (error code = %d)\n", ret);
1984                goto destroy_ib;
1985        }
1986
1987        /*
1988         * Use the initator port identifier as the session name, when
1989         * checking against se_node_acl->initiatorname[] this can be
1990         * with or without preceeding '0x'.
1991         */
1992        snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
1993                        be64_to_cpu(*(__be64 *)ch->i_port_id),
1994                        be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
1995
1996        pr_debug("registering session %s\n", ch->sess_name);
1997        p = &ch->sess_name[0];
1998
1999try_again:
2000        ch->sess = target_alloc_session(&sport->port_tpg_1, 0, 0,
2001                                        TARGET_PROT_NORMAL, p, ch, NULL);
2002        if (IS_ERR(ch->sess)) {
2003                pr_info("Rejected login because no ACL has been"
2004                        " configured yet for initiator %s.\n", p);
2005                /*
2006                 * XXX: Hack to retry of ch->i_port_id without leading '0x'
2007                 */
2008                if (p == &ch->sess_name[0]) {
2009                        p += 2;
2010                        goto try_again;
2011                }
2012                rej->reason = cpu_to_be32((PTR_ERR(ch->sess) == -ENOMEM) ?
2013                                SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2014                                SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2015                goto destroy_ib;
2016        }
2017
2018        pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2019                 ch->sess_name, ch->cm_id);
2020
2021        /* create srp_login_response */
2022        rsp->opcode = SRP_LOGIN_RSP;
2023        rsp->tag = req->tag;
2024        rsp->max_it_iu_len = req->req_it_iu_len;
2025        rsp->max_ti_iu_len = req->req_it_iu_len;
2026        ch->max_ti_iu_len = it_iu_len;
2027        rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2028                                   | SRP_BUF_FORMAT_INDIRECT);
2029        rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2030        atomic_set(&ch->req_lim, ch->rq_size);
2031        atomic_set(&ch->req_lim_delta, 0);
2032
2033        /* create cm reply */
2034        rep_param->qp_num = ch->qp->qp_num;
2035        rep_param->private_data = (void *)rsp;
2036        rep_param->private_data_len = sizeof(*rsp);
2037        rep_param->rnr_retry_count = 7;
2038        rep_param->flow_control = 1;
2039        rep_param->failover_accepted = 0;
2040        rep_param->srq = 1;
2041        rep_param->responder_resources = 4;
2042        rep_param->initiator_depth = 4;
2043
2044        ret = ib_send_cm_rep(cm_id, rep_param);
2045        if (ret) {
2046                pr_err("sending SRP_LOGIN_REQ response failed"
2047                       " (error code = %d)\n", ret);
2048                goto release_channel;
2049        }
2050
2051        mutex_lock(&sdev->mutex);
2052        list_add_tail(&ch->list, &sdev->rch_list);
2053        mutex_unlock(&sdev->mutex);
2054
2055        goto out;
2056
2057release_channel:
2058        srpt_disconnect_ch(ch);
2059        transport_deregister_session_configfs(ch->sess);
2060        transport_deregister_session(ch->sess);
2061        ch->sess = NULL;
2062
2063destroy_ib:
2064        srpt_destroy_ch_ib(ch);
2065
2066free_ring:
2067        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2068                             ch->sport->sdev, ch->rq_size,
2069                             ch->rsp_size, DMA_TO_DEVICE);
2070free_ch:
2071        kfree(ch);
2072
2073reject:
2074        rej->opcode = SRP_LOGIN_REJ;
2075        rej->tag = req->tag;
2076        rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2077                                   | SRP_BUF_FORMAT_INDIRECT);
2078
2079        ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2080                             (void *)rej, sizeof(*rej));
2081
2082out:
2083        kfree(rep_param);
2084        kfree(rsp);
2085        kfree(rej);
2086
2087        return ret;
2088}
2089
2090static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2091                             enum ib_cm_rej_reason reason,
2092                             const u8 *private_data,
2093                             u8 private_data_len)
2094{
2095        char *priv = NULL;
2096        int i;
2097
2098        if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2099                                                GFP_KERNEL))) {
2100                for (i = 0; i < private_data_len; i++)
2101                        sprintf(priv + 3 * i, " %02x", private_data[i]);
2102        }
2103        pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2104                ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2105                "; private data" : "", priv ? priv : " (?)");
2106        kfree(priv);
2107}
2108
2109/**
2110 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2111 *
2112 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2113 * and that the recipient may begin transmitting (RTU = ready to use).
