linux/drivers/md/raid5.c
<<
>>
Prefs
   1/*
   2 * raid5.c : Multiple Devices driver for Linux
   3 *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   4 *         Copyright (C) 1999, 2000 Ingo Molnar
   5 *         Copyright (C) 2002, 2003 H. Peter Anvin
   6 *
   7 * RAID-4/5/6 management functions.
   8 * Thanks to Penguin Computing for making the RAID-6 development possible
   9 * by donating a test server!
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21/*
  22 * BITMAP UNPLUGGING:
  23 *
  24 * The sequencing for updating the bitmap reliably is a little
  25 * subtle (and I got it wrong the first time) so it deserves some
  26 * explanation.
  27 *
  28 * We group bitmap updates into batches.  Each batch has a number.
  29 * We may write out several batches at once, but that isn't very important.
  30 * conf->seq_write is the number of the last batch successfully written.
  31 * conf->seq_flush is the number of the last batch that was closed to
  32 *    new additions.
  33 * When we discover that we will need to write to any block in a stripe
  34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  35 * the number of the batch it will be in. This is seq_flush+1.
  36 * When we are ready to do a write, if that batch hasn't been written yet,
  37 *   we plug the array and queue the stripe for later.
  38 * When an unplug happens, we increment bm_flush, thus closing the current
  39 *   batch.
  40 * When we notice that bm_flush > bm_write, we write out all pending updates
  41 * to the bitmap, and advance bm_write to where bm_flush was.
  42 * This may occasionally write a bit out twice, but is sure never to
  43 * miss any bits.
  44 */
  45
  46#include <linux/blkdev.h>
  47#include <linux/kthread.h>
  48#include <linux/raid/pq.h>
  49#include <linux/async_tx.h>
  50#include <linux/module.h>
  51#include <linux/async.h>
  52#include <linux/seq_file.h>
  53#include <linux/cpu.h>
  54#include <linux/slab.h>
  55#include <linux/ratelimit.h>
  56#include <linux/nodemask.h>
  57#include <linux/flex_array.h>
  58#include <trace/events/block.h>
  59
  60#include "md.h"
  61#include "raid5.h"
  62#include "raid0.h"
  63#include "bitmap.h"
  64
  65#define cpu_to_group(cpu) cpu_to_node(cpu)
  66#define ANY_GROUP NUMA_NO_NODE
  67
  68static bool devices_handle_discard_safely = false;
  69module_param(devices_handle_discard_safely, bool, 0644);
  70MODULE_PARM_DESC(devices_handle_discard_safely,
  71                 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
  72static struct workqueue_struct *raid5_wq;
  73/*
  74 * Stripe cache
  75 */
  76
  77#define NR_STRIPES              256
  78#define STRIPE_SIZE             PAGE_SIZE
  79#define STRIPE_SHIFT            (PAGE_SHIFT - 9)
  80#define STRIPE_SECTORS          (STRIPE_SIZE>>9)
  81#define IO_THRESHOLD            1
  82#define BYPASS_THRESHOLD        1
  83#define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
  84#define HASH_MASK               (NR_HASH - 1)
  85#define MAX_STRIPE_BATCH        8
  86
  87static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
  88{
  89        int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
  90        return &conf->stripe_hashtbl[hash];
  91}
  92
  93static inline int stripe_hash_locks_hash(sector_t sect)
  94{
  95        return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
  96}
  97
  98static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
  99{
 100        spin_lock_irq(conf->hash_locks + hash);
 101        spin_lock(&conf->device_lock);
 102}
 103
 104static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
 105{
 106        spin_unlock(&conf->device_lock);
 107        spin_unlock_irq(conf->hash_locks + hash);
 108}
 109
 110static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
 111{
 112        int i;
 113        local_irq_disable();
 114        spin_lock(conf->hash_locks);
 115        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
 116                spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
 117        spin_lock(&conf->device_lock);
 118}
 119
 120static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
 121{
 122        int i;
 123        spin_unlock(&conf->device_lock);
 124        for (i = NR_STRIPE_HASH_LOCKS; i; i--)
 125                spin_unlock(conf->hash_locks + i - 1);
 126        local_irq_enable();
 127}
 128
 129/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 130 * order without overlap.  There may be several bio's per stripe+device, and
 131 * a bio could span several devices.
 132 * When walking this list for a particular stripe+device, we must never proceed
 133 * beyond a bio that extends past this device, as the next bio might no longer
 134 * be valid.
 135 * This function is used to determine the 'next' bio in the list, given the sector
 136 * of the current stripe+device
 137 */
 138static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
 139{
 140        int sectors = bio_sectors(bio);
 141        if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
 142                return bio->bi_next;
 143        else
 144                return NULL;
 145}
 146
 147/*
 148 * We maintain a biased count of active stripes in the bottom 16 bits of
 149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
 150 */
 151static inline int raid5_bi_processed_stripes(struct bio *bio)
 152{
 153        atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
 154        return (atomic_read(segments) >> 16) & 0xffff;
 155}
 156
 157static inline int raid5_dec_bi_active_stripes(struct bio *bio)
 158{
 159        atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
 160        return atomic_sub_return(1, segments) & 0xffff;
 161}
 162
 163static inline void raid5_inc_bi_active_stripes(struct bio *bio)
 164{
 165        atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
 166        atomic_inc(segments);
 167}
 168
 169static inline void raid5_set_bi_processed_stripes(struct bio *bio,
 170        unsigned int cnt)
 171{
 172        atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
 173        int old, new;
 174
 175        do {
 176                old = atomic_read(segments);
 177                new = (old & 0xffff) | (cnt << 16);
 178        } while (atomic_cmpxchg(segments, old, new) != old);
 179}
 180
 181static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
 182{
 183        atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
 184        atomic_set(segments, cnt);
 185}
 186
 187/* Find first data disk in a raid6 stripe */
 188static inline int raid6_d0(struct stripe_head *sh)
 189{
 190        if (sh->ddf_layout)
 191                /* ddf always start from first device */
 192                return 0;
 193        /* md starts just after Q block */
 194        if (sh->qd_idx == sh->disks - 1)
 195                return 0;
 196        else
 197                return sh->qd_idx + 1;
 198}
 199static inline int raid6_next_disk(int disk, int raid_disks)
 200{
 201        disk++;
 202        return (disk < raid_disks) ? disk : 0;
 203}
 204
 205/* When walking through the disks in a raid5, starting at raid6_d0,
 206 * We need to map each disk to a 'slot', where the data disks are slot
 207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 208 * is raid_disks-1.  This help does that mapping.
 209 */
 210static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
 211                             int *count, int syndrome_disks)
 212{
 213        int slot = *count;
 214
 215        if (sh->ddf_layout)
 216                (*count)++;
 217        if (idx == sh->pd_idx)
 218                return syndrome_disks;
 219        if (idx == sh->qd_idx)
 220                return syndrome_disks + 1;
 221        if (!sh->ddf_layout)
 222                (*count)++;
 223        return slot;
 224}
 225
 226static void return_io(struct bio_list *return_bi)
 227{
 228        struct bio *bi;
 229        while ((bi = bio_list_pop(return_bi)) != NULL) {
 230                bi->bi_iter.bi_size = 0;
 231                trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
 232                                         bi, 0);
 233                bio_endio(bi);
 234        }
 235}
 236
 237static void print_raid5_conf (struct r5conf *conf);
 238
 239static int stripe_operations_active(struct stripe_head *sh)
 240{
 241        return sh->check_state || sh->reconstruct_state ||
 242               test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
 243               test_bit(STRIPE_COMPUTE_RUN, &sh->state);
 244}
 245
 246static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
 247{
 248        struct r5conf *conf = sh->raid_conf;
 249        struct r5worker_group *group;
 250        int thread_cnt;
 251        int i, cpu = sh->cpu;
 252
 253        if (!cpu_online(cpu)) {
 254                cpu = cpumask_any(cpu_online_mask);
 255                sh->cpu = cpu;
 256        }
 257
 258        if (list_empty(&sh->lru)) {
 259                struct r5worker_group *group;
 260                group = conf->worker_groups + cpu_to_group(cpu);
 261                list_add_tail(&sh->lru, &group->handle_list);
 262                group->stripes_cnt++;
 263                sh->group = group;
 264        }
 265
 266        if (conf->worker_cnt_per_group == 0) {
 267                md_wakeup_thread(conf->mddev->thread);
 268                return;
 269        }
 270
 271        group = conf->worker_groups + cpu_to_group(sh->cpu);
 272
 273        group->workers[0].working = true;
 274        /* at least one worker should run to avoid race */
 275        queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
 276
 277        thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
 278        /* wakeup more workers */
 279        for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
 280                if (group->workers[i].working == false) {
 281                        group->workers[i].working = true;
 282                        queue_work_on(sh->cpu, raid5_wq,
 283                                      &group->workers[i].work);
 284                        thread_cnt--;
 285                }
 286        }
 287}
 288
 289static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
 290                              struct list_head *temp_inactive_list)
 291{
 292        BUG_ON(!list_empty(&sh->lru));
 293        BUG_ON(atomic_read(&conf->active_stripes)==0);
 294        if (test_bit(STRIPE_HANDLE, &sh->state)) {
 295                if (test_bit(STRIPE_DELAYED, &sh->state) &&
 296                    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 297                        list_add_tail(&sh->lru, &conf->delayed_list);
 298                else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
 299                           sh->bm_seq - conf->seq_write > 0)
 300                        list_add_tail(&sh->lru, &conf->bitmap_list);
 301                else {
 302                        clear_bit(STRIPE_DELAYED, &sh->state);
 303                        clear_bit(STRIPE_BIT_DELAY, &sh->state);
 304                        if (conf->worker_cnt_per_group == 0) {
 305                                list_add_tail(&sh->lru, &conf->handle_list);
 306                        } else {
 307                                raid5_wakeup_stripe_thread(sh);
 308                                return;
 309                        }
 310                }
 311                md_wakeup_thread(conf->mddev->thread);
 312        } else {
 313                BUG_ON(stripe_operations_active(sh));
 314                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 315                        if (atomic_dec_return(&conf->preread_active_stripes)
 316                            < IO_THRESHOLD)
 317                                md_wakeup_thread(conf->mddev->thread);
 318                atomic_dec(&conf->active_stripes);
 319                if (!test_bit(STRIPE_EXPANDING, &sh->state))
 320                        list_add_tail(&sh->lru, temp_inactive_list);
 321        }
 322}
 323
 324static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
 325                             struct list_head *temp_inactive_list)
 326{
 327        if (atomic_dec_and_test(&sh->count))
 328                do_release_stripe(conf, sh, temp_inactive_list);
 329}
 330
 331/*
 332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
 333 *
 334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
 335 * given time. Adding stripes only takes device lock, while deleting stripes
 336 * only takes hash lock.
 337 */
 338static void release_inactive_stripe_list(struct r5conf *conf,
 339                                         struct list_head *temp_inactive_list,
 340                                         int hash)
 341{
 342        int size;
 343        bool do_wakeup = false;
 344        unsigned long flags;
 345
 346        if (hash == NR_STRIPE_HASH_LOCKS) {
 347                size = NR_STRIPE_HASH_LOCKS;
 348                hash = NR_STRIPE_HASH_LOCKS - 1;
 349        } else
 350                size = 1;
 351        while (size) {
 352                struct list_head *list = &temp_inactive_list[size - 1];
 353
 354                /*
 355                 * We don't hold any lock here yet, raid5_get_active_stripe() might
 356                 * remove stripes from the list
 357                 */
 358                if (!list_empty_careful(list)) {
 359                        spin_lock_irqsave(conf->hash_locks + hash, flags);
 360                        if (list_empty(conf->inactive_list + hash) &&
 361                            !list_empty(list))
 362                                atomic_dec(&conf->empty_inactive_list_nr);
 363                        list_splice_tail_init(list, conf->inactive_list + hash);
 364                        do_wakeup = true;
 365                        spin_unlock_irqrestore(conf->hash_locks + hash, flags);
 366                }
 367                size--;
 368                hash--;
 369        }
 370
 371        if (do_wakeup) {
 372                wake_up(&conf->wait_for_stripe);
 373                if (atomic_read(&conf->active_stripes) == 0)
 374                        wake_up(&conf->wait_for_quiescent);
 375                if (conf->retry_read_aligned)
 376                        md_wakeup_thread(conf->mddev->thread);
 377        }
 378}
 379
 380/* should hold conf->device_lock already */
 381static int release_stripe_list(struct r5conf *conf,
 382                               struct list_head *temp_inactive_list)
 383{
 384        struct stripe_head *sh;
 385        int count = 0;
 386        struct llist_node *head;
 387
 388        head = llist_del_all(&conf->released_stripes);
 389        head = llist_reverse_order(head);
 390        while (head) {
 391                int hash;
 392
 393                sh = llist_entry(head, struct stripe_head, release_list);
 394                head = llist_next(head);
 395                /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
 396                smp_mb();
 397                clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
 398                /*
 399                 * Don't worry the bit is set here, because if the bit is set
 400                 * again, the count is always > 1. This is true for
 401                 * STRIPE_ON_UNPLUG_LIST bit too.
 402                 */
 403                hash = sh->hash_lock_index;
 404                __release_stripe(conf, sh, &temp_inactive_list[hash]);
 405                count++;
 406        }
 407
 408        return count;
 409}
 410
 411void raid5_release_stripe(struct stripe_head *sh)
 412{
 413        struct r5conf *conf = sh->raid_conf;
 414        unsigned long flags;
 415        struct list_head list;
 416        int hash;
 417        bool wakeup;
 418
 419        /* Avoid release_list until the last reference.
 420         */
 421        if (atomic_add_unless(&sh->count, -1, 1))
 422                return;
 423
 424        if (unlikely(!conf->mddev->thread) ||
 425                test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
 426                goto slow_path;
 427        wakeup = llist_add(&sh->release_list, &conf->released_stripes);
 428        if (wakeup)
 429                md_wakeup_thread(conf->mddev->thread);
 430        return;
 431slow_path:
 432        local_irq_save(flags);
 433        /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
 434        if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
 435                INIT_LIST_HEAD(&list);
 436                hash = sh->hash_lock_index;
 437                do_release_stripe(conf, sh, &list);
 438                spin_unlock(&conf->device_lock);
 439                release_inactive_stripe_list(conf, &list, hash);
 440        }
 441        local_irq_restore(flags);
 442}
 443
 444static inline void remove_hash(struct stripe_head *sh)
 445{
 446        pr_debug("remove_hash(), stripe %llu\n",
 447                (unsigned long long)sh->sector);
 448
 449        hlist_del_init(&sh->hash);
 450}
 451
 452static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
 453{
 454        struct hlist_head *hp = stripe_hash(conf, sh->sector);
 455
 456        pr_debug("insert_hash(), stripe %llu\n",
 457                (unsigned long long)sh->sector);
 458
 459        hlist_add_head(&sh->hash, hp);
 460}
 461
 462/* find an idle stripe, make sure it is unhashed, and return it. */
 463static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
 464{
 465        struct stripe_head *sh = NULL;
 466        struct list_head *first;
 467
 468        if (list_empty(conf->inactive_list + hash))
 469                goto out;
 470        first = (conf->inactive_list + hash)->next;
 471        sh = list_entry(first, struct stripe_head, lru);
 472        list_del_init(first);
 473        remove_hash(sh);
 474        atomic_inc(&conf->active_stripes);
 475        BUG_ON(hash != sh->hash_lock_index);
 476        if (list_empty(conf->inactive_list + hash))
 477                atomic_inc(&conf->empty_inactive_list_nr);
 478out:
 479        return sh;
 480}
 481
 482static void shrink_buffers(struct stripe_head *sh)
 483{
 484        struct page *p;
 485        int i;
 486        int num = sh->raid_conf->pool_size;
 487
 488        for (i = 0; i < num ; i++) {
 489                WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
 490                p = sh->dev[i].page;
 491                if (!p)
 492                        continue;
 493                sh->dev[i].page = NULL;
 494                put_page(p);
 495        }
 496}
 497
 498static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
 499{
 500        int i;
 501        int num = sh->raid_conf->pool_size;
 502
 503        for (i = 0; i < num; i++) {
 504                struct page *page;
 505
 506                if (!(page = alloc_page(gfp))) {
 507                        return 1;
 508                }
 509                sh->dev[i].page = page;
 510                sh->dev[i].orig_page = page;
 511        }
 512        return 0;
 513}
 514
 515static void raid5_build_block(struct stripe_head *sh, int i, int previous);
 516static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
 517                            struct stripe_head *sh);
 518
 519static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
 520{
 521        struct r5conf *conf = sh->raid_conf;
 522        int i, seq;
 523
 524        BUG_ON(atomic_read(&sh->count) != 0);
 525        BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
 526        BUG_ON(stripe_operations_active(sh));
 527        BUG_ON(sh->batch_head);
 528
 529        pr_debug("init_stripe called, stripe %llu\n",
 530                (unsigned long long)sector);
 531retry:
 532        seq = read_seqcount_begin(&conf->gen_lock);
 533        sh->generation = conf->generation - previous;
 534        sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
 535        sh->sector = sector;
 536        stripe_set_idx(sector, conf, previous, sh);
 537        sh->state = 0;
 538
 539        for (i = sh->disks; i--; ) {
 540                struct r5dev *dev = &sh->dev[i];
 541
 542                if (dev->toread || dev->read || dev->towrite || dev->written ||
 543                    test_bit(R5_LOCKED, &dev->flags)) {
 544                        printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
 545                               (unsigned long long)sh->sector, i, dev->toread,
 546                               dev->read, dev->towrite, dev->written,
 547                               test_bit(R5_LOCKED, &dev->flags));
 548                        WARN_ON(1);
 549                }
 550                dev->flags = 0;
 551                raid5_build_block(sh, i, previous);
 552        }
 553        if (read_seqcount_retry(&conf->gen_lock, seq))
 554                goto retry;
 555        sh->overwrite_disks = 0;
 556        insert_hash(conf, sh);
 557        sh->cpu = smp_processor_id();
 558        set_bit(STRIPE_BATCH_READY, &sh->state);
 559}
 560
 561static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
 562                                         short generation)
 563{
 564        struct stripe_head *sh;
 565
 566        pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
 567        hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
 568                if (sh->sector == sector && sh->generation == generation)
 569                        return sh;
 570        pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
 571        return NULL;
 572}
 573
 574/*
 575 * Need to check if array has failed when deciding whether to:
 576 *  - start an array
 577 *  - remove non-faulty devices
 578 *  - add a spare
 579 *  - allow a reshape
 580 * This determination is simple when no reshape is happening.
 581 * However if there is a reshape, we need to carefully check
 582 * both the before and after sections.
 583 * This is because some failed devices may only affect one
 584 * of the two sections, and some non-in_sync devices may
 585 * be insync in the section most affected by failed devices.
 586 */
 587static int calc_degraded(struct r5conf *conf)
 588{
 589        int degraded, degraded2;
 590        int i;
 591
 592        rcu_read_lock();
 593        degraded = 0;
 594        for (i = 0; i < conf->previous_raid_disks; i++) {
 595                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 596                if (rdev && test_bit(Faulty, &rdev->flags))
 597                        rdev = rcu_dereference(conf->disks[i].replacement);
 598                if (!rdev || test_bit(Faulty, &rdev->flags))
 599                        degraded++;
 600                else if (test_bit(In_sync, &rdev->flags))
 601                        ;
 602                else
 603                        /* not in-sync or faulty.
 604                         * If the reshape increases the number of devices,
 605                         * this is being recovered by the reshape, so
 606                         * this 'previous' section is not in_sync.
 607                         * If the number of devices is being reduced however,
 608                         * the device can only be part of the array if
 609                         * we are reverting a reshape, so this section will
 610                         * be in-sync.
 611                         */
 612                        if (conf->raid_disks >= conf->previous_raid_disks)
 613                                degraded++;
 614        }
 615        rcu_read_unlock();
 616        if (conf->raid_disks == conf->previous_raid_disks)
 617                return degraded;
 618        rcu_read_lock();
 619        degraded2 = 0;
 620        for (i = 0; i < conf->raid_disks; i++) {
 621                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 622                if (rdev && test_bit(Faulty, &rdev->flags))
 623                        rdev = rcu_dereference(conf->disks[i].replacement);
 624                if (!rdev || test_bit(Faulty, &rdev->flags))
 625                        degraded2++;
 626                else if (test_bit(In_sync, &rdev->flags))
 627                        ;
 628                else
 629                        /* not in-sync or faulty.
 630                         * If reshape increases the number of devices, this
 631                         * section has already been recovered, else it
 632                         * almost certainly hasn't.
 633                         */
 634                        if (conf->raid_disks <= conf->previous_raid_disks)
 635                                degraded2++;
 636        }
 637        rcu_read_unlock();
 638        if (degraded2 > degraded)
 639                return degraded2;
 640        return degraded;
 641}
 642
 643static int has_failed(struct r5conf *conf)
 644{
 645        int degraded;
 646
 647        if (conf->mddev->reshape_position == MaxSector)
 648                return conf->mddev->degraded > conf->max_degraded;
 649
 650        degraded = calc_degraded(conf);
 651        if (degraded > conf->max_degraded)
 652                return 1;
 653        return 0;
 654}
 655
 656struct stripe_head *
 657raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
 658                        int previous, int noblock, int noquiesce)
 659{
 660        struct stripe_head *sh;
 661        int hash = stripe_hash_locks_hash(sector);
 662        int inc_empty_inactive_list_flag;
 663
 664        pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
 665
 666        spin_lock_irq(conf->hash_locks + hash);
 667
 668        do {
 669                wait_event_lock_irq(conf->wait_for_quiescent,
 670                                    conf->quiesce == 0 || noquiesce,
 671                                    *(conf->hash_locks + hash));
 672                sh = __find_stripe(conf, sector, conf->generation - previous);
 673                if (!sh) {
 674                        if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
 675                                sh = get_free_stripe(conf, hash);
 676                                if (!sh && !test_bit(R5_DID_ALLOC,
 677                                                     &conf->cache_state))
 678                                        set_bit(R5_ALLOC_MORE,
 679                                                &conf->cache_state);
 680                        }
 681                        if (noblock && sh == NULL)
 682                                break;
 683                        if (!sh) {
 684                                set_bit(R5_INACTIVE_BLOCKED,
 685                                        &conf->cache_state);
 686                                wait_event_lock_irq(
 687                                        conf->wait_for_stripe,
 688                                        !list_empty(conf->inactive_list + hash) &&
 689                                        (atomic_read(&conf->active_stripes)
 690                                         < (conf->max_nr_stripes * 3 / 4)
 691                                         || !test_bit(R5_INACTIVE_BLOCKED,
 692                                                      &conf->cache_state)),
 693                                        *(conf->hash_locks + hash));
 694                                clear_bit(R5_INACTIVE_BLOCKED,
 695                                          &conf->cache_state);
 696                        } else {
 697                                init_stripe(sh, sector, previous);
 698                                atomic_inc(&sh->count);
 699                        }
 700                } else if (!atomic_inc_not_zero(&sh->count)) {
 701                        spin_lock(&conf->device_lock);
 702                        if (!atomic_read(&sh->count)) {
 703                                if (!test_bit(STRIPE_HANDLE, &sh->state))
 704                                        atomic_inc(&conf->active_stripes);
 705                                BUG_ON(list_empty(&sh->lru) &&
 706                                       !test_bit(STRIPE_EXPANDING, &sh->state));
 707                                inc_empty_inactive_list_flag = 0;
 708                                if (!list_empty(conf->inactive_list + hash))
 709                                        inc_empty_inactive_list_flag = 1;
 710                                list_del_init(&sh->lru);
 711                                if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 712                                        atomic_inc(&conf->empty_inactive_list_nr);
 713                                if (sh->group) {
 714                                        sh->group->stripes_cnt--;
 715                                        sh->group = NULL;
 716                                }
 717                        }
 718                        atomic_inc(&sh->count);
 719                        spin_unlock(&conf->device_lock);
 720                }
 721        } while (sh == NULL);
 722
 723        spin_unlock_irq(conf->hash_locks + hash);
 724        return sh;
 725}
 726
 727static bool is_full_stripe_write(struct stripe_head *sh)
 728{
 729        BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
 730        return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
 731}
 732
 733static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 734{
 735        local_irq_disable();
 736        if (sh1 > sh2) {
 737                spin_lock(&sh2->stripe_lock);
 738                spin_lock_nested(&sh1->stripe_lock, 1);
 739        } else {
 740                spin_lock(&sh1->stripe_lock);
 741                spin_lock_nested(&sh2->stripe_lock, 1);
 742        }
 743}
 744
 745static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 746{
 747        spin_unlock(&sh1->stripe_lock);
 748        spin_unlock(&sh2->stripe_lock);
 749        local_irq_enable();
 750}
 751
 752/* Only freshly new full stripe normal write stripe can be added to a batch list */
 753static bool stripe_can_batch(struct stripe_head *sh)
 754{
 755        struct r5conf *conf = sh->raid_conf;
 756
 757        if (conf->log)
 758                return false;
 759        return test_bit(STRIPE_BATCH_READY, &sh->state) &&
 760                !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
 761                is_full_stripe_write(sh);
 762}
 763
 764/* we only do back search */
 765static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
 766{
 767        struct stripe_head *head;
 768        sector_t head_sector, tmp_sec;
 769        int hash;
 770        int dd_idx;
 771        int inc_empty_inactive_list_flag;
 772
 773        /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
 774        tmp_sec = sh->sector;
 775        if (!sector_div(tmp_sec, conf->chunk_sectors))
 776                return;
 777        head_sector = sh->sector - STRIPE_SECTORS;
 778
 779        hash = stripe_hash_locks_hash(head_sector);
 780        spin_lock_irq(conf->hash_locks + hash);
 781        head = __find_stripe(conf, head_sector, conf->generation);
 782        if (head && !atomic_inc_not_zero(&head->count)) {
 783                spin_lock(&conf->device_lock);
 784                if (!atomic_read(&head->count)) {
 785                        if (!test_bit(STRIPE_HANDLE, &head->state))
 786                                atomic_inc(&conf->active_stripes);
 787                        BUG_ON(list_empty(&head->lru) &&
 788                               !test_bit(STRIPE_EXPANDING, &head->state));
 789                        inc_empty_inactive_list_flag = 0;
 790                        if (!list_empty(conf->inactive_list + hash))
 791                                inc_empty_inactive_list_flag = 1;
 792                        list_del_init(&head->lru);
 793                        if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 794                                atomic_inc(&conf->empty_inactive_list_nr);
 795                        if (head->group) {
 796                                head->group->stripes_cnt--;
 797                                head->group = NULL;
 798                        }
 799                }
 800                atomic_inc(&head->count);
 801                spin_unlock(&conf->device_lock);
 802        }
 803        spin_unlock_irq(conf->hash_locks + hash);
 804
 805        if (!head)
 806                return;
 807        if (!stripe_can_batch(head))
 808                goto out;
 809
 810        lock_two_stripes(head, sh);
 811        /* clear_batch_ready clear the flag */
 812        if (!stripe_can_batch(head) || !stripe_can_batch(sh))
 813                goto unlock_out;
 814
 815        if (sh->batch_head)
 816                goto unlock_out;
 817
 818        dd_idx = 0;
 819        while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
 820                dd_idx++;
 821        if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
 822            bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
 823                goto unlock_out;
 824
 825        if (head->batch_head) {
 826                spin_lock(&head->batch_head->batch_lock);
 827                /* This batch list is already running */
 828                if (!stripe_can_batch(head)) {
 829                        spin_unlock(&head->batch_head->batch_lock);
 830                        goto unlock_out;
 831                }
 832
 833                /*
 834                 * at this point, head's BATCH_READY could be cleared, but we
 835                 * can still add the stripe to batch list
 836                 */
 837                list_add(&sh->batch_list, &head->batch_list);
 838                spin_unlock(&head->batch_head->batch_lock);
 839
 840                sh->batch_head = head->batch_head;
 841        } else {
 842                head->batch_head = head;
 843                sh->batch_head = head->batch_head;
 844                spin_lock(&head->batch_lock);
 845                list_add_tail(&sh->batch_list, &head->batch_list);
 846                spin_unlock(&head->batch_lock);
 847        }
 848
 849        if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 850                if (atomic_dec_return(&conf->preread_active_stripes)
 851                    < IO_THRESHOLD)
 852                        md_wakeup_thread(conf->mddev->thread);
 853
 854        if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
 855                int seq = sh->bm_seq;
 856                if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
 857                    sh->batch_head->bm_seq > seq)
 858                        seq = sh->batch_head->bm_seq;
 859                set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
 860                sh->batch_head->bm_seq = seq;
 861        }
 862
 863        atomic_inc(&sh->count);
 864unlock_out:
 865        unlock_two_stripes(head, sh);
 866out:
 867        raid5_release_stripe(head);
 868}
 869
 870/* Determine if 'data_offset' or 'new_data_offset' should be used
 871 * in this stripe_head.
 872 */
 873static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
 874{
 875        sector_t progress = conf->reshape_progress;
 876        /* Need a memory barrier to make sure we see the value
 877         * of conf->generation, or ->data_offset that was set before
 878         * reshape_progress was updated.
 879         */
 880        smp_rmb();
 881        if (progress == MaxSector)
 882                return 0;
 883        if (sh->generation == conf->generation - 1)
 884                return 0;
 885        /* We are in a reshape, and this is a new-generation stripe,
 886         * so use new_data_offset.
 887         */
 888        return 1;
 889}
 890
 891static void
 892raid5_end_read_request(struct bio *bi);
 893static void
 894raid5_end_write_request(struct bio *bi);
 895
 896static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
 897{
 898        struct r5conf *conf = sh->raid_conf;
 899        int i, disks = sh->disks;
 900        struct stripe_head *head_sh = sh;
 901
 902        might_sleep();
 903
 904        if (r5l_write_stripe(conf->log, sh) == 0)
 905                return;
 906        for (i = disks; i--; ) {
 907                int op, op_flags = 0;
 908                int replace_only = 0;
 909                struct bio *bi, *rbi;
 910                struct md_rdev *rdev, *rrdev = NULL;
 911
 912                sh = head_sh;
 913                if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
 914                        op = REQ_OP_WRITE;
 915                        if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
 916                                op_flags = WRITE_FUA;
 917                        if (test_bit(R5_Discard, &sh->dev[i].flags))
 918                                op = REQ_OP_DISCARD;
 919                } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
 920                        op = REQ_OP_READ;
 921                else if (test_and_clear_bit(R5_WantReplace,
 922                                            &sh->dev[i].flags)) {
 923                        op = REQ_OP_WRITE;
 924                        replace_only = 1;
 925                } else
 926                        continue;
 927                if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
 928                        op_flags |= REQ_SYNC;
 929
 930again:
 931                bi = &sh->dev[i].req;
 932                rbi = &sh->dev[i].rreq; /* For writing to replacement */
 933
 934                rcu_read_lock();
 935                rrdev = rcu_dereference(conf->disks[i].replacement);
 936                smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
 937                rdev = rcu_dereference(conf->disks[i].rdev);
 938                if (!rdev) {
 939                        rdev = rrdev;
 940                        rrdev = NULL;
 941                }
 942                if (op_is_write(op)) {
 943                        if (replace_only)
 944                                rdev = NULL;
 945                        if (rdev == rrdev)
 946                                /* We raced and saw duplicates */
 947                                rrdev = NULL;
 948                } else {
 949                        if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
 950                                rdev = rrdev;
 951                        rrdev = NULL;
 952                }
 953
 954                if (rdev && test_bit(Faulty, &rdev->flags))
 955                        rdev = NULL;
 956                if (rdev)
 957                        atomic_inc(&rdev->nr_pending);
 958                if (rrdev && test_bit(Faulty, &rrdev->flags))
 959                        rrdev = NULL;
 960                if (rrdev)
 961                        atomic_inc(&rrdev->nr_pending);
 962                rcu_read_unlock();
 963
 964                /* We have already checked bad blocks for reads.  Now
 965                 * need to check for writes.  We never accept write errors
 966                 * on the replacement, so we don't to check rrdev.
 967                 */
 968                while (op_is_write(op) && rdev &&
 969                       test_bit(WriteErrorSeen, &rdev->flags)) {
 970                        sector_t first_bad;
 971                        int bad_sectors;
 972                        int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
 973                                              &first_bad, &bad_sectors);
 974                        if (!bad)
 975                                break;
 976
 977                        if (bad < 0) {
 978                                set_bit(BlockedBadBlocks, &rdev->flags);
 979                                if (!conf->mddev->external &&
 980                                    conf->mddev->flags) {
 981                                        /* It is very unlikely, but we might
 982                                         * still need to write out the
 983                                         * bad block log - better give it
 984                                         * a chance*/
 985                                        md_check_recovery(conf->mddev);
 986                                }
 987                                /*
 988                                 * Because md_wait_for_blocked_rdev
 989                                 * will dec nr_pending, we must
 990                                 * increment it first.