2114 */
2115static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2116{
2117        int ret;
2118
2119        if (srpt_set_ch_state(ch, CH_LIVE)) {
2120                ret = srpt_ch_qp_rts(ch, ch->qp);
2121
2122                if (ret == 0) {
2123                        /* Trigger wait list processing. */
2124                        ret = srpt_zerolength_write(ch);
2125                        WARN_ONCE(ret < 0, "%d\n", ret);
2126                } else {
2127                        srpt_close_ch(ch);
2128                }
2129        }
2130}
2131
2132/**
2133 * srpt_cm_handler() - IB connection manager callback function.
2134 *
2135 * A non-zero return value will cause the caller destroy the CM ID.
2136 *
2137 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2138 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2139 * a non-zero value in any other case will trigger a race with the
2140 * ib_destroy_cm_id() call in srpt_release_channel().
2141 */
2142static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2143{
2144        struct srpt_rdma_ch *ch = cm_id->context;
2145        int ret;
2146
2147        ret = 0;
2148        switch (event->event) {
2149        case IB_CM_REQ_RECEIVED:
2150                ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2151                                       event->private_data);
2152                break;
2153        case IB_CM_REJ_RECEIVED:
2154                srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2155                                 event->private_data,
2156                                 IB_CM_REJ_PRIVATE_DATA_SIZE);
2157                break;
2158        case IB_CM_RTU_RECEIVED:
2159        case IB_CM_USER_ESTABLISHED:
2160                srpt_cm_rtu_recv(ch);
2161                break;
2162        case IB_CM_DREQ_RECEIVED:
2163                srpt_disconnect_ch(ch);
2164                break;
2165        case IB_CM_DREP_RECEIVED:
2166                pr_info("Received CM DREP message for ch %s-%d.\n",
2167                        ch->sess_name, ch->qp->qp_num);
2168                srpt_close_ch(ch);
2169                break;
2170        case IB_CM_TIMEWAIT_EXIT:
2171                pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2172                        ch->sess_name, ch->qp->qp_num);
2173                srpt_close_ch(ch);
2174                break;
2175        case IB_CM_REP_ERROR:
2176                pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2177                        ch->qp->qp_num);
2178                break;
2179        case IB_CM_DREQ_ERROR:
2180                pr_info("Received CM DREQ ERROR event.\n");
2181                break;
2182        case IB_CM_MRA_RECEIVED:
2183                pr_info("Received CM MRA event\n");
2184                break;
2185        default:
2186                pr_err("received unrecognized CM event %d\n", event->event);
2187                break;
2188        }
2189
2190        return ret;
2191}
2192
2193static int srpt_write_pending_status(struct se_cmd *se_cmd)
2194{
2195        struct srpt_send_ioctx *ioctx;
2196
2197        ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2198        return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2199}
2200
2201/*
2202 * srpt_write_pending() - Start data transfer from initiator to target (write).
2203 */
2204static int srpt_write_pending(struct se_cmd *se_cmd)
2205{
2206        struct srpt_send_ioctx *ioctx =
2207                container_of(se_cmd, struct srpt_send_ioctx, cmd);
2208        struct srpt_rdma_ch *ch = ioctx->ch;
2209        struct ib_send_wr *first_wr = NULL, *bad_wr;
2210        struct ib_cqe *cqe = &ioctx->rdma_cqe;
2211        enum srpt_command_state new_state;
2212        int ret, i;
2213
2214        new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2215        WARN_ON(new_state == SRPT_STATE_DONE);
2216
2217        if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2218                pr_warn("%s: IB send queue full (needed %d)\n",
2219                                __func__, ioctx->n_rdma);
2220                ret = -ENOMEM;
2221                goto out_undo;
2222        }
2223
2224        cqe->done = srpt_rdma_read_done;
2225        for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2226                struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2227
2228                first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2229                                cqe, first_wr);
2230                cqe = NULL;
2231        }
2232        
2233        ret = ib_post_send(ch->qp, first_wr, &bad_wr);
2234        if (ret) {
2235                pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2236                         __func__, ret, ioctx->n_rdma,
2237                         atomic_read(&ch->sq_wr_avail));
2238                goto out_undo;
2239        }
2240
2241        return 0;
2242out_undo:
2243        atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2244        return ret;
2245}
2246
2247static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2248{
2249        switch (tcm_mgmt_status) {
2250        case TMR_FUNCTION_COMPLETE:
2251                return SRP_TSK_MGMT_SUCCESS;
2252        case TMR_FUNCTION_REJECTED:
2253                return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2254        }
2255        return SRP_TSK_MGMT_FAILED;
2256}
2257
2258/**
2259 * srpt_queue_response() - Transmits the response to a SCSI command.
2260 *
2261 * Callback function called by the TCM core. Must not block since it can be
2262 * invoked on the context of the IB completion handler.
2263 */
2264static void srpt_queue_response(struct se_cmd *cmd)
2265{
2266        struct srpt_send_ioctx *ioctx =
2267                container_of(cmd, struct srpt_send_ioctx, cmd);
2268        struct srpt_rdma_ch *ch = ioctx->ch;
2269        struct srpt_device *sdev = ch->sport->sdev;
2270        struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr;
2271        struct ib_sge sge;
2272        enum srpt_command_state state;
2273        unsigned long flags;
2274        int resp_len, ret, i;
2275        u8 srp_tm_status;
2276
2277        BUG_ON(!ch);
2278
2279        spin_lock_irqsave(&ioctx->spinlock, flags);
2280        state = ioctx->state;
2281        switch (state) {
2282        case SRPT_STATE_NEW:
2283        case SRPT_STATE_DATA_IN:
2284                ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2285                break;
2286        case SRPT_STATE_MGMT:
2287                ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2288                break;
2289        default:
2290                WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2291                        ch, ioctx->ioctx.index, ioctx->state);
2292                break;
2293        }
2294        spin_unlock_irqrestore(&ioctx->spinlock, flags);
2295
2296        if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
2297                     || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
2298                atomic_inc(&ch->req_lim_delta);
2299                srpt_abort_cmd(ioctx);
2300                return;
2301        }
2302
2303        /* For read commands, transfer the data to the initiator. */
2304        if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2305            ioctx->cmd.data_length &&
2306            !ioctx->queue_status_only) {
2307                for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2308                        struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2309
2310                        first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2311                                        ch->sport->port, NULL, first_wr);
2312                }
2313        }
2314
2315        if (state != SRPT_STATE_MGMT)
2316                resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2317                                              cmd->scsi_status);
2318        else {
2319                srp_tm_status
2320                        = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2321                resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2322                                                 ioctx->cmd.tag);
2323        }
2324
2325        atomic_inc(&ch->req_lim);
2326
2327        if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2328                        &ch->sq_wr_avail) < 0)) {
2329                pr_warn("%s: IB send queue full (needed %d)\n",
2330                                __func__, ioctx->n_rdma);
2331                ret = -ENOMEM;
2332                goto out;
2333        }
2334
2335        ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2336                                      DMA_TO_DEVICE);
2337
2338        sge.addr = ioctx->ioctx.dma;
2339        sge.length = resp_len;
2340        sge.lkey = sdev->pd->local_dma_lkey;
2341
2342        ioctx->ioctx.cqe.done = srpt_send_done;
2343        send_wr.next = NULL;
2344        send_wr.wr_cqe = &ioctx->ioctx.cqe;
2345        send_wr.sg_list = &sge;
2346        send_wr.num_sge = 1;
2347        send_wr.opcode = IB_WR_SEND;
2348        send_wr.send_flags = IB_SEND_SIGNALED;
2349
2350        ret = ib_post_send(ch->qp, first_wr, &bad_wr);
2351        if (ret < 0) {
2352                pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2353                        __func__, ioctx->cmd.tag, ret);
2354                goto out;
2355        }
2356
2357        return;
2358
2359out:
2360        atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2361        atomic_dec(&ch->req_lim);
2362        srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2363        target_put_sess_cmd(&ioctx->cmd);
2364}
2365
2366static int srpt_queue_data_in(struct se_cmd *cmd)
2367{
2368        srpt_queue_response(cmd);
2369        return 0;
2370}
2371
2372static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2373{
2374        srpt_queue_response(cmd);
2375}
2376
2377static void srpt_aborted_task(struct se_cmd *cmd)
2378{
2379}
2380
2381static int srpt_queue_status(struct se_cmd *cmd)
2382{
2383        struct srpt_send_ioctx *ioctx;
2384
2385        ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2386        BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2387        if (cmd->se_cmd_flags &
2388            (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2389                WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2390        ioctx->queue_status_only = true;
2391        srpt_queue_response(cmd);
2392        return 0;
2393}
2394
2395static void srpt_refresh_port_work(struct work_struct *work)
2396{
2397        struct srpt_port *sport = container_of(work, struct srpt_port, work);
2398
2399        srpt_refresh_port(sport);
2400}
2401
2402/**
2403 * srpt_release_sdev() - Free the channel resources associated with a target.