 991                                 */
 992                                atomic_inc(&rdev->nr_pending);
 993                                md_wait_for_blocked_rdev(rdev, conf->mddev);
 994                        } else {
 995                                /* Acknowledged bad block - skip the write */
 996                                rdev_dec_pending(rdev, conf->mddev);
 997                                rdev = NULL;
 998                        }
 999                }
1000
1001                if (rdev) {
1002                        if (s->syncing || s->expanding || s->expanded
1003                            || s->replacing)
1004                                md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1005
1006                        set_bit(STRIPE_IO_STARTED, &sh->state);
1007
1008                        bi->bi_bdev = rdev->bdev;
1009                        bio_set_op_attrs(bi, op, op_flags);
1010                        bi->bi_end_io = op_is_write(op)
1011                                ? raid5_end_write_request
1012                                : raid5_end_read_request;
1013                        bi->bi_private = sh;
1014
1015                        pr_debug("%s: for %llu schedule op %d on disc %d\n",
1016                                __func__, (unsigned long long)sh->sector,
1017                                bi->bi_opf, i);
1018                        atomic_inc(&sh->count);
1019                        if (sh != head_sh)
1020                                atomic_inc(&head_sh->count);
1021                        if (use_new_offset(conf, sh))
1022                                bi->bi_iter.bi_sector = (sh->sector
1023                                                 + rdev->new_data_offset);
1024                        else
1025                                bi->bi_iter.bi_sector = (sh->sector
1026                                                 + rdev->data_offset);
1027                        if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1028                                bi->bi_opf |= REQ_NOMERGE;
1029
1030                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1031                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1032                        sh->dev[i].vec.bv_page = sh->dev[i].page;
1033                        bi->bi_vcnt = 1;
1034                        bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1035                        bi->bi_io_vec[0].bv_offset = 0;
1036                        bi->bi_iter.bi_size = STRIPE_SIZE;
1037                        /*
1038                         * If this is discard request, set bi_vcnt 0. We don't
1039                         * want to confuse SCSI because SCSI will replace payload
1040                         */
1041                        if (op == REQ_OP_DISCARD)
1042                                bi->bi_vcnt = 0;
1043                        if (rrdev)
1044                                set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1045
1046                        if (conf->mddev->gendisk)
1047                                trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1048                                                      bi, disk_devt(conf->mddev->gendisk),
1049                                                      sh->dev[i].sector);
1050                        generic_make_request(bi);
1051                }
1052                if (rrdev) {
1053                        if (s->syncing || s->expanding || s->expanded
1054                            || s->replacing)
1055                                md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1056
1057                        set_bit(STRIPE_IO_STARTED, &sh->state);
1058
1059                        rbi->bi_bdev = rrdev->bdev;
1060                        bio_set_op_attrs(rbi, op, op_flags);
1061                        BUG_ON(!op_is_write(op));
1062                        rbi->bi_end_io = raid5_end_write_request;
1063                        rbi->bi_private = sh;
1064
1065                        pr_debug("%s: for %llu schedule op %d on "
1066                                 "replacement disc %d\n",
1067                                __func__, (unsigned long long)sh->sector,
1068                                rbi->bi_opf, i);
1069                        atomic_inc(&sh->count);
1070                        if (sh != head_sh)
1071                                atomic_inc(&head_sh->count);
1072                        if (use_new_offset(conf, sh))
1073                                rbi->bi_iter.bi_sector = (sh->sector
1074                                                  + rrdev->new_data_offset);
1075                        else
1076                                rbi->bi_iter.bi_sector = (sh->sector
1077                                                  + rrdev->data_offset);
1078                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1079                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1080                        sh->dev[i].rvec.bv_page = sh->dev[i].page;
1081                        rbi->bi_vcnt = 1;
1082                        rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1083                        rbi->bi_io_vec[0].bv_offset = 0;
1084                        rbi->bi_iter.bi_size = STRIPE_SIZE;
1085                        /*
1086                         * If this is discard request, set bi_vcnt 0. We don't
1087                         * want to confuse SCSI because SCSI will replace payload
1088                         */
1089                        if (op == REQ_OP_DISCARD)
1090                                rbi->bi_vcnt = 0;
1091                        if (conf->mddev->gendisk)
1092                                trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1093                                                      rbi, disk_devt(conf->mddev->gendisk),
1094                                                      sh->dev[i].sector);
1095                        generic_make_request(rbi);
1096                }
1097                if (!rdev && !rrdev) {
1098                        if (op_is_write(op))
1099                                set_bit(STRIPE_DEGRADED, &sh->state);
1100                        pr_debug("skip op %d on disc %d for sector %llu\n",
1101                                bi->bi_opf, i, (unsigned long long)sh->sector);
1102                        clear_bit(R5_LOCKED, &sh->dev[i].flags);
1103                        set_bit(STRIPE_HANDLE, &sh->state);
1104                }
1105
1106                if (!head_sh->batch_head)
1107                        continue;
1108                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1109                                      batch_list);
1110                if (sh != head_sh)
1111                        goto again;
1112        }
1113}
1114
1115static struct dma_async_tx_descriptor *
1116async_copy_data(int frombio, struct bio *bio, struct page **page,
1117        sector_t sector, struct dma_async_tx_descriptor *tx,
1118        struct stripe_head *sh)
1119{
1120        struct bio_vec bvl;
1121        struct bvec_iter iter;
1122        struct page *bio_page;
1123        int page_offset;
1124        struct async_submit_ctl submit;
1125        enum async_tx_flags flags = 0;
1126
1127        if (bio->bi_iter.bi_sector >= sector)
1128                page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1129        else
1130                page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1131
1132        if (frombio)
1133                flags |= ASYNC_TX_FENCE;
1134        init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1135
1136        bio_for_each_segment(bvl, bio, iter) {
1137                int len = bvl.bv_len;
1138                int clen;
1139                int b_offset = 0;
1140
1141                if (page_offset < 0) {
1142                        b_offset = -page_offset;
1143                        page_offset += b_offset;
1144                        len -= b_offset;
1145                }
1146
1147                if (len > 0 && page_offset + len > STRIPE_SIZE)
1148                        clen = STRIPE_SIZE - page_offset;
1149                else
1150                        clen = len;
1151
1152                if (clen > 0) {
1153                        b_offset += bvl.bv_offset;
1154                        bio_page = bvl.bv_page;
1155                        if (frombio) {
1156                                if (sh->raid_conf->skip_copy &&
1157                                    b_offset == 0 && page_offset == 0 &&
1158                                    clen == STRIPE_SIZE)
1159                                        *page = bio_page;
1160                                else
1161                                        tx = async_memcpy(*page, bio_page, page_offset,
1162                                                  b_offset, clen, &submit);
1163                        } else
1164                                tx = async_memcpy(bio_page, *page, b_offset,
1165                                                  page_offset, clen, &submit);
1166                }
1167                /* chain the operations */
1168                submit.depend_tx = tx;
1169
1170                if (clen < len) /* hit end of page */
1171                        break;
1172                page_offset +=  len;
1173        }
1174
1175        return tx;
1176}
1177
1178static void ops_complete_biofill(void *stripe_head_ref)
1179{
1180        struct stripe_head *sh = stripe_head_ref;
1181        struct bio_list return_bi = BIO_EMPTY_LIST;
1182        int i;
1183
1184        pr_debug("%s: stripe %llu\n", __func__,
1185                (unsigned long long)sh->sector);
1186
1187        /* clear completed biofills */
1188        for (i = sh->disks; i--; ) {
1189                struct r5dev *dev = &sh->dev[i];
1190
1191                /* acknowledge completion of a biofill operation */
1192                /* and check if we need to reply to a read request,
1193                 * new R5_Wantfill requests are held off until
1194                 * !STRIPE_BIOFILL_RUN
1195                 */
1196                if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1197                        struct bio *rbi, *rbi2;
1198
1199                        BUG_ON(!dev->read);
1200                        rbi = dev->read;
1201                        dev->read = NULL;
1202                        while (rbi && rbi->bi_iter.bi_sector <
1203                                dev->sector + STRIPE_SECTORS) {
1204                                rbi2 = r5_next_bio(rbi, dev->sector);
1205                                if (!raid5_dec_bi_active_stripes(rbi))
1206                                        bio_list_add(&return_bi, rbi);
1207                                rbi = rbi2;
1208                        }
1209                }
1210        }
1211        clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1212
1213        return_io(&return_bi);
1214
1215        set_bit(STRIPE_HANDLE, &sh->state);
1216        raid5_release_stripe(sh);
1217}
1218
1219static void ops_run_biofill(struct stripe_head *sh)
1220{
1221        struct dma_async_tx_descriptor *tx = NULL;
1222        struct async_submit_ctl submit;
1223        int i;
1224
1225        BUG_ON(sh->batch_head);
1226        pr_debug("%s: stripe %llu\n", __func__,
1227                (unsigned long long)sh->sector);
1228
1229        for (i = sh->disks; i--; ) {
1230                struct r5dev *dev = &sh->dev[i];
1231                if (test_bit(R5_Wantfill, &dev->flags)) {
1232                        struct bio *rbi;
1233                        spin_lock_irq(&sh->stripe_lock);
1234                        dev->read = rbi = dev->toread;
1235                        dev->toread = NULL;
1236                        spin_unlock_irq(&sh->stripe_lock);
1237                        while (rbi && rbi->bi_iter.bi_sector <
1238                                dev->sector + STRIPE_SECTORS) {
1239                                tx = async_copy_data(0, rbi, &dev->page,
1240                                        dev->sector, tx, sh);
1241                                rbi = r5_next_bio(rbi, dev->sector);
1242                        }
1243                }
1244        }
1245
1246        atomic_inc(&sh->count);
1247        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1248        async_trigger_callback(&submit);
1249}
1250
1251static void mark_target_uptodate(struct stripe_head *sh, int target)
1252{
1253        struct r5dev *tgt;
1254
1255        if (target < 0)
1256                return;
1257
1258        tgt = &sh->dev[target];
1259        set_bit(R5_UPTODATE, &tgt->flags);
1260        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1261        clear_bit(R5_Wantcompute, &tgt->flags);
1262}
1263
1264static void ops_complete_compute(void *stripe_head_ref)
1265{
1266        struct stripe_head *sh = stripe_head_ref;
1267
1268        pr_debug("%s: stripe %llu\n", __func__,
1269                (unsigned long long)sh->sector);
1270
1271        /* mark the computed target(s) as uptodate */
1272        mark_target_uptodate(sh, sh->ops.target);
1273        mark_target_uptodate(sh, sh->ops.target2);
1274
1275        clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1276        if (sh->check_state == check_state_compute_run)
1277                sh->check_state = check_state_compute_result;
1278        set_bit(STRIPE_HANDLE, &sh->state);
1279        raid5_release_stripe(sh);
1280}
1281
1282/* return a pointer to the address conversion region of the scribble buffer */
1283static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1284                                 struct raid5_percpu *percpu, int i)
1285{
1286        void *addr;
1287
1288        addr = flex_array_get(percpu->scribble, i);
1289        return addr + sizeof(struct page *) * (sh->disks + 2);
1290}
1291
1292/* return a pointer to the address conversion region of the scribble buffer */
1293static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1294{
1295        void *addr;
1296
1297        addr = flex_array_get(percpu->scribble, i);
1298        return addr;
1299}
1300
1301static struct dma_async_tx_descriptor *
1302ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1303{
1304        int disks = sh->disks;
1305        struct page **xor_srcs = to_addr_page(percpu, 0);
1306        int target = sh->ops.target;
1307        struct r5dev *tgt = &sh->dev[target];
1308        struct page *xor_dest = tgt->page;
1309        int count = 0;
1310        struct dma_async_tx_descriptor *tx;
1311        struct async_submit_ctl submit;
1312        int i;
1313
1314        BUG_ON(sh->batch_head);
1315
1316        pr_debug("%s: stripe %llu block: %d\n",
1317                __func__, (unsigned long long)sh->sector, target);
1318        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1319
1320        for (i = disks; i--; )
1321                if (i != target)
1322                        xor_srcs[count++] = sh->dev[i].page;
1323
1324        atomic_inc(&sh->count);
1325
1326        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1327                          ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1328        if (unlikely(count == 1))
1329                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1330        else
1331                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1332
1333        return tx;
1334}
1335
1336/* set_syndrome_sources - populate source buffers for gen_syndrome
1337 * @srcs - (struct page *) array of size sh->disks
1338 * @sh - stripe_head to parse
1339 *
1340 * Populates srcs in proper layout order for the stripe and returns the
1341 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1342 * destination buffer is recorded in srcs[count] and the Q destination
1343 * is recorded in srcs[count+1]].
1344 */
1345static int set_syndrome_sources(struct page **srcs,
1346                                struct stripe_head *sh,
1347                                int srctype)
1348{
1349        int disks = sh->disks;
1350        int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1351        int d0_idx = raid6_d0(sh);
1352        int count;
1353        int i;
1354
1355        for (i = 0; i < disks; i++)
1356                srcs[i] = NULL;
1357
1358        count = 0;
1359        i = d0_idx;
1360        do {
1361                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1362                struct r5dev *dev = &sh->dev[i];
1363
1364                if (i == sh->qd_idx || i == sh->pd_idx ||
1365                    (srctype == SYNDROME_SRC_ALL) ||
1366                    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1367                     test_bit(R5_Wantdrain, &dev->flags)) ||
1368                    (srctype == SYNDROME_SRC_WRITTEN &&
1369                     dev->written))
1370                        srcs[slot] = sh->dev[i].page;
1371                i = raid6_next_disk(i, disks);
1372        } while (i != d0_idx);
1373
1374        return syndrome_disks;
1375}
1376
1377static struct dma_async_tx_descriptor *
1378ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1379{
1380        int disks = sh->disks;
1381        struct page **blocks = to_addr_page(percpu, 0);
1382        int target;
1383        int qd_idx = sh->qd_idx;
1384        struct dma_async_tx_descriptor *tx;
1385        struct async_submit_ctl submit;
1386        struct r5dev *tgt;
1387        struct page *dest;
1388        int i;
1389        int count;
1390
1391        BUG_ON(sh->batch_head);
1392        if (sh->ops.target < 0)
1393                target = sh->ops.target2;
1394        else if (sh->ops.target2 < 0)
1395                target = sh->ops.target;
1396        else
1397                /* we should only have one valid target */
1398                BUG();
1399        BUG_ON(target < 0);
1400        pr_debug("%s: stripe %llu block: %d\n",
1401                __func__, (unsigned long long)sh->sector, target);
1402
1403        tgt = &sh->dev[target];
1404        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1405        dest = tgt->page;
1406
1407        atomic_inc(&sh->count);
1408
1409        if (target == qd_idx) {
1410                count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1411                blocks[count] = NULL; /* regenerating p is not necessary */
1412                BUG_ON(blocks[count+1] != dest); /* q should already be set */
1413                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1414                                  ops_complete_compute, sh,
1415                                  to_addr_conv(sh, percpu, 0));
1416                tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1417        } else {
1418                /* Compute any data- or p-drive using XOR */
1419                count = 0;
1420                for (i = disks; i-- ; ) {
1421                        if (i == target || i == qd_idx)
1422                                continue;
1423                        blocks[count++] = sh->dev[i].page;
1424                }
1425
1426                init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1427                                  NULL, ops_complete_compute, sh,
1428                                  to_addr_conv(sh, percpu, 0));
1429                tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1430        }
1431
1432        return tx;
1433}
1434
1435static struct dma_async_tx_descriptor *
1436ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1437{
1438        int i, count, disks = sh->disks;
1439        int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1440        int d0_idx = raid6_d0(sh);
1441        int faila = -1, failb = -1;
1442        int target = sh->ops.target;
1443        int target2 = sh->ops.target2;
1444        struct r5dev *tgt = &sh->dev[target];
1445        struct r5dev *tgt2 = &sh->dev[target2];
1446        struct dma_async_tx_descriptor *tx;
1447        struct page **blocks = to_addr_page(percpu, 0);
1448        struct async_submit_ctl submit;
1449
1450        BUG_ON(sh->batch_head);
1451        pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1452                 __func__, (unsigned long long)sh->sector, target, target2);
1453        BUG_ON(target < 0 || target2 < 0);
1454        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1455        BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1456
1457        /* we need to open-code set_syndrome_sources to handle the
1458         * slot number conversion for 'faila' and 'failb'
1459         */
1460        for (i = 0; i < disks ; i++)
1461                blocks[i] = NULL;
1462        count = 0;
1463        i = d0_idx;
1464        do {
1465                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1466
1467                blocks[slot] = sh->dev[i].page;
1468
1469                if (i == target)
1470                        faila = slot;
1471                if (i == target2)
1472                        failb = slot;
1473                i = raid6_next_disk(i, disks);
1474        } while (i != d0_idx);
1475
1476        BUG_ON(faila == failb);
1477        if (failb < faila)
1478                swap(faila, failb);
1479        pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1480                 __func__, (unsigned long long)sh->sector, faila, failb);
1481
1482        atomic_inc(&sh->count);
1483
1484        if (failb == syndrome_disks+1) {
1485                /* Q disk is one of the missing disks */
1486                if (faila == syndrome_disks) {
1487                        /* Missing P+Q, just recompute */
1488                        init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1489                                          ops_complete_compute, sh,
1490                                          to_addr_conv(sh, percpu, 0));
1491                        return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1492                                                  STRIPE_SIZE, &submit);
1493                } else {
1494                        struct page *dest;
1495                        int data_target;
1496                        int qd_idx = sh->qd_idx;
1497
1498                        /* Missing D+Q: recompute D from P, then recompute Q */
1499                        if (target == qd_idx)
1500                                data_target = target2;
1501                        else
1502                                data_target = target;
1503
1504                        count = 0;
1505                        for (i = disks; i-- ; ) {
1506                                if (i == data_target || i == qd_idx)
1507                                        continue;
1508                                blocks[count++] = sh->dev[i].page;
1509                        }
1510                        dest = sh->dev[data_target].page;
1511                        init_async_submit(&submit,
1512                                          ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1513                                          NULL, NULL, NULL,
1514                                          to_addr_conv(sh, percpu, 0));
1515                        tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1516                                       &submit);
1517
1518                        count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1519                        init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1520                                          ops_complete_compute, sh,
1521                                          to_addr_conv(sh, percpu, 0));
1522                        return async_gen_syndrome(blocks, 0, count+2,
1523                                                  STRIPE_SIZE, &submit);
1524                }
1525        } else {
1526                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1527                                  ops_complete_compute, sh,
1528                                  to_addr_conv(sh, percpu, 0));
1529                if (failb == syndrome_disks) {
1530                        /* We're missing D+P. */
1531                        return async_raid6_datap_recov(syndrome_disks+2,
1532                                                       STRIPE_SIZE, faila,
1533                                                       blocks, &submit);
1534                } else {
1535                        /* We're missing D+D. */
1536                        return async_raid6_2data_recov(syndrome_disks+2,
1537                                                       STRIPE_SIZE, faila, failb,
1538                                                       blocks, &submit);
1539                }
1540        }
1541}
1542
1543static void ops_complete_prexor(void *stripe_head_ref)
1544{
1545        struct stripe_head *sh = stripe_head_ref;
1546
1547        pr_debug("%s: stripe %llu\n", __func__,
1548                (unsigned long long)sh->sector);
1549}
1550
1551static struct dma_async_tx_descriptor *
1552ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1553                struct dma_async_tx_descriptor *tx)
1554{
1555        int disks = sh->disks;
1556        struct page **xor_srcs = to_addr_page(percpu, 0);
1557        int count = 0, pd_idx = sh->pd_idx, i;
1558        struct async_submit_ctl submit;
1559
1560        /* existing parity data subtracted */
1561        struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1562
1563        BUG_ON(sh->batch_head);
1564        pr_debug("%s: stripe %llu\n", __func__,
1565                (unsigned long long)sh->sector);
1566
1567        for (i = disks; i--; ) {
1568                struct r5dev *dev = &sh->dev[i];
1569                /* Only process blocks that are known to be uptodate */
1570                if (test_bit(R5_Wantdrain, &dev->flags))
1571                        xor_srcs[count++] = dev->page;
1572        }
1573
1574        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1575                          ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1576        tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1577
1578        return tx;
1579}
1580
1581static struct dma_async_tx_descriptor *
1582ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1583                struct dma_async_tx_descriptor *tx)
1584{
1585        struct page **blocks = to_addr_page(percpu, 0);
1586        int count;
1587        struct async_submit_ctl submit;
1588
1589        pr_debug("%s: stripe %llu\n", __func__,
1590                (unsigned long long)sh->sector);
1591
1592        count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1593
1594        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1595                          ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1596        tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1597
1598        return tx;
1599}
1600
1601static struct dma_async_tx_descriptor *
1602ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1603{
1604        int disks = sh->disks;
1605        int i;
1606        struct stripe_head *head_sh = sh;
1607
1608        pr_debug("%s: stripe %llu\n", __func__,
1609                (unsigned long long)sh->sector);
1610
1611        for (i = disks; i--; ) {
1612                struct r5dev *dev;
1613                struct bio *chosen;
1614
1615                sh = head_sh;
1616                if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1617                        struct bio *wbi;
1618
1619again:
1620                        dev = &sh->dev[i];
1621                        spin_lock_irq(&sh->stripe_lock);
1622                        chosen = dev->towrite;
1623                        dev->towrite = NULL;
1624                        sh->overwrite_disks = 0;
1625                        BUG_ON(dev->written);
1626                        wbi = dev->written = chosen;
1627                        spin_unlock_irq(&sh->stripe_lock);
1628                        WARN_ON(dev->page != dev->orig_page);
1629
1630                        while (wbi && wbi->bi_iter.bi_sector <
1631                                dev->sector + STRIPE_SECTORS) {
1632                                if (wbi->bi_opf & REQ_FUA)
1633                                        set_bit(R5_WantFUA, &dev->flags);
1634                                if (wbi->bi_opf & REQ_SYNC)
1635                                        set_bit(R5_SyncIO, &dev->flags);
1636                                if (bio_op(wbi) == REQ_OP_DISCARD)
1637                                        set_bit(R5_Discard, &dev->flags);
1638                                else {
1639                                        tx = async_copy_data(1, wbi, &dev->page,
1640                                                dev->sector, tx, sh);
1641                                        if (dev->page != dev->orig_page) {
1642                                                set_bit(R5_SkipCopy, &dev->flags);
1643                                                clear_bit(R5_UPTODATE, &dev->flags);
1644                                                clear_bit(R5_OVERWRITE, &dev->flags);
1645                                        }
1646                                }
1647                                wbi = r5_next_bio(wbi, dev->sector);
1648                        }
1649
1650                        if (head_sh->batch_head) {
1651                                sh = list_first_entry(&sh->batch_list,
1652                                                      struct stripe_head,
1653                                                      batch_list);
1654                                if (sh == head_sh)
1655                                        continue;
1656                                goto again;
1657                        }
1658                }
1659        }
1660
1661        return tx;
1662}
1663
1664static void ops_complete_reconstruct(void *stripe_head_ref)
1665{
1666        struct stripe_head *sh = stripe_head_ref;
1667        int disks = sh->disks;
1668        int pd_idx = sh->pd_idx;
1669        int qd_idx = sh->qd_idx;
1670        int i;
1671        bool fua = false, sync = false, discard = false;
1672
1673        pr_debug("%s: stripe %llu\n", __func__,
1674                (unsigned long long)sh->sector);
1675
1676        for (i = disks; i--; ) {
1677                fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1678                sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1679                discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1680        }
1681
1682        for (i = disks; i--; ) {
1683                struct r5dev *dev = &sh->dev[i];
1684
1685                if (dev->written || i == pd_idx || i == qd_idx) {
1686                        if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1687                                set_bit(R5_UPTODATE, &dev->flags);
1688                        if (fua)
1689                                set_bit(R5_WantFUA, &dev->flags);
1690                        if (sync)
1691                                set_bit(R5_SyncIO, &dev->flags);
1692                }
1693        }
1694
1695        if (sh->reconstruct_state == reconstruct_state_drain_run)
1696                sh->reconstruct_state = reconstruct_state_drain_result;
1697        else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1698                sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1699        else {
1700                BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1701                sh->reconstruct_state = reconstruct_state_result;
1702        }
1703
1704        set_bit(STRIPE_HANDLE, &sh->state);
1705        raid5_release_stripe(sh);
1706}
1707
1708static void
1709ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1710                     struct dma_async_tx_descriptor *tx)
1711{
1712        int disks = sh->disks;
1713        struct page **xor_srcs;
1714        struct async_submit_ctl submit;
1715        int count, pd_idx = sh->pd_idx, i;
1716        struct page *xor_dest;
1717        int prexor = 0;
1718        unsigned long flags;
1719        int j = 0;
1720        struct stripe_head *head_sh = sh;
1721        int last_stripe;
1722
1723        pr_debug("%s: stripe %llu\n", __func__,
1724                (unsigned long long)sh->sector);
1725
1726        for (i = 0; i < sh->disks; i++) {
1727                if (pd_idx == i)
1728                        continue;
1729                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1730                        break;
1731        }
1732        if (i >= sh->disks) {
1733                atomic_inc(&sh->count);
1734                set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1735                ops_complete_reconstruct(sh);
1736                return;
1737        }
1738again:
1739        count = 0;
1740        xor_srcs = to_addr_page(percpu, j);
1741        /* check if prexor is active which means only process blocks
1742         * that are part of a read-modify-write (written)
1743         */
1744        if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1745                prexor = 1;
1746                xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1747                for (i = disks; i--; ) {
1748                        struct r5dev *dev = &sh->dev[i];
1749                        if (head_sh->dev[i].written)
1750                                xor_srcs[count++] = dev->page;
1751                }
1752        } else {
1753                xor_dest = sh->dev[pd_idx].page;
1754                for (i = disks; i--; ) {
1755                        struct r5dev *dev = &sh->dev[i];
1756                        if (i != pd_idx)
1757                                xor_srcs[count++] = dev->page;
1758                }
1759        }
1760
1761        /* 1/ if we prexor'd then the dest is reused as a source
1762         * 2/ if we did not prexor then we are redoing the parity
1763         * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1764         * for the synchronous xor case
1765         */
1766        last_stripe = !head_sh->batch_head ||
1767                list_first_entry(&sh->batch_list,
1768                                 struct stripe_head, batch_list) == head_sh;
1769        if (last_stripe) {
1770                flags = ASYNC_TX_ACK |
1771                        (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1772
1773                atomic_inc(&head_sh->count);
1774                init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1775                                  to_addr_conv(sh, percpu, j));
1776        } else {
1777                flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1778                init_async_submit(&submit, flags, tx, NULL, NULL,
1779                                  to_addr_conv(sh, percpu, j));
1780        }
1781
1782        if (unlikely(count == 1))
1783                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1784        else
1785                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1786        if (!last_stripe) {
1787                j++;
1788                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1789                                      batch_list);
1790                goto again;
1791        }
1792}
1793
1794static void
1795ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1796                     struct dma_async_tx_descriptor *tx)
1797{
1798        struct async_submit_ctl submit;
1799        struct page **blocks;
1800        int count, i, j = 0;
1801        struct stripe_head *head_sh = sh;
1802        int last_stripe;
1803        int synflags;
1804        unsigned long txflags;
1805
1806        pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1807
1808        for (i = 0; i < sh->disks; i++) {
1809                if (sh->pd_idx == i || sh->qd_idx == i)
1810                        continue;
1811                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1812                        break;
1813        }
1814        if (i >= sh->disks) {
1815                atomic_inc(&sh->count);
1816                set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1817                set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1818                ops_complete_reconstruct(sh);
1819                return;
1820        }
1821
1822again:
1823        blocks = to_addr_page(percpu, j);
1824
1825        if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1826                synflags = SYNDROME_SRC_WRITTEN;
1827                txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1828        } else {
1829                synflags = SYNDROME_SRC_ALL;
1830                txflags = ASYNC_TX_ACK;
1831        }
1832
1833        count = set_syndrome_sources(blocks, sh, synflags);
1834        last_stripe = !head_sh->batch_head ||
1835                list_first_entry(&sh->batch_list,
1836                                 struct stripe_head, batch_list) == head_sh;
1837
1838        if (last_stripe) {
1839                atomic_inc(&head_sh->count);
1840                init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1841                                  head_sh, to_addr_conv(sh, percpu, j));
1842        } else
1843                init_async_submit(&submit, 0, tx, NULL, NULL,
1844                                  to_addr_conv(sh, percpu, j));
1845        tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1846        if (!last_stripe) {
1847                j++;
1848                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1849                                      batch_list);
1850                goto again;
1851        }
1852}
1853
1854static void ops_complete_check(void *stripe_head_ref)
1855{
1856        struct stripe_head *sh = stripe_head_ref;
1857
1858        pr_debug("%s: stripe %llu\n", __func__,
1859                (unsigned long long)sh->sector);
1860
1861        sh->check_state = check_state_check_result;
1862        set_bit(STRIPE_HANDLE, &sh->state);
1863        raid5_release_stripe(sh);
1864}
1865
1866static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1867{
1868        int disks = sh->disks;
1869        int pd_idx = sh->pd_idx;
1870        int qd_idx = sh->qd_idx;
1871        struct page *xor_dest;
1872        struct page **xor_srcs = to_addr_page(percpu, 0);
1873        struct dma_async_tx_descriptor *tx;
1874        struct async_submit_ctl submit;
1875        int count;
1876        int i;
1877
1878        pr_debug("%s: stripe %llu\n", __func__,
1879                (unsigned long long)sh->sector);
1880
1881        BUG_ON(sh->batch_head);
1882        count = 0;
1883        xor_dest = sh->dev[pd_idx].page;
1884        xor_srcs[count++] = xor_dest;
1885        for (i = disks; i--; ) {
1886                if (i == pd_idx || i == qd_idx)
1887                        continue;
1888                xor_srcs[count++] = sh->dev[i].page;
1889        }
1890
1891        init_async_submit(&submit, 0, NULL, NULL, NULL,
1892                          to_addr_conv(sh, percpu, 0));
1893        tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1894                           &sh->ops.zero_sum_result, &submit);
1895
1896        atomic_inc(&sh->count);
1897        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1898        tx = async_trigger_callback(&submit);
1899}
1900
1901static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1902{
1903        struct page **srcs = to_addr_page(percpu, 0);
1904        struct async_submit_ctl submit;
1905        int count;
1906
1907        pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1908                (unsigned long long)sh->sector, checkp);
1909
1910        BUG_ON(sh->batch_head);
1911        count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1912        if (!checkp)
1913                srcs[count] = NULL;
1914
1915        atomic_inc(&sh->count);
1916        init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1917                          sh, to_addr_conv(sh, percpu, 0));
1918        async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1919                           &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1920}
1921
1922static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1923{
1924        int overlap_clear = 0, i, disks = sh->disks;
1925        struct dma_async_tx_descriptor *tx = NULL;
1926        struct r5conf *conf = sh->raid_conf;
1927        int level = conf->level;
1928        struct raid5_percpu *percpu;
1929        unsigned long cpu;
1930
1931        cpu = get_cpu();
1932        percpu = per_cpu_ptr(conf->percpu, cpu);
1933        if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1934                ops_run_biofill(sh);
1935                overlap_clear++;
1936        }
1937
1938        if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1939                if (level < 6)
1940                        tx = ops_run_compute5(sh, percpu);
1941                else {
1942                        if (sh->ops.target2 < 0 || sh->ops.target < 0)
1943                                tx = ops_run_compute6_1(sh, percpu);
1944                        else
1945                                tx = ops_run_compute6_2(sh, percpu);
1946                }
1947                /* terminate the chain if reconstruct is not set to be run */
1948                if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1949                        async_tx_ack(tx);
1950        }
1951
1952        if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1953                if (level < 6)
1954                        tx = ops_run_prexor5(sh, percpu, tx);
1955                else
1956                        tx = ops_run_prexor6(sh, percpu, tx);
1957        }
1958
1959        if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1960                tx = ops_run_biodrain(sh, tx);
1961                overlap_clear++;
1962        }
1963
1964        if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1965                if (level < 6)
1966                        ops_run_reconstruct5(sh, percpu, tx);
1967                else
1968                        ops_run_reconstruct6(sh, percpu, tx);
1969        }
1970
1971        if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1972                if (sh->check_state == check_state_run)
1973                        ops_run_check_p(sh, percpu);
1974                else if (sh->check_state == check_state_run_q)
1975                        ops_run_check_pq(sh, percpu, 0);
1976                else if (sh->check_state == check_state_run_pq)
1977                        ops_run_check_pq(sh, percpu, 1);
1978                else
1979                        BUG();
1980        }
1981
1982        if (overlap_clear && !sh->batch_head)
1983                for (i = disks; i--; ) {
1984                        struct r5dev *dev = &sh->dev[i];
1985                        if (test_and_clear_bit(R5_Overlap, &dev->flags))
1986                                wake_up(&sh->raid_conf->wait_for_overlap);
1987                }
1988        put_cpu();
1989}
1990
1991static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
1992        int disks)
1993{
1994        struct stripe_head *sh;
1995        int i;
1996
1997        sh = kmem_cache_zalloc(sc, gfp);
1998        if (sh) {
1999                spin_lock_init(&sh->stripe_lock);
2000                spin_lock_init(&sh->batch_lock);
2001                INIT_LIST_HEAD(&sh->batch_list);
2002                INIT_LIST_HEAD(&sh->lru);
2003                atomic_set(&sh->count, 1);
2004                for (i = 0; i < disks; i++) {
2005                        struct r5dev *dev = &sh->dev[i];
2006
2007                        bio_init(&dev->req);
2008                        dev->req.bi_io_vec = &dev->vec;
2009                        dev->req.bi_max_vecs = 1;
2010
2011                        bio_init(&dev->rreq);
2012                        dev->rreq.bi_io_vec = &dev->rvec;
2013                        dev->rreq.bi_max_vecs = 1;
2014                }
2015        }
2016        return sh;
2017}
2018static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2019{
2020        struct stripe_head *sh;
2021
2022        sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
2023        if (!sh)
2024                return 0;
2025
2026        sh->raid_conf = conf;
2027
2028        if (grow_buffers(sh, gfp)) {
2029                shrink_buffers(sh);
2030                kmem_cache_free(conf->slab_cache, sh);
2031                return 0;
2032        }
2033        sh->hash_lock_index =
2034                conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2035        /* we just created an active stripe so... */
2036        atomic_inc(&conf->active_stripes);
2037
2038        raid5_release_stripe(sh);
2039        conf->max_nr_stripes++;
2040        return 1;
2041}
2042
2043static int grow_stripes(struct r5conf *conf, int num)
2044{
2045        struct kmem_cache *sc;
2046        int devs = max(conf->raid_disks, conf->previous_raid_disks);
2047
2048        if (conf->mddev->gendisk)
2049                sprintf(conf->cache_name[0],
2050                        "raid%d-%s", conf->level, mdname(conf->mddev));
2051        else
2052                sprintf(conf->cache_name[0],
2053                        "raid%d-%p", conf->level, conf->mddev);
2054        sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2055
2056        conf->active_name = 0;
2057        sc = kmem_cache_create(conf->cache_name[conf->active_name],
2058                               sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2059                               0, 0, NULL);
2060        if (!sc)
2061                return 1;
2062        conf->slab_cache = sc;
2063        conf->pool_size = devs;
2064        while (num--)
2065                if (!grow_one_stripe(conf, GFP_KERNEL))
2066                        return 1;
2067
2068        return 0;
2069}
2070
2071/**
2072 * scribble_len - return the required size of the scribble region
2073 * @num - total number of disks in the array
2074 *
2075 * The size must be enough to contain:
2076 * 1/ a struct page pointer for each device in the array +2
2077 * 2/ room to convert each entry in (1) to its corresponding dma
2078 *    (dma_map_page()) or page (page_address()) address.
2079 *
2080 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2081 * calculate over all devices (not just the data blocks), using zeros in place
2082 * of the P and Q blocks.