2404 */
2405static int srpt_release_sdev(struct srpt_device *sdev)
2406{
2407        int i, res;
2408
2409        WARN_ON_ONCE(irqs_disabled());
2410
2411        BUG_ON(!sdev);
2412
2413        mutex_lock(&sdev->mutex);
2414        for (i = 0; i < ARRAY_SIZE(sdev->port); i++)
2415                sdev->port[i].enabled = false;
2416        __srpt_close_all_ch(sdev);
2417        mutex_unlock(&sdev->mutex);
2418
2419        res = wait_event_interruptible(sdev->ch_releaseQ,
2420                                       list_empty_careful(&sdev->rch_list));
2421        if (res)
2422                pr_err("%s: interrupted.\n", __func__);
2423
2424        return 0;
2425}
2426
2427static struct srpt_port *__srpt_lookup_port(const char *name)
2428{
2429        struct ib_device *dev;
2430        struct srpt_device *sdev;
2431        struct srpt_port *sport;
2432        int i;
2433
2434        list_for_each_entry(sdev, &srpt_dev_list, list) {
2435                dev = sdev->device;
2436                if (!dev)
2437                        continue;
2438
2439                for (i = 0; i < dev->phys_port_cnt; i++) {
2440                        sport = &sdev->port[i];
2441
2442                        if (!strcmp(sport->port_guid, name))
2443                                return sport;
2444                }
2445        }
2446
2447        return NULL;
2448}
2449
2450static struct srpt_port *srpt_lookup_port(const char *name)
2451{
2452        struct srpt_port *sport;
2453
2454        spin_lock(&srpt_dev_lock);
2455        sport = __srpt_lookup_port(name);
2456        spin_unlock(&srpt_dev_lock);
2457
2458        return sport;
2459}
2460
2461/**
2462 * srpt_add_one() - Infiniband device addition callback function.
2463 */
2464static void srpt_add_one(struct ib_device *device)
2465{
2466        struct srpt_device *sdev;
2467        struct srpt_port *sport;
2468        struct ib_srq_init_attr srq_attr;
2469        int i;
2470
2471        pr_debug("device = %p, device->dma_ops = %p\n", device,
2472                 device->dma_ops);
2473
2474        sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
2475        if (!sdev)
2476                goto err;
2477
2478        sdev->device = device;
2479        INIT_LIST_HEAD(&sdev->rch_list);
2480        init_waitqueue_head(&sdev->ch_releaseQ);
2481        mutex_init(&sdev->mutex);
2482
2483        sdev->pd = ib_alloc_pd(device, 0);
2484        if (IS_ERR(sdev->pd))
2485                goto free_dev;
2486
2487        sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
2488
2489        srq_attr.event_handler = srpt_srq_event;
2490        srq_attr.srq_context = (void *)sdev;
2491        srq_attr.attr.max_wr = sdev->srq_size;
2492        srq_attr.attr.max_sge = 1;
2493        srq_attr.attr.srq_limit = 0;
2494        srq_attr.srq_type = IB_SRQT_BASIC;
2495
2496        sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
2497        if (IS_ERR(sdev->srq))
2498                goto err_pd;
2499
2500        pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
2501                 __func__, sdev->srq_size, sdev->device->attrs.max_srq_wr,
2502                 device->name);
2503
2504        if (!srpt_service_guid)
2505                srpt_service_guid = be64_to_cpu(device->node_guid);
2506
2507        sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
2508        if (IS_ERR(sdev->cm_id))
2509                goto err_srq;
2510
2511        /* print out target login information */
2512        pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
2513                 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
2514                 srpt_service_guid, srpt_service_guid);
2515
2516        /*
2517         * We do not have a consistent service_id (ie. also id_ext of target_id)
2518         * to identify this target. We currently use the guid of the first HCA
2519         * in the system as service_id; therefore, the target_id will change
2520         * if this HCA is gone bad and replaced by different HCA
2521         */
2522        if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
2523                goto err_cm;
2524
2525        INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
2526                              srpt_event_handler);
2527        if (ib_register_event_handler(&sdev->event_handler))
2528                goto err_cm;
2529
2530        sdev->ioctx_ring = (struct srpt_recv_ioctx **)
2531                srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
2532                                      sizeof(*sdev->ioctx_ring[0]),
2533                                      srp_max_req_size, DMA_FROM_DEVICE);
2534        if (!sdev->ioctx_ring)
2535                goto err_event;
2536
2537        for (i = 0; i < sdev->srq_size; ++i)
2538                srpt_post_recv(sdev, sdev->ioctx_ring[i]);
2539
2540        WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
2541
2542        for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
2543                sport = &sdev->port[i - 1];
2544                sport->sdev = sdev;
2545                sport->port = i;
2546                sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
2547                sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
2548                sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
2549                INIT_WORK(&sport->work, srpt_refresh_port_work);
2550
2551                if (srpt_refresh_port(sport)) {
2552                        pr_err("MAD registration failed for %s-%d.\n",
2553                               sdev->device->name, i);
2554                        goto err_ring;
2555                }
2556        }
2557
2558        spin_lock(&srpt_dev_lock);
2559        list_add_tail(&sdev->list, &srpt_dev_list);
2560        spin_unlock(&srpt_dev_lock);
2561
2562out:
2563        ib_set_client_data(device, &srpt_client, sdev);
2564        pr_debug("added %s.\n", device->name);
2565        return;
2566
2567err_ring:
2568        srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
2569                             sdev->srq_size, srp_max_req_size,
2570                             DMA_FROM_DEVICE);
2571err_event:
2572        ib_unregister_event_handler(&sdev->event_handler);
2573err_cm:
2574        ib_destroy_cm_id(sdev->cm_id);
2575err_srq:
2576        ib_destroy_srq(sdev->srq);
2577err_pd:
2578        ib_dealloc_pd(sdev->pd);
2579free_dev:
2580        kfree(sdev);
2581err:
2582        sdev = NULL;
2583        pr_info("%s(%s) failed.\n", __func__, device->name);
2584        goto out;
2585}
2586
2587/**
2588 * srpt_remove_one() - InfiniBand device removal callback function.
2589 */
2590static void srpt_remove_one(struct ib_device *device, void *client_data)
2591{
2592        struct srpt_device *sdev = client_data;
2593        int i;
2594
2595        if (!sdev) {
2596                pr_info("%s(%s): nothing to do.\n", __func__, device->name);
2597                return;
2598        }
2599
2600        srpt_unregister_mad_agent(sdev);
2601
2602        ib_unregister_event_handler(&sdev->event_handler);
2603
2604        /* Cancel any work queued by the just unregistered IB event handler. */
2605        for (i = 0; i < sdev->device->phys_port_cnt; i++)
2606                cancel_work_sync(&sdev->port[i].work);
2607
2608        ib_destroy_cm_id(sdev->cm_id);
2609
2610        /*
2611         * Unregistering a target must happen after destroying sdev->cm_id
2612         * such that no new SRP_LOGIN_REQ information units can arrive while
2613         * destroying the target.
2614         */
2615        spin_lock(&srpt_dev_lock);
2616        list_del(&sdev->list);
2617        spin_unlock(&srpt_dev_lock);
2618        srpt_release_sdev(sdev);
2619
2620        ib_destroy_srq(sdev->srq);
2621        ib_dealloc_pd(sdev->pd);
2622
2623        srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
2624                             sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
2625        sdev->ioctx_ring = NULL;
2626        kfree(sdev);
2627}
2628
2629static struct ib_client srpt_client = {
2630        .name = DRV_NAME,
2631        .add = srpt_add_one,
2632        .remove = srpt_remove_one
2633};
2634
2635static int srpt_check_true(struct se_portal_group *se_tpg)
2636{
2637        return 1;
2638}
2639
2640static int srpt_check_false(struct se_portal_group *se_tpg)
2641{
2642        return 0;
2643}
2644
2645static char *srpt_get_fabric_name(void)
2646{
2647        return "srpt";
2648}
2649
2650static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
2651{
2652        struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
2653
2654        return sport->port_guid;
2655}
2656
2657static u16 srpt_get_tag(struct se_portal_group *tpg)
2658{
2659        return 1;
2660}
2661
2662static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
2663{
2664        return 1;
2665}
2666
2667static void srpt_release_cmd(struct se_cmd *se_cmd)
2668{
2669        struct srpt_send_ioctx *ioctx = container_of(se_cmd,
2670                                struct srpt_send_ioctx, cmd);
2671        struct srpt_rdma_ch *ch = ioctx->ch;
2672        unsigned long flags;
2673
2674        WARN_ON(ioctx->state != SRPT_STATE_DONE);
2675
2676        if (ioctx->n_rw_ctx) {
2677                srpt_free_rw_ctxs(ch, ioctx);
2678                ioctx->n_rw_ctx = 0;
2679        }
2680
2681        spin_lock_irqsave(&ch->spinlock, flags);
2682        list_add(&ioctx->free_list, &ch->free_list);
2683        spin_unlock_irqrestore(&ch->spinlock, flags);
2684}
2685
2686/**
2687 * srpt_close_session() - Forcibly close a session.