2083 */
2084static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2085{
2086        struct flex_array *ret;
2087        size_t len;
2088
2089        len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2090        ret = flex_array_alloc(len, cnt, flags);
2091        if (!ret)
2092                return NULL;
2093        /* always prealloc all elements, so no locking is required */
2094        if (flex_array_prealloc(ret, 0, cnt, flags)) {
2095                flex_array_free(ret);
2096                return NULL;
2097        }
2098        return ret;
2099}
2100
2101static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2102{
2103        unsigned long cpu;
2104        int err = 0;
2105
2106        /*
2107         * Never shrink. And mddev_suspend() could deadlock if this is called
2108         * from raid5d. In that case, scribble_disks and scribble_sectors
2109         * should equal to new_disks and new_sectors
2110         */
2111        if (conf->scribble_disks >= new_disks &&
2112            conf->scribble_sectors >= new_sectors)
2113                return 0;
2114        mddev_suspend(conf->mddev);
2115        get_online_cpus();
2116        for_each_present_cpu(cpu) {
2117                struct raid5_percpu *percpu;
2118                struct flex_array *scribble;
2119
2120                percpu = per_cpu_ptr(conf->percpu, cpu);
2121                scribble = scribble_alloc(new_disks,
2122                                          new_sectors / STRIPE_SECTORS,
2123                                          GFP_NOIO);
2124
2125                if (scribble) {
2126                        flex_array_free(percpu->scribble);
2127                        percpu->scribble = scribble;
2128                } else {
2129                        err = -ENOMEM;
2130                        break;
2131                }
2132        }
2133        put_online_cpus();
2134        mddev_resume(conf->mddev);
2135        if (!err) {
2136                conf->scribble_disks = new_disks;
2137                conf->scribble_sectors = new_sectors;
2138        }
2139        return err;
2140}
2141
2142static int resize_stripes(struct r5conf *conf, int newsize)
2143{
2144        /* Make all the stripes able to hold 'newsize' devices.
2145         * New slots in each stripe get 'page' set to a new page.
2146         *
2147         * This happens in stages:
2148         * 1/ create a new kmem_cache and allocate the required number of
2149         *    stripe_heads.
2150         * 2/ gather all the old stripe_heads and transfer the pages across
2151         *    to the new stripe_heads.  This will have the side effect of
2152         *    freezing the array as once all stripe_heads have been collected,
2153         *    no IO will be possible.  Old stripe heads are freed once their
2154         *    pages have been transferred over, and the old kmem_cache is
2155         *    freed when all stripes are done.
2156         * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2157         *    we simple return a failre status - no need to clean anything up.
2158         * 4/ allocate new pages for the new slots in the new stripe_heads.
2159         *    If this fails, we don't bother trying the shrink the
2160         *    stripe_heads down again, we just leave them as they are.
2161         *    As each stripe_head is processed the new one is released into
2162         *    active service.
2163         *
2164         * Once step2 is started, we cannot afford to wait for a write,
2165         * so we use GFP_NOIO allocations.
2166         */
2167        struct stripe_head *osh, *nsh;
2168        LIST_HEAD(newstripes);
2169        struct disk_info *ndisks;
2170        int err;
2171        struct kmem_cache *sc;
2172        int i;
2173        int hash, cnt;
2174
2175        if (newsize <= conf->pool_size)
2176                return 0; /* never bother to shrink */
2177
2178        err = md_allow_write(conf->mddev);
2179        if (err)
2180                return err;
2181
2182        /* Step 1 */
2183        sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2184                               sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2185                               0, 0, NULL);
2186        if (!sc)
2187                return -ENOMEM;
2188
2189        /* Need to ensure auto-resizing doesn't interfere */
2190        mutex_lock(&conf->cache_size_mutex);
2191
2192        for (i = conf->max_nr_stripes; i; i--) {
2193                nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
2194                if (!nsh)
2195                        break;
2196
2197                nsh->raid_conf = conf;
2198                list_add(&nsh->lru, &newstripes);
2199        }
2200        if (i) {
2201                /* didn't get enough, give up */
2202                while (!list_empty(&newstripes)) {
2203                        nsh = list_entry(newstripes.next, struct stripe_head, lru);
2204                        list_del(&nsh->lru);
2205                        kmem_cache_free(sc, nsh);
2206                }
2207                kmem_cache_destroy(sc);
2208                mutex_unlock(&conf->cache_size_mutex);
2209                return -ENOMEM;
2210        }
2211        /* Step 2 - Must use GFP_NOIO now.
2212         * OK, we have enough stripes, start collecting inactive
2213         * stripes and copying them over
2214         */
2215        hash = 0;
2216        cnt = 0;
2217        list_for_each_entry(nsh, &newstripes, lru) {
2218                lock_device_hash_lock(conf, hash);
2219                wait_event_cmd(conf->wait_for_stripe,
2220                                    !list_empty(conf->inactive_list + hash),
2221                                    unlock_device_hash_lock(conf, hash),
2222                                    lock_device_hash_lock(conf, hash));
2223                osh = get_free_stripe(conf, hash);
2224                unlock_device_hash_lock(conf, hash);
2225
2226                for(i=0; i<conf->pool_size; i++) {
2227                        nsh->dev[i].page = osh->dev[i].page;
2228                        nsh->dev[i].orig_page = osh->dev[i].page;
2229                }
2230                nsh->hash_lock_index = hash;
2231                kmem_cache_free(conf->slab_cache, osh);
2232                cnt++;
2233                if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2234                    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2235                        hash++;
2236                        cnt = 0;
2237                }
2238        }
2239        kmem_cache_destroy(conf->slab_cache);
2240
2241        /* Step 3.
2242         * At this point, we are holding all the stripes so the array
2243         * is completely stalled, so now is a good time to resize
2244         * conf->disks and the scribble region
2245         */
2246        ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2247        if (ndisks) {
2248                for (i=0; i<conf->raid_disks; i++)
2249                        ndisks[i] = conf->disks[i];
2250                kfree(conf->disks);
2251                conf->disks = ndisks;
2252        } else
2253                err = -ENOMEM;
2254
2255        mutex_unlock(&conf->cache_size_mutex);
2256        /* Step 4, return new stripes to service */
2257        while(!list_empty(&newstripes)) {
2258                nsh = list_entry(newstripes.next, struct stripe_head, lru);
2259                list_del_init(&nsh->lru);
2260
2261                for (i=conf->raid_disks; i < newsize; i++)
2262                        if (nsh->dev[i].page == NULL) {
2263                                struct page *p = alloc_page(GFP_NOIO);
2264                                nsh->dev[i].page = p;
2265                                nsh->dev[i].orig_page = p;
2266                                if (!p)
2267                                        err = -ENOMEM;
2268                        }
2269                raid5_release_stripe(nsh);
2270        }
2271        /* critical section pass, GFP_NOIO no longer needed */
2272
2273        conf->slab_cache = sc;
2274        conf->active_name = 1-conf->active_name;
2275        if (!err)
2276                conf->pool_size = newsize;
2277        return err;
2278}
2279
2280static int drop_one_stripe(struct r5conf *conf)
2281{
2282        struct stripe_head *sh;
2283        int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2284
2285        spin_lock_irq(conf->hash_locks + hash);
2286        sh = get_free_stripe(conf, hash);
2287        spin_unlock_irq(conf->hash_locks + hash);
2288        if (!sh)
2289                return 0;
2290        BUG_ON(atomic_read(&sh->count));
2291        shrink_buffers(sh);
2292        kmem_cache_free(conf->slab_cache, sh);
2293        atomic_dec(&conf->active_stripes);
2294        conf->max_nr_stripes--;
2295        return 1;
2296}
2297
2298static void shrink_stripes(struct r5conf *conf)
2299{
2300        while (conf->max_nr_stripes &&
2301               drop_one_stripe(conf))
2302                ;
2303
2304        kmem_cache_destroy(conf->slab_cache);
2305        conf->slab_cache = NULL;
2306}
2307
2308static void raid5_end_read_request(struct bio * bi)
2309{
2310        struct stripe_head *sh = bi->bi_private;
2311        struct r5conf *conf = sh->raid_conf;
2312        int disks = sh->disks, i;
2313        char b[BDEVNAME_SIZE];
2314        struct md_rdev *rdev = NULL;
2315        sector_t s;
2316
2317        for (i=0 ; i<disks; i++)
2318                if (bi == &sh->dev[i].req)
2319                        break;
2320
2321        pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2322                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2323                bi->bi_error);
2324        if (i == disks) {
2325                bio_reset(bi);
2326                BUG();
2327                return;
2328        }
2329        if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2330                /* If replacement finished while this request was outstanding,
2331                 * 'replacement' might be NULL already.
2332                 * In that case it moved down to 'rdev'.
2333                 * rdev is not removed until all requests are finished.
2334                 */
2335                rdev = conf->disks[i].replacement;
2336        if (!rdev)
2337                rdev = conf->disks[i].rdev;
2338
2339        if (use_new_offset(conf, sh))
2340                s = sh->sector + rdev->new_data_offset;
2341        else
2342                s = sh->sector + rdev->data_offset;
2343        if (!bi->bi_error) {
2344                set_bit(R5_UPTODATE, &sh->dev[i].flags);
2345                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2346                        /* Note that this cannot happen on a
2347                         * replacement device.  We just fail those on
2348                         * any error
2349                         */
2350                        printk_ratelimited(
2351                                KERN_INFO
2352                                "md/raid:%s: read error corrected"
2353                                " (%lu sectors at %llu on %s)\n",
2354                                mdname(conf->mddev), STRIPE_SECTORS,
2355                                (unsigned long long)s,
2356                                bdevname(rdev->bdev, b));
2357                        atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2358                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2359                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2360                } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2361                        clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2362
2363                if (atomic_read(&rdev->read_errors))
2364                        atomic_set(&rdev->read_errors, 0);
2365        } else {
2366                const char *bdn = bdevname(rdev->bdev, b);
2367                int retry = 0;
2368                int set_bad = 0;
2369
2370                clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2371                atomic_inc(&rdev->read_errors);
2372                if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2373                        printk_ratelimited(
2374                                KERN_WARNING
2375                                "md/raid:%s: read error on replacement device "
2376                                "(sector %llu on %s).\n",
2377                                mdname(conf->mddev),
2378                                (unsigned long long)s,
2379                                bdn);
2380                else if (conf->mddev->degraded >= conf->max_degraded) {
2381                        set_bad = 1;
2382                        printk_ratelimited(
2383                                KERN_WARNING
2384                                "md/raid:%s: read error not correctable "
2385                                "(sector %llu on %s).\n",
2386                                mdname(conf->mddev),
2387                                (unsigned long long)s,
2388                                bdn);
2389                } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2390                        /* Oh, no!!! */
2391                        set_bad = 1;
2392                        printk_ratelimited(
2393                                KERN_WARNING
2394                                "md/raid:%s: read error NOT corrected!! "
2395                                "(sector %llu on %s).\n",
2396                                mdname(conf->mddev),
2397                                (unsigned long long)s,
2398                                bdn);
2399                } else if (atomic_read(&rdev->read_errors)
2400                         > conf->max_nr_stripes)
2401                        printk(KERN_WARNING
2402                               "md/raid:%s: Too many read errors, failing device %s.\n",
2403                               mdname(conf->mddev), bdn);
2404                else
2405                        retry = 1;
2406                if (set_bad && test_bit(In_sync, &rdev->flags)
2407                    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2408                        retry = 1;
2409                if (retry)
2410                        if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2411                                set_bit(R5_ReadError, &sh->dev[i].flags);
2412                                clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2413                        } else
2414                                set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2415                else {
2416                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2417                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2418                        if (!(set_bad
2419                              && test_bit(In_sync, &rdev->flags)
2420                              && rdev_set_badblocks(
2421                                      rdev, sh->sector, STRIPE_SECTORS, 0)))
2422                                md_error(conf->mddev, rdev);
2423                }
2424        }
2425        rdev_dec_pending(rdev, conf->mddev);
2426        bio_reset(bi);
2427        clear_bit(R5_LOCKED, &sh->dev[i].flags);
2428        set_bit(STRIPE_HANDLE, &sh->state);
2429        raid5_release_stripe(sh);
2430}
2431
2432static void raid5_end_write_request(struct bio *bi)
2433{
2434        struct stripe_head *sh = bi->bi_private;
2435        struct r5conf *conf = sh->raid_conf;
2436        int disks = sh->disks, i;
2437        struct md_rdev *uninitialized_var(rdev);
2438        sector_t first_bad;
2439        int bad_sectors;
2440        int replacement = 0;
2441
2442        for (i = 0 ; i < disks; i++) {
2443                if (bi == &sh->dev[i].req) {
2444                        rdev = conf->disks[i].rdev;
2445                        break;
2446                }
2447                if (bi == &sh->dev[i].rreq) {
2448                        rdev = conf->disks[i].replacement;
2449                        if (rdev)
2450                                replacement = 1;
2451                        else
2452                                /* rdev was removed and 'replacement'
2453                                 * replaced it.  rdev is not removed
2454                                 * until all requests are finished.
2455                                 */
2456                                rdev = conf->disks[i].rdev;
2457                        break;
2458                }
2459        }
2460        pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2461                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2462                bi->bi_error);
2463        if (i == disks) {
2464                bio_reset(bi);
2465                BUG();
2466                return;
2467        }
2468
2469        if (replacement) {
2470                if (bi->bi_error)
2471                        md_error(conf->mddev, rdev);
2472                else if (is_badblock(rdev, sh->sector,
2473                                     STRIPE_SECTORS,
2474                                     &first_bad, &bad_sectors))
2475                        set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2476        } else {
2477                if (bi->bi_error) {
2478                        set_bit(STRIPE_DEGRADED, &sh->state);
2479                        set_bit(WriteErrorSeen, &rdev->flags);
2480                        set_bit(R5_WriteError, &sh->dev[i].flags);
2481                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
2482                                set_bit(MD_RECOVERY_NEEDED,
2483                                        &rdev->mddev->recovery);
2484                } else if (is_badblock(rdev, sh->sector,
2485                                       STRIPE_SECTORS,
2486                                       &first_bad, &bad_sectors)) {
2487                        set_bit(R5_MadeGood, &sh->dev[i].flags);
2488                        if (test_bit(R5_ReadError, &sh->dev[i].flags))
2489                                /* That was a successful write so make
2490                                 * sure it looks like we already did
2491                                 * a re-write.
2492                                 */
2493                                set_bit(R5_ReWrite, &sh->dev[i].flags);
2494                }
2495        }
2496        rdev_dec_pending(rdev, conf->mddev);
2497
2498        if (sh->batch_head && bi->bi_error && !replacement)
2499                set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2500
2501        bio_reset(bi);
2502        if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2503                clear_bit(R5_LOCKED, &sh->dev[i].flags);
2504        set_bit(STRIPE_HANDLE, &sh->state);
2505        raid5_release_stripe(sh);
2506
2507        if (sh->batch_head && sh != sh->batch_head)
2508                raid5_release_stripe(sh->batch_head);
2509}
2510
2511static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2512{
2513        struct r5dev *dev = &sh->dev[i];
2514
2515        dev->flags = 0;
2516        dev->sector = raid5_compute_blocknr(sh, i, previous);
2517}
2518
2519static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2520{
2521        char b[BDEVNAME_SIZE];
2522        struct r5conf *conf = mddev->private;
2523        unsigned long flags;
2524        pr_debug("raid456: error called\n");
2525
2526        spin_lock_irqsave(&conf->device_lock, flags);
2527        clear_bit(In_sync, &rdev->flags);
2528        mddev->degraded = calc_degraded(conf);
2529        spin_unlock_irqrestore(&conf->device_lock, flags);
2530        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2531
2532        set_bit(Blocked, &rdev->flags);
2533        set_bit(Faulty, &rdev->flags);
2534        set_mask_bits(&mddev->flags, 0,
2535                      BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
2536        printk(KERN_ALERT
2537               "md/raid:%s: Disk failure on %s, disabling device.\n"
2538               "md/raid:%s: Operation continuing on %d devices.\n",
2539               mdname(mddev),
2540               bdevname(rdev->bdev, b),
2541               mdname(mddev),
2542               conf->raid_disks - mddev->degraded);
2543}
2544
2545/*
2546 * Input: a 'big' sector number,
2547 * Output: index of the data and parity disk, and the sector # in them.
2548 */
2549sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2550                              int previous, int *dd_idx,
2551                              struct stripe_head *sh)
2552{
2553        sector_t stripe, stripe2;
2554        sector_t chunk_number;
2555        unsigned int chunk_offset;
2556        int pd_idx, qd_idx;
2557        int ddf_layout = 0;
2558        sector_t new_sector;
2559        int algorithm = previous ? conf->prev_algo
2560                                 : conf->algorithm;
2561        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2562                                         : conf->chunk_sectors;
2563        int raid_disks = previous ? conf->previous_raid_disks
2564                                  : conf->raid_disks;
2565        int data_disks = raid_disks - conf->max_degraded;
2566
2567        /* First compute the information on this sector */
2568
2569        /*
2570         * Compute the chunk number and the sector offset inside the chunk
2571         */
2572        chunk_offset = sector_div(r_sector, sectors_per_chunk);
2573        chunk_number = r_sector;
2574
2575        /*
2576         * Compute the stripe number
2577         */
2578        stripe = chunk_number;
2579        *dd_idx = sector_div(stripe, data_disks);
2580        stripe2 = stripe;
2581        /*
2582         * Select the parity disk based on the user selected algorithm.
2583         */
2584        pd_idx = qd_idx = -1;
2585        switch(conf->level) {
2586        case 4:
2587                pd_idx = data_disks;
2588                break;
2589        case 5:
2590                switch (algorithm) {
2591                case ALGORITHM_LEFT_ASYMMETRIC:
2592                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2593                        if (*dd_idx >= pd_idx)
2594                                (*dd_idx)++;
2595                        break;
2596                case ALGORITHM_RIGHT_ASYMMETRIC:
2597                        pd_idx = sector_div(stripe2, raid_disks);
2598                        if (*dd_idx >= pd_idx)
2599                                (*dd_idx)++;
2600                        break;
2601                case ALGORITHM_LEFT_SYMMETRIC:
2602                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2603                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2604                        break;
2605                case ALGORITHM_RIGHT_SYMMETRIC:
2606                        pd_idx = sector_div(stripe2, raid_disks);
2607                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2608                        break;
2609                case ALGORITHM_PARITY_0:
2610                        pd_idx = 0;
2611                        (*dd_idx)++;
2612                        break;
2613                case ALGORITHM_PARITY_N:
2614                        pd_idx = data_disks;
2615                        break;
2616                default:
2617                        BUG();
2618                }
2619                break;
2620        case 6:
2621
2622                switch (algorithm) {
2623                case ALGORITHM_LEFT_ASYMMETRIC:
2624                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2625                        qd_idx = pd_idx + 1;
2626                        if (pd_idx == raid_disks-1) {
2627                                (*dd_idx)++;    /* Q D D D P */
2628                                qd_idx = 0;
2629                        } else if (*dd_idx >= pd_idx)
2630                                (*dd_idx) += 2; /* D D P Q D */
2631                        break;
2632                case ALGORITHM_RIGHT_ASYMMETRIC:
2633                        pd_idx = sector_div(stripe2, raid_disks);
2634                        qd_idx = pd_idx + 1;
2635                        if (pd_idx == raid_disks-1) {
2636                                (*dd_idx)++;    /* Q D D D P */
2637                                qd_idx = 0;
2638                        } else if (*dd_idx >= pd_idx)
2639                                (*dd_idx) += 2; /* D D P Q D */
2640                        break;
2641                case ALGORITHM_LEFT_SYMMETRIC:
2642                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2643                        qd_idx = (pd_idx + 1) % raid_disks;
2644                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2645                        break;
2646                case ALGORITHM_RIGHT_SYMMETRIC:
2647                        pd_idx = sector_div(stripe2, raid_disks);
2648                        qd_idx = (pd_idx + 1) % raid_disks;
2649                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2650                        break;
2651
2652                case ALGORITHM_PARITY_0:
2653                        pd_idx = 0;
2654                        qd_idx = 1;
2655                        (*dd_idx) += 2;
2656                        break;
2657                case ALGORITHM_PARITY_N:
2658                        pd_idx = data_disks;
2659                        qd_idx = data_disks + 1;
2660                        break;
2661
2662                case ALGORITHM_ROTATING_ZERO_RESTART:
2663                        /* Exactly the same as RIGHT_ASYMMETRIC, but or
2664                         * of blocks for computing Q is different.
2665                         */
2666                        pd_idx = sector_div(stripe2, raid_disks);
2667                        qd_idx = pd_idx + 1;
2668                        if (pd_idx == raid_disks-1) {
2669                                (*dd_idx)++;    /* Q D D D P */
2670                                qd_idx = 0;
2671                        } else if (*dd_idx >= pd_idx)
2672                                (*dd_idx) += 2; /* D D P Q D */
2673                        ddf_layout = 1;
2674                        break;
2675
2676                case ALGORITHM_ROTATING_N_RESTART:
2677                        /* Same a left_asymmetric, by first stripe is
2678                         * D D D P Q  rather than
2679                         * Q D D D P
2680                         */
2681                        stripe2 += 1;
2682                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2683                        qd_idx = pd_idx + 1;
2684                        if (pd_idx == raid_disks-1) {
2685                                (*dd_idx)++;    /* Q D D D P */
2686                                qd_idx = 0;
2687                        } else if (*dd_idx >= pd_idx)
2688                                (*dd_idx) += 2; /* D D P Q D */
2689                        ddf_layout = 1;
2690                        break;
2691
2692                case ALGORITHM_ROTATING_N_CONTINUE:
2693                        /* Same as left_symmetric but Q is before P */
2694                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2695                        qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2696                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2697                        ddf_layout = 1;
2698                        break;
2699
2700                case ALGORITHM_LEFT_ASYMMETRIC_6:
2701                        /* RAID5 left_asymmetric, with Q on last device */
2702                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2703                        if (*dd_idx >= pd_idx)
2704                                (*dd_idx)++;
2705                        qd_idx = raid_disks - 1;
2706                        break;
2707
2708                case ALGORITHM_RIGHT_ASYMMETRIC_6:
2709                        pd_idx = sector_div(stripe2, raid_disks-1);
2710                        if (*dd_idx >= pd_idx)
2711                                (*dd_idx)++;
2712                        qd_idx = raid_disks - 1;
2713                        break;
2714
2715                case ALGORITHM_LEFT_SYMMETRIC_6:
2716                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2717                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2718                        qd_idx = raid_disks - 1;
2719                        break;
2720
2721                case ALGORITHM_RIGHT_SYMMETRIC_6:
2722                        pd_idx = sector_div(stripe2, raid_disks-1);
2723                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2724                        qd_idx = raid_disks - 1;
2725                        break;
2726
2727                case ALGORITHM_PARITY_0_6:
2728                        pd_idx = 0;
2729                        (*dd_idx)++;
2730                        qd_idx = raid_disks - 1;
2731                        break;
2732
2733                default:
2734                        BUG();
2735                }
2736                break;
2737        }
2738
2739        if (sh) {
2740                sh->pd_idx = pd_idx;
2741                sh->qd_idx = qd_idx;
2742                sh->ddf_layout = ddf_layout;
2743        }
2744        /*
2745         * Finally, compute the new sector number
2746         */
2747        new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2748        return new_sector;
2749}
2750
2751sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2752{
2753        struct r5conf *conf = sh->raid_conf;
2754        int raid_disks = sh->disks;
2755        int data_disks = raid_disks - conf->max_degraded;
2756        sector_t new_sector = sh->sector, check;
2757        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2758                                         : conf->chunk_sectors;
2759        int algorithm = previous ? conf->prev_algo
2760                                 : conf->algorithm;
2761        sector_t stripe;
2762        int chunk_offset;
2763        sector_t chunk_number;
2764        int dummy1, dd_idx = i;
2765        sector_t r_sector;
2766        struct stripe_head sh2;
2767
2768        chunk_offset = sector_div(new_sector, sectors_per_chunk);
2769        stripe = new_sector;
2770
2771        if (i == sh->pd_idx)
2772                return 0;
2773        switch(conf->level) {
2774        case 4: break;
2775        case 5:
2776                switch (algorithm) {
2777                case ALGORITHM_LEFT_ASYMMETRIC:
2778                case ALGORITHM_RIGHT_ASYMMETRIC:
2779                        if (i > sh->pd_idx)
2780                                i--;
2781                        break;
2782                case ALGORITHM_LEFT_SYMMETRIC:
2783                case ALGORITHM_RIGHT_SYMMETRIC:
2784                        if (i < sh->pd_idx)
2785                                i += raid_disks;
2786                        i -= (sh->pd_idx + 1);
2787                        break;
2788                case ALGORITHM_PARITY_0:
2789                        i -= 1;
2790                        break;
2791                case ALGORITHM_PARITY_N:
2792                        break;
2793                default:
2794                        BUG();
2795                }
2796                break;
2797        case 6:
2798                if (i == sh->qd_idx)
2799                        return 0; /* It is the Q disk */
2800                switch (algorithm) {
2801                case ALGORITHM_LEFT_ASYMMETRIC:
2802                case ALGORITHM_RIGHT_ASYMMETRIC:
2803                case ALGORITHM_ROTATING_ZERO_RESTART:
2804                case ALGORITHM_ROTATING_N_RESTART:
2805                        if (sh->pd_idx == raid_disks-1)
2806                                i--;    /* Q D D D P */
2807                        else if (i > sh->pd_idx)
2808                                i -= 2; /* D D P Q D */
2809                        break;
2810                case ALGORITHM_LEFT_SYMMETRIC:
2811                case ALGORITHM_RIGHT_SYMMETRIC:
2812                        if (sh->pd_idx == raid_disks-1)
2813                                i--; /* Q D D D P */
2814                        else {
2815                                /* D D P Q D */
2816                                if (i < sh->pd_idx)
2817                                        i += raid_disks;
2818                                i -= (sh->pd_idx + 2);
2819                        }
2820                        break;
2821                case ALGORITHM_PARITY_0:
2822                        i -= 2;
2823                        break;
2824                case ALGORITHM_PARITY_N:
2825                        break;
2826                case ALGORITHM_ROTATING_N_CONTINUE:
2827                        /* Like left_symmetric, but P is before Q */
2828                        if (sh->pd_idx == 0)
2829                                i--;    /* P D D D Q */
2830                        else {
2831                                /* D D Q P D */
2832                                if (i < sh->pd_idx)
2833                                        i += raid_disks;
2834                                i -= (sh->pd_idx + 1);
2835                        }
2836                        break;
2837                case ALGORITHM_LEFT_ASYMMETRIC_6:
2838                case ALGORITHM_RIGHT_ASYMMETRIC_6:
2839                        if (i > sh->pd_idx)
2840                                i--;
2841                        break;
2842                case ALGORITHM_LEFT_SYMMETRIC_6:
2843                case ALGORITHM_RIGHT_SYMMETRIC_6:
2844                        if (i < sh->pd_idx)
2845                                i += data_disks + 1;
2846                        i -= (sh->pd_idx + 1);
2847                        break;
2848                case ALGORITHM_PARITY_0_6:
2849                        i -= 1;
2850                        break;
2851                default:
2852                        BUG();
2853                }
2854                break;
2855        }
2856
2857        chunk_number = stripe * data_disks + i;
2858        r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2859
2860        check = raid5_compute_sector(conf, r_sector,
2861                                     previous, &dummy1, &sh2);
2862        if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2863                || sh2.qd_idx != sh->qd_idx) {
2864                printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2865                       mdname(conf->mddev));
2866                return 0;
2867        }
2868        return r_sector;
2869}
2870
2871static void
2872schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2873                         int rcw, int expand)
2874{
2875        int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2876        struct r5conf *conf = sh->raid_conf;
2877        int level = conf->level;
2878
2879        if (rcw) {
2880
2881                for (i = disks; i--; ) {
2882                        struct r5dev *dev = &sh->dev[i];
2883
2884                        if (dev->towrite) {
2885                                set_bit(R5_LOCKED, &dev->flags);
2886                                set_bit(R5_Wantdrain, &dev->flags);
2887                                if (!expand)
2888                                        clear_bit(R5_UPTODATE, &dev->flags);
2889                                s->locked++;
2890                        }
2891                }
2892                /* if we are not expanding this is a proper write request, and
2893                 * there will be bios with new data to be drained into the
2894                 * stripe cache
2895                 */
2896                if (!expand) {
2897                        if (!s->locked)
2898                                /* False alarm, nothing to do */
2899                                return;
2900                        sh->reconstruct_state = reconstruct_state_drain_run;
2901                        set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2902                } else
2903                        sh->reconstruct_state = reconstruct_state_run;
2904
2905                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2906
2907                if (s->locked + conf->max_degraded == disks)
2908                        if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2909                                atomic_inc(&conf->pending_full_writes);
2910        } else {
2911                BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2912                        test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2913                BUG_ON(level == 6 &&
2914                        (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2915                           test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2916
2917                for (i = disks; i--; ) {
2918                        struct r5dev *dev = &sh->dev[i];
2919                        if (i == pd_idx || i == qd_idx)
2920                                continue;
2921
2922                        if (dev->towrite &&
2923                            (test_bit(R5_UPTODATE, &dev->flags) ||
2924                             test_bit(R5_Wantcompute, &dev->flags))) {
2925                                set_bit(R5_Wantdrain, &dev->flags);
2926                                set_bit(R5_LOCKED, &dev->flags);
2927                                clear_bit(R5_UPTODATE, &dev->flags);
2928                                s->locked++;
2929                        }
2930                }
2931                if (!s->locked)
2932                        /* False alarm - nothing to do */
2933                        return;
2934                sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2935                set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2936                set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2937                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2938        }
2939
2940        /* keep the parity disk(s) locked while asynchronous operations
2941         * are in flight
2942         */
2943        set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2944        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2945        s->locked++;
2946
2947        if (level == 6) {
2948                int qd_idx = sh->qd_idx;
2949                struct r5dev *dev = &sh->dev[qd_idx];
2950
2951                set_bit(R5_LOCKED, &dev->flags);
2952                clear_bit(R5_UPTODATE, &dev->flags);
2953                s->locked++;
2954        }
2955
2956        pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2957                __func__, (unsigned long long)sh->sector,
2958                s->locked, s->ops_request);
2959}
2960
2961/*
2962 * Each stripe/dev can have one or more bion attached.
2963 * toread/towrite point to the first in a chain.
2964 * The bi_next chain must be in order.
2965 */
2966static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2967                          int forwrite, int previous)
2968{
2969        struct bio **bip;
2970        struct r5conf *conf = sh->raid_conf;
2971        int firstwrite=0;
2972
2973        pr_debug("adding bi b#%llu to stripe s#%llu\n",
2974                (unsigned long long)bi->bi_iter.bi_sector,
2975                (unsigned long long)sh->sector);
2976
2977        /*
2978         * If several bio share a stripe. The bio bi_phys_segments acts as a
2979         * reference count to avoid race. The reference count should already be
2980         * increased before this function is called (for example, in
2981         * raid5_make_request()), so other bio sharing this stripe will not free the
2982         * stripe. If a stripe is owned by one stripe, the stripe lock will
2983         * protect it.
2984         */
2985        spin_lock_irq(&sh->stripe_lock);
2986        /* Don't allow new IO added to stripes in batch list */
2987        if (sh->batch_head)
2988                goto overlap;
2989        if (forwrite) {
2990                bip = &sh->dev[dd_idx].towrite;
2991                if (*bip == NULL)
2992                        firstwrite = 1;
2993        } else
2994                bip = &sh->dev[dd_idx].toread;
2995        while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2996                if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2997                        goto overlap;
2998                bip = & (*bip)->bi_next;
2999        }
3000        if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3001                goto overlap;
3002
3003        if (!forwrite || previous)
3004                clear_bit(STRIPE_BATCH_READY, &sh->state);
3005
3006        BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3007        if (*bip)
3008                bi->bi_next = *bip;
3009        *bip = bi;
3010        raid5_inc_bi_active_stripes(bi);
3011
3012        if (forwrite) {
3013                /* check if page is covered */
3014                sector_t sector = sh->dev[dd_idx].sector;
3015                for (bi=sh->dev[dd_idx].towrite;
3016                     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3017                             bi && bi->bi_iter.bi_sector <= sector;
3018                     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3019                        if (bio_end_sector(bi) >= sector)
3020                                sector = bio_end_sector(bi);
3021                }
3022                if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3023                        if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3024                                sh->overwrite_disks++;
3025        }
3026
3027        pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3028                (unsigned long long)(*bip)->bi_iter.bi_sector,
3029                (unsigned long long)sh->sector, dd_idx);
3030
3031        if (conf->mddev->bitmap && firstwrite) {
3032                /* Cannot hold spinlock over bitmap_startwrite,
3033                 * but must ensure this isn't added to a batch until
3034                 * we have added to the bitmap and set bm_seq.
3035                 * So set STRIPE_BITMAP_PENDING to prevent
3036                 * batching.
3037                 * If multiple add_stripe_bio() calls race here they
3038                 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3039                 * to complete "bitmap_startwrite" gets to set
3040                 * STRIPE_BIT_DELAY.  This is important as once a stripe
3041                 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3042                 * any more.
3043                 */
3044                set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3045                spin_unlock_irq(&sh->stripe_lock);
3046                bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3047                                  STRIPE_SECTORS, 0);
3048                spin_lock_irq(&sh->stripe_lock);
3049                clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3050                if (!sh->batch_head) {
3051                        sh->bm_seq = conf->seq_flush+1;
3052                        set_bit(STRIPE_BIT_DELAY, &sh->state);
3053                }
3054        }
3055        spin_unlock_irq(&sh->stripe_lock);
3056
3057        if (stripe_can_batch(sh))
3058                stripe_add_to_batch_list(conf, sh);
3059        return 1;
3060
3061 overlap:
3062        set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3063        spin_unlock_irq(&sh->stripe_lock);
3064        return 0;
3065}
3066
3067static void end_reshape(struct r5conf *conf);
3068
3069static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3070                            struct stripe_head *sh)
3071{
3072        int sectors_per_chunk =
3073                previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3074        int dd_idx;
3075        int chunk_offset = sector_div(stripe, sectors_per_chunk);
3076        int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3077
3078        raid5_compute_sector(conf,
3079                             stripe * (disks - conf->max_degraded)
3080                             *sectors_per_chunk + chunk_offset,
3081                             previous,
3082                             &dd_idx, sh);
3083}
3084
3085static void
3086handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3087                                struct stripe_head_state *s, int disks,
3088                                struct bio_list *return_bi)
3089{
3090        int i;
3091        BUG_ON(sh->batch_head);
3092        for (i = disks; i--; ) {
3093                struct bio *bi;
3094                int bitmap_end = 0;
3095
3096                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3097                        struct md_rdev *rdev;
3098                        rcu_read_lock();
3099                        rdev = rcu_dereference(conf->disks[i].rdev);
3100                        if (rdev && test_bit(In_sync, &rdev->flags) &&
3101                            !test_bit(Faulty, &rdev->flags))
3102                                atomic_inc(&rdev->nr_pending);
3103                        else
3104                                rdev = NULL;
3105                        rcu_read_unlock();
3106                        if (rdev) {
3107                                if (!rdev_set_badblocks(
3108                                            rdev,
3109                                            sh->sector,
3110                                            STRIPE_SECTORS, 0))
3111                                        md_error(conf->mddev, rdev);
3112                                rdev_dec_pending(rdev, conf->mddev);
3113                        }
3114                }
3115                spin_lock_irq(&sh->stripe_lock);
3116                /* fail all writes first */
3117                bi = sh->dev[i].towrite;
3118                sh->dev[i].towrite = NULL;
3119                sh->overwrite_disks = 0;
3120                spin_unlock_irq(&sh->stripe_lock);
3121                if (bi)
3122                        bitmap_end = 1;
3123
3124                r5l_stripe_write_finished(sh);
3125
3126                if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3127                        wake_up(&conf->wait_for_overlap);
3128
3129                while (bi && bi->bi_iter.bi_sector <
3130                        sh->dev[i].sector + STRIPE_SECTORS) {
3131                        struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3132
3133                        bi->bi_error = -EIO;
3134                        if (!raid5_dec_bi_active_stripes(bi)) {
3135                                md_write_end(conf->mddev);
3136                                bio_list_add(return_bi, bi);
3137                        }
3138                        bi = nextbi;
3139                }
3140                if (bitmap_end)
3141                        bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3142                                STRIPE_SECTORS, 0, 0);
3143                bitmap_end = 0;
3144                /* and fail all 'written' */
3145                bi = sh->dev[i].written;
3146                sh->dev[i].written = NULL;
3147                if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3148                        WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3149                        sh->dev[i].page = sh->dev[i].orig_page;
3150                }
3151
3152                if (bi) bitmap_end = 1;
3153                while (bi && bi->bi_iter.bi_sector <
3154                       sh->dev[i].sector + STRIPE_SECTORS) {
3155                        struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3156
3157                        bi->bi_error = -EIO;
3158                        if (!raid5_dec_bi_active_stripes(bi)) {
3159                                md_write_end(conf->mddev);
3160                                bio_list_add(return_bi, bi);
3161                        }
3162                        bi = bi2;
3163                }
3164
3165                /* fail any reads if this device is non-operational and
3166                 * the data has not reached the cache yet.
3167                 */
3168                if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3169                    s->failed > conf->max_degraded &&
3170                    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3171                      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3172                        spin_lock_irq(&sh->stripe_lock);
3173                        bi = sh->dev[i].toread;
3174                        sh->dev[i].toread = NULL;
3175                        spin_unlock_irq(&sh->stripe_lock);
3176                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3177                                wake_up(&conf->wait_for_overlap);
3178                        if (bi)
3179                                s->to_read--;
3180                        while (bi && bi->bi_iter.bi_sector <
3181                               sh->dev[i].sector + STRIPE_SECTORS) {
3182                                struct bio *nextbi =
3183                                        r5_next_bio(bi, sh->dev[i].sector);
3184
3185                                bi->bi_error = -EIO;
3186                                if (!raid5_dec_bi_active_stripes(bi))
3187                                        bio_list_add(return_bi, bi);
3188                                bi = nextbi;
3189                        }
3190                }
3191                if (bitmap_end)
3192                        bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3193                                        STRIPE_SECTORS, 0, 0);
3194                /* If we were in the middle of a write the parity block might
3195                 * still be locked - so just clear all R5_LOCKED flags
3196                 */
3197                clear_bit(R5_LOCKED, &sh->dev[i].flags);
3198        }
3199        s->to_write = 0;
3200        s->written = 0;
3201
3202        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3203                if (atomic_dec_and_test(&conf->pending_full_writes))
3204                        md_wakeup_thread(conf->mddev->thread);
3205}
3206
3207static void
3208handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3209                   struct stripe_head_state *s)
3210{
3211        int abort = 0;
3212        int i;
3213
3214        BUG_ON(sh->batch_head);
3215        clear_bit(STRIPE_SYNCING, &sh->state);
3216        if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3217                wake_up(&conf->wait_for_overlap);
3218        s->syncing = 0;
3219        s->replacing = 0;
3220        /* There is nothing more to do for sync/check/repair.
3221         * Don't even need to abort as that is handled elsewhere
3222         * if needed, and not always wanted e.g. if there is a known
3223         * bad block here.
3224         * For recover/replace we need to record a bad block on all
3225         * non-sync devices, or abort the recovery
3226         */
3227        if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3228                /* During recovery devices cannot be removed, so
3229                 * locking and refcounting of rdevs is not needed
3230                 */
3231                rcu_read_lock();
3232                for (i = 0; i < conf->raid_disks; i++) {
3233                        struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3234                        if (rdev
3235                            && !test_bit(Faulty, &rdev->flags)
3236                            && !test_bit(In_sync, &rdev->flags)
3237                            && !rdev_set_badblocks(rdev, sh->sector,
3238                                                   STRIPE_SECTORS, 0))
3239                                abort = 1;
3240                        rdev = rcu_dereference(conf->disks[i].replacement);
3241                        if (rdev
3242                            && !test_bit(Faulty, &rdev->flags)
3243                            && !test_bit(In_sync, &rdev->flags)
3244                            && !rdev_set_badblocks(rdev, sh->sector,
3245                                                   STRIPE_SECTORS, 0))
3246                                abort = 1;
3247                }
3248                rcu_read_unlock();
3249                if (abort)
3250                        conf->recovery_disabled =
3251                                conf->mddev->recovery_disabled;
3252        }
3253        md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3254}
3255
3256static int want_replace(struct stripe_head *sh, int disk_idx)
3257{
3258        struct md_rdev *rdev;
3259        int rv = 0;
3260
3261        rcu_read_lock();
3262        rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3263        if (rdev
3264            && !test_bit(Faulty, &rdev->flags)
3265            && !test_bit(In_sync, &rdev->flags)
3266            && (rdev->recovery_offset <= sh->sector
3267                || rdev->mddev->recovery_cp <= sh->sector))
3268                rv = 1;
3269        rcu_read_unlock();
3270        return rv;
3271}
3272
3273/* fetch_block - checks the given member device to see if its data needs
3274 * to be read or computed to satisfy a request.
3275 *
3276 * Returns 1 when no more member devices need to be checked, otherwise returns
3277 * 0 to tell the loop in handle_stripe_fill to continue
3278 */
3279
3280static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3281                           int disk_idx, int disks)
3282{
3283        struct r5dev *dev = &sh->dev[disk_idx];
3284        struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3285                                  &sh->dev[s->failed_num[1]] };
3286        int i;
3287
3288
3289        if (test_bit(R5_LOCKED, &dev->flags) ||
3290            test_bit(R5_UPTODATE, &dev->flags))
3291                /* No point reading this as we already have it or have
3292                 * decided to get it.
3293                 */
3294                return 0;
3295
3296        if (dev->toread ||
3297            (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3298                /* We need this block to directly satisfy a request */
3299                return 1;
3300
3301        if (s->syncing || s->expanding ||
3302            (s->replacing && want_replace(sh, disk_idx)))
3303                /* When syncing, or expanding we read everything.
3304                 * When replacing, we need the replaced block.
3305                 */
3306                return 1;
3307
3308        if ((s->failed >= 1 && fdev[0]->toread) ||
3309            (s->failed >= 2 && fdev[1]->toread))
3310                /* If we want to read from a failed device, then
3311                 * we need to actually read every other device.
3312                 */
3313                return 1;
3314
3315        /* Sometimes neither read-modify-write nor reconstruct-write
3316         * cycles can work.  In those cases we read every block we
3317         * can.  Then the parity-update is certain to have enough to
3318         * work with.
3319         * This can only be a problem when we need to write something,
3320         * and some device has failed.  If either of those tests
3321         * fail we need look no further.
3322         */
3323        if (!s->failed || !s->to_write)
3324                return 0;
3325
3326        if (test_bit(R5_Insync, &dev->flags) &&
3327            !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3328                /* Pre-reads at not permitted until after short delay
3329                 * to gather multiple requests.  However if this
3330                 * device is no Insync, the block could only be be computed
3331                 * and there is no need to delay that.
3332                 */
3333                return 0;
3334
3335        for (i = 0; i < s->failed && i < 2; i++) {
3336                if (fdev[i]->towrite &&
3337                    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3338                    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3339                        /* If we have a partial write to a failed
3340                         * device, then we will need to reconstruct
3341                         * the content of that device, so all other
3342                         * devices must be read.
3343                         */
3344                        return 1;
3345        }
3346
3347        /* If we are forced to do a reconstruct-write, either because
3348         * the current RAID6 implementation only supports that, or
3349         * or because parity cannot be trusted and we are currently
3350         * recovering it, there is extra need to be careful.
3351         * If one of the devices that we would need to read, because
3352         * it is not being overwritten (and maybe not written at all)
3353         * is missing/faulty, then we need to read everything we can.
3354         */
3355        if (sh->raid_conf->level != 6 &&
3356            sh->sector < sh->raid_conf->mddev->recovery_cp)
3357                /* reconstruct-write isn't being forced */
3358                return 0;
3359        for (i = 0; i < s->failed && i < 2; i++) {
3360                if (s->failed_num[i] != sh->pd_idx &&
3361                    s->failed_num[i] != sh->qd_idx &&
3362                    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3363                    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3364                        return 1;
3365        }
3366
3367        return 0;
3368}
3369
3370static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3371                       int disk_idx, int disks)
3372{
3373        struct r5dev *dev = &sh->dev[disk_idx];
3374
3375        /* is the data in this block needed, and can we get it? */
3376        if (need_this_block(sh, s, disk_idx, disks)) {
3377                /* we would like to get this block, possibly by computing it,
3378                 * otherwise read it if the backing disk is insync
3379                 */
3380                BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3381                BUG_ON(test_bit(R5_Wantread, &dev->flags));
3382                BUG_ON(sh->batch_head);
3383                if ((s->uptodate == disks - 1) &&
3384                    (s->failed && (disk_idx == s->failed_num[0] ||
3385                                   disk_idx == s->failed_num[1]))) {
3386                        /* have disk failed, and we're requested to fetch it;
3387                         * do compute it
3388                         */
3389                        pr_debug("Computing stripe %llu block %d\n",
3390                               (unsigned long long)sh->sector, disk_idx);
3391                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3392                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3393                        set_bit(R5_Wantcompute, &dev->flags);
3394                        sh->ops.target = disk_idx;
3395                        sh->ops.target2 = -1; /* no 2nd target */
3396                        s->req_compute = 1;
3397                        /* Careful: from this point on 'uptodate' is in the eye
3398                         * of raid_run_ops which services 'compute' operations
3399                         * before writes. R5_Wantcompute flags a block that will
3400                         * be R5_UPTODATE by the time it is needed for a
3401                         * subsequent operation.
3402                         */
3403                        s->uptodate++;
3404                        return 1;
3405                } else if (s->uptodate == disks-2 && s->failed >= 2) {
3406                        /* Computing 2-failure is *very* expensive; only
3407                         * do it if failed >= 2
3408                         */
3409                        int other;
3410                        for (other = disks; other--; ) {
3411                                if (other == disk_idx)
3412                                        continue;
3413                                if (!test_bit(R5_UPTODATE,
3414                                      &sh->dev[other].flags))
3415                                        break;
3416                        }
3417                        BUG_ON(other < 0);
3418                        pr_debug("Computing stripe %llu blocks %d,%d\n",
3419                               (unsigned long long)sh->sector,
3420                               disk_idx, other);
3421                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3422                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3423                        set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3424                        set_bit(R5_Wantcompute, &sh->dev[other].flags);
3425                        sh->ops.target = disk_idx;
3426                        sh->ops.target2 = other;
3427                        s->uptodate += 2;
3428                        s->req_compute = 1;
3429                        return 1;
3430                } else if (test_bit(R5_Insync, &dev->flags)) {
3431                        set_bit(R5_LOCKED, &dev->flags);
3432                        set_bit(R5_Wantread, &dev->flags);
3433                        s->locked++;
3434                        pr_debug("Reading block %d (sync=%d)\n",
3435                                disk_idx, s->syncing);
3436                }
3437        }
3438
3439        return 0;
3440}
3441
3442/**
3443 * handle_stripe_fill - read or compute data to satisfy pending requests.
3444 */
3445static void handle_stripe_fill(struct stripe_head *sh,
3446                               struct stripe_head_state *s,
3447                               int disks)
3448{
3449        int i;
3450
3451        /* look for blocks to read/compute, skip this if a compute
3452         * is already in flight, or if the stripe contents are in the
3453         * midst of changing due to a write
3454         */
3455        if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3456            !sh->reconstruct_state)
3457                for (i = disks; i--; )
3458                        if (fetch_block(sh, s, i, disks))
3459                                break;
3460        set_bit(STRIPE_HANDLE, &sh->state);
3461}
3462
3463static void break_stripe_batch_list(struct stripe_head *head_sh,
3464                                    unsigned long handle_flags);
3465/* handle_stripe_clean_event
3466 * any written block on an uptodate or failed drive can be returned.
3467 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3468 * never LOCKED, so we don't need to test 'failed' directly.
3469 */
3470static void handle_stripe_clean_event(struct r5conf *conf,
3471        struct stripe_head *sh, int disks, struct bio_list *return_bi)
3472{
3473        int i;
3474        struct r5dev *dev;
3475        int discard_pending = 0;
3476        struct stripe_head *head_sh = sh;
3477        bool do_endio = false;
3478
3479        for (i = disks; i--; )
3480                if (sh->dev[i].written) {
3481                        dev = &sh->dev[i];
3482                        if (!test_bit(R5_LOCKED, &dev->flags) &&
3483                            (test_bit(R5_UPTODATE, &dev->flags) ||
3484                             test_bit(R5_Discard, &dev->flags) ||
3485                             test_bit(R5_SkipCopy, &dev->flags))) {
3486                                /* We can return any write requests */
3487                                struct bio *wbi, *wbi2;
3488                                pr_debug("Return write for disc %d\n", i);
3489                                if (test_and_clear_bit(R5_Discard, &dev->flags))
3490                                        clear_bit(R5_UPTODATE, &dev->flags);
3491                                if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3492                                        WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3493                                }
3494                                do_endio = true;
3495
3496returnbi:
3497                                dev->page = dev->orig_page;
3498                                wbi = dev->written;
3499                                dev->written = NULL;
3500                                while (wbi && wbi->bi_iter.bi_sector <
3501                                        dev->sector + STRIPE_SECTORS) {
3502                                        wbi2 = r5_next_bio(wbi, dev->sector);
3503                                        if (!raid5_dec_bi_active_stripes(wbi)) {
3504                                                md_write_end(conf->mddev);
3505                                                bio_list_add(return_bi, wbi);
3506                                        }
3507                                        wbi = wbi2;
3508                                }
3509                                bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3510                                                STRIPE_SECTORS,
3511                                         !test_bit(STRIPE_DEGRADED, &sh->state),
3512                                                0);
3513                                if (head_sh->batch_head) {
3514                                        sh = list_first_entry(&sh->batch_list,
3515                                                              struct stripe_head,
3516                                                              batch_list);
3517                                        if (sh != head_sh) {
3518                                                dev = &sh->dev[i];
3519                                                goto returnbi;
3520                                        }
3521                                }
3522                                sh = head_sh;
3523                                dev = &sh->dev[i];
3524                        } else if (test_bit(R5_Discard, &dev->flags))
3525                                discard_pending = 1;
3526                }
3527
3528        r5l_stripe_write_finished(sh);
3529
3530        if (!discard_pending &&
3531            test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3532                int hash;
3533                clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3534                clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3535                if (sh->qd_idx >= 0) {
3536                        clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3537                        clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3538                }
3539                /* now that discard is done we can proceed with any sync */
3540                clear_bit(STRIPE_DISCARD, &sh->state);
3541                /*
3542                 * SCSI discard will change some bio fields and the stripe has
3543                 * no updated data, so remove it from hash list and the stripe
3544                 * will be reinitialized
3545                 */
3546unhash:
3547                hash = sh->hash_lock_index;
3548                spin_lock_irq(conf->hash_locks + hash);
3549                remove_hash(sh);
3550                spin_unlock_irq(conf->hash_locks + hash);
3551                if (head_sh->batch_head) {
3552                        sh = list_first_entry(&sh->batch_list,
3553                                              struct stripe_head, batch_list);
3554                        if (sh != head_sh)
3555                                        goto unhash;
3556                }
3557                sh = head_sh;
3558
3559                if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3560                        set_bit(STRIPE_HANDLE, &sh->state);
3561
3562        }
3563
3564        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3565                if (atomic_dec_and_test(&conf->pending_full_writes))
3566                        md_wakeup_thread(conf->mddev->thread);
3567
3568        if (head_sh->batch_head && do_endio)
3569                break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3570}
3571
3572static void handle_stripe_dirtying(struct r5conf *conf,
3573                                   struct stripe_head *sh,
3574                                   struct stripe_head_state *s,
3575                                   int disks)
3576{
3577        int rmw = 0, rcw = 0, i;
3578        sector_t recovery_cp = conf->mddev->recovery_cp;
3579
3580        /* Check whether resync is now happening or should start.
3581         * If yes, then the array is dirty (after unclean shutdown or
3582         * initial creation), so parity in some stripes might be inconsistent.
3583         * In this case, we need to always do reconstruct-write, to ensure
3584         * that in case of drive failure or read-error correction, we
3585         * generate correct data from the parity.
3586         */
3587        if (conf->rmw_level == PARITY_DISABLE_RMW ||
3588            (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3589             s->failed == 0)) {
3590                /* Calculate the real rcw later - for now make it
3591                 * look like rcw is cheaper
3592                 */
3593                rcw = 1; rmw = 2;
3594                pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3595                         conf->rmw_level, (unsigned long long)recovery_cp,
3596                         (unsigned long long)sh->sector);
3597        } else for (i = disks; i--; ) {
3598                /* would I have to read this buffer for read_modify_write */
3599                struct r5dev *dev = &sh->dev[i];
3600                if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3601                    !test_bit(R5_LOCKED, &dev->flags) &&
3602                    !(test_bit(R5_UPTODATE, &dev->flags) ||
3603                      test_bit(R5_Wantcompute, &dev->flags))) {
3604                        if (test_bit(R5_Insync, &dev->flags))
3605                                rmw++;
3606                        else
3607                                rmw += 2*disks;  /* cannot read it */
3608                }
3609                /* Would I have to read this buffer for reconstruct_write */
3610                if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3611                    i != sh->pd_idx && i != sh->qd_idx &&
3612                    !test_bit(R5_LOCKED, &dev->flags) &&
3613                    !(test_bit(R5_UPTODATE, &dev->flags) ||
3614                    test_bit(R5_Wantcompute, &dev->flags))) {
3615                        if (test_bit(R5_Insync, &dev->flags))
3616                                rcw++;
3617                        else
3618                                rcw += 2*disks;
3619                }
3620        }
3621        pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3622                (unsigned long long)sh->sector, rmw, rcw);
3623        set_bit(STRIPE_HANDLE, &sh->state);
3624        if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3625                /* prefer read-modify-write, but need to get some data */
3626                if (conf->mddev->queue)
3627                        blk_add_trace_msg(conf->mddev->queue,
3628                                          "raid5 rmw %llu %d",
3629                                          (unsigned long long)sh->sector, rmw);
3630                for (i = disks; i--; ) {
3631                        struct r5dev *dev = &sh->dev[i];
3632                        if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3633                            !test_bit(R5_LOCKED, &dev->flags) &&
3634                            !(test_bit(R5_UPTODATE, &dev->flags) ||
3635                            test_bit(R5_Wantcompute, &dev->flags)) &&
3636                            test_bit(R5_Insync, &dev->flags)) {
3637                                if (test_bit(STRIPE_PREREAD_ACTIVE,
3638                                             &sh->state)) {
3639                                        pr_debug("Read_old block %d for r-m-w\n",
3640                                                 i);
3641                                        set_bit(R5_LOCKED, &dev->flags);
3642                                        set_bit(R5_Wantread, &dev->flags);
3643                                        s->locked++;
3644                                } else {
3645                                        set_bit(STRIPE_DELAYED, &sh->state);
3646                                        set_bit(STRIPE_HANDLE, &sh->state);
3647                                }
3648                        }
3649                }
3650        }
3651        if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3652                /* want reconstruct write, but need to get some data */
3653                int qread =0;
3654                rcw = 0;
3655                for (i = disks; i--; ) {
3656                        struct r5dev *dev = &sh->dev[i];
3657                        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3658                            i != sh->pd_idx && i != sh->qd_idx &&
3659                            !test_bit(R5_LOCKED, &dev->flags) &&
3660                            !(test_bit(R5_UPTODATE, &dev->flags) ||
3661                              test_bit(R5_Wantcompute, &dev->flags))) {
3662                                rcw++;
3663                                if (test_bit(R5_Insync, &dev->flags) &&
3664                                    test_bit(STRIPE_PREREAD_ACTIVE,
3665                                             &sh->state)) {
3666                                        pr_debug("Read_old block "
3667                                                "%d for Reconstruct\n", i);
3668                                        set_bit(R5_LOCKED, &dev->flags);
3669                                        set_bit(R5_Wantread, &dev->flags);
3670                                        s->locked++;
3671                                        qread++;
3672                                } else {
3673                                        set_bit(STRIPE_DELAYED, &sh->state);
3674                                        set_bit(STRIPE_HANDLE, &sh->state);
3675                                }
3676                        }
3677                }
3678                if (rcw && conf->mddev->queue)
3679                        blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3680                                          (unsigned long long)sh->sector,
3681                                          rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3682        }
3683
3684        if (rcw > disks && rmw > disks &&
3685            !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3686                set_bit(STRIPE_DELAYED, &sh->state);
3687
3688        /* now if nothing is locked, and if we have enough data,
3689         * we can start a write request
3690         */
3691        /* since handle_stripe can be called at any time we need to handle the
3692         * case where a compute block operation has been submitted and then a
3693         * subsequent call wants to start a write request.  raid_run_ops only
3694         * handles the case where compute block and reconstruct are requested
3695         * simultaneously.  If this is not the case then new writes need to be
3696         * held off until the compute completes.
3697         */
3698        if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3699            (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3700            !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3701                schedule_reconstruction(sh, s, rcw == 0, 0);
3702}
3703
3704static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3705                                struct stripe_head_state *s, int disks)
3706{
3707        struct r5dev *dev = NULL;
3708
3709        BUG_ON(sh->batch_head);
3710        set_bit(STRIPE_HANDLE, &sh->state);
3711
3712        switch (sh->check_state) {
3713        case check_state_idle:
3714                /* start a new check operation if there are no failures */
3715                if (s->failed == 0) {
3716                        BUG_ON(s->uptodate != disks);
3717                        sh->check_state = check_state_run;
3718                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
3719                        clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3720                        s->uptodate--;
3721                        break;
3722                }
3723                dev = &sh->dev[s->failed_num[0]];
3724                /* fall through */
3725        case check_state_compute_result:
3726                sh->check_state = check_state_idle;
3727                if (!dev)
3728                        dev = &sh->dev[sh->pd_idx];
3729
3730                /* check that a write has not made the stripe insync */
3731                if (test_bit(STRIPE_INSYNC, &sh->state))
3732                        break;
3733
3734                /* either failed parity check, or recovery is happening */
3735                BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3736                BUG_ON(s->uptodate != disks);
3737
3738                set_bit(R5_LOCKED, &dev->flags);
3739                s->locked++;
3740                set_bit(R5_Wantwrite, &dev->flags);
3741
3742                clear_bit(STRIPE_DEGRADED, &sh->state);
3743                set_bit(STRIPE_INSYNC, &sh->state);
3744                break;
3745        case check_state_run:
3746                break; /* we will be called again upon completion */
3747        case check_state_check_result:
3748                sh->check_state = check_state_idle;
3749
3750                /* if a failure occurred during the check operation, leave
3751                 * STRIPE_INSYNC not set and let the stripe be handled again
3752                 */
3753                if (s->failed)
3754                        break;
3755
3756                /* handle a successful check operation, if parity is correct
3757                 * we are done.  Otherwise update the mismatch count and repair
3758                 * parity if !MD_RECOVERY_CHECK
3759                 */
3760                if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3761                        /* parity is correct (on disc,
3762                         * not in buffer any more)
3763                         */
3764                        set_bit(STRIPE_INSYNC, &sh->state);
3765                else {
3766                        atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3767                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3768                                /* don't try to repair!! */
3769                                set_bit(STRIPE_INSYNC, &sh->state);
3770                        else {
3771                                sh->check_state = check_state_compute_run;
3772                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3773                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3774                                set_bit(R5_Wantcompute,
3775                                        &sh->dev[sh->pd_idx].flags);
3776                                sh->ops.target = sh->pd_idx;
3777                                sh->ops.target2 = -1;
3778                                s->uptodate++;
3779                        }
3780                }
3781                break;
3782        case check_state_compute_run:
3783                break;
3784        default:
3785                printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3786                       __func__, sh->check_state,
3787                       (unsigned long long) sh->sector);
3788                BUG();
3789        }
3790}
3791
3792static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3793                                  struct stripe_head_state *s,
3794                                  int disks)
3795{
3796        int pd_idx = sh->pd_idx;
3797        int qd_idx = sh->qd_idx;
3798        struct r5dev *dev;
3799
3800        BUG_ON(sh->batch_head);
3801        set_bit(STRIPE_HANDLE, &sh->state);
3802
3803        BUG_ON(s->failed > 2);
3804
3805        /* Want to check and possibly repair P and Q.
3806         * However there could be one 'failed' device, in which
3807         * case we can only check one of them, possibly using the
3808         * other to generate missing data
3809         */
3810
3811        switch (sh->check_state) {
3812        case check_state_idle:
3813                /* start a new check operation if there are < 2 failures */
3814                if (s->failed == s->q_failed) {
3815                        /* The only possible failed device holds Q, so it
3816                         * makes sense to check P (If anything else were failed,
3817                         * we would have used P to recreate it).
3818                         */
3819                        sh->check_state = check_state_run;
3820                }
3821                if (!s->q_failed && s->failed < 2) {
3822                        /* Q is not failed, and we didn't use it to generate
3823                         * anything, so it makes sense to check it
3824                         */
3825                        if (sh->check_state == check_state_run)
3826                                sh->check_state = check_state_run_pq;
3827                        else
3828                                sh->check_state = check_state_run_q;
3829                }
3830
3831                /* discard potentially stale zero_sum_result */
3832                sh->ops.zero_sum_result = 0;
3833
3834                if (sh->check_state == check_state_run) {
3835                        /* async_xor_zero_sum destroys the contents of P */
3836                        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3837                        s->uptodate--;
3838                }
3839                if (sh->check_state >= check_state_run &&
3840                    sh->check_state <= check_state_run_pq) {
3841                        /* async_syndrome_zero_sum preserves P and Q, so
3842                         * no need to mark them !uptodate here
3843                         */
3844                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
3845                        break;
3846                }
3847
3848                /* we have 2-disk failure */
3849                BUG_ON(s->failed != 2);
3850                /* fall through */
3851        case check_state_compute_result:
3852                sh->check_state = check_state_idle;
3853
3854                /* check that a write has not made the stripe insync */
3855                if (test_bit(STRIPE_INSYNC, &sh->state))
3856                        break;
3857
3858                /* now write out any block on a failed drive,
3859                 * or P or Q if they were recomputed
3860                 */
3861                BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3862                if (s->failed == 2) {
3863                        dev = &sh->dev[s->failed_num[1]];
3864                        s->locked++;
3865                        set_bit(R5_LOCKED, &dev->flags);
3866                        set_bit(R5_Wantwrite, &dev->flags);
3867                }
3868                if (s->failed >= 1) {
3869                        dev = &sh->dev[s->failed_num[0]];
3870                        s->locked++;
3871                        set_bit(R5_LOCKED, &dev->flags);
3872                        set_bit(R5_Wantwrite, &dev->flags);
3873                }
3874                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3875                        dev = &sh->dev[pd_idx];
3876                        s->locked++;
3877                        set_bit(R5_LOCKED, &dev->flags);
3878                        set_bit(R5_Wantwrite, &dev->flags);
3879                }
3880                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3881                        dev = &sh->dev[qd_idx];
3882                        s->locked++;
3883                        set_bit(R5_LOCKED, &dev->flags);
3884                        set_bit(R5_Wantwrite, &dev->flags);
3885                }
3886                clear_bit(STRIPE_DEGRADED, &sh->state);
3887
3888                set_bit(STRIPE_INSYNC, &sh->state);
3889                break;
3890        case check_state_run:
3891        case check_state_run_q:
3892        case check_state_run_pq:
3893                break; /* we will be called again upon completion */
3894        case check_state_check_result:
3895                sh->check_state = check_state_idle;
3896
3897                /* handle a successful check operation, if parity is correct
3898                 * we are done.  Otherwise update the mismatch count and repair
3899                 * parity if !MD_RECOVERY_CHECK
3900                 */
3901                if (sh->ops.zero_sum_result == 0) {
3902                        /* both parities are correct */
3903                        if (!s->failed)
3904                                set_bit(STRIPE_INSYNC, &sh->state);
3905                        else {
3906                                /* in contrast to the raid5 case we can validate
3907                                 * parity, but still have a failure to write
3908                                 * back
3909                                 */
3910                                sh->check_state = check_state_compute_result;
3911                                /* Returning at this point means that we may go
3912                                 * off and bring p and/or q uptodate again so
3913                                 * we make sure to check zero_sum_result again
3914                                 * to verify if p or q need writeback
3915                                 */
3916                        }
3917                } else {
3918                        atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3919                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3920                                /* don't try to repair!! */
3921                                set_bit(STRIPE_INSYNC, &sh->state);
3922                        else {
3923                                int *target = &sh->ops.target;
3924
3925                                sh->ops.target = -1;
3926                                sh->ops.target2 = -1;
3927                                sh->check_state = check_state_compute_run;
3928                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3929                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3930                                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3931                                        set_bit(R5_Wantcompute,
3932                                                &sh->dev[pd_idx].flags);
3933                                        *target = pd_idx;
3934                                        target = &sh->ops.target2;
3935                                        s->uptodate++;
3936                                }
3937                                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3938                                        set_bit(R5_Wantcompute,
3939                                                &sh->dev[qd_idx].flags);
3940                                        *target = qd_idx;
3941                                        s->uptodate++;
3942                                }
3943                        }
3944                }
3945                break;
3946        case check_state_compute_run:
3947                break;
3948        default:
3949                printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3950                       __func__, sh->check_state,
3951                       (unsigned long long) sh->sector);
3952                BUG();
3953        }
3954}
3955
3956static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3957{
3958        int i;
3959
3960        /* We have read all the blocks in this stripe and now we need to
3961         * copy some of them into a target stripe for expand.
3962         */
3963        struct dma_async_tx_descriptor *tx = NULL;
3964        BUG_ON(sh->batch_head);
3965        clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3966        for (i = 0; i < sh->disks; i++)
3967                if (i != sh->pd_idx && i != sh->qd_idx) {
3968                        int dd_idx, j;
3969                        struct stripe_head *sh2;
3970                        struct async_submit_ctl submit;
3971
3972                        sector_t bn = raid5_compute_blocknr(sh, i, 1);
3973                        sector_t s = raid5_compute_sector(conf, bn, 0,
3974                                                          &dd_idx, NULL);
3975                        sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3976                        if (sh2 == NULL)
3977                                /* so far only the early blocks of this stripe
3978                                 * have been requested.  When later blocks
3979                                 * get requested, we will try again
3980                                 */
3981                                continue;
3982                        if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3983                           test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3984                                /* must have already done this block */
3985                                raid5_release_stripe(sh2);
3986                                continue;
3987                        }
3988
3989                        /* place all the copies on one channel */
3990                        init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3991                        tx = async_memcpy(sh2->dev[dd_idx].page,
3992                                          sh->dev[i].page, 0, 0, STRIPE_SIZE,
3993                                          &submit);
3994
3995                        set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3996                        set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3997                        for (j = 0; j < conf->raid_disks; j++)
3998                                if (j != sh2->pd_idx &&
3999                                    j != sh2->qd_idx &&
4000                                    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4001                                        break;
4002                        if (j == conf->raid_disks) {
4003                                set_bit(STRIPE_EXPAND_READY, &sh2->state);
4004                                set_bit(STRIPE_HANDLE, &sh2->state);
4005                        }
4006                        raid5_release_stripe(sh2);
4007
4008                }
4009        /* done submitting copies, wait for them to complete */
4010        async_tx_quiesce(&tx);
4011}
4012
4013/*
4014 * handle_stripe - do things to a stripe.
4015 *
4016 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4017 * state of various bits to see what needs to be done.