2688 *
2689 * Callback function invoked by the TCM core to clean up sessions associated
2690 * with a node ACL when the user invokes
2691 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
2692 */
2693static void srpt_close_session(struct se_session *se_sess)
2694{
2695        DECLARE_COMPLETION_ONSTACK(release_done);
2696        struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2697        struct srpt_device *sdev = ch->sport->sdev;
2698        bool wait;
2699
2700        pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
2701                 ch->state);
2702
2703        mutex_lock(&sdev->mutex);
2704        BUG_ON(ch->release_done);
2705        ch->release_done = &release_done;
2706        wait = !list_empty(&ch->list);
2707        srpt_disconnect_ch(ch);
2708        mutex_unlock(&sdev->mutex);
2709
2710        if (!wait)
2711                return;
2712
2713        while (wait_for_completion_timeout(&release_done, 180 * HZ) == 0)
2714                pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
2715                        ch->sess_name, ch->qp->qp_num, ch->state);
2716}
2717
2718/**
2719 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
2720 *
2721 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
2722 * This object represents an arbitrary integer used to uniquely identify a
2723 * particular attached remote initiator port to a particular SCSI target port
2724 * within a particular SCSI target device within a particular SCSI instance.
2725 */
2726static u32 srpt_sess_get_index(struct se_session *se_sess)
2727{
2728        return 0;
2729}
2730
2731static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
2732{
2733}
2734
2735/* Note: only used from inside debug printk's by the TCM core. */
2736static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
2737{
2738        struct srpt_send_ioctx *ioctx;
2739
2740        ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2741        return srpt_get_cmd_state(ioctx);
2742}
2743
2744/**
2745 * srpt_parse_i_port_id() - Parse an initiator port ID.
2746 * @name: ASCII representation of a 128-bit initiator port ID.
2747 * @i_port_id: Binary 128-bit port ID.
2748 */
2749static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
2750{
2751        const char *p;
2752        unsigned len, count, leading_zero_bytes;
2753        int ret, rc;
2754
2755        p = name;
2756        if (strncasecmp(p, "0x", 2) == 0)
2757                p += 2;
2758        ret = -EINVAL;
2759        len = strlen(p);
2760        if (len % 2)
2761                goto out;
2762        count = min(len / 2, 16U);
2763        leading_zero_bytes = 16 - count;
2764        memset(i_port_id, 0, leading_zero_bytes);
2765        rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
2766        if (rc < 0)
2767                pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
2768        ret = 0;
2769out:
2770        return ret;
2771}
2772
2773/*
2774 * configfs callback function invoked for
2775 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
2776 */
2777static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
2778{
2779        u8 i_port_id[16];
2780
2781        if (srpt_parse_i_port_id(i_port_id, name) < 0) {
2782                pr_err("invalid initiator port ID %s\n", name);
2783                return -EINVAL;
2784        }
2785        return 0;
2786}
2787
2788static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
2789                char *page)
2790{
2791        struct se_portal_group *se_tpg = attrib_to_tpg(item);
2792        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2793
2794        return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
2795}
2796
2797static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
2798                const char *page, size_t count)
2799{
2800        struct se_portal_group *se_tpg = attrib_to_tpg(item);
2801        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2802        unsigned long val;
2803        int ret;
2804
2805        ret = kstrtoul(page, 0, &val);
2806        if (ret < 0) {
2807                pr_err("kstrtoul() failed with ret: %d\n", ret);
2808                return -EINVAL;
2809        }
2810        if (val > MAX_SRPT_RDMA_SIZE) {
2811                pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
2812                        MAX_SRPT_RDMA_SIZE);
2813                return -EINVAL;
2814        }
2815        if (val < DEFAULT_MAX_RDMA_SIZE) {
2816                pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
2817                        val, DEFAULT_MAX_RDMA_SIZE);
2818                return -EINVAL;
2819        }
2820        sport->port_attrib.srp_max_rdma_size = val;
2821
2822        return count;
2823}
2824
2825static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
2826                char *page)
2827{
2828        struct se_portal_group *se_tpg = attrib_to_tpg(item);
2829        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2830
2831        return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
2832}
2833
2834static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
2835                const char *page, size_t count)
2836{
2837        struct se_portal_group *se_tpg = attrib_to_tpg(item);
2838        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2839        unsigned long val;
2840        int ret;
2841
2842        ret = kstrtoul(page, 0, &val);