4018 * Possible results:
4019 *    return some read requests which now have data
4020 *    return some write requests which are safely on storage
4021 *    schedule a read on some buffers
4022 *    schedule a write of some buffers
4023 *    return confirmation of parity correctness
4024 *
4025 */
4026
4027static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4028{
4029        struct r5conf *conf = sh->raid_conf;
4030        int disks = sh->disks;
4031        struct r5dev *dev;
4032        int i;
4033        int do_recovery = 0;
4034
4035        memset(s, 0, sizeof(*s));
4036
4037        s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4038        s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4039        s->failed_num[0] = -1;
4040        s->failed_num[1] = -1;
4041        s->log_failed = r5l_log_disk_error(conf);
4042
4043        /* Now to look around and see what can be done */
4044        rcu_read_lock();
4045        for (i=disks; i--; ) {
4046                struct md_rdev *rdev;
4047                sector_t first_bad;
4048                int bad_sectors;
4049                int is_bad = 0;
4050
4051                dev = &sh->dev[i];
4052
4053                pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4054                         i, dev->flags,
4055                         dev->toread, dev->towrite, dev->written);
4056                /* maybe we can reply to a read
4057                 *
4058                 * new wantfill requests are only permitted while
4059                 * ops_complete_biofill is guaranteed to be inactive
4060                 */
4061                if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4062                    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4063                        set_bit(R5_Wantfill, &dev->flags);
4064
4065                /* now count some things */
4066                if (test_bit(R5_LOCKED, &dev->flags))
4067                        s->locked++;
4068                if (test_bit(R5_UPTODATE, &dev->flags))
4069                        s->uptodate++;
4070                if (test_bit(R5_Wantcompute, &dev->flags)) {
4071                        s->compute++;
4072                        BUG_ON(s->compute > 2);
4073                }
4074
4075                if (test_bit(R5_Wantfill, &dev->flags))
4076                        s->to_fill++;
4077                else if (dev->toread)
4078                        s->to_read++;
4079                if (dev->towrite) {
4080                        s->to_write++;
4081                        if (!test_bit(R5_OVERWRITE, &dev->flags))
4082                                s->non_overwrite++;
4083                }
4084                if (dev->written)
4085                        s->written++;
4086                /* Prefer to use the replacement for reads, but only
4087                 * if it is recovered enough and has no bad blocks.
4088                 */
4089                rdev = rcu_dereference(conf->disks[i].replacement);
4090                if (rdev && !test_bit(Faulty, &rdev->flags) &&
4091                    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4092                    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4093                                 &first_bad, &bad_sectors))
4094                        set_bit(R5_ReadRepl, &dev->flags);
4095                else {
4096                        if (rdev && !test_bit(Faulty, &rdev->flags))
4097                                set_bit(R5_NeedReplace, &dev->flags);
4098                        else
4099                                clear_bit(R5_NeedReplace, &dev->flags);
4100                        rdev = rcu_dereference(conf->disks[i].rdev);
4101                        clear_bit(R5_ReadRepl, &dev->flags);
4102                }
4103                if (rdev && test_bit(Faulty, &rdev->flags))
4104                        rdev = NULL;
4105                if (rdev) {
4106                        is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4107                                             &first_bad, &bad_sectors);
4108                        if (s->blocked_rdev == NULL
4109                            && (test_bit(Blocked, &rdev->flags)
4110                                || is_bad < 0)) {
4111                                if (is_bad < 0)
4112                                        set_bit(BlockedBadBlocks,
4113                                                &rdev->flags);
4114                                s->blocked_rdev = rdev;
4115                                atomic_inc(&rdev->nr_pending);
4116                        }
4117                }
4118                clear_bit(R5_Insync, &dev->flags);
4119                if (!rdev)
4120                        /* Not in-sync */;
4121                else if (is_bad) {
4122                        /* also not in-sync */
4123                        if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4124                            test_bit(R5_UPTODATE, &dev->flags)) {
4125                                /* treat as in-sync, but with a read error
4126                                 * which we can now try to correct
4127                                 */
4128                                set_bit(R5_Insync, &dev->flags);
4129                                set_bit(R5_ReadError, &dev->flags);
4130                        }
4131                } else if (test_bit(In_sync, &rdev->flags))
4132                        set_bit(R5_Insync, &dev->flags);
4133                else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4134                        /* in sync if before recovery_offset */
4135                        set_bit(R5_Insync, &dev->flags);
4136                else if (test_bit(R5_UPTODATE, &dev->flags) &&
4137                         test_bit(R5_Expanded, &dev->flags))
4138                        /* If we've reshaped into here, we assume it is Insync.
4139                         * We will shortly update recovery_offset to make
4140                         * it official.
4141                         */
4142                        set_bit(R5_Insync, &dev->flags);
4143
4144                if (test_bit(R5_WriteError, &dev->flags)) {
4145                        /* This flag does not apply to '.replacement'
4146                         * only to .rdev, so make sure to check that*/
4147                        struct md_rdev *rdev2 = rcu_dereference(
4148                                conf->disks[i].rdev);
4149                        if (rdev2 == rdev)
4150                                clear_bit(R5_Insync, &dev->flags);
4151                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4152                                s->handle_bad_blocks = 1;
4153                                atomic_inc(&rdev2->nr_pending);
4154                        } else
4155                                clear_bit(R5_WriteError, &dev->flags);
4156                }
4157                if (test_bit(R5_MadeGood, &dev->flags)) {
4158                        /* This flag does not apply to '.replacement'
4159                         * only to .rdev, so make sure to check that*/
4160                        struct md_rdev *rdev2 = rcu_dereference(
4161                                conf->disks[i].rdev);
4162                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4163                                s->handle_bad_blocks = 1;
4164                                atomic_inc(&rdev2->nr_pending);
4165                        } else
4166                                clear_bit(R5_MadeGood, &dev->flags);
4167                }
4168                if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4169                        struct md_rdev *rdev2 = rcu_dereference(
4170                                conf->disks[i].replacement);
4171                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4172                                s->handle_bad_blocks = 1;
4173                                atomic_inc(&rdev2->nr_pending);
4174                        } else
4175                                clear_bit(R5_MadeGoodRepl, &dev->flags);
4176                }
4177                if (!test_bit(R5_Insync, &dev->flags)) {
4178                        /* The ReadError flag will just be confusing now */
4179                        clear_bit(R5_ReadError, &dev->flags);
4180                        clear_bit(R5_ReWrite, &dev->flags);
4181                }
4182                if (test_bit(R5_ReadError, &dev->flags))
4183                        clear_bit(R5_Insync, &dev->flags);
4184                if (!test_bit(R5_Insync, &dev->flags)) {
4185                        if (s->failed < 2)
4186                                s->failed_num[s->failed] = i;
4187                        s->failed++;
4188                        if (rdev && !test_bit(Faulty, &rdev->flags))
4189                                do_recovery = 1;
4190                }
4191        }
4192        if (test_bit(STRIPE_SYNCING, &sh->state)) {
4193                /* If there is a failed device being replaced,
4194                 *     we must be recovering.
4195                 * else if we are after recovery_cp, we must be syncing
4196                 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4197                 * else we can only be replacing
4198                 * sync and recovery both need to read all devices, and so
4199                 * use the same flag.
4200                 */
4201                if (do_recovery ||
4202                    sh->sector >= conf->mddev->recovery_cp ||
4203                    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4204                        s->syncing = 1;
4205                else
4206                        s->replacing = 1;
4207        }
4208        rcu_read_unlock();
4209}
4210
4211static int clear_batch_ready(struct stripe_head *sh)
4212{
4213        /* Return '1' if this is a member of batch, or
4214         * '0' if it is a lone stripe or a head which can now be
4215         * handled.
4216         */
4217        struct stripe_head *tmp;
4218        if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4219                return (sh->batch_head && sh->batch_head != sh);
4220        spin_lock(&sh->stripe_lock);
4221        if (!sh->batch_head) {
4222                spin_unlock(&sh->stripe_lock);
4223                return 0;
4224        }
4225
4226        /*
4227         * this stripe could be added to a batch list before we check
4228         * BATCH_READY, skips it
4229         */
4230        if (sh->batch_head != sh) {
4231                spin_unlock(&sh->stripe_lock);
4232                return 1;
4233        }
4234        spin_lock(&sh->batch_lock);
4235        list_for_each_entry(tmp, &sh->batch_list, batch_list)
4236                clear_bit(STRIPE_BATCH_READY, &tmp->state);
4237        spin_unlock(&sh->batch_lock);
4238        spin_unlock(&sh->stripe_lock);
4239
4240        /*
4241         * BATCH_READY is cleared, no new stripes can be added.
4242         * batch_list can be accessed without lock
4243         */
4244        return 0;
4245}
4246
4247static void break_stripe_batch_list(struct stripe_head *head_sh,
4248                                    unsigned long handle_flags)
4249{
4250        struct stripe_head *sh, *next;
4251        int i;
4252        int do_wakeup = 0;
4253
4254        list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4255
4256                list_del_init(&sh->batch_list);
4257
4258                WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4259                                          (1 << STRIPE_SYNCING) |
4260                                          (1 << STRIPE_REPLACED) |
4261                                          (1 << STRIPE_DELAYED) |
4262                                          (1 << STRIPE_BIT_DELAY) |
4263                                          (1 << STRIPE_FULL_WRITE) |
4264                                          (1 << STRIPE_BIOFILL_RUN) |
4265                                          (1 << STRIPE_COMPUTE_RUN)  |
4266                                          (1 << STRIPE_OPS_REQ_PENDING) |
4267                                          (1 << STRIPE_DISCARD) |
4268                                          (1 << STRIPE_BATCH_READY) |
4269                                          (1 << STRIPE_BATCH_ERR) |
4270                                          (1 << STRIPE_BITMAP_PENDING)),
4271                        "stripe state: %lx\n", sh->state);
4272                WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4273                                              (1 << STRIPE_REPLACED)),
4274                        "head stripe state: %lx\n", head_sh->state);
4275
4276                set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4277                                            (1 << STRIPE_PREREAD_ACTIVE) |
4278                                            (1 << STRIPE_DEGRADED)),
4279                              head_sh->state & (1 << STRIPE_INSYNC));
4280
4281                sh->check_state = head_sh->check_state;
4282                sh->reconstruct_state = head_sh->reconstruct_state;
4283                for (i = 0; i < sh->disks; i++) {
4284                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4285                                do_wakeup = 1;
4286                        sh->dev[i].flags = head_sh->dev[i].flags &
4287                                (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4288                }
4289                spin_lock_irq(&sh->stripe_lock);
4290                sh->batch_head = NULL;
4291                spin_unlock_irq(&sh->stripe_lock);
4292                if (handle_flags == 0 ||
4293                    sh->state & handle_flags)
4294                        set_bit(STRIPE_HANDLE, &sh->state);
4295                raid5_release_stripe(sh);
4296        }
4297        spin_lock_irq(&head_sh->stripe_lock);
4298        head_sh->batch_head = NULL;
4299        spin_unlock_irq(&head_sh->stripe_lock);
4300        for (i = 0; i < head_sh->disks; i++)
4301                if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4302                        do_wakeup = 1;
4303        if (head_sh->state & handle_flags)
4304                set_bit(STRIPE_HANDLE, &head_sh->state);
4305
4306        if (do_wakeup)
4307                wake_up(&head_sh->raid_conf->wait_for_overlap);
4308}
4309
4310static void handle_stripe(struct stripe_head *sh)
4311{
4312        struct stripe_head_state s;
4313        struct r5conf *conf = sh->raid_conf;
4314        int i;
4315        int prexor;
4316        int disks = sh->disks;
4317        struct r5dev *pdev, *qdev;
4318
4319        clear_bit(STRIPE_HANDLE, &sh->state);
4320        if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4321                /* already being handled, ensure it gets handled
4322                 * again when current action finishes */
4323                set_bit(STRIPE_HANDLE, &sh->state);
4324                return;
4325        }
4326
4327        if (clear_batch_ready(sh) ) {
4328                clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4329                return;
4330        }
4331
4332        if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4333                break_stripe_batch_list(sh, 0);
4334
4335        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4336                spin_lock(&sh->stripe_lock);
4337                /* Cannot process 'sync' concurrently with 'discard' */
4338                if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4339                    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4340                        set_bit(STRIPE_SYNCING, &sh->state);
4341                        clear_bit(STRIPE_INSYNC, &sh->state);
4342                        clear_bit(STRIPE_REPLACED, &sh->state);
4343                }
4344                spin_unlock(&sh->stripe_lock);
4345        }
4346        clear_bit(STRIPE_DELAYED, &sh->state);
4347
4348        pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4349                "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4350               (unsigned long long)sh->sector, sh->state,
4351               atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4352               sh->check_state, sh->reconstruct_state);
4353
4354        analyse_stripe(sh, &s);
4355
4356        if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4357                goto finish;
4358
4359        if (s.handle_bad_blocks) {
4360                set_bit(STRIPE_HANDLE, &sh->state);
4361                goto finish;
4362        }
4363
4364        if (unlikely(s.blocked_rdev)) {
4365                if (s.syncing || s.expanding || s.expanded ||
4366                    s.replacing || s.to_write || s.written) {
4367                        set_bit(STRIPE_HANDLE, &sh->state);
4368                        goto finish;
4369                }
4370                /* There is nothing for the blocked_rdev to block */
4371                rdev_dec_pending(s.blocked_rdev, conf->mddev);
4372                s.blocked_rdev = NULL;
4373        }
4374
4375        if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4376                set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4377                set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4378        }
4379
4380        pr_debug("locked=%d uptodate=%d to_read=%d"
4381               " to_write=%d failed=%d failed_num=%d,%d\n",
4382               s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4383               s.failed_num[0], s.failed_num[1]);
4384        /* check if the array has lost more than max_degraded devices and,
4385         * if so, some requests might need to be failed.
4386         */
4387        if (s.failed > conf->max_degraded || s.log_failed) {
4388                sh->check_state = 0;
4389                sh->reconstruct_state = 0;
4390                break_stripe_batch_list(sh, 0);
4391                if (s.to_read+s.to_write+s.written)
4392                        handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4393                if (s.syncing + s.replacing)
4394                        handle_failed_sync(conf, sh, &s);
4395        }
4396
4397        /* Now we check to see if any write operations have recently
4398         * completed
4399         */
4400        prexor = 0;
4401        if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4402                prexor = 1;
4403        if (sh->reconstruct_state == reconstruct_state_drain_result ||
4404            sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4405                sh->reconstruct_state = reconstruct_state_idle;
4406
4407                /* All the 'written' buffers and the parity block are ready to
4408                 * be written back to disk
4409                 */
4410                BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4411                       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4412                BUG_ON(sh->qd_idx >= 0 &&
4413                       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4414                       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4415                for (i = disks; i--; ) {
4416                        struct r5dev *dev = &sh->dev[i];
4417                        if (test_bit(R5_LOCKED, &dev->flags) &&
4418                                (i == sh->pd_idx || i == sh->qd_idx ||
4419                                 dev->written)) {
4420                                pr_debug("Writing block %d\n", i);
4421                                set_bit(R5_Wantwrite, &dev->flags);
4422                                if (prexor)
4423                                        continue;
4424                                if (s.failed > 1)
4425                                        continue;
4426                                if (!test_bit(R5_Insync, &dev->flags) ||
4427                                    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4428                                     s.failed == 0))
4429                                        set_bit(STRIPE_INSYNC, &sh->state);
4430                        }
4431                }
4432                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4433                        s.dec_preread_active = 1;
4434        }
4435
4436        /*
4437         * might be able to return some write requests if the parity blocks
4438         * are safe, or on a failed drive
4439         */
4440        pdev = &sh->dev[sh->pd_idx];
4441        s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4442                || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4443        qdev = &sh->dev[sh->qd_idx];
4444        s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4445                || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4446                || conf->level < 6;
4447
4448        if (s.written &&
4449            (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4450                             && !test_bit(R5_LOCKED, &pdev->flags)
4451                             && (test_bit(R5_UPTODATE, &pdev->flags) ||
4452                                 test_bit(R5_Discard, &pdev->flags))))) &&
4453            (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4454                             && !test_bit(R5_LOCKED, &qdev->flags)
4455                             && (test_bit(R5_UPTODATE, &qdev->flags) ||
4456                                 test_bit(R5_Discard, &qdev->flags))))))
4457                handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4458
4459        /* Now we might consider reading some blocks, either to check/generate
4460         * parity, or to satisfy requests
4461         * or to load a block that is being partially written.
4462         */
4463        if (s.to_read || s.non_overwrite
4464            || (conf->level == 6 && s.to_write && s.failed)
4465            || (s.syncing && (s.uptodate + s.compute < disks))
4466            || s.replacing
4467            || s.expanding)
4468                handle_stripe_fill(sh, &s, disks);
4469
4470        /* Now to consider new write requests and what else, if anything
4471         * should be read.  We do not handle new writes when:
4472         * 1/ A 'write' operation (copy+xor) is already in flight.
4473         * 2/ A 'check' operation is in flight, as it may clobber the parity
4474         *    block.
4475         */
4476        if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4477                handle_stripe_dirtying(conf, sh, &s, disks);
4478
4479        /* maybe we need to check and possibly fix the parity for this stripe
4480         * Any reads will already have been scheduled, so we just see if enough
4481         * data is available.  The parity check is held off while parity
4482         * dependent operations are in flight.
4483         */
4484        if (sh->check_state ||
4485            (s.syncing && s.locked == 0 &&
4486             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4487             !test_bit(STRIPE_INSYNC, &sh->state))) {
4488                if (conf->level == 6)
4489                        handle_parity_checks6(conf, sh, &s, disks);
4490                else
4491                        handle_parity_checks5(conf, sh, &s, disks);
4492        }
4493
4494        if ((s.replacing || s.syncing) && s.locked == 0
4495            && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4496            && !test_bit(STRIPE_REPLACED, &sh->state)) {
4497                /* Write out to replacement devices where possible */
4498                for (i = 0; i < conf->raid_disks; i++)
4499                        if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4500                                WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4501                                set_bit(R5_WantReplace, &sh->dev[i].flags);
4502                                set_bit(R5_LOCKED, &sh->dev[i].flags);
4503                                s.locked++;
4504                        }
4505                if (s.replacing)
4506                        set_bit(STRIPE_INSYNC, &sh->state);
4507                set_bit(STRIPE_REPLACED, &sh->state);
4508        }
4509        if ((s.syncing || s.replacing) && s.locked == 0 &&
4510            !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4511            test_bit(STRIPE_INSYNC, &sh->state)) {
4512                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4513                clear_bit(STRIPE_SYNCING, &sh->state);
4514                if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4515                        wake_up(&conf->wait_for_overlap);
4516        }
4517
4518        /* If the failed drives are just a ReadError, then we might need
4519         * to progress the repair/check process
4520         */
4521        if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4522                for (i = 0; i < s.failed; i++) {
4523                        struct r5dev *dev = &sh->dev[s.failed_num[i]];
4524                        if (test_bit(R5_ReadError, &dev->flags)
4525                            && !test_bit(R5_LOCKED, &dev->flags)
4526                            && test_bit(R5_UPTODATE, &dev->flags)
4527                                ) {
4528                                if (!test_bit(R5_ReWrite, &dev->flags)) {
4529                                        set_bit(R5_Wantwrite, &dev->flags);
4530                                        set_bit(R5_ReWrite, &dev->flags);
4531                                        set_bit(R5_LOCKED, &dev->flags);
4532                                        s.locked++;
4533                                } else {
4534                                        /* let's read it back */
4535                                        set_bit(R5_Wantread, &dev->flags);
4536                                        set_bit(R5_LOCKED, &dev->flags);
4537                                        s.locked++;
4538                                }
4539                        }
4540                }
4541
4542        /* Finish reconstruct operations initiated by the expansion process */
4543        if (sh->reconstruct_state == reconstruct_state_result) {
4544                struct stripe_head *sh_src
4545                        = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4546                if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4547                        /* sh cannot be written until sh_src has been read.
4548                         * so arrange for sh to be delayed a little
4549                         */
4550                        set_bit(STRIPE_DELAYED, &sh->state);
4551                        set_bit(STRIPE_HANDLE, &sh->state);
4552                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4553                                              &sh_src->state))
4554                                atomic_inc(&conf->preread_active_stripes);
4555                        raid5_release_stripe(sh_src);
4556                        goto finish;
4557                }
4558                if (sh_src)
4559                        raid5_release_stripe(sh_src);
4560
4561                sh->reconstruct_state = reconstruct_state_idle;
4562                clear_bit(STRIPE_EXPANDING, &sh->state);
4563                for (i = conf->raid_disks; i--; ) {
4564                        set_bit(R5_Wantwrite, &sh->dev[i].flags);
4565                        set_bit(R5_LOCKED, &sh->dev[i].flags);
4566                        s.locked++;
4567                }
4568        }
4569
4570        if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4571            !sh->reconstruct_state) {
4572                /* Need to write out all blocks after computing parity */
4573                sh->disks = conf->raid_disks;
4574                stripe_set_idx(sh->sector, conf, 0, sh);
4575                schedule_reconstruction(sh, &s, 1, 1);
4576        } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4577                clear_bit(STRIPE_EXPAND_READY, &sh->state);
4578                atomic_dec(&conf->reshape_stripes);
4579                wake_up(&conf->wait_for_overlap);
4580                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4581        }
4582
4583        if (s.expanding && s.locked == 0 &&
4584            !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4585                handle_stripe_expansion(conf, sh);
4586
4587finish:
4588        /* wait for this device to become unblocked */
4589        if (unlikely(s.blocked_rdev)) {
4590                if (conf->mddev->external)
4591                        md_wait_for_blocked_rdev(s.blocked_rdev,
4592                                                 conf->mddev);
4593                else
4594                        /* Internal metadata will immediately
4595                         * be written by raid5d, so we don't
4596                         * need to wait here.
4597                         */
4598                        rdev_dec_pending(s.blocked_rdev,
4599                                         conf->mddev);
4600        }
4601
4602        if (s.handle_bad_blocks)
4603                for (i = disks; i--; ) {
4604                        struct md_rdev *rdev;
4605                        struct r5dev *dev = &sh->dev[i];
4606                        if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4607                                /* We own a safe reference to the rdev */
4608                                rdev = conf->disks[i].rdev;
4609                                if (!rdev_set_badblocks(rdev, sh->sector,
4610                                                        STRIPE_SECTORS, 0))
4611                                        md_error(conf->mddev, rdev);
4612                                rdev_dec_pending(rdev, conf->mddev);
4613                        }
4614                        if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4615                                rdev = conf->disks[i].rdev;
4616                                rdev_clear_badblocks(rdev, sh->sector,
4617                                                     STRIPE_SECTORS, 0);
4618                                rdev_dec_pending(rdev, conf->mddev);
4619                        }
4620                        if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4621                                rdev = conf->disks[i].replacement;
4622                                if (!rdev)
4623                                        /* rdev have been moved down */
4624                                        rdev = conf->disks[i].rdev;
4625                                rdev_clear_badblocks(rdev, sh->sector,
4626                                                     STRIPE_SECTORS, 0);
4627                                rdev_dec_pending(rdev, conf->mddev);
4628                        }
4629                }
4630
4631        if (s.ops_request)
4632                raid_run_ops(sh, s.ops_request);
4633
4634        ops_run_io(sh, &s);
4635
4636        if (s.dec_preread_active) {
4637                /* We delay this until after ops_run_io so that if make_request
4638                 * is waiting on a flush, it won't continue until the writes
4639                 * have actually been submitted.
4640                 */
4641                atomic_dec(&conf->preread_active_stripes);
4642                if (atomic_read(&conf->preread_active_stripes) <
4643                    IO_THRESHOLD)
4644                        md_wakeup_thread(conf->mddev->thread);
4645        }
4646
4647        if (!bio_list_empty(&s.return_bi)) {
4648                if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags) &&
4649                                (s.failed <= conf->max_degraded ||
4650                                        conf->mddev->external == 0)) {
4651                        spin_lock_irq(&conf->device_lock);
4652                        bio_list_merge(&conf->return_bi, &s.return_bi);
4653                        spin_unlock_irq(&conf->device_lock);
4654                        md_wakeup_thread(conf->mddev->thread);
4655                } else
4656                        return_io(&s.return_bi);
4657        }
4658
4659        clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4660}
4661
4662static void raid5_activate_delayed(struct r5conf *conf)
4663{
4664        if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4665                while (!list_empty(&conf->delayed_list)) {
4666                        struct list_head *l = conf->delayed_list.next;
4667                        struct stripe_head *sh;
4668                        sh = list_entry(l, struct stripe_head, lru);
4669                        list_del_init(l);
4670                        clear_bit(STRIPE_DELAYED, &sh->state);
4671                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4672                                atomic_inc(&conf->preread_active_stripes);
4673                        list_add_tail(&sh->lru, &conf->hold_list);
4674                        raid5_wakeup_stripe_thread(sh);
4675                }
4676        }
4677}
4678
4679static void activate_bit_delay(struct r5conf *conf,
4680        struct list_head *temp_inactive_list)
4681{
4682        /* device_lock is held */
4683        struct list_head head;
4684        list_add(&head, &conf->bitmap_list);
4685        list_del_init(&conf->bitmap_list);
4686        while (!list_empty(&head)) {
4687                struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4688                int hash;
4689                list_del_init(&sh->lru);
4690                atomic_inc(&sh->count);
4691                hash = sh->hash_lock_index;
4692                __release_stripe(conf, sh, &temp_inactive_list[hash]);
4693        }
4694}
4695
4696static int raid5_congested(struct mddev *mddev, int bits)
4697{
4698        struct r5conf *conf = mddev->private;
4699
4700        /* No difference between reads and writes.  Just check
4701         * how busy the stripe_cache is
4702         */
4703
4704        if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4705                return 1;
4706        if (conf->quiesce)
4707                return 1;
4708        if (atomic_read(&conf->empty_inactive_list_nr))
4709                return 1;
4710
4711        return 0;
4712}
4713
4714static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4715{
4716        struct r5conf *conf = mddev->private;
4717        sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4718        unsigned int chunk_sectors;
4719        unsigned int bio_sectors = bio_sectors(bio);
4720
4721        chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4722        return  chunk_sectors >=
4723                ((sector & (chunk_sectors - 1)) + bio_sectors);
4724}
4725
4726/*
4727 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4728 *  later sampled by raid5d.
4729 */
4730static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4731{
4732        unsigned long flags;
4733
4734        spin_lock_irqsave(&conf->device_lock, flags);
4735
4736        bi->bi_next = conf->retry_read_aligned_list;
4737        conf->retry_read_aligned_list = bi;
4738
4739        spin_unlock_irqrestore(&conf->device_lock, flags);
4740        md_wakeup_thread(conf->mddev->thread);
4741}
4742
4743static struct bio *remove_bio_from_retry(struct r5conf *conf)
4744{
4745        struct bio *bi;
4746
4747        bi = conf->retry_read_aligned;
4748        if (bi) {
4749                conf->retry_read_aligned = NULL;
4750                return bi;
4751        }
4752        bi = conf->retry_read_aligned_list;
4753        if(bi) {
4754                conf->retry_read_aligned_list = bi->bi_next;
4755                bi->bi_next = NULL;
4756                /*
4757                 * this sets the active strip count to 1 and the processed
4758                 * strip count to zero (upper 8 bits)
4759                 */
4760                raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4761        }
4762
4763        return bi;
4764}
4765
4766/*
4767 *  The "raid5_align_endio" should check if the read succeeded and if it
4768 *  did, call bio_endio on the original bio (having bio_put the new bio
4769 *  first).
4770 *  If the read failed..
4771 */
4772static void raid5_align_endio(struct bio *bi)
4773{
4774        struct bio* raid_bi  = bi->bi_private;
4775        struct mddev *mddev;
4776        struct r5conf *conf;
4777        struct md_rdev *rdev;
4778        int error = bi->bi_error;
4779
4780        bio_put(bi);
4781
4782        rdev = (void*)raid_bi->bi_next;
4783        raid_bi->bi_next = NULL;
4784        mddev = rdev->mddev;
4785        conf = mddev->private;
4786
4787        rdev_dec_pending(rdev, conf->mddev);
4788
4789        if (!error) {
4790                trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4791                                         raid_bi, 0);
4792                bio_endio(raid_bi);
4793                if (atomic_dec_and_test(&conf->active_aligned_reads))
4794                        wake_up(&conf->wait_for_quiescent);
4795                return;
4796        }
4797
4798        pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4799
4800        add_bio_to_retry(raid_bi, conf);
4801}
4802
4803static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4804{
4805        struct r5conf *conf = mddev->private;
4806        int dd_idx;
4807        struct bio* align_bi;
4808        struct md_rdev *rdev;
4809        sector_t end_sector;
4810
4811        if (!in_chunk_boundary(mddev, raid_bio)) {
4812                pr_debug("%s: non aligned\n", __func__);
4813                return 0;
4814        }
4815        /*
4816         * use bio_clone_mddev to make a copy of the bio
4817         */
4818        align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4819        if (!align_bi)
4820                return 0;
4821        /*
4822         *   set bi_end_io to a new function, and set bi_private to the
4823         *     original bio.
4824         */
4825        align_bi->bi_end_io  = raid5_align_endio;
4826        align_bi->bi_private = raid_bio;
4827        /*
4828         *      compute position
4829         */
4830        align_bi->bi_iter.bi_sector =
4831                raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4832                                     0, &dd_idx, NULL);
4833
4834        end_sector = bio_end_sector(align_bi);
4835        rcu_read_lock();
4836        rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4837        if (!rdev || test_bit(Faulty, &rdev->flags) ||
4838            rdev->recovery_offset < end_sector) {
4839                rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4840                if (rdev &&
4841                    (test_bit(Faulty, &rdev->flags) ||
4842                    !(test_bit(In_sync, &rdev->flags) ||
4843                      rdev->recovery_offset >= end_sector)))
4844                        rdev = NULL;
4845        }
4846        if (rdev) {
4847                sector_t first_bad;
4848                int bad_sectors;
4849
4850                atomic_inc(&rdev->nr_pending);
4851                rcu_read_unlock();
4852                raid_bio->bi_next = (void*)rdev;
4853                align_bi->bi_bdev =  rdev->bdev;
4854                bio_clear_flag(align_bi, BIO_SEG_VALID);
4855
4856                if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4857                                bio_sectors(align_bi),
4858                                &first_bad, &bad_sectors)) {
4859                        bio_put(align_bi);
4860                        rdev_dec_pending(rdev, mddev);
4861                        return 0;
4862                }
4863
4864                /* No reshape active, so we can trust rdev->data_offset */
4865                align_bi->bi_iter.bi_sector += rdev->data_offset;
4866
4867                spin_lock_irq(&conf->device_lock);
4868                wait_event_lock_irq(conf->wait_for_quiescent,
4869                                    conf->quiesce == 0,
4870                                    conf->device_lock);
4871                atomic_inc(&conf->active_aligned_reads);
4872                spin_unlock_irq(&conf->device_lock);
4873
4874                if (mddev->gendisk)
4875                        trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4876                                              align_bi, disk_devt(mddev->gendisk),
4877                                              raid_bio->bi_iter.bi_sector);
4878                generic_make_request(align_bi);
4879                return 1;
4880        } else {
4881                rcu_read_unlock();
4882                bio_put(align_bi);
4883                return 0;
4884        }
4885}
4886
4887static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4888{
4889        struct bio *split;
4890
4891        do {
4892                sector_t sector = raid_bio->bi_iter.bi_sector;
4893                unsigned chunk_sects = mddev->chunk_sectors;
4894                unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4895
4896                if (sectors < bio_sectors(raid_bio)) {
4897                        split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4898                        bio_chain(split, raid_bio);
4899                } else
4900                        split = raid_bio;
4901
4902                if (!raid5_read_one_chunk(mddev, split)) {
4903                        if (split != raid_bio)
4904                                generic_make_request(raid_bio);
4905                        return split;
4906                }
4907        } while (split != raid_bio);
4908
4909        return NULL;
4910}
4911
4912/* __get_priority_stripe - get the next stripe to process
4913 *
4914 * Full stripe writes are allowed to pass preread active stripes up until
4915 * the bypass_threshold is exceeded.  In general the bypass_count
4916 * increments when the handle_list is handled before the hold_list; however, it
4917 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4918 * stripe with in flight i/o.  The bypass_count will be reset when the
4919 * head of the hold_list has changed, i.e. the head was promoted to the
4920 * handle_list.
4921 */
4922static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4923{
4924        struct stripe_head *sh = NULL, *tmp;
4925        struct list_head *handle_list = NULL;
4926        struct r5worker_group *wg = NULL;
4927
4928        if (conf->worker_cnt_per_group == 0) {
4929                handle_list = &conf->handle_list;
4930        } else if (group != ANY_GROUP) {
4931                handle_list = &conf->worker_groups[group].handle_list;
4932                wg = &conf->worker_groups[group];
4933        } else {
4934                int i;
4935                for (i = 0; i < conf->group_cnt; i++) {
4936                        handle_list = &conf->worker_groups[i].handle_list;
4937                        wg = &conf->worker_groups[i];
4938                        if (!list_empty(handle_list))
4939                                break;
4940                }
4941        }
4942
4943        pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4944                  __func__,
4945                  list_empty(handle_list) ? "empty" : "busy",
4946                  list_empty(&conf->hold_list) ? "empty" : "busy",
4947                  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4948
4949        if (!list_empty(handle_list)) {
4950                sh = list_entry(handle_list->next, typeof(*sh), lru);
4951
4952                if (list_empty(&conf->hold_list))
4953                        conf->bypass_count = 0;
4954                else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4955                        if (conf->hold_list.next == conf->last_hold)
4956                                conf->bypass_count++;
4957                        else {
4958                                conf->last_hold = conf->hold_list.next;
4959                                conf->bypass_count -= conf->bypass_threshold;
4960                                if (conf->bypass_count < 0)
4961                                        conf->bypass_count = 0;
4962                        }
4963                }
4964        } else if (!list_empty(&conf->hold_list) &&
4965                   ((conf->bypass_threshold &&
4966                     conf->bypass_count > conf->bypass_threshold) ||
4967                    atomic_read(&conf->pending_full_writes) == 0)) {
4968
4969                list_for_each_entry(tmp, &conf->hold_list,  lru) {
4970                        if (conf->worker_cnt_per_group == 0 ||
4971                            group == ANY_GROUP ||
4972                            !cpu_online(tmp->cpu) ||
4973                            cpu_to_group(tmp->cpu) == group) {
4974                                sh = tmp;
4975                                break;
4976                        }
4977                }
4978
4979                if (sh) {
4980                        conf->bypass_count -= conf->bypass_threshold;
4981                        if (conf->bypass_count < 0)
4982                                conf->bypass_count = 0;
4983                }
4984                wg = NULL;
4985        }
4986
4987        if (!sh)
4988                return NULL;
4989
4990        if (wg) {
4991                wg->stripes_cnt--;
4992                sh->group = NULL;
4993        }
4994        list_del_init(&sh->lru);
4995        BUG_ON(atomic_inc_return(&sh->count) != 1);
4996        return sh;
4997}
4998
4999struct raid5_plug_cb {
5000        struct blk_plug_cb      cb;
5001        struct list_head        list;
5002        struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5003};
5004
5005static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5006{
5007        struct raid5_plug_cb *cb = container_of(
5008                blk_cb, struct raid5_plug_cb, cb);
5009        struct stripe_head *sh;
5010        struct mddev *mddev = cb->cb.data;
5011        struct r5conf *conf = mddev->private;
5012        int cnt = 0;
5013        int hash;
5014
5015        if (cb->list.next && !list_empty(&cb->list)) {
5016                spin_lock_irq(&conf->device_lock);
5017                while (!list_empty(&cb->list)) {
5018                        sh = list_first_entry(&cb->list, struct stripe_head, lru);
5019                        list_del_init(&sh->lru);
5020                        /*
5021                         * avoid race release_stripe_plug() sees
5022                         * STRIPE_ON_UNPLUG_LIST clear but the stripe
5023                         * is still in our list
5024                         */
5025                        smp_mb__before_atomic();
5026                        clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5027                        /*
5028                         * STRIPE_ON_RELEASE_LIST could be set here. In that
5029                         * case, the count is always > 1 here
5030                         */
5031                        hash = sh->hash_lock_index;
5032                        __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5033                        cnt++;
5034                }
5035                spin_unlock_irq(&conf->device_lock);
5036        }
5037        release_inactive_stripe_list(conf, cb->temp_inactive_list,
5038                                     NR_STRIPE_HASH_LOCKS);
5039        if (mddev->queue)
5040                trace_block_unplug(mddev->queue, cnt, !from_schedule);
5041        kfree(cb);
5042}
5043
5044static void release_stripe_plug(struct mddev *mddev,
5045                                struct stripe_head *sh)
5046{
5047        struct blk_plug_cb *blk_cb = blk_check_plugged(
5048                raid5_unplug, mddev,
5049                sizeof(struct raid5_plug_cb));
5050        struct raid5_plug_cb *cb;
5051
5052        if (!blk_cb) {
5053                raid5_release_stripe(sh);
5054                return;
5055        }
5056
5057        cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5058
5059        if (cb->list.next == NULL) {
5060                int i;
5061                INIT_LIST_HEAD(&cb->list);
5062                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5063                        INIT_LIST_HEAD(cb->temp_inactive_list + i);
5064        }
5065
5066        if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5067                list_add_tail(&sh->lru, &cb->list);
5068        else
5069                raid5_release_stripe(sh);
5070}
5071
5072static void make_discard_request(struct mddev *mddev, struct bio *bi)
5073{
5074        struct r5conf *conf = mddev->private;
5075        sector_t logical_sector, last_sector;
5076        struct stripe_head *sh;
5077        int remaining;
5078        int stripe_sectors;
5079
5080        if (mddev->reshape_position != MaxSector)
5081                /* Skip discard while reshape is happening */
5082                return;
5083
5084        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5085        last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5086
5087        bi->bi_next = NULL;
5088        bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5089
5090        stripe_sectors = conf->chunk_sectors *
5091                (conf->raid_disks - conf->max_degraded);
5092        logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5093                                               stripe_sectors);
5094        sector_div(last_sector, stripe_sectors);
5095
5096        logical_sector *= conf->chunk_sectors;
5097        last_sector *= conf->chunk_sectors;
5098
5099        for (; logical_sector < last_sector;
5100             logical_sector += STRIPE_SECTORS) {
5101                DEFINE_WAIT(w);
5102                int d;
5103        again:
5104                sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5105                prepare_to_wait(&conf->wait_for_overlap, &w,
5106                                TASK_UNINTERRUPTIBLE);
5107                set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5108                if (test_bit(STRIPE_SYNCING, &sh->state)) {
5109                        raid5_release_stripe(sh);
5110                        schedule();
5111                        goto again;
5112                }
5113                clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5114                spin_lock_irq(&sh->stripe_lock);
5115                for (d = 0; d < conf->raid_disks; d++) {
5116                        if (d == sh->pd_idx || d == sh->qd_idx)
5117                                continue;
5118                        if (sh->dev[d].towrite || sh->dev[d].toread) {
5119                                set_bit(R5_Overlap, &sh->dev[d].flags);
5120                                spin_unlock_irq(&sh->stripe_lock);
5121                                raid5_release_stripe(sh);
5122                                schedule();
5123                                goto again;
5124                        }
5125                }
5126                set_bit(STRIPE_DISCARD, &sh->state);
5127                finish_wait(&conf->wait_for_overlap, &w);
5128                sh->overwrite_disks = 0;
5129                for (d = 0; d < conf->raid_disks; d++) {
5130                        if (d == sh->pd_idx || d == sh->qd_idx)
5131                                continue;
5132                        sh->dev[d].towrite = bi;
5133                        set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5134                        raid5_inc_bi_active_stripes(bi);
5135                        sh->overwrite_disks++;
5136                }
5137                spin_unlock_irq(&sh->stripe_lock);
5138                if (conf->mddev->bitmap) {
5139                        for (d = 0;
5140                             d < conf->raid_disks - conf->max_degraded;
5141                             d++)
5142                                bitmap_startwrite(mddev->bitmap,
5143                                                  sh->sector,
5144                                                  STRIPE_SECTORS,
5145                                                  0);
5146                        sh->bm_seq = conf->seq_flush + 1;
5147                        set_bit(STRIPE_BIT_DELAY, &sh->state);
5148                }
5149
5150                set_bit(STRIPE_HANDLE, &sh->state);
5151                clear_bit(STRIPE_DELAYED, &sh->state);
5152                if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5153                        atomic_inc(&conf->preread_active_stripes);
5154                release_stripe_plug(mddev, sh);
5155        }
5156
5157        remaining = raid5_dec_bi_active_stripes(bi);
5158        if (remaining == 0) {
5159                md_write_end(mddev);
5160                bio_endio(bi);
5161        }
5162}
5163
5164static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5165{
5166        struct r5conf *conf = mddev->private;
5167        int dd_idx;
5168        sector_t new_sector;
5169        sector_t logical_sector, last_sector;
5170        struct stripe_head *sh;
5171        const int rw = bio_data_dir(bi);
5172        int remaining;
5173        DEFINE_WAIT(w);
5174        bool do_prepare;
5175
5176        if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5177                int ret = r5l_handle_flush_request(conf->log, bi);
5178
5179                if (ret == 0)
5180                        return;
5181                if (ret == -ENODEV) {
5182                        md_flush_request(mddev, bi);
5183                        return;
5184                }
5185                /* ret == -EAGAIN, fallback */
5186        }
5187
5188        md_write_start(mddev, bi);
5189
5190        /*
5191         * If array is degraded, better not do chunk aligned read because
5192         * later we might have to read it again in order to reconstruct
5193         * data on failed drives.
5194         */
5195        if (rw == READ && mddev->degraded == 0 &&
5196            mddev->reshape_position == MaxSector) {
5197                bi = chunk_aligned_read(mddev, bi);
5198                if (!bi)
5199                        return;
5200        }
5201
5202        if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5203                make_discard_request(mddev, bi);
5204                return;
5205        }
5206
5207        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5208        last_sector = bio_end_sector(bi);
5209        bi->bi_next = NULL;
5210        bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5211
5212        prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5213        for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5214                int previous;
5215                int seq;
5216
5217                do_prepare = false;
5218        retry:
5219                seq = read_seqcount_begin(&conf->gen_lock);
5220                previous = 0;
5221                if (do_prepare)
5222                        prepare_to_wait(&conf->wait_for_overlap, &w,
5223                                TASK_UNINTERRUPTIBLE);
5224                if (unlikely(conf->reshape_progress != MaxSector)) {
5225                        /* spinlock is needed as reshape_progress may be
5226                         * 64bit on a 32bit platform, and so it might be
5227                         * possible to see a half-updated value
5228                         * Of course reshape_progress could change after
5229                         * the lock is dropped, so once we get a reference
5230                         * to the stripe that we think it is, we will have
5231                         * to check again.
5232                         */
5233                        spin_lock_irq(&conf->device_lock);
5234                        if (mddev->reshape_backwards
5235                            ? logical_sector < conf->reshape_progress
5236                            : logical_sector >= conf->reshape_progress) {
5237                                previous = 1;
5238                        } else {
5239                                if (mddev->reshape_backwards
5240                                    ? logical_sector < conf->reshape_safe
5241                                    : logical_sector >= conf->reshape_safe) {
5242                                        spin_unlock_irq(&conf->device_lock);
5243                                        schedule();
5244                                        do_prepare = true;
5245                                        goto retry;
5246                                }
5247                        }
5248                        spin_unlock_irq(&conf->device_lock);
5249                }
5250
5251                new_sector = raid5_compute_sector(conf, logical_sector,
5252                                                  previous,
5253                                                  &dd_idx, NULL);
5254                pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5255                        (unsigned long long)new_sector,
5256                        (unsigned long long)logical_sector);
5257
5258                sh = raid5_get_active_stripe(conf, new_sector, previous,
5259                                       (bi->bi_opf & REQ_RAHEAD), 0);
5260                if (sh) {
5261                        if (unlikely(previous)) {
5262                                /* expansion might have moved on while waiting for a
5263                                 * stripe, so we must do the range check again.
5264                                 * Expansion could still move past after this
5265                                 * test, but as we are holding a reference to
5266                                 * 'sh', we know that if that happens,
5267                                 *  STRIPE_EXPANDING will get set and the expansion
5268                                 * won't proceed until we finish with the stripe.
5269                                 */
5270                                int must_retry = 0;
5271                                spin_lock_irq(&conf->device_lock);
5272                                if (mddev->reshape_backwards
5273                                    ? logical_sector >= conf->reshape_progress
5274                                    : logical_sector < conf->reshape_progress)
5275                                        /* mismatch, need to try again */
5276                                        must_retry = 1;
5277                                spin_unlock_irq(&conf->device_lock);
5278                                if (must_retry) {
5279                                        raid5_release_stripe(sh);
5280                                        schedule();
5281                                        do_prepare = true;
5282                                        goto retry;
5283                                }
5284                        }
5285                        if (read_seqcount_retry(&conf->gen_lock, seq)) {
5286                                /* Might have got the wrong stripe_head
5287                                 * by accident
5288                                 */
5289                                raid5_release_stripe(sh);
5290                                goto retry;
5291                        }
5292
5293                        if (rw == WRITE &&
5294                            logical_sector >= mddev->suspend_lo &&
5295                            logical_sector < mddev->suspend_hi) {
5296                                raid5_release_stripe(sh);
5297                                /* As the suspend_* range is controlled by
5298                                 * userspace, we want an interruptible
5299                                 * wait.
5300                                 */
5301                                flush_signals(current);
5302                                prepare_to_wait(&conf->wait_for_overlap,
5303                                                &w, TASK_INTERRUPTIBLE);
5304                                if (logical_sector >= mddev->suspend_lo &&
5305                                    logical_sector < mddev->suspend_hi) {
5306                                        schedule();
5307                                        do_prepare = true;
5308                                }
5309                                goto retry;
5310                        }
5311
5312                        if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5313                            !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5314                                /* Stripe is busy expanding or
5315                                 * add failed due to overlap.  Flush everything
5316                                 * and wait a while
5317                                 */
5318                                md_wakeup_thread(mddev->thread);
5319                                raid5_release_stripe(sh);
5320                                schedule();
5321                                do_prepare = true;
5322                                goto retry;
5323                        }
5324                        set_bit(STRIPE_HANDLE, &sh->state);
5325                        clear_bit(STRIPE_DELAYED, &sh->state);
5326                        if ((!sh->batch_head || sh == sh->batch_head) &&
5327                            (bi->bi_opf & REQ_SYNC) &&
5328                            !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5329                                atomic_inc(&conf->preread_active_stripes);
5330                        release_stripe_plug(mddev, sh);
5331                } else {
5332                        /* cannot get stripe for read-ahead, just give-up */
5333                        bi->bi_error = -EIO;
5334                        break;
5335                }
5336        }
5337        finish_wait(&conf->wait_for_overlap, &w);
5338
5339        remaining = raid5_dec_bi_active_stripes(bi);
5340        if (remaining == 0) {
5341
5342                if ( rw == WRITE )
5343                        md_write_end(mddev);
5344
5345                trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5346                                         bi, 0);
5347                bio_endio(bi);
5348        }
5349}
5350
5351static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5352
5353static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5354{
5355        /* reshaping is quite different to recovery/resync so it is
5356         * handled quite separately ... here.
5357         *
5358         * On each call to sync_request, we gather one chunk worth of
5359         * destination stripes and flag them as expanding.
5360         * Then we find all the source stripes and request reads.
5361         * As the reads complete, handle_stripe will copy the data
5362         * into the destination stripe and release that stripe.
5363         */
5364        struct r5conf *conf = mddev->private;
5365        struct stripe_head *sh;
5366        sector_t first_sector, last_sector;
5367        int raid_disks = conf->previous_raid_disks;
5368        int data_disks = raid_disks - conf->max_degraded;
5369        int new_data_disks = conf->raid_disks - conf->max_degraded;
5370        int i;
5371        int dd_idx;
5372        sector_t writepos, readpos, safepos;
5373        sector_t stripe_addr;
5374        int reshape_sectors;
5375        struct list_head stripes;
5376        sector_t retn;
5377
5378        if (sector_nr == 0) {
5379                /* If restarting in the middle, skip the initial sectors */
5380                if (mddev->reshape_backwards &&
5381                    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5382                        sector_nr = raid5_size(mddev, 0, 0)
5383                                - conf->reshape_progress;
5384                } else if (mddev->reshape_backwards &&
5385                           conf->reshape_progress == MaxSector) {
5386                        /* shouldn't happen, but just in case, finish up.*/
5387                        sector_nr = MaxSector;
5388                } else if (!mddev->reshape_backwards &&
5389                           conf->reshape_progress > 0)
5390                        sector_nr = conf->reshape_progress;
5391                sector_div(sector_nr, new_data_disks);
5392                if (sector_nr) {
5393                        mddev->curr_resync_completed = sector_nr;
5394                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5395                        *skipped = 1;
5396                        retn = sector_nr;
5397                        goto finish;
5398                }
5399        }
5400
5401        /* We need to process a full chunk at a time.
5402         * If old and new chunk sizes differ, we need to process the
5403         * largest of these
5404         */
5405
5406        reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5407
5408        /* We update the metadata at least every 10 seconds, or when
5409         * the data about to be copied would over-write the source of
5410         * the data at the front of the range.  i.e. one new_stripe
5411         * along from reshape_progress new_maps to after where
5412         * reshape_safe old_maps to
5413         */
5414        writepos = conf->reshape_progress;
5415        sector_div(writepos, new_data_disks);
5416        readpos = conf->reshape_progress;
5417        sector_div(readpos, data_disks);
5418        safepos = conf->reshape_safe;
5419        sector_div(safepos, data_disks);
5420        if (mddev->reshape_backwards) {
5421                BUG_ON(writepos < reshape_sectors);
5422                writepos -= reshape_sectors;
5423                readpos += reshape_sectors;
5424                safepos += reshape_sectors;
5425        } else {
5426                writepos += reshape_sectors;
5427                /* readpos and safepos are worst-case calculations.
5428                 * A negative number is overly pessimistic, and causes
5429                 * obvious problems for unsigned storage.  So clip to 0.
5430                 */
5431                readpos -= min_t(sector_t, reshape_sectors, readpos);
5432                safepos -= min_t(sector_t, reshape_sectors, safepos);
5433        }
5434
5435        /* Having calculated the 'writepos' possibly use it
5436         * to set 'stripe_addr' which is where we will write to.
5437         */
5438        if (mddev->reshape_backwards) {
5439                BUG_ON(conf->reshape_progress == 0);
5440                stripe_addr = writepos;
5441                BUG_ON((mddev->dev_sectors &
5442                        ~((sector_t)reshape_sectors - 1))
5443                       - reshape_sectors - stripe_addr
5444                       != sector_nr);
5445        } else {
5446                BUG_ON(writepos != sector_nr + reshape_sectors);
5447                stripe_addr = sector_nr;
5448        }
5449
5450        /* 'writepos' is the most advanced device address we might write.
5451         * 'readpos' is the least advanced device address we might read.
5452         * 'safepos' is the least address recorded in the metadata as having
5453         *     been reshaped.
5454         * If there is a min_offset_diff, these are adjusted either by
5455         * increasing the safepos/readpos if diff is negative, or
5456         * increasing writepos if diff is positive.
5457         * If 'readpos' is then behind 'writepos', there is no way that we can
5458         * ensure safety in the face of a crash - that must be done by userspace
5459         * making a backup of the data.  So in that case there is no particular
5460         * rush to update metadata.
5461         * Otherwise if 'safepos' is behind 'writepos', then we really need to
5462         * update the metadata to advance 'safepos' to match 'readpos' so that
5463         * we can be safe in the event of a crash.
5464         * So we insist on updating metadata if safepos is behind writepos and
5465         * readpos is beyond writepos.
5466         * In any case, update the metadata every 10 seconds.
5467         * Maybe that number should be configurable, but I'm not sure it is
5468         * worth it.... maybe it could be a multiple of safemode_delay???
5469         */
5470        if (conf->min_offset_diff < 0) {
5471                safepos += -conf->min_offset_diff;
5472                readpos += -conf->min_offset_diff;
5473        } else
5474                writepos += conf->min_offset_diff;
5475
5476        if ((mddev->reshape_backwards
5477             ? (safepos > writepos && readpos < writepos)
5478             : (safepos < writepos && readpos > writepos)) ||
5479            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5480                /* Cannot proceed until we've updated the superblock... */
5481                wait_event(conf->wait_for_overlap,
5482                           atomic_read(&conf->reshape_stripes)==0
5483                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5484                if (atomic_read(&conf->reshape_stripes) != 0)
5485                        return 0;
5486                mddev->reshape_position = conf->reshape_progress;
5487                mddev->curr_resync_completed = sector_nr;
5488                conf->reshape_checkpoint = jiffies;
5489                set_bit(MD_CHANGE_DEVS, &mddev->flags);
5490                md_wakeup_thread(mddev->thread);
5491                wait_event(mddev->sb_wait, mddev->flags == 0 ||
5492                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5493                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5494                        return 0;
5495                spin_lock_irq(&conf->device_lock);
5496                conf->reshape_safe = mddev->reshape_position;
5497                spin_unlock_irq(&conf->device_lock);
5498                wake_up(&conf->wait_for_overlap);
5499                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5500        }
5501
5502        INIT_LIST_HEAD(&stripes);
5503        for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5504                int j;
5505                int skipped_disk = 0;
5506                sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5507                set_bit(STRIPE_EXPANDING, &sh->state);
5508                atomic_inc(&conf->reshape_stripes);
5509                /* If any of this stripe is beyond the end of the old
5510                 * array, then we need to zero those blocks
5511                 */
5512                for (j=sh->disks; j--;) {
5513                        sector_t s;
5514                        if (j == sh->pd_idx)
5515                                continue;
5516                        if (conf->level == 6 &&
5517                            j == sh->qd_idx)
5518                                continue;
5519                        s = raid5_compute_blocknr(sh, j, 0);
5520                        if (s < raid5_size(mddev, 0, 0)) {
5521                                skipped_disk = 1;
5522                                continue;
5523                        }
5524                        memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5525                        set_bit(R5_Expanded, &sh->dev[j].flags);
5526                        set_bit(R5_UPTODATE, &sh->dev[j].flags);
5527                }
5528                if (!skipped_disk) {
5529                        set_bit(STRIPE_EXPAND_READY, &sh->state);
5530                        set_bit(STRIPE_HANDLE, &sh->state);
5531                }
5532                list_add(&sh->lru, &stripes);
5533        }
5534        spin_lock_irq(&conf->device_lock);
5535        if (mddev->reshape_backwards)
5536                conf->reshape_progress -= reshape_sectors * new_data_disks;
5537        else
5538                conf->reshape_progress += reshape_sectors * new_data_disks;
5539        spin_unlock_irq(&conf->device_lock);
5540        /* Ok, those stripe are ready. We can start scheduling
5541         * reads on the source stripes.
5542         * The source stripes are determined by mapping the first and last
5543         * block on the destination stripes.
5544         */
5545        first_sector =
5546                raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5547                                     1, &dd_idx, NULL);
5548        last_sector =
5549                raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5550                                            * new_data_disks - 1),
5551                                     1, &dd_idx, NULL);
5552        if (last_sector >= mddev->dev_sectors)
5553                last_sector = mddev->dev_sectors - 1;
5554        while (first_sector <= last_sector) {
5555                sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5556                set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5557                set_bit(STRIPE_HANDLE, &sh->state);
5558                raid5_release_stripe(sh);
5559                first_sector += STRIPE_SECTORS;
5560        }
5561        /* Now that the sources are clearly marked, we can release
5562         * the destination stripes
5563         */
5564        while (!list_empty(&stripes)) {
5565                sh = list_entry(stripes.next, struct stripe_head, lru);
5566                list_del_init(&sh->lru);
5567                raid5_release_stripe(sh);
5568        }
5569        /* If this takes us to the resync_max point where we have to pause,
5570         * then we need to write out the superblock.
5571         */
5572        sector_nr += reshape_sectors;
5573        retn = reshape_sectors;
5574finish:
5575        if (mddev->curr_resync_completed > mddev->resync_max ||
5576            (sector_nr - mddev->curr_resync_completed) * 2
5577            >= mddev->resync_max - mddev->curr_resync_completed) {
5578                /* Cannot proceed until we've updated the superblock... */
5579                wait_event(conf->wait_for_overlap,
5580                           atomic_read(&conf->reshape_stripes) == 0
5581                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5582                if (atomic_read(&conf->reshape_stripes) != 0)
5583                        goto ret;
5584                mddev->reshape_position = conf->reshape_progress;
5585                mddev->curr_resync_completed = sector_nr;
5586                conf->reshape_checkpoint = jiffies;
5587                set_bit(MD_CHANGE_DEVS, &mddev->flags);
5588                md_wakeup_thread(mddev->thread);
5589                wait_event(mddev->sb_wait,
5590                           !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5591                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5592                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5593                        goto ret;
5594                spin_lock_irq(&conf->device_lock);
5595                conf->reshape_safe = mddev->reshape_position;
5596                spin_unlock_irq(&conf->device_lock);
5597                wake_up(&conf->wait_for_overlap);
5598                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5599        }
5600ret:
5601        return retn;
5602}
5603
5604static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5605                                          int *skipped)
5606{
5607        struct r5conf *conf = mddev->private;
5608        struct stripe_head *sh;
5609        sector_t max_sector = mddev->dev_sectors;
5610        sector_t sync_blocks;
5611        int still_degraded = 0;
5612        int i;
5613
5614        if (sector_nr >= max_sector) {
5615                /* just being told to finish up .. nothing much to do */
5616
5617                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5618                        end_reshape(conf);
5619                        return 0;
5620                }
5621
5622                if (mddev->curr_resync < max_sector) /* aborted */
5623                        bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5624                                        &sync_blocks, 1);
5625                else /* completed sync */
5626                        conf->fullsync = 0;
5627                bitmap_close_sync(mddev->bitmap);
5628
5629                return 0;
5630        }
5631
5632        /* Allow raid5_quiesce to complete */
5633        wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5634
5635        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5636                return reshape_request(mddev, sector_nr, skipped);
5637
5638        /* No need to check resync_max as we never do more than one
5639         * stripe, and as resync_max will always be on a chunk boundary,
5640         * if the check in md_do_sync didn't fire, there is no chance
5641         * of overstepping resync_max here
5642         */
5643
5644        /* if there is too many failed drives and we are trying
5645         * to resync, then assert that we are finished, because there is
5646         * nothing we can do.
5647         */
5648        if (mddev->degraded >= conf->max_degraded &&
5649            test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5650                sector_t rv = mddev->dev_sectors - sector_nr;
5651                *skipped = 1;
5652                return rv;
5653        }
5654        if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5655            !conf->fullsync &&
5656            !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5657            sync_blocks >= STRIPE_SECTORS) {
5658                /* we can skip this block, and probably more */
5659                sync_blocks /= STRIPE_SECTORS;
5660                *skipped = 1;
5661                return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5662        }
5663
5664        bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5665
5666        sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5667        if (sh == NULL) {
5668                sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5669                /* make sure we don't swamp the stripe cache if someone else
5670                 * is trying to get access
5671                 */
5672                schedule_timeout_uninterruptible(1);
5673        }
5674        /* Need to check if array will still be degraded after recovery/resync
5675         * Note in case of > 1 drive failures it's possible we're rebuilding
5676         * one drive while leaving another faulty drive in array.
5677         */
5678        rcu_read_lock();
5679        for (i = 0; i < conf->raid_disks; i++) {
5680                struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5681
5682                if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5683                        still_degraded = 1;
5684        }
5685        rcu_read_unlock();
5686
5687        bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5688
5689        set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5690        set_bit(STRIPE_HANDLE, &sh->state);
5691
5692        raid5_release_stripe(sh);
5693
5694        return STRIPE_SECTORS;
5695}
5696
5697static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5698{
5699        /* We may not be able to submit a whole bio at once as there
5700         * may not be enough stripe_heads available.
5701         * We cannot pre-allocate enough stripe_heads as we may need
5702         * more than exist in the cache (if we allow ever large chunks).
5703         * So we do one stripe head at a time and record in
5704         * ->bi_hw_segments how many have been done.
5705         *
5706         * We *know* that this entire raid_bio is in one chunk, so
5707         * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5708         */
5709        struct stripe_head *sh;
5710        int dd_idx;
5711        sector_t sector, logical_sector, last_sector;
5712        int scnt = 0;
5713        int remaining;
5714        int handled = 0;
5715
5716        logical_sector = raid_bio->bi_iter.bi_sector &
5717                ~((sector_t)STRIPE_SECTORS-1);
5718        sector = raid5_compute_sector(conf, logical_sector,
5719                                      0, &dd_idx, NULL);
5720        last_sector = bio_end_sector(raid_bio);
5721
5722        for (; logical_sector < last_sector;
5723             logical_sector += STRIPE_SECTORS,
5724                     sector += STRIPE_SECTORS,
5725                     scnt++) {
5726
5727                if (scnt < raid5_bi_processed_stripes(raid_bio))
5728                        /* already done this stripe */
5729                        continue;
5730
5731                sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5732
5733                if (!sh) {
5734                        /* failed to get a stripe - must wait */
5735                        raid5_set_bi_processed_stripes(raid_bio, scnt);
5736                        conf->retry_read_aligned = raid_bio;
5737                        return handled;
5738                }
5739
5740                if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5741                        raid5_release_stripe(sh);
5742                        raid5_set_bi_processed_stripes(raid_bio, scnt);
5743                        conf->retry_read_aligned = raid_bio;
5744                        return handled;
5745                }
5746
5747                set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5748                handle_stripe(sh);
5749                raid5_release_stripe(sh);
5750                handled++;
5751        }
5752        remaining = raid5_dec_bi_active_stripes(raid_bio);
5753        if (remaining == 0) {
5754                trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5755                                         raid_bio, 0);
5756                bio_endio(raid_bio);
5757        }
5758        if (atomic_dec_and_test(&conf->active_aligned_reads))
5759                wake_up(&conf->wait_for_quiescent);
5760        return handled;
5761}
5762
5763static int handle_active_stripes(struct r5conf *conf, int group,
5764                                 struct r5worker *worker,
5765                                 struct list_head *temp_inactive_list)
5766{
5767        struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5768        int i, batch_size = 0, hash;
5769        bool release_inactive = false;
5770
5771        while (batch_size < MAX_STRIPE_BATCH &&
5772                        (sh = __get_priority_stripe(conf, group)) != NULL)
5773                batch[batch_size++] = sh;
5774
5775        if (batch_size == 0) {
5776                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5777                        if (!list_empty(temp_inactive_list + i))
5778                                break;
5779                if (i == NR_STRIPE_HASH_LOCKS) {
5780                        spin_unlock_irq(&conf->device_lock);
5781                        r5l_flush_stripe_to_raid(conf->log);
5782                        spin_lock_irq(&conf->device_lock);
5783                        return batch_size;
5784                }
5785                release_inactive = true;
5786        }
5787        spin_unlock_irq(&conf->device_lock);
5788
5789        release_inactive_stripe_list(conf, temp_inactive_list,
5790                                     NR_STRIPE_HASH_LOCKS);
5791
5792        r5l_flush_stripe_to_raid(conf->log);
5793        if (release_inactive) {
5794                spin_lock_irq(&conf->device_lock);
5795                return 0;
5796        }
5797
5798        for (i = 0; i < batch_size; i++)
5799                handle_stripe(batch[i]);
5800        r5l_write_stripe_run(conf->log);
5801
5802        cond_resched();
5803
5804        spin_lock_irq(&conf->device_lock);
5805        for (i = 0; i < batch_size; i++) {
5806                hash = batch[i]->hash_lock_index;
5807                __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5808        }
5809        return batch_size;
5810}
5811
5812static void raid5_do_work(struct work_struct *work)
5813{
5814        struct r5worker *worker = container_of(work, struct r5worker, work);
5815        struct r5worker_group *group = worker->group;
5816        struct r5conf *conf = group->conf;
5817        int group_id = group - conf->worker_groups;
5818        int handled;
5819        struct blk_plug plug;
5820
5821        pr_debug("+++ raid5worker active\n");
5822
5823        blk_start_plug(&plug);
5824        handled = 0;
5825        spin_lock_irq(&conf->device_lock);
5826        while (1) {
5827                int batch_size, released;
5828
5829                released = release_stripe_list(conf, worker->temp_inactive_list);
5830
5831                batch_size = handle_active_stripes(conf, group_id, worker,
5832                                                   worker->temp_inactive_list);
5833                worker->working = false;
5834                if (!batch_size && !released)
5835                        break;
5836                handled += batch_size;
5837        }
5838        pr_debug("%d stripes handled\n", handled);
5839
5840        spin_unlock_irq(&conf->device_lock);
5841        blk_finish_plug(&plug);
5842
5843        pr_debug("--- raid5worker inactive\n");
5844}
5845
5846/*
5847 * This is our raid5 kernel thread.
5848 *
5849 * We scan the hash table for stripes which can be handled now.
5850 * During the scan, completed stripes are saved for us by the interrupt
5851 * handler, so that they will not have to wait for our next wakeup.