2843        if (ret < 0) {
2844                pr_err("kstrtoul() failed with ret: %d\n", ret);
2845                return -EINVAL;
2846        }
2847        if (val > MAX_SRPT_RSP_SIZE) {
2848                pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
2849                        MAX_SRPT_RSP_SIZE);
2850                return -EINVAL;
2851        }
2852        if (val < MIN_MAX_RSP_SIZE) {
2853                pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
2854                        MIN_MAX_RSP_SIZE);
2855                return -EINVAL;
2856        }
2857        sport->port_attrib.srp_max_rsp_size = val;
2858
2859        return count;
2860}
2861
2862static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
2863                char *page)
2864{
2865        struct se_portal_group *se_tpg = attrib_to_tpg(item);
2866        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2867
2868        return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
2869}
2870
2871static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
2872                const char *page, size_t count)
2873{
2874        struct se_portal_group *se_tpg = attrib_to_tpg(item);
2875        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2876        unsigned long val;
2877        int ret;
2878
2879        ret = kstrtoul(page, 0, &val);
2880        if (ret < 0) {
2881                pr_err("kstrtoul() failed with ret: %d\n", ret);
2882                return -EINVAL;
2883        }
2884        if (val > MAX_SRPT_SRQ_SIZE) {
2885                pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
2886                        MAX_SRPT_SRQ_SIZE);
2887                return -EINVAL;
2888        }
2889        if (val < MIN_SRPT_SRQ_SIZE) {
2890                pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
2891                        MIN_SRPT_SRQ_SIZE);
2892                return -EINVAL;
2893        }
2894        sport->port_attrib.srp_sq_size = val;
2895
2896        return count;
2897}
2898
2899CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
2900CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
2901CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
2902
2903static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
2904        &srpt_tpg_attrib_attr_srp_max_rdma_size,
2905        &srpt_tpg_attrib_attr_srp_max_rsp_size,
2906        &srpt_tpg_attrib_attr_srp_sq_size,
2907        NULL,
2908};
2909
2910static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
2911{
2912        struct se_portal_group *se_tpg = to_tpg(item);
2913        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2914
2915        return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
2916}
2917
2918static ssize_t srpt_tpg_enable_store(struct config_item *item,
2919                const char *page, size_t count)
2920{
2921        struct se_portal_group *se_tpg = to_tpg(item);
2922        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2923        struct srpt_device *sdev = sport->sdev;
2924        struct srpt_rdma_ch *ch;
2925        unsigned long tmp;
2926        int ret;
2927
2928        ret = kstrtoul(page, 0, &tmp);
2929        if (ret < 0) {
2930                pr_err("Unable to extract srpt_tpg_store_enable\n");
2931                return -EINVAL;
2932        }
2933
2934        if ((tmp != 0) && (tmp != 1)) {
2935                pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
2936                return -EINVAL;
2937        }
2938        if (sport->enabled == tmp)
2939                goto out;
2940        sport->enabled = tmp;
2941        if (sport->enabled)
2942                goto out;
2943
2944        mutex_lock(&sdev->mutex);
2945        list_for_each_entry(ch, &sdev->rch_list, list) {
2946                if (ch->sport == sport) {
2947                        pr_debug("%s: ch %p %s-%d\n", __func__, ch,
2948                                 ch->sess_name, ch->qp->qp_num);
2949                        srpt_disconnect_ch(ch);
2950                        srpt_close_ch(ch);
2951                }
2952        }
2953        mutex_unlock(&sdev->mutex);
2954
2955out:
2956        return count;
2957}
2958
2959CONFIGFS_ATTR(srpt_tpg_, enable);
2960
2961static struct configfs_attribute *srpt_tpg_attrs[] = {
2962        &srpt_tpg_attr_enable,
2963        NULL,
2964};
2965
2966/**
2967 * configfs callback invoked for
2968 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
2969 */
2970static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
2971                                             struct config_group *group,
2972                                             const char *name)
2973{
2974        struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
2975        int res;
2976
2977        /* Initialize sport->port_wwn and sport->port_tpg_1 */
2978        res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP);
2979        if (res)
2980                return ERR_PTR(res);
2981
2982        return &sport->port_tpg_1;
2983}
2984
2985/**
2986 * configfs callback invoked for
2987 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
2988 */
2989static void srpt_drop_tpg(struct se_portal_group *tpg)
2990{
2991        struct srpt_port *sport = container_of(tpg,
2992                                struct srpt_port, port_tpg_1);
2993
2994        sport->enabled = false;
2995        core_tpg_deregister(&sport->port_tpg_1);
2996}
2997
2998/**