5852 */
5853static void raid5d(struct md_thread *thread)
5854{
5855        struct mddev *mddev = thread->mddev;
5856        struct r5conf *conf = mddev->private;
5857        int handled;
5858        struct blk_plug plug;
5859
5860        pr_debug("+++ raid5d active\n");
5861
5862        md_check_recovery(mddev);
5863
5864        if (!bio_list_empty(&conf->return_bi) &&
5865            !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5866                struct bio_list tmp = BIO_EMPTY_LIST;
5867                spin_lock_irq(&conf->device_lock);
5868                if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5869                        bio_list_merge(&tmp, &conf->return_bi);
5870                        bio_list_init(&conf->return_bi);
5871                }
5872                spin_unlock_irq(&conf->device_lock);
5873                return_io(&tmp);
5874        }
5875
5876        blk_start_plug(&plug);
5877        handled = 0;
5878        spin_lock_irq(&conf->device_lock);
5879        while (1) {
5880                struct bio *bio;
5881                int batch_size, released;
5882
5883                released = release_stripe_list(conf, conf->temp_inactive_list);
5884                if (released)
5885                        clear_bit(R5_DID_ALLOC, &conf->cache_state);
5886
5887                if (
5888                    !list_empty(&conf->bitmap_list)) {
5889                        /* Now is a good time to flush some bitmap updates */
5890                        conf->seq_flush++;
5891                        spin_unlock_irq(&conf->device_lock);
5892                        bitmap_unplug(mddev->bitmap);
5893                        spin_lock_irq(&conf->device_lock);
5894                        conf->seq_write = conf->seq_flush;
5895                        activate_bit_delay(conf, conf->temp_inactive_list);
5896                }
5897                raid5_activate_delayed(conf);
5898
5899                while ((bio = remove_bio_from_retry(conf))) {
5900                        int ok;
5901                        spin_unlock_irq(&conf->device_lock);
5902                        ok = retry_aligned_read(conf, bio);
5903                        spin_lock_irq(&conf->device_lock);
5904                        if (!ok)
5905                                break;
5906                        handled++;
5907                }
5908
5909                batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5910                                                   conf->temp_inactive_list);
5911                if (!batch_size && !released)
5912                        break;
5913                handled += batch_size;
5914
5915                if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5916                        spin_unlock_irq(&conf->device_lock);
5917                        md_check_recovery(mddev);
5918                        spin_lock_irq(&conf->device_lock);
5919                }
5920        }
5921        pr_debug("%d stripes handled\n", handled);
5922
5923        spin_unlock_irq(&conf->device_lock);
5924        if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5925            mutex_trylock(&conf->cache_size_mutex)) {
5926                grow_one_stripe(conf, __GFP_NOWARN);
5927                /* Set flag even if allocation failed.  This helps
5928                 * slow down allocation requests when mem is short
5929                 */
5930                set_bit(R5_DID_ALLOC, &conf->cache_state);
5931                mutex_unlock(&conf->cache_size_mutex);
5932        }
5933
5934        r5l_flush_stripe_to_raid(conf->log);
5935
5936        async_tx_issue_pending_all();
5937        blk_finish_plug(&plug);
5938
5939        pr_debug("--- raid5d inactive\n");
5940}
5941
5942static ssize_t
5943raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5944{
5945        struct r5conf *conf;
5946        int ret = 0;
5947        spin_lock(&mddev->lock);
5948        conf = mddev->private;
5949        if (conf)
5950                ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5951        spin_unlock(&mddev->lock);
5952        return ret;
5953}
5954
5955int
5956raid5_set_cache_size(struct mddev *mddev, int size)
5957{
5958        struct r5conf *conf = mddev->private;
5959        int err;
5960
5961        if (size <= 16 || size > 32768)
5962                return -EINVAL;
5963
5964        conf->min_nr_stripes = size;
5965        mutex_lock(&conf->cache_size_mutex);
5966        while (size < conf->max_nr_stripes &&
5967               drop_one_stripe(conf))
5968                ;
5969        mutex_unlock(&conf->cache_size_mutex);
5970
5971
5972        err = md_allow_write(mddev);
5973        if (err)
5974                return err;
5975
5976        mutex_lock(&conf->cache_size_mutex);
5977        while (size > conf->max_nr_stripes)
5978                if (!grow_one_stripe(conf, GFP_KERNEL))
5979                        break;
5980        mutex_unlock(&conf->cache_size_mutex);
5981
5982        return 0;
5983}
5984EXPORT_SYMBOL(raid5_set_cache_size);
5985
5986static ssize_t
5987raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5988{
5989        struct r5conf *conf;
5990        unsigned long new;
5991        int err;
5992
5993        if (len >= PAGE_SIZE)
5994                return -EINVAL;
5995        if (kstrtoul(page, 10, &new))
5996                return -EINVAL;
5997        err = mddev_lock(mddev);
5998        if (err)
5999                return err;
6000        conf = mddev->private;
6001        if (!conf)
6002                err = -ENODEV;
6003        else
6004                err = raid5_set_cache_size(mddev, new);
6005        mddev_unlock(mddev);
6006
6007        return err ?: len;
6008}
6009
6010static struct md_sysfs_entry
6011raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6012                                raid5_show_stripe_cache_size,
6013                                raid5_store_stripe_cache_size);
6014
6015static ssize_t
6016raid5_show_rmw_level(struct mddev  *mddev, char *page)
6017{
6018        struct r5conf *conf = mddev->private;
6019        if (conf)
6020                return sprintf(page, "%d\n", conf->rmw_level);
6021        else
6022                return 0;
6023}
6024
6025static ssize_t
6026raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6027{
6028        struct r5conf *conf = mddev->private;
6029        unsigned long new;
6030
6031        if (!conf)
6032                return -ENODEV;
6033
6034        if (len >= PAGE_SIZE)
6035                return -EINVAL;
6036
6037        if (kstrtoul(page, 10, &new))
6038                return -EINVAL;
6039
6040        if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6041                return -EINVAL;
6042
6043        if (new != PARITY_DISABLE_RMW &&
6044            new != PARITY_ENABLE_RMW &&
6045            new != PARITY_PREFER_RMW)
6046                return -EINVAL;
6047
6048        conf->rmw_level = new;
6049        return len;
6050}
6051
6052static struct md_sysfs_entry
6053raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6054                         raid5_show_rmw_level,
6055                         raid5_store_rmw_level);
6056
6057
6058static ssize_t
6059raid5_show_preread_threshold(struct mddev *mddev, char *page)
6060{
6061        struct r5conf *conf;
6062        int ret = 0;
6063        spin_lock(&mddev->lock);
6064        conf = mddev->private;
6065        if (conf)
6066                ret = sprintf(page, "%d\n", conf->bypass_threshold);
6067        spin_unlock(&mddev->lock);
6068        return ret;
6069}
6070
6071static ssize_t
6072raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6073{
6074        struct r5conf *conf;
6075        unsigned long new;
6076        int err;
6077
6078        if (len >= PAGE_SIZE)
6079                return -EINVAL;
6080        if (kstrtoul(page, 10, &new))
6081                return -EINVAL;
6082
6083        err = mddev_lock(mddev);
6084        if (err)
6085                return err;
6086        conf = mddev->private;
6087        if (!conf)
6088                err = -ENODEV;
6089        else if (new > conf->min_nr_stripes)
6090                err = -EINVAL;
6091        else
6092                conf->bypass_threshold = new;
6093        mddev_unlock(mddev);
6094        return err ?: len;
6095}
6096
6097static struct md_sysfs_entry
6098raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6099                                        S_IRUGO | S_IWUSR,
6100                                        raid5_show_preread_threshold,
6101                                        raid5_store_preread_threshold);
6102
6103static ssize_t
6104raid5_show_skip_copy(struct mddev *mddev, char *page)
6105{
6106        struct r5conf *conf;
6107        int ret = 0;
6108        spin_lock(&mddev->lock);
6109        conf = mddev->private;
6110        if (conf)
6111                ret = sprintf(page, "%d\n", conf->skip_copy);
6112        spin_unlock(&mddev->lock);
6113        return ret;
6114}
6115
6116static ssize_t
6117raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6118{
6119        struct r5conf *conf;
6120        unsigned long new;
6121        int err;
6122
6123        if (len >= PAGE_SIZE)
6124                return -EINVAL;
6125        if (kstrtoul(page, 10, &new))
6126                return -EINVAL;
6127        new = !!new;
6128
6129        err = mddev_lock(mddev);
6130        if (err)
6131                return err;
6132        conf = mddev->private;
6133        if (!conf)
6134                err = -ENODEV;
6135        else if (new != conf->skip_copy) {
6136                mddev_suspend(mddev);
6137                conf->skip_copy = new;
6138                if (new)
6139                        mddev->queue->backing_dev_info.capabilities |=
6140                                BDI_CAP_STABLE_WRITES;
6141                else
6142                        mddev->queue->backing_dev_info.capabilities &=
6143                                ~BDI_CAP_STABLE_WRITES;
6144                mddev_resume(mddev);
6145        }
6146        mddev_unlock(mddev);
6147        return err ?: len;
6148}
6149
6150static struct md_sysfs_entry
6151raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6152                                        raid5_show_skip_copy,
6153                                        raid5_store_skip_copy);
6154
6155static ssize_t
6156stripe_cache_active_show(struct mddev *mddev, char *page)
6157{
6158        struct r5conf *conf = mddev->private;
6159        if (conf)
6160                return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6161        else
6162                return 0;
6163}
6164
6165static struct md_sysfs_entry
6166raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6167
6168static ssize_t
6169raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6170{
6171        struct r5conf *conf;
6172        int ret = 0;
6173        spin_lock(&mddev->lock);
6174        conf = mddev->private;
6175        if (conf)
6176                ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6177        spin_unlock(&mddev->lock);
6178        return ret;
6179}
6180
6181static int alloc_thread_groups(struct r5conf *conf, int cnt,
6182                               int *group_cnt,
6183                               int *worker_cnt_per_group,
6184                               struct r5worker_group **worker_groups);
6185static ssize_t
6186raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6187{
6188        struct r5conf *conf;
6189        unsigned long new;
6190        int err;
6191        struct r5worker_group *new_groups, *old_groups;
6192        int group_cnt, worker_cnt_per_group;
6193
6194        if (len >= PAGE_SIZE)
6195                return -EINVAL;
6196        if (kstrtoul(page, 10, &new))
6197                return -EINVAL;
6198
6199        err = mddev_lock(mddev);
6200        if (err)
6201                return err;
6202        conf = mddev->private;
6203        if (!conf)
6204                err = -ENODEV;
6205        else if (new != conf->worker_cnt_per_group) {
6206                mddev_suspend(mddev);
6207
6208                old_groups = conf->worker_groups;
6209                if (old_groups)
6210                        flush_workqueue(raid5_wq);
6211
6212                err = alloc_thread_groups(conf, new,
6213                                          &group_cnt, &worker_cnt_per_group,
6214                                          &new_groups);
6215                if (!err) {
6216                        spin_lock_irq(&conf->device_lock);
6217                        conf->group_cnt = group_cnt;
6218                        conf->worker_cnt_per_group = worker_cnt_per_group;
6219                        conf->worker_groups = new_groups;
6220                        spin_unlock_irq(&conf->device_lock);
6221
6222                        if (old_groups)
6223                                kfree(old_groups[0].workers);
6224                        kfree(old_groups);
6225                }
6226                mddev_resume(mddev);
6227        }
6228        mddev_unlock(mddev);
6229
6230        return err ?: len;
6231}
6232
6233static struct md_sysfs_entry
6234raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6235                                raid5_show_group_thread_cnt,
6236                                raid5_store_group_thread_cnt);
6237
6238static struct attribute *raid5_attrs[] =  {
6239        &raid5_stripecache_size.attr,
6240        &raid5_stripecache_active.attr,
6241        &raid5_preread_bypass_threshold.attr,
6242        &raid5_group_thread_cnt.attr,
6243        &raid5_skip_copy.attr,
6244        &raid5_rmw_level.attr,
6245        NULL,
6246};
6247static struct attribute_group raid5_attrs_group = {
6248        .name = NULL,
6249        .attrs = raid5_attrs,
6250};
6251
6252static int alloc_thread_groups(struct r5conf *conf, int cnt,
6253                               int *group_cnt,
6254                               int *worker_cnt_per_group,
6255                               struct r5worker_group **worker_groups)
6256{
6257        int i, j, k;
6258        ssize_t size;
6259        struct r5worker *workers;
6260
6261        *worker_cnt_per_group = cnt;
6262        if (cnt == 0) {
6263                *group_cnt = 0;
6264                *worker_groups = NULL;
6265                return 0;
6266        }
6267        *group_cnt = num_possible_nodes();
6268        size = sizeof(struct r5worker) * cnt;
6269        workers = kzalloc(size * *group_cnt, GFP_NOIO);
6270        *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6271                                *group_cnt, GFP_NOIO);
6272        if (!*worker_groups || !workers) {
6273                kfree(workers);
6274                kfree(*worker_groups);
6275                return -ENOMEM;
6276        }
6277
6278        for (i = 0; i < *group_cnt; i++) {
6279                struct r5worker_group *group;
6280
6281                group = &(*worker_groups)[i];
6282                INIT_LIST_HEAD(&group->handle_list);
6283                group->conf = conf;
6284                group->workers = workers + i * cnt;
6285
6286                for (j = 0; j < cnt; j++) {
6287                        struct r5worker *worker = group->workers + j;
6288                        worker->group = group;
6289                        INIT_WORK(&worker->work, raid5_do_work);
6290
6291                        for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6292                                INIT_LIST_HEAD(worker->temp_inactive_list + k);
6293                }
6294        }
6295
6296        return 0;
6297}
6298
6299static void free_thread_groups(struct r5conf *conf)
6300{
6301        if (conf->worker_groups)
6302                kfree(conf->worker_groups[0].workers);
6303        kfree(conf->worker_groups);
6304        conf->worker_groups = NULL;
6305}
6306
6307static sector_t
6308raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6309{
6310        struct r5conf *conf = mddev->private;
6311
6312        if (!sectors)
6313                sectors = mddev->dev_sectors;
6314        if (!raid_disks)
6315                /* size is defined by the smallest of previous and new size */
6316                raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6317
6318        sectors &= ~((sector_t)conf->chunk_sectors - 1);
6319        sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6320        return sectors * (raid_disks - conf->max_degraded);
6321}
6322
6323static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6324{
6325        safe_put_page(percpu->spare_page);
6326        if (percpu->scribble)
6327                flex_array_free(percpu->scribble);
6328        percpu->spare_page = NULL;
6329        percpu->scribble = NULL;
6330}
6331
6332static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6333{
6334        if (conf->level == 6 && !percpu->spare_page)
6335                percpu->spare_page = alloc_page(GFP_KERNEL);
6336        if (!percpu->scribble)
6337                percpu->scribble = scribble_alloc(max(conf->raid_disks,
6338                                                      conf->previous_raid_disks),
6339                                                  max(conf->chunk_sectors,
6340                                                      conf->prev_chunk_sectors)
6341                                                   / STRIPE_SECTORS,
6342                                                  GFP_KERNEL);
6343
6344        if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6345                free_scratch_buffer(conf, percpu);
6346                return -ENOMEM;
6347        }
6348
6349        return 0;
6350}
6351
6352static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6353{
6354        struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6355
6356        free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6357        return 0;
6358}
6359
6360static void raid5_free_percpu(struct r5conf *conf)
6361{
6362        if (!conf->percpu)
6363                return;
6364
6365        cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6366        free_percpu(conf->percpu);
6367}
6368
6369static void free_conf(struct r5conf *conf)
6370{
6371        if (conf->log)
6372                r5l_exit_log(conf->log);
6373        if (conf->shrinker.nr_deferred)
6374                unregister_shrinker(&conf->shrinker);
6375
6376        free_thread_groups(conf);
6377        shrink_stripes(conf);
6378        raid5_free_percpu(conf);
6379        kfree(conf->disks);
6380        kfree(conf->stripe_hashtbl);
6381        kfree(conf);
6382}
6383
6384static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6385{
6386        struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6387        struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6388
6389        if (alloc_scratch_buffer(conf, percpu)) {
6390                pr_err("%s: failed memory allocation for cpu%u\n",
6391                       __func__, cpu);
6392                return -ENOMEM;
6393        }
6394        return 0;
6395}
6396
6397static int raid5_alloc_percpu(struct r5conf *conf)
6398{
6399        int err = 0;
6400
6401        conf->percpu = alloc_percpu(struct raid5_percpu);
6402        if (!conf->percpu)
6403                return -ENOMEM;
6404
6405        err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6406        if (!err) {
6407                conf->scribble_disks = max(conf->raid_disks,
6408                        conf->previous_raid_disks);
6409                conf->scribble_sectors = max(conf->chunk_sectors,
6410                        conf->prev_chunk_sectors);
6411        }
6412        return err;
6413}
6414
6415static unsigned long raid5_cache_scan(struct shrinker *shrink,
6416                                      struct shrink_control *sc)
6417{
6418        struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6419        unsigned long ret = SHRINK_STOP;
6420
6421        if (mutex_trylock(&conf->cache_size_mutex)) {
6422                ret= 0;
6423                while (ret < sc->nr_to_scan &&
6424                       conf->max_nr_stripes > conf->min_nr_stripes) {
6425                        if (drop_one_stripe(conf) == 0) {
6426                                ret = SHRINK_STOP;
6427                                break;
6428                        }
6429                        ret++;
6430                }
6431                mutex_unlock(&conf->cache_size_mutex);
6432        }
6433        return ret;
6434}
6435
6436static unsigned long raid5_cache_count(struct shrinker *shrink,
6437                                       struct shrink_control *sc)
6438{
6439        struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6440
6441        if (conf->max_nr_stripes < conf->min_nr_stripes)
6442                /* unlikely, but not impossible */
6443                return 0;
6444        return conf->max_nr_stripes - conf->min_nr_stripes;
6445}
6446
6447static struct r5conf *setup_conf(struct mddev *mddev)
6448{
6449        struct r5conf *conf;
6450        int raid_disk, memory, max_disks;
6451        struct md_rdev *rdev;
6452        struct disk_info *disk;
6453        char pers_name[6];
6454        int i;
6455        int group_cnt, worker_cnt_per_group;
6456        struct r5worker_group *new_group;
6457
6458        if (mddev->new_level != 5
6459            && mddev->new_level != 4
6460            && mddev->new_level != 6) {
6461                printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6462                       mdname(mddev), mddev->new_level);
6463                return ERR_PTR(-EIO);
6464        }
6465        if ((mddev->new_level == 5
6466             && !algorithm_valid_raid5(mddev->new_layout)) ||
6467            (mddev->new_level == 6
6468             && !algorithm_valid_raid6(mddev->new_layout))) {
6469                printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6470                       mdname(mddev), mddev->new_layout);
6471                return ERR_PTR(-EIO);
6472        }
6473        if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6474                printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6475                       mdname(mddev), mddev->raid_disks);
6476                return ERR_PTR(-EINVAL);
6477        }
6478
6479        if (!mddev->new_chunk_sectors ||
6480            (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6481            !is_power_of_2(mddev->new_chunk_sectors)) {
6482                printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6483                       mdname(mddev), mddev->new_chunk_sectors << 9);
6484                return ERR_PTR(-EINVAL);
6485        }
6486
6487        conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6488        if (conf == NULL)
6489                goto abort;
6490        /* Don't enable multi-threading by default*/
6491        if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6492                                 &new_group)) {
6493                conf->group_cnt = group_cnt;
6494                conf->worker_cnt_per_group = worker_cnt_per_group;
6495                conf->worker_groups = new_group;
6496        } else
6497                goto abort;
6498        spin_lock_init(&conf->device_lock);
6499        seqcount_init(&conf->gen_lock);
6500        mutex_init(&conf->cache_size_mutex);
6501        init_waitqueue_head(&conf->wait_for_quiescent);
6502        init_waitqueue_head(&conf->wait_for_stripe);
6503        init_waitqueue_head(&conf->wait_for_overlap);
6504        INIT_LIST_HEAD(&conf->handle_list);
6505        INIT_LIST_HEAD(&conf->hold_list);
6506        INIT_LIST_HEAD(&conf->delayed_list);
6507        INIT_LIST_HEAD(&conf->bitmap_list);
6508        bio_list_init(&conf->return_bi);
6509        init_llist_head(&conf->released_stripes);
6510        atomic_set(&conf->active_stripes, 0);
6511        atomic_set(&conf->preread_active_stripes, 0);
6512        atomic_set(&conf->active_aligned_reads, 0);
6513        conf->bypass_threshold = BYPASS_THRESHOLD;
6514        conf->recovery_disabled = mddev->recovery_disabled - 1;
6515
6516        conf->raid_disks = mddev->raid_disks;
6517        if (mddev->reshape_position == MaxSector)
6518                conf->previous_raid_disks = mddev->raid_disks;
6519        else
6520                conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6521        max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6522
6523        conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6524                              GFP_KERNEL);
6525        if (!conf->disks)
6526                goto abort;
6527
6528        conf->mddev = mddev;
6529
6530        if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6531                goto abort;
6532
6533        /* We init hash_locks[0] separately to that it can be used
6534         * as the reference lock in the spin_lock_nest_lock() call
6535         * in lock_all_device_hash_locks_irq in order to convince
6536         * lockdep that we know what we are doing.
6537         */
6538        spin_lock_init(conf->hash_locks);
6539        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6540                spin_lock_init(conf->hash_locks + i);
6541
6542        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6543                INIT_LIST_HEAD(conf->inactive_list + i);
6544
6545        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6546                INIT_LIST_HEAD(conf->temp_inactive_list + i);
6547
6548        conf->level = mddev->new_level;
6549        conf->chunk_sectors = mddev->new_chunk_sectors;
6550        if (raid5_alloc_percpu(conf) != 0)
6551                goto abort;
6552
6553        pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6554
6555        rdev_for_each(rdev, mddev) {
6556                raid_disk = rdev->raid_disk;
6557                if (raid_disk >= max_disks
6558                    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6559                        continue;
6560                disk = conf->disks + raid_disk;
6561
6562                if (test_bit(Replacement, &rdev->flags)) {
6563                        if (disk->replacement)
6564                                goto abort;
6565                        disk->replacement = rdev;
6566                } else {
6567                        if (disk->rdev)
6568                                goto abort;
6569                        disk->rdev = rdev;
6570                }
6571
6572                if (test_bit(In_sync, &rdev->flags)) {
6573                        char b[BDEVNAME_SIZE];
6574                        printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6575                               " disk %d\n",
6576                               mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6577                } else if (rdev->saved_raid_disk != raid_disk)
6578                        /* Cannot rely on bitmap to complete recovery */
6579                        conf->fullsync = 1;
6580        }
6581
6582        conf->level = mddev->new_level;
6583        if (conf->level == 6) {
6584                conf->max_degraded = 2;
6585                if (raid6_call.xor_syndrome)
6586                        conf->rmw_level = PARITY_ENABLE_RMW;
6587                else
6588                        conf->rmw_level = PARITY_DISABLE_RMW;
6589        } else {
6590                conf->max_degraded = 1;
6591                conf->rmw_level = PARITY_ENABLE_RMW;
6592        }
6593        conf->algorithm = mddev->new_layout;
6594        conf->reshape_progress = mddev->reshape_position;
6595        if (conf->reshape_progress != MaxSector) {
6596                conf->prev_chunk_sectors = mddev->chunk_sectors;
6597                conf->prev_algo = mddev->layout;
6598        } else {
6599                conf->prev_chunk_sectors = conf->chunk_sectors;
6600                conf->prev_algo = conf->algorithm;
6601        }
6602
6603        conf->min_nr_stripes = NR_STRIPES;
6604        if (mddev->reshape_position != MaxSector) {
6605                int stripes = max_t(int,
6606                        ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
6607                        ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
6608                conf->min_nr_stripes = max(NR_STRIPES, stripes);
6609                if (conf->min_nr_stripes != NR_STRIPES)
6610                        printk(KERN_INFO
6611                                "md/raid:%s: force stripe size %d for reshape\n",
6612                                mdname(mddev), conf->min_nr_stripes);
6613        }
6614        memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6615                 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6616        atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6617        if (grow_stripes(conf, conf->min_nr_stripes)) {
6618                printk(KERN_ERR
6619                       "md/raid:%s: couldn't allocate %dkB for buffers\n",
6620                       mdname(mddev), memory);
6621                goto abort;
6622        } else
6623                printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6624                       mdname(mddev), memory);
6625        /*
6626         * Losing a stripe head costs more than the time to refill it,
6627         * it reduces the queue depth and so can hurt throughput.
6628         * So set it rather large, scaled by number of devices.
6629         */
6630        conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6631        conf->shrinker.scan_objects = raid5_cache_scan;
6632        conf->shrinker.count_objects = raid5_cache_count;
6633        conf->shrinker.batch = 128;
6634        conf->shrinker.flags = 0;
6635        if (register_shrinker(&conf->shrinker)) {
6636                printk(KERN_ERR
6637                       "md/raid:%s: couldn't register shrinker.\n",
6638                       mdname(mddev));
6639                goto abort;
6640        }
6641
6642        sprintf(pers_name, "raid%d", mddev->new_level);
6643        conf->thread = md_register_thread(raid5d, mddev, pers_name);
6644        if (!conf->thread) {
6645                printk(KERN_ERR
6646                       "md/raid:%s: couldn't allocate thread.\n",
6647                       mdname(mddev));
6648                goto abort;
6649        }
6650
6651        return conf;
6652
6653 abort:
6654        if (conf) {
6655                free_conf(conf);
6656                return ERR_PTR(-EIO);
6657        } else
6658                return ERR_PTR(-ENOMEM);
6659}
6660
6661static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6662{
6663        switch (algo) {
6664        case ALGORITHM_PARITY_0:
6665                if (raid_disk < max_degraded)
6666                        return 1;
6667                break;
6668        case ALGORITHM_PARITY_N:
6669                if (raid_disk >= raid_disks - max_degraded)
6670                        return 1;
6671                break;
6672        case ALGORITHM_PARITY_0_6:
6673                if (raid_disk == 0 ||
6674                    raid_disk == raid_disks - 1)
6675                        return 1;
6676                break;
6677        case ALGORITHM_LEFT_ASYMMETRIC_6:
6678        case ALGORITHM_RIGHT_ASYMMETRIC_6:
6679        case ALGORITHM_LEFT_SYMMETRIC_6:
6680        case ALGORITHM_RIGHT_SYMMETRIC_6:
6681                if (raid_disk == raid_disks - 1)
6682                        return 1;
6683        }
6684        return 0;
6685}
6686
6687static int raid5_run(struct mddev *mddev)
6688{
6689        struct r5conf *conf;
6690        int working_disks = 0;
6691        int dirty_parity_disks = 0;
6692        struct md_rdev *rdev;
6693        struct md_rdev *journal_dev = NULL;
6694        sector_t reshape_offset = 0;
6695        int i;
6696        long long min_offset_diff = 0;
6697        int first = 1;
6698
6699        if (mddev->recovery_cp != MaxSector)
6700                printk(KERN_NOTICE "md/raid:%s: not clean"
6701                       " -- starting background reconstruction\n",
6702                       mdname(mddev));
6703
6704        rdev_for_each(rdev, mddev) {
6705                long long diff;
6706
6707                if (test_bit(Journal, &rdev->flags)) {
6708                        journal_dev = rdev;
6709                        continue;
6710                }
6711                if (rdev->raid_disk < 0)
6712                        continue;
6713                diff = (rdev->new_data_offset - rdev->data_offset);
6714                if (first) {
6715                        min_offset_diff = diff;
6716                        first = 0;
6717                } else if (mddev->reshape_backwards &&
6718                         diff < min_offset_diff)
6719                        min_offset_diff = diff;
6720                else if (!mddev->reshape_backwards &&
6721                         diff > min_offset_diff)
6722                        min_offset_diff = diff;
6723        }
6724
6725        if (mddev->reshape_position != MaxSector) {
6726                /* Check that we can continue the reshape.
6727                 * Difficulties arise if the stripe we would write to
6728                 * next is at or after the stripe we would read from next.
6729                 * For a reshape that changes the number of devices, this
6730                 * is only possible for a very short time, and mdadm makes
6731                 * sure that time appears to have past before assembling
6732                 * the array.  So we fail if that time hasn't passed.
6733                 * For a reshape that keeps the number of devices the same
6734                 * mdadm must be monitoring the reshape can keeping the
6735                 * critical areas read-only and backed up.  It will start
6736                 * the array in read-only mode, so we check for that.
6737                 */
6738                sector_t here_new, here_old;
6739                int old_disks;
6740                int max_degraded = (mddev->level == 6 ? 2 : 1);
6741                int chunk_sectors;
6742                int new_data_disks;
6743
6744                if (journal_dev) {
6745                        printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6746                               mdname(mddev));
6747                        return -EINVAL;
6748                }
6749
6750                if (mddev->new_level != mddev->level) {
6751                        printk(KERN_ERR "md/raid:%s: unsupported reshape "
6752                               "required - aborting.\n",
6753                               mdname(mddev));
6754                        return -EINVAL;
6755                }
6756                old_disks = mddev->raid_disks - mddev->delta_disks;
6757                /* reshape_position must be on a new-stripe boundary, and one
6758                 * further up in new geometry must map after here in old
6759                 * geometry.
6760                 * If the chunk sizes are different, then as we perform reshape
6761                 * in units of the largest of the two, reshape_position needs
6762                 * be a multiple of the largest chunk size times new data disks.
6763                 */
6764                here_new = mddev->reshape_position;
6765                chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6766                new_data_disks = mddev->raid_disks - max_degraded;
6767                if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6768                        printk(KERN_ERR "md/raid:%s: reshape_position not "
6769                               "on a stripe boundary\n", mdname(mddev));
6770                        return -EINVAL;
6771                }
6772                reshape_offset = here_new * chunk_sectors;
6773                /* here_new is the stripe we will write to */
6774                here_old = mddev->reshape_position;
6775                sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6776                /* here_old is the first stripe that we might need to read
6777                 * from */
6778                if (mddev->delta_disks == 0) {
6779                        /* We cannot be sure it is safe to start an in-place
6780                         * reshape.  It is only safe if user-space is monitoring
6781                         * and taking constant backups.
6782                         * mdadm always starts a situation like this in
6783                         * readonly mode so it can take control before
6784                         * allowing any writes.  So just check for that.
6785                         */
6786                        if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6787                            abs(min_offset_diff) >= mddev->new_chunk_sectors)
6788                                /* not really in-place - so OK */;
6789                        else if (mddev->ro == 0) {
6790                                printk(KERN_ERR "md/raid:%s: in-place reshape "
6791                                       "must be started in read-only mode "
6792                                       "- aborting\n",
6793                                       mdname(mddev));
6794                                return -EINVAL;
6795                        }
6796                } else if (mddev->reshape_backwards
6797                    ? (here_new * chunk_sectors + min_offset_diff <=
6798                       here_old * chunk_sectors)
6799                    : (here_new * chunk_sectors >=
6800                       here_old * chunk_sectors + (-min_offset_diff))) {
6801                        /* Reading from the same stripe as writing to - bad */
6802                        printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6803                               "auto-recovery - aborting.\n",
6804                               mdname(mddev));
6805                        return -EINVAL;
6806                }
6807                printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6808                       mdname(mddev));
6809                /* OK, we should be able to continue; */
6810        } else {
6811                BUG_ON(mddev->level != mddev->new_level);
6812                BUG_ON(mddev->layout != mddev->new_layout);
6813                BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6814                BUG_ON(mddev->delta_disks != 0);
6815        }
6816
6817        if (mddev->private == NULL)
6818                conf = setup_conf(mddev);
6819        else
6820                conf = mddev->private;
6821
6822        if (IS_ERR(conf))
6823                return PTR_ERR(conf);
6824
6825        if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
6826                if (!journal_dev) {
6827                        pr_err("md/raid:%s: journal disk is missing, force array readonly\n",
6828                               mdname(mddev));
6829                        mddev->ro = 1;
6830                        set_disk_ro(mddev->gendisk, 1);
6831                } else if (mddev->recovery_cp == MaxSector)
6832                        set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
6833        }
6834
6835        conf->min_offset_diff = min_offset_diff;
6836        mddev->thread = conf->thread;
6837        conf->thread = NULL;
6838        mddev->private = conf;
6839
6840        for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6841             i++) {
6842                rdev = conf->disks[i].rdev;
6843                if (!rdev && conf->disks[i].replacement) {
6844                        /* The replacement is all we have yet */
6845                        rdev = conf->disks[i].replacement;
6846                        conf->disks[i].replacement = NULL;
6847                        clear_bit(Replacement, &rdev->flags);
6848                        conf->disks[i].rdev = rdev;
6849                }
6850                if (!rdev)
6851                        continue;
6852                if (conf->disks[i].replacement &&
6853                    conf->reshape_progress != MaxSector) {
6854                        /* replacements and reshape simply do not mix. */
6855                        printk(KERN_ERR "md: cannot handle concurrent "
6856                               "replacement and reshape.\n");
6857                        goto abort;
6858                }
6859                if (test_bit(In_sync, &rdev->flags)) {
6860                        working_disks++;
6861                        continue;
6862                }
6863                /* This disc is not fully in-sync.  However if it
6864                 * just stored parity (beyond the recovery_offset),
6865                 * when we don't need to be concerned about the
6866                 * array being dirty.
6867                 * When reshape goes 'backwards', we never have
6868                 * partially completed devices, so we only need
6869                 * to worry about reshape going forwards.
6870                 */
6871                /* Hack because v0.91 doesn't store recovery_offset properly. */
6872                if (mddev->major_version == 0 &&
6873                    mddev->minor_version > 90)
6874                        rdev->recovery_offset = reshape_offset;
6875
6876                if (rdev->recovery_offset < reshape_offset) {
6877                        /* We need to check old and new layout */
6878                        if (!only_parity(rdev->raid_disk,
6879                                         conf->algorithm,
6880                                         conf->raid_disks,
6881                                         conf->max_degraded))
6882                                continue;
6883                }
6884                if (!only_parity(rdev->raid_disk,
6885                                 conf->prev_algo,
6886                                 conf->previous_raid_disks,
6887                                 conf->max_degraded))
6888                        continue;
6889                dirty_parity_disks++;
6890        }
6891
6892        /*
6893         * 0 for a fully functional array, 1 or 2 for a degraded array.
6894         */
6895        mddev->degraded = calc_degraded(conf);
6896
6897        if (has_failed(conf)) {
6898                printk(KERN_ERR "md/raid:%s: not enough operational devices"
6899                        " (%d/%d failed)\n",
6900                        mdname(mddev), mddev->degraded, conf->raid_disks);
6901                goto abort;
6902        }
6903
6904        /* device size must be a multiple of chunk size */
6905        mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6906        mddev->resync_max_sectors = mddev->dev_sectors;
6907
6908        if (mddev->degraded > dirty_parity_disks &&
6909            mddev->recovery_cp != MaxSector) {
6910                if (mddev->ok_start_degraded)
6911                        printk(KERN_WARNING
6912                               "md/raid:%s: starting dirty degraded array"
6913                               " - data corruption possible.\n",
6914                               mdname(mddev));
6915                else {
6916                        printk(KERN_ERR
6917                               "md/raid:%s: cannot start dirty degraded array.\n",
6918                               mdname(mddev));
6919                        goto abort;
6920                }
6921        }
6922
6923        if (mddev->degraded == 0)
6924                printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6925                       " devices, algorithm %d\n", mdname(mddev), conf->level,
6926                       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6927                       mddev->new_layout);
6928        else
6929                printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6930                       " out of %d devices, algorithm %d\n",
6931                       mdname(mddev), conf->level,
6932                       mddev->raid_disks - mddev->degraded,
6933                       mddev->raid_disks, mddev->new_layout);
6934
6935        print_raid5_conf(conf);
6936
6937        if (conf->reshape_progress != MaxSector) {
6938                conf->reshape_safe = conf->reshape_progress;
6939                atomic_set(&conf->reshape_stripes, 0);
6940                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6941                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6942                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6943                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6944                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6945                                                        "reshape");
6946        }
6947
6948        /* Ok, everything is just fine now */
6949        if (mddev->to_remove == &raid5_attrs_group)
6950                mddev->to_remove = NULL;
6951        else if (mddev->kobj.sd &&
6952            sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6953                printk(KERN_WARNING
6954                       "raid5: failed to create sysfs attributes for %s\n",
6955                       mdname(mddev));
6956        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6957
6958        if (mddev->queue) {
6959                int chunk_size;
6960                bool discard_supported = true;
6961                /* read-ahead size must cover two whole stripes, which
6962                 * is 2 * (datadisks) * chunksize where 'n' is the
6963                 * number of raid devices
6964                 */
6965                int data_disks = conf->previous_raid_disks - conf->max_degraded;
6966                int stripe = data_disks *
6967                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6968                if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6969                        mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6970
6971                chunk_size = mddev->chunk_sectors << 9;
6972                blk_queue_io_min(mddev->queue, chunk_size);
6973                blk_queue_io_opt(mddev->queue, chunk_size *
6974                                 (conf->raid_disks - conf->max_degraded));
6975                mddev->queue->limits.raid_partial_stripes_expensive = 1;
6976                /*
6977                 * We can only discard a whole stripe. It doesn't make sense to
6978                 * discard data disk but write parity disk
6979                 */
6980                stripe = stripe * PAGE_SIZE;
6981                /* Round up to power of 2, as discard handling
6982                 * currently assumes that */
6983                while ((stripe-1) & stripe)
6984                        stripe = (stripe | (stripe-1)) + 1;
6985                mddev->queue->limits.discard_alignment = stripe;
6986                mddev->queue->limits.discard_granularity = stripe;
6987                /*
6988                 * unaligned part of discard request will be ignored, so can't
6989                 * guarantee discard_zeroes_data
6990                 */
6991                mddev->queue->limits.discard_zeroes_data = 0;
6992
6993                blk_queue_max_write_same_sectors(mddev->queue, 0);
6994
6995                rdev_for_each(rdev, mddev) {
6996                        disk_stack_limits(mddev->gendisk, rdev->bdev,
6997                                          rdev->data_offset << 9);
6998                        disk_stack_limits(mddev->gendisk, rdev->bdev,
6999                                          rdev->new_data_offset << 9);
7000                        /*
7001                         * discard_zeroes_data is required, otherwise data
7002                         * could be lost. Consider a scenario: discard a stripe
7003                         * (the stripe could be inconsistent if
7004                         * discard_zeroes_data is 0); write one disk of the
7005                         * stripe (the stripe could be inconsistent again
7006                         * depending on which disks are used to calculate
7007                         * parity); the disk is broken; The stripe data of this
7008                         * disk is lost.
7009                         */
7010                        if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7011                            !bdev_get_queue(rdev->bdev)->
7012                                                limits.discard_zeroes_data)
7013                                discard_supported = false;
7014                        /* Unfortunately, discard_zeroes_data is not currently
7015                         * a guarantee - just a hint.  So we only allow DISCARD
7016                         * if the sysadmin has confirmed that only safe devices
7017                         * are in use by setting a module parameter.
7018                         */
7019                        if (!devices_handle_discard_safely) {
7020                                if (discard_supported) {
7021                                        pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7022                                        pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7023                                }
7024                                discard_supported = false;
7025                        }
7026                }
7027
7028                if (discard_supported &&
7029                    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7030                    mddev->queue->limits.discard_granularity >= stripe)
7031                        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7032                                                mddev->queue);
7033                else
7034                        queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7035                                                mddev->queue);
7036
7037                blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7038        }
7039
7040        if (journal_dev) {
7041                char b[BDEVNAME_SIZE];
7042
7043                printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7044                       mdname(mddev), bdevname(journal_dev->bdev, b));
7045                r5l_init_log(conf, journal_dev);
7046        }
7047
7048        return 0;
7049abort:
7050        md_unregister_thread(&mddev->thread);
7051        print_raid5_conf(conf);
7052        free_conf(conf);
7053        mddev->private = NULL;
7054        printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7055        return -EIO;
7056}
7057
7058static void raid5_free(struct mddev *mddev, void *priv)
7059{
7060        struct r5conf *conf = priv;
7061
7062        free_conf(conf);
7063        mddev->to_remove = &raid5_attrs_group;
7064}
7065
7066static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7067{
7068        struct r5conf *conf = mddev->private;
7069        int i;
7070
7071        seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7072                conf->chunk_sectors / 2, mddev->layout);
7073        seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7074        rcu_read_lock();
7075        for (i = 0; i < conf->raid_disks; i++) {
7076                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7077                seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7078        }
7079        rcu_read_unlock();
7080        seq_printf (seq, "]");
7081}
7082
7083static void print_raid5_conf (struct r5conf *conf)
7084{
7085        int i;
7086        struct disk_info *tmp;
7087
7088        printk(KERN_DEBUG "RAID conf printout:\n");
7089        if (!conf) {
7090                printk("(conf==NULL)\n");
7091                return;
7092        }
7093        printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7094               conf->raid_disks,
7095               conf->raid_disks - conf->mddev->degraded);
7096
7097        for (i = 0; i < conf->raid_disks; i++) {
7098                char b[BDEVNAME_SIZE];
7099                tmp = conf->disks + i;
7100                if (tmp->rdev)
7101                        printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7102                               i, !test_bit(Faulty, &tmp->rdev->flags),
7103                               bdevname(tmp->rdev->bdev, b));
7104        }
7105}
7106
7107static int raid5_spare_active(struct mddev *mddev)
7108{
7109        int i;
7110        struct r5conf *conf = mddev->private;
7111        struct disk_info *tmp;
7112        int count = 0;
7113        unsigned long flags;
7114
7115        for (i = 0; i < conf->raid_disks; i++) {
7116                tmp = conf->disks + i;
7117                if (tmp->replacement
7118                    && tmp->replacement->recovery_offset == MaxSector
7119                    && !test_bit(Faulty, &tmp->replacement->flags)
7120                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7121                        /* Replacement has just become active. */
7122                        if (!tmp->rdev
7123                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7124                                count++;
7125                        if (tmp->rdev) {
7126                                /* Replaced device not technically faulty,
7127                                 * but we need to be sure it gets removed
7128                                 * and never re-added.
7129                                 */
7130                                set_bit(Faulty, &tmp->rdev->flags);
7131                                sysfs_notify_dirent_safe(
7132                                        tmp->rdev->sysfs_state);
7133                        }
7134                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7135                } else if (tmp->rdev
7136                    && tmp->rdev->recovery_offset == MaxSector
7137                    && !test_bit(Faulty, &tmp->rdev->flags)
7138                    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7139                        count++;
7140                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7141                }
7142        }
7143        spin_lock_irqsave(&conf->device_lock, flags);
7144        mddev->degraded = calc_degraded(conf);
7145        spin_unlock_irqrestore(&conf->device_lock, flags);
7146        print_raid5_conf(conf);
7147        return count;
7148}
7149
7150static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7151{
7152        struct r5conf *conf = mddev->private;
7153        int err = 0;
7154        int number = rdev->raid_disk;
7155        struct md_rdev **rdevp;
7156        struct disk_info *p = conf->disks + number;
7157
7158        print_raid5_conf(conf);
7159        if (test_bit(Journal, &rdev->flags) && conf->log) {
7160                struct r5l_log *log;
7161                /*
7162                 * we can't wait pending write here, as this is called in
7163                 * raid5d, wait will deadlock.
7164                 */
7165                if (atomic_read(&mddev->writes_pending))
7166                        return -EBUSY;
7167                log = conf->log;
7168                conf->log = NULL;
7169                synchronize_rcu();
7170                r5l_exit_log(log);
7171                return 0;
7172        }
7173        if (rdev == p->rdev)
7174                rdevp = &p->rdev;
7175        else if (rdev == p->replacement)
7176                rdevp = &p->replacement;
7177        else
7178                return 0;
7179
7180        if (number >= conf->raid_disks &&
7181            conf->reshape_progress == MaxSector)
7182                clear_bit(In_sync, &rdev->flags);
7183
7184        if (test_bit(In_sync, &rdev->flags) ||
7185            atomic_read(&rdev->nr_pending)) {
7186                err = -EBUSY;
7187                goto abort;
7188        }
7189        /* Only remove non-faulty devices if recovery
7190         * isn't possible.
7191         */
7192        if (!test_bit(Faulty, &rdev->flags) &&
7193            mddev->recovery_disabled != conf->recovery_disabled &&
7194            !has_failed(conf) &&
7195            (!p->replacement || p->replacement == rdev) &&
7196            number < conf->raid_disks) {
7197                err = -EBUSY;
7198                goto abort;
7199        }
7200        *rdevp = NULL;
7201        if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7202                synchronize_rcu();
7203                if (atomic_read(&rdev->nr_pending)) {
7204                        /* lost the race, try later */
7205                        err = -EBUSY;
7206                        *rdevp = rdev;
7207                }
7208        }
7209        if (p->replacement) {
7210                /* We must have just cleared 'rdev' */
7211                p->rdev = p->replacement;
7212                clear_bit(Replacement, &p->replacement->flags);
7213                smp_mb(); /* Make sure other CPUs may see both as identical
7214                           * but will never see neither - if they are careful
7215                           */
7216                p->replacement = NULL;
7217                clear_bit(WantReplacement, &rdev->flags);
7218        } else
7219                /* We might have just removed the Replacement as faulty-
7220                 * clear the bit just in case
7221                 */
7222                clear_bit(WantReplacement, &rdev->flags);
7223abort:
7224
7225        print_raid5_conf(conf);
7226        return err;
7227}
7228
7229static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7230{
7231        struct r5conf *conf = mddev->private;
7232        int err = -EEXIST;
7233        int disk;
7234        struct disk_info *p;
7235        int first = 0;
7236        int last = conf->raid_disks - 1;
7237
7238        if (test_bit(Journal, &rdev->flags)) {
7239                char b[BDEVNAME_SIZE];
7240                if (conf->log)
7241                        return -EBUSY;
7242
7243                rdev->raid_disk = 0;
7244                /*
7245                 * The array is in readonly mode if journal is missing, so no
7246                 * write requests running. We should be safe
7247                 */
7248                r5l_init_log(conf, rdev);
7249                printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7250                       mdname(mddev), bdevname(rdev->bdev, b));
7251                return 0;
7252        }
7253        if (mddev->recovery_disabled == conf->recovery_disabled)
7254                return -EBUSY;
7255
7256        if (rdev->saved_raid_disk < 0 && has_failed(conf))
7257                /* no point adding a device */
7258                return -EINVAL;
7259
7260        if (rdev->raid_disk >= 0)
7261                first = last = rdev->raid_disk;
7262
7263        /*
7264         * find the disk ... but prefer rdev->saved_raid_disk
7265         * if possible.
7266         */
7267        if (rdev->saved_raid_disk >= 0 &&
7268            rdev->saved_raid_disk >= first &&
7269            conf->disks[rdev->saved_raid_disk].rdev == NULL)
7270                first = rdev->saved_raid_disk;
7271
7272        for (disk = first; disk <= last; disk++) {
7273                p = conf->disks + disk;
7274                if (p->rdev == NULL) {
7275                        clear_bit(In_sync, &rdev->flags);
7276                        rdev->raid_disk = disk;
7277                        err = 0;
7278                        if (rdev->saved_raid_disk != disk)
7279                                conf->fullsync = 1;
7280                        rcu_assign_pointer(p->rdev, rdev);
7281                        goto out;
7282                }
7283        }
7284        for (disk = first; disk <= last; disk++) {
7285                p = conf->disks + disk;
7286                if (test_bit(WantReplacement, &p->rdev->flags) &&
7287                    p->replacement == NULL) {
7288                        clear_bit(In_sync, &rdev->flags);
7289                        set_bit(Replacement, &rdev->flags);
7290                        rdev->raid_disk = disk;
7291                        err = 0;
7292                        conf->fullsync = 1;
7293                        rcu_assign_pointer(p->replacement, rdev);
7294                        break;
7295                }
7296        }
7297out:
7298        print_raid5_conf(conf);
7299        return err;
7300}
7301
7302static int raid5_resize(struct mddev *mddev, sector_t sectors)
7303{
7304        /* no resync is happening, and there is enough space
7305         * on all devices, so we can resize.
7306         * We need to make sure resync covers any new space.
7307         * If the array is shrinking we should possibly wait until
7308         * any io in the removed space completes, but it hardly seems
7309         * worth it.
7310         */
7311        sector_t newsize;
7312        struct r5conf *conf = mddev->private;
7313
7314        if (conf->log)
7315                return -EINVAL;
7316        sectors &= ~((sector_t)conf->chunk_sectors - 1);
7317        newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7318        if (mddev->external_size &&
7319            mddev->array_sectors > newsize)
7320                return -EINVAL;
7321        if (mddev->bitmap) {
7322                int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7323                if (ret)
7324                        return ret;
7325        }
7326        md_set_array_sectors(mddev, newsize);
7327        set_capacity(mddev->gendisk, mddev->array_sectors);
7328        revalidate_disk(mddev->gendisk);
7329        if (sectors > mddev->dev_sectors &&
7330            mddev->recovery_cp > mddev->dev_sectors) {
7331                mddev->recovery_cp = mddev->dev_sectors;
7332                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7333        }
7334        mddev->dev_sectors = sectors;
7335        mddev->resync_max_sectors = sectors;
7336        return 0;
7337}
7338
7339static int check_stripe_cache(struct mddev *mddev)
7340{
7341        /* Can only proceed if there are plenty of stripe_heads.
7342         * We need a minimum of one full stripe,, and for sensible progress
7343         * it is best to have about 4 times that.
7344         * If we require 4 times, then the default 256 4K stripe_heads will
7345         * allow for chunk sizes up to 256K, which is probably OK.
7346         * If the chunk size is greater, user-space should request more
7347         * stripe_heads first.
7348         */
7349        struct r5conf *conf = mddev->private;
7350        if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7351            > conf->min_nr_stripes ||
7352            ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7353            > conf->min_nr_stripes) {
7354                printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7355                       mdname(mddev),
7356                       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7357                        / STRIPE_SIZE)*4);
7358                return 0;
7359        }
7360        return 1;
7361}
7362
7363static int check_reshape(struct mddev *mddev)
7364{
7365        struct r5conf *conf = mddev->private;
7366
7367        if (conf->log)
7368                return -EINVAL;
7369        if (mddev->delta_disks == 0 &&
7370            mddev->new_layout == mddev->layout &&
7371            mddev->new_chunk_sectors == mddev->chunk_sectors)
7372                return 0; /* nothing to do */
7373        if (has_failed(conf))
7374                return -EINVAL;
7375        if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7376                /* We might be able to shrink, but the devices must
7377                 * be made bigger first.
7378                 * For raid6, 4 is the minimum size.
7379                 * Otherwise 2 is the minimum
7380                 */
7381                int min = 2;
7382                if (mddev->level == 6)
7383                        min = 4;
7384                if (mddev->raid_disks + mddev->delta_disks < min)
7385                        return -EINVAL;
7386        }
7387
7388        if (!check_stripe_cache(mddev))
7389                return -ENOSPC;
7390
7391        if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7392            mddev->delta_disks > 0)
7393                if (resize_chunks(conf,
7394                                  conf->previous_raid_disks
7395                                  + max(0, mddev->delta_disks),
7396                                  max(mddev->new_chunk_sectors,
7397                                      mddev->chunk_sectors)
7398                            ) < 0)
7399                        return -ENOMEM;
7400        return resize_stripes(conf, (conf->previous_raid_disks
7401                                     + mddev->delta_disks));
7402}
7403
7404static int raid5_start_reshape(struct mddev *mddev)
7405{
7406        struct r5conf *conf = mddev->private;
7407        struct md_rdev *rdev;
7408        int spares = 0;
7409        unsigned long flags;
7410
7411        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7412                return -EBUSY;
7413
7414        if (!check_stripe_cache(mddev))
7415                return -ENOSPC;
7416
7417        if (has_failed(conf))
7418                return -EINVAL;
7419
7420        rdev_for_each(rdev, mddev) {
7421                if (!test_bit(In_sync, &rdev->flags)
7422                    && !test_bit(Faulty, &rdev->flags))
7423                        spares++;
7424        }
7425
7426        if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7427                /* Not enough devices even to make a degraded array
7428                 * of that size
7429                 */
7430                return -EINVAL;
7431
7432        /* Refuse to reduce size of the array.  Any reductions in
7433         * array size must be through explicit setting of array_size
7434         * attribute.
7435         */
7436        if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7437            < mddev->array_sectors) {
7438                printk(KERN_ERR "md/raid:%s: array size must be reduced "
7439                       "before number of disks\n", mdname(mddev));
7440                return -EINVAL;
7441        }
7442
7443        atomic_set(&conf->reshape_stripes, 0);
7444        spin_lock_irq(&conf->device_lock);
7445        write_seqcount_begin(&conf->gen_lock);
7446        conf->previous_raid_disks = conf->raid_disks;
7447        conf->raid_disks += mddev->delta_disks;
7448        conf->prev_chunk_sectors = conf->chunk_sectors;
7449        conf->chunk_sectors = mddev->new_chunk_sectors;
7450        conf->prev_algo = conf->algorithm;
7451        conf->algorithm = mddev->new_layout;
7452        conf->generation++;
7453        /* Code that selects data_offset needs to see the generation update
7454         * if reshape_progress has been set - so a memory barrier needed.
7455         */
7456        smp_mb();
7457        if (mddev->reshape_backwards)
7458                conf->reshape_progress = raid5_size(mddev, 0, 0);
7459        else
7460                conf->reshape_progress = 0;
7461        conf->reshape_safe = conf->reshape_progress;
7462        write_seqcount_end(&conf->gen_lock);
7463        spin_unlock_irq(&conf->device_lock);
7464
7465        /* Now make sure any requests that proceeded on the assumption
7466         * the reshape wasn't running - like Discard or Read - have
7467         * completed.
7468         */
7469        mddev_suspend(mddev);
7470        mddev_resume(mddev);
7471
7472        /* Add some new drives, as many as will fit.
7473         * We know there are enough to make the newly sized array work.
7474         * Don't add devices if we are reducing the number of
7475         * devices in the array.  This is because it is not possible
7476         * to correctly record the "partially reconstructed" state of
7477         * such devices during the reshape and confusion could result.
7478         */
7479        if (mddev->delta_disks >= 0) {
7480                rdev_for_each(rdev, mddev)
7481                        if (rdev->raid_disk < 0 &&
7482                            !test_bit(Faulty, &rdev->flags)) {
7483                                if (raid5_add_disk(mddev, rdev) == 0) {
7484                                        if (rdev->raid_disk
7485                                            >= conf->previous_raid_disks)
7486                                                set_bit(In_sync, &rdev->flags);
7487                                        else
7488                                                rdev->recovery_offset = 0;
7489
7490                                        if (sysfs_link_rdev(mddev, rdev))
7491                                                /* Failure here is OK */;
7492                                }
7493                        } else if (rdev->raid_disk >= conf->previous_raid_disks
7494                                   && !test_bit(Faulty, &rdev->flags)) {
7495                                /* This is a spare that was manually added */
7496                                set_bit(In_sync, &rdev->flags);
7497                        }
7498
7499                /* When a reshape changes the number of devices,
7500                 * ->degraded is measured against the larger of the
7501                 * pre and post number of devices.
7502                 */
7503                spin_lock_irqsave(&conf->device_lock, flags);
7504                mddev->degraded = calc_degraded(conf);
7505                spin_unlock_irqrestore(&conf->device_lock, flags);
7506        }
7507        mddev->raid_disks = conf->raid_disks;
7508        mddev->reshape_position = conf->reshape_progress;
7509        set_bit(MD_CHANGE_DEVS, &mddev->flags);
7510
7511        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7512        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7513        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7514        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7515        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7516        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7517                                                "reshape");
7518        if (!mddev->sync_thread) {
7519                mddev->recovery = 0;
7520                spin_lock_irq(&conf->device_lock);
7521                write_seqcount_begin(&conf->gen_lock);
7522                mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7523                mddev->new_chunk_sectors =
7524                        conf->chunk_sectors = conf->prev_chunk_sectors;
7525                mddev->new_layout = conf->algorithm = conf->prev_algo;
7526                rdev_for_each(rdev, mddev)
7527                        rdev->new_data_offset = rdev->data_offset;
7528                smp_wmb();
7529                conf->generation --;
7530                conf->reshape_progress = MaxSector;
7531                mddev->reshape_position = MaxSector;
7532                write_seqcount_end(&conf->gen_lock);
7533                spin_unlock_irq(&conf->device_lock);
7534                return -EAGAIN;
7535        }
7536        conf->reshape_checkpoint = jiffies;
7537        md_wakeup_thread(mddev->sync_thread);
7538        md_new_event(mddev);
7539        return 0;
7540}
7541
7542/* This is called from the reshape thread and should make any
7543 * changes needed in 'conf'
7544 */
7545static void end_reshape(struct r5conf *conf)
7546{
7547
7548        if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7549                struct md_rdev *rdev;
7550
7551                spin_lock_irq(&conf->device_lock);
7552                conf->previous_raid_disks = conf->raid_disks;
7553                rdev_for_each(rdev, conf->mddev)
7554                        rdev->data_offset = rdev->new_data_offset;
7555                smp_wmb();
7556                conf->reshape_progress = MaxSector;
7557                conf->mddev->reshape_position = MaxSector;
7558                spin_unlock_irq(&conf->device_lock);
7559                wake_up(&conf->wait_for_overlap);
7560
7561                /* read-ahead size must cover two whole stripes, which is
7562                 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7563                 */
7564                if (conf->mddev->queue) {
7565                        int data_disks = conf->raid_disks - conf->max_degraded;
7566                        int stripe = data_disks * ((conf->chunk_sectors << 9)
7567                                                   / PAGE_SIZE);
7568                        if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7569                                conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7570                }
7571        }
7572}
7573
7574/* This is called from the raid5d thread with mddev_lock held.
7575 * It makes config changes to the device.
7576 */
7577static void raid5_finish_reshape(struct mddev *mddev)
7578{
7579        struct r5conf *conf = mddev->private;
7580
7581        if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7582
7583                if (mddev->delta_disks > 0) {
7584                        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7585                        if (mddev->queue) {
7586                                set_capacity(mddev->gendisk, mddev->array_sectors);
7587                                revalidate_disk(mddev->gendisk);
7588                        }
7589                } else {
7590                        int d;
7591                        spin_lock_irq(&conf->device_lock);
7592                        mddev->degraded = calc_degraded(conf);
7593                        spin_unlock_irq(&conf->device_lock);
7594                        for (d = conf->raid_disks ;
7595                             d < conf->raid_disks - mddev->delta_disks;
7596                             d++) {
7597                                struct md_rdev *rdev = conf->disks[d].rdev;
7598                                if (rdev)
7599                                        clear_bit(In_sync, &rdev->flags);
7600                                rdev = conf->disks[d].replacement;
7601                                if (rdev)
7602                                        clear_bit(In_sync, &rdev->flags);
7603                        }
7604                }
7605                mddev->layout = conf->algorithm;
7606                mddev->chunk_sectors = conf->chunk_sectors;
7607                mddev->reshape_position = MaxSector;
7608                mddev->delta_disks = 0;
7609                mddev->reshape_backwards = 0;
7610        }
7611}
7612
7613static void raid5_quiesce(struct mddev *mddev, int state)
7614{
7615        struct r5conf *conf = mddev->private;
7616
7617        switch(state) {
7618        case 2: /* resume for a suspend */
7619                wake_up(&conf->wait_for_overlap);
7620                break;
7621
7622        case 1: /* stop all writes */
7623                lock_all_device_hash_locks_irq(conf);
7624                /* '2' tells resync/reshape to pause so that all
7625                 * active stripes can drain
7626                 */
7627                conf->quiesce = 2;
7628                wait_event_cmd(conf->wait_for_quiescent,
7629                                    atomic_read(&conf->active_stripes) == 0 &&
7630                                    atomic_read(&conf->active_aligned_reads) == 0,
7631                                    unlock_all_device_hash_locks_irq(conf),
7632                                    lock_all_device_hash_locks_irq(conf));
7633                conf->quiesce = 1;
7634                unlock_all_device_hash_locks_irq(conf);
7635                /* allow reshape to continue */
7636                wake_up(&conf->wait_for_overlap);
7637                break;
7638
7639        case 0: /* re-enable writes */
7640                lock_all_device_hash_locks_irq(conf);
7641                conf->quiesce = 0;
7642                wake_up(&conf->wait_for_quiescent);
7643                wake_up(&conf->wait_for_overlap);
7644                unlock_all_device_hash_locks_irq(conf);
7645                break;
7646        }
7647        r5l_quiesce(conf->log, state);
7648}
7649
7650static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7651{
7652        struct r0conf *raid0_conf = mddev->private;
7653        sector_t sectors;
7654
7655        /* for raid0 takeover only one zone is supported */
7656        if (raid0_conf->nr_strip_zones > 1) {
7657                printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7658                       mdname(mddev));
7659                return ERR_PTR(-EINVAL);
7660        }
7661
7662        sectors = raid0_conf->strip_zone[0].zone_end;
7663        sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7664        mddev->dev_sectors = sectors;
7665        mddev->new_level = level;
7666        mddev->new_layout = ALGORITHM_PARITY_N;
7667        mddev->new_chunk_sectors = mddev->chunk_sectors;
7668        mddev->raid_disks += 1;
7669        mddev->delta_disks = 1;
7670        /* make sure it will be not marked as dirty */
7671        mddev->recovery_cp = MaxSector;
7672
7673        return setup_conf(mddev);
7674}
7675
7676static void *raid5_takeover_raid1(struct mddev *mddev)
7677{
7678        int chunksect;
7679
7680        if (mddev->raid_disks != 2 ||
7681            mddev->degraded > 1)
7682                return ERR_PTR(-EINVAL);
7683
7684        /* Should check if there are write-behind devices? */
7685
7686        chunksect = 64*2; /* 64K by default */
7687
7688        /* The array must be an exact multiple of chunksize */
7689        while (chunksect && (mddev->array_sectors & (chunksect-1)))
7690                chunksect >>= 1;
7691
7692        if ((chunksect<<9) < STRIPE_SIZE)
7693                /* array size does not allow a suitable chunk size */
7694                return ERR_PTR(-EINVAL);
7695
7696        mddev->new_level = 5;
7697        mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7698        mddev->new_chunk_sectors = chunksect;
7699
7700        return setup_conf(mddev);
7701}
7702
7703static void *raid5_takeover_raid6(struct mddev *mddev)
7704{
7705        int new_layout;
7706
7707        switch (mddev->layout) {
7708        case ALGORITHM_LEFT_ASYMMETRIC_6:
7709                new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7710                break;
7711        case ALGORITHM_RIGHT_ASYMMETRIC_6:
7712                new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7713                break;
7714        case ALGORITHM_LEFT_SYMMETRIC_6:
7715                new_layout = ALGORITHM_LEFT_SYMMETRIC;
7716                break;
7717        case ALGORITHM_RIGHT_SYMMETRIC_6:
7718                new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7719                break;
7720        case ALGORITHM_PARITY_0_6:
7721                new_layout = ALGORITHM_PARITY_0;
7722                break;
7723        case ALGORITHM_PARITY_N:
7724                new_layout = ALGORITHM_PARITY_N;
7725                break;
7726        default:
7727                return ERR_PTR(-EINVAL);
7728        }
7729        mddev->new_level = 5;
7730        mddev->new_layout = new_layout;
7731        mddev->delta_disks = -1;
7732        mddev->raid_disks -= 1;
7733        return setup_conf(mddev);
7734}
7735
7736static int raid5_check_reshape(struct mddev *mddev)
7737{
7738        /* For a 2-drive array, the layout and chunk size can be changed
7739         * immediately as not restriping is needed.
7740         * For larger arrays we record the new value - after validation
7741         * to be used by a reshape pass.
7742         */
7743        struct r5conf *conf = mddev->private;
7744        int new_chunk = mddev->new_chunk_sectors;
7745
7746        if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7747                return -EINVAL;
7748        if (new_chunk > 0) {
7749                if (!is_power_of_2(new_chunk))
7750                        return -EINVAL;
7751                if (new_chunk < (PAGE_SIZE>>9))
7752                        return -EINVAL;
7753                if (mddev->array_sectors & (new_chunk-1))
7754                        /* not factor of array size */
7755                        return -EINVAL;
7756        }
7757
7758        /* They look valid */
7759
7760        if (mddev->raid_disks == 2) {
7761                /* can make the change immediately */
7762                if (mddev->new_layout >= 0) {
7763                        conf->algorithm = mddev->new_layout;
7764                        mddev->layout = mddev->new_layout;
7765                }
7766                if (new_chunk > 0) {
7767                        conf->chunk_sectors = new_chunk ;
7768                        mddev->chunk_sectors = new_chunk;
7769                }
7770                set_bit(MD_CHANGE_DEVS, &mddev->flags);
7771                md_wakeup_thread(mddev->thread);
7772        }
7773        return check_reshape(mddev);
7774}
7775
7776static int raid6_check_reshape(struct mddev *mddev)
7777{
7778        int new_chunk = mddev->new_chunk_sectors;
7779
7780        if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7781                return -EINVAL;
7782        if (new_chunk > 0) {
7783                if (!is_power_of_2(new_chunk))
7784                        return -EINVAL;
7785                if (new_chunk < (PAGE_SIZE >> 9))
7786                        return -EINVAL;
7787                if (mddev->array_sectors & (new_chunk-1))
7788                        /* not factor of array size */
7789                        return -EINVAL;
7790        }
7791
7792        /* They look valid */
7793        return check_reshape(mddev);
7794}
7795
7796static void *raid5_takeover(struct mddev *mddev)
7797{
7798        /* raid5 can take over:
7799         *  raid0 - if there is only one strip zone - make it a raid4 layout
7800         *  raid1 - if there are two drives.  We need to know the chunk size
7801         *  raid4 - trivial - just use a raid4 layout.
7802         *  raid6 - Providing it is a *_6 layout
7803         */
7804        if (mddev->level == 0)
7805                return raid45_takeover_raid0(mddev, 5);
7806        if (mddev->level == 1)
7807                return raid5_takeover_raid1(mddev);
7808        if (mddev->level == 4) {
7809                mddev->new_layout = ALGORITHM_PARITY_N;
7810                mddev->new_level = 5;
7811                return setup_conf(mddev);
7812        }
7813        if (mddev->level == 6)
7814                return raid5_takeover_raid6(mddev);
7815
7816        return ERR_PTR(-EINVAL);
7817}
7818
7819static void *raid4_takeover(struct mddev *mddev)
7820{
7821        /* raid4 can take over:
7822         *  raid0 - if there is only one strip zone
7823         *  raid5 - if layout is right
7824         */
7825        if (mddev->level == 0)
7826                return raid45_takeover_raid0(mddev, 4);
7827        if (mddev->level == 5 &&
7828            mddev->layout == ALGORITHM_PARITY_N) {
7829                mddev->new_layout = 0;
7830                mddev->new_level = 4;
7831                return setup_conf(mddev);
7832        }
7833        return ERR_PTR(-EINVAL);
7834}
7835
7836static struct md_personality raid5_personality;
7837
7838static void *raid6_takeover(struct mddev *mddev)
7839{
7840        /* Currently can only take over a raid5.  We map the
7841         * personality to an equivalent raid6 personality
7842         * with the Q block at the end.
7843         */
7844        int new_layout;
7845
7846        if (mddev->pers != &raid5_personality)
7847                return ERR_PTR(-EINVAL);
7848        if (mddev->degraded > 1)
7849                return ERR_PTR(-EINVAL);
7850        if (mddev->raid_disks > 253)
7851                return ERR_PTR(-EINVAL);
7852        if (mddev->raid_disks < 3)
7853                return ERR_PTR(-EINVAL);
7854
7855        switch (mddev->layout) {
7856        case ALGORITHM_LEFT_ASYMMETRIC:
7857                new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7858                break;
7859        case ALGORITHM_RIGHT_ASYMMETRIC:
7860                new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7861                break;
7862        case ALGORITHM_LEFT_SYMMETRIC:
7863                new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7864                break;
7865        case ALGORITHM_RIGHT_SYMMETRIC:
7866                new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7867                break;
7868        case ALGORITHM_PARITY_0:
7869                new_layout = ALGORITHM_PARITY_0_6;
7870                break;
7871        case ALGORITHM_PARITY_N:
7872                new_layout = ALGORITHM_PARITY_N;
7873                break;
7874        default:
7875                return ERR_PTR(-EINVAL);
7876        }
7877        mddev->new_level = 6;
7878        mddev->new_layout = new_layout;
7879        mddev->delta_disks = 1;
7880        mddev->raid_disks += 1;
7881        return setup_conf(mddev);
7882}
7883
7884static struct md_personality raid6_personality =
7885{
7886        .name           = "raid6",
7887        .level          = 6,
7888        .owner          = THIS_MODULE,
7889        .make_request   = raid5_make_request,
7890        .run            = raid5_run,
7891        .free           = raid5_free,
7892        .status         = raid5_status,
7893        .error_handler  = raid5_error,
7894        .hot_add_disk   = raid5_add_disk,
7895        .hot_remove_disk= raid5_remove_disk,
7896        .spare_active   = raid5_spare_active,
7897        .sync_request   = raid5_sync_request,
7898        .resize         = raid5_resize,
7899        .size           = raid5_size,
7900        .check_reshape  = raid6_check_reshape,
7901        .start_reshape  = raid5_start_reshape,
7902        .finish_reshape = raid5_finish_reshape,
7903        .quiesce        = raid5_quiesce,
7904        .takeover       = raid6_takeover,
7905        .congested      = raid5_congested,
7906};
7907static struct md_personality raid5_personality =
7908{
7909        .name           = "raid5",
7910        .level          = 5,
7911        .owner          = THIS_MODULE,
7912        .make_request   = raid5_make_request,
7913        .run            = raid5_run,
7914        .free           = raid5_free,
7915        .status         = raid5_status,
7916        .error_handler  = raid5_error,
7917        .hot_add_disk   = raid5_add_disk,
7918        .hot_remove_disk= raid5_remove_disk,
7919        .spare_active   = raid5_spare_active,
7920        .sync_request   = raid5_sync_request,
7921        .resize         = raid5_resize,
7922        .size           = raid5_size,
7923        .check_reshape  = raid5_check_reshape,
7924        .start_reshape  = raid5_start_reshape,
7925        .finish_reshape = raid5_finish_reshape,
7926        .quiesce        = raid5_quiesce,
7927        .takeover       = raid5_takeover,
7928        .congested      = raid5_congested,
7929};
7930
7931static struct md_personality raid4_personality =
7932{
7933        .name           = "raid4",
7934        .level          = 4,
7935        .owner          = THIS_MODULE,
7936        .make_request   = raid5_make_request,
7937        .run            = raid5_run,
7938        .free           = raid5_free,
7939        .status         = raid5_status,
7940        .error_handler  = raid5_error,
7941        .hot_add_disk   = raid5_add_disk,
7942        .hot_remove_disk= raid5_remove_disk,
7943        .spare_active   = raid5_spare_active,
7944        .sync_request   = raid5_sync_request,
7945        .resize         = raid5_resize,
7946        .size           = raid5_size,
7947        .check_reshape  = raid5_check_reshape,
7948        .start_reshape  = raid5_start_reshape,
7949        .finish_reshape = raid5_finish_reshape,
7950        .quiesce        = raid5_quiesce,
7951        .takeover       = raid4_takeover,
7952        .congested      = raid5_congested,
7953};
7954
7955static int __init raid5_init(void)
7956{
7957        int ret;
7958
7959        raid5_wq = alloc_workqueue("raid5wq",
7960                WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7961        if (!raid5_wq)
7962                return -ENOMEM;
7963
7964        ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
7965                                      "md/raid5:prepare",
7966                                      raid456_cpu_up_prepare,
7967                                      raid456_cpu_dead);
7968        if (ret) {
7969                destroy_workqueue(raid5_wq);
7970                return ret;
7971        }
7972        register_md_personality(&raid6_personality);
7973        register_md_personality(&raid5_personality);
7974        register_md_personality(&raid4_personality);
7975        return 0;
7976}
7977
7978static void raid5_exit(void)
7979{
7980        unregister_md_personality(&raid6_personality);
7981        unregister_md_personality(&raid5_personality);
7982        unregister_md_personality(&raid4_personality);
7983        cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
7984        destroy_workqueue(raid5_wq);
7985}
7986
7987module_init(raid5_init);
7988module_exit(raid5_exit);
7989MODULE_LICENSE("GPL");
7990MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7991MODULE_ALIAS("md-personality-4"); /* RAID5 */
7992MODULE_ALIAS("md-raid5");
7993MODULE_ALIAS("md-raid4");
7994MODULE_ALIAS("md-level-5");
7995MODULE_ALIAS("md-level-4");
7996MODULE_ALIAS("md-personality-8"); /* RAID6 */
7997MODULE_ALIAS("md-raid6");
7998MODULE_ALIAS("md-level-6");
7999
8000/* This used to be two separate modules, they were: */
8001MODULE_ALIAS("raid5");
8002MODULE_ALIAS("raid6");
8003