2999 * configfs callback invoked for
3000 * mkdir /sys/kernel/config/target/$driver/$port
3001 */
3002static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3003                                      struct config_group *group,
3004                                      const char *name)
3005{
3006        struct srpt_port *sport;
3007        int ret;
3008
3009        sport = srpt_lookup_port(name);
3010        pr_debug("make_tport(%s)\n", name);
3011        ret = -EINVAL;
3012        if (!sport)
3013                goto err;
3014
3015        return &sport->port_wwn;
3016
3017err:
3018        return ERR_PTR(ret);
3019}
3020
3021/**
3022 * configfs callback invoked for
3023 * rmdir /sys/kernel/config/target/$driver/$port
3024 */
3025static void srpt_drop_tport(struct se_wwn *wwn)
3026{
3027        struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3028
3029        pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3030}
3031
3032static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3033{
3034        return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3035}
3036
3037CONFIGFS_ATTR_RO(srpt_wwn_, version);
3038
3039static struct configfs_attribute *srpt_wwn_attrs[] = {
3040        &srpt_wwn_attr_version,
3041        NULL,
3042};
3043
3044static const struct target_core_fabric_ops srpt_template = {
3045        .module                         = THIS_MODULE,
3046        .name                           = "srpt",
3047        .get_fabric_name                = srpt_get_fabric_name,
3048        .tpg_get_wwn                    = srpt_get_fabric_wwn,
3049        .tpg_get_tag                    = srpt_get_tag,
3050        .tpg_check_demo_mode            = srpt_check_false,
3051        .tpg_check_demo_mode_cache      = srpt_check_true,
3052        .tpg_check_demo_mode_write_protect = srpt_check_true,
3053        .tpg_check_prod_mode_write_protect = srpt_check_false,
3054        .tpg_get_inst_index             = srpt_tpg_get_inst_index,
3055        .release_cmd                    = srpt_release_cmd,
3056        .check_stop_free                = srpt_check_stop_free,
3057        .close_session                  = srpt_close_session,
3058        .sess_get_index                 = srpt_sess_get_index,
3059        .sess_get_initiator_sid         = NULL,
3060        .write_pending                  = srpt_write_pending,
3061        .write_pending_status           = srpt_write_pending_status,
3062        .set_default_node_attributes    = srpt_set_default_node_attrs,
3063        .get_cmd_state                  = srpt_get_tcm_cmd_state,
3064        .queue_data_in                  = srpt_queue_data_in,
3065        .queue_status                   = srpt_queue_status,
3066        .queue_tm_rsp                   = srpt_queue_tm_rsp,
3067        .aborted_task                   = srpt_aborted_task,
3068        /*
3069         * Setup function pointers for generic logic in
3070         * target_core_fabric_configfs.c
3071         */
3072        .fabric_make_wwn                = srpt_make_tport,
3073        .fabric_drop_wwn                = srpt_drop_tport,
3074        .fabric_make_tpg                = srpt_make_tpg,
3075        .fabric_drop_tpg                = srpt_drop_tpg,
3076        .fabric_init_nodeacl            = srpt_init_nodeacl,
3077
3078        .tfc_wwn_attrs                  = srpt_wwn_attrs,
3079        .tfc_tpg_base_attrs             = srpt_tpg_attrs,
3080        .tfc_tpg_attrib_attrs           = srpt_tpg_attrib_attrs,
3081};
3082
3083/**
3084 * srpt_init_module() - Kernel module initialization.
3085 *
3086 * Note: Since ib_register_client() registers callback functions, and since at
3087 * least one of these callback functions (srpt_add_one()) calls target core
3088 * functions, this driver must be registered with the target core before
3089 * ib_register_client() is called.
3090 */
3091static int __init srpt_init_module(void)
3092{
3093        int ret;
3094
3095        ret = -EINVAL;
3096        if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3097                pr_err("invalid value %d for kernel module parameter"
3098                       " srp_max_req_size -- must be at least %d.\n",
3099                       srp_max_req_size, MIN_MAX_REQ_SIZE);
3100                goto out;
3101        }
3102
3103        if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3104            || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3105                pr_err("invalid value %d for kernel module parameter"
3106                       " srpt_srq_size -- must be in the range [%d..%d].\n",
3107                       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3108                goto out;
3109        }
3110
3111        ret = target_register_template(&srpt_template);
3112        if (ret)
3113                goto out;
3114
3115        ret = ib_register_client(&srpt_client);
3116        if (ret) {
3117                pr_err("couldn't register IB client\n");
3118                goto out_unregister_target;
3119        }
3120
3121        return 0;
3122
3123out_unregister_target:
3124        target_unregister_template(&srpt_template);
3125out:
3126        return ret;
3127}
3128
3129static void __exit srpt_cleanup_module(void)
3130{
3131        ib_unregister_client(&srpt_client);
3132        target_unregister_template(&srpt_template);
3133}
3134
3135module_init(srpt_init_module);
3136module_exit(srpt_cleanup_module);
3137