linux/drivers/mtd/ubi/build.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 * Copyright (c) Nokia Corporation, 2007
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13 * the GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18 *
  19 * Author: Artem Bityutskiy (Битюцкий Артём),
  20 *         Frank Haverkamp
  21 */
  22
  23/*
  24 * This file includes UBI initialization and building of UBI devices.
  25 *
  26 * When UBI is initialized, it attaches all the MTD devices specified as the
  27 * module load parameters or the kernel boot parameters. If MTD devices were
  28 * specified, UBI does not attach any MTD device, but it is possible to do
  29 * later using the "UBI control device".
  30 */
  31
  32#include <linux/err.h>
  33#include <linux/module.h>
  34#include <linux/moduleparam.h>
  35#include <linux/stringify.h>
  36#include <linux/namei.h>
  37#include <linux/stat.h>
  38#include <linux/miscdevice.h>
  39#include <linux/mtd/partitions.h>
  40#include <linux/log2.h>
  41#include <linux/kthread.h>
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/major.h>
  45#include "ubi.h"
  46
  47/* Maximum length of the 'mtd=' parameter */
  48#define MTD_PARAM_LEN_MAX 64
  49
  50/* Maximum number of comma-separated items in the 'mtd=' parameter */
  51#define MTD_PARAM_MAX_COUNT 4
  52
  53/* Maximum value for the number of bad PEBs per 1024 PEBs */
  54#define MAX_MTD_UBI_BEB_LIMIT 768
  55
  56#ifdef CONFIG_MTD_UBI_MODULE
  57#define ubi_is_module() 1
  58#else
  59#define ubi_is_module() 0
  60#endif
  61
  62/**
  63 * struct mtd_dev_param - MTD device parameter description data structure.
  64 * @name: MTD character device node path, MTD device name, or MTD device number
  65 *        string
  66 * @vid_hdr_offs: VID header offset
  67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
  68 */
  69struct mtd_dev_param {
  70        char name[MTD_PARAM_LEN_MAX];
  71        int ubi_num;
  72        int vid_hdr_offs;
  73        int max_beb_per1024;
  74};
  75
  76/* Numbers of elements set in the @mtd_dev_param array */
  77static int __initdata mtd_devs;
  78
  79/* MTD devices specification parameters */
  80static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
  81#ifdef CONFIG_MTD_UBI_FASTMAP
  82/* UBI module parameter to enable fastmap automatically on non-fastmap images */
  83static bool fm_autoconvert;
  84static bool fm_debug;
  85#endif
  86
  87/* Slab cache for wear-leveling entries */
  88struct kmem_cache *ubi_wl_entry_slab;
  89
  90/* UBI control character device */
  91static struct miscdevice ubi_ctrl_cdev = {
  92        .minor = MISC_DYNAMIC_MINOR,
  93        .name = "ubi_ctrl",
  94        .fops = &ubi_ctrl_cdev_operations,
  95};
  96
  97/* All UBI devices in system */
  98static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
  99
 100/* Serializes UBI devices creations and removals */
 101DEFINE_MUTEX(ubi_devices_mutex);
 102
 103/* Protects @ubi_devices and @ubi->ref_count */
 104static DEFINE_SPINLOCK(ubi_devices_lock);
 105
 106/* "Show" method for files in '/<sysfs>/class/ubi/' */
 107static ssize_t ubi_version_show(struct class *class,
 108                                struct class_attribute *attr, char *buf)
 109{
 110        return sprintf(buf, "%d\n", UBI_VERSION);
 111}
 112
 113/* UBI version attribute ('/<sysfs>/class/ubi/version') */
 114static struct class_attribute ubi_class_attrs[] = {
 115        __ATTR(version, S_IRUGO, ubi_version_show, NULL),
 116        __ATTR_NULL
 117};
 118
 119/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
 120struct class ubi_class = {
 121        .name           = UBI_NAME_STR,
 122        .owner          = THIS_MODULE,
 123        .class_attrs    = ubi_class_attrs,
 124};
 125
 126static ssize_t dev_attribute_show(struct device *dev,
 127                                  struct device_attribute *attr, char *buf);
 128
 129/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
 130static struct device_attribute dev_eraseblock_size =
 131        __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
 132static struct device_attribute dev_avail_eraseblocks =
 133        __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
 134static struct device_attribute dev_total_eraseblocks =
 135        __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
 136static struct device_attribute dev_volumes_count =
 137        __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
 138static struct device_attribute dev_max_ec =
 139        __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
 140static struct device_attribute dev_reserved_for_bad =
 141        __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
 142static struct device_attribute dev_bad_peb_count =
 143        __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
 144static struct device_attribute dev_max_vol_count =
 145        __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
 146static struct device_attribute dev_min_io_size =
 147        __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
 148static struct device_attribute dev_bgt_enabled =
 149        __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
 150static struct device_attribute dev_mtd_num =
 151        __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
 152static struct device_attribute dev_ro_mode =
 153        __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
 154
 155/**
 156 * ubi_volume_notify - send a volume change notification.
 157 * @ubi: UBI device description object
 158 * @vol: volume description object of the changed volume
 159 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
 160 *
 161 * This is a helper function which notifies all subscribers about a volume
 162 * change event (creation, removal, re-sizing, re-naming, updating). Returns
 163 * zero in case of success and a negative error code in case of failure.
 164 */
 165int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
 166{
 167        int ret;
 168        struct ubi_notification nt;
 169
 170        ubi_do_get_device_info(ubi, &nt.di);
 171        ubi_do_get_volume_info(ubi, vol, &nt.vi);
 172
 173        switch (ntype) {
 174        case UBI_VOLUME_ADDED:
 175        case UBI_VOLUME_REMOVED:
 176        case UBI_VOLUME_RESIZED:
 177        case UBI_VOLUME_RENAMED:
 178                ret = ubi_update_fastmap(ubi);
 179                if (ret)
 180                        ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
 181        }
 182
 183        return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
 184}
 185
 186/**
 187 * ubi_notify_all - send a notification to all volumes.
 188 * @ubi: UBI device description object
 189 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
 190 * @nb: the notifier to call
 191 *
 192 * This function walks all volumes of UBI device @ubi and sends the @ntype
 193 * notification for each volume. If @nb is %NULL, then all registered notifiers
 194 * are called, otherwise only the @nb notifier is called. Returns the number of
 195 * sent notifications.
 196 */
 197int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
 198{
 199        struct ubi_notification nt;
 200        int i, count = 0;
 201
 202        ubi_do_get_device_info(ubi, &nt.di);
 203
 204        mutex_lock(&ubi->device_mutex);
 205        for (i = 0; i < ubi->vtbl_slots; i++) {
 206                /*
 207                 * Since the @ubi->device is locked, and we are not going to
 208                 * change @ubi->volumes, we do not have to lock
 209                 * @ubi->volumes_lock.
 210                 */
 211                if (!ubi->volumes[i])
 212                        continue;
 213
 214                ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
 215                if (nb)
 216                        nb->notifier_call(nb, ntype, &nt);
 217                else
 218                        blocking_notifier_call_chain(&ubi_notifiers, ntype,
 219                                                     &nt);
 220                count += 1;
 221        }
 222        mutex_unlock(&ubi->device_mutex);
 223
 224        return count;
 225}
 226
 227/**
 228 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
 229 * @nb: the notifier to call
 230 *
 231 * This function walks all UBI devices and volumes and sends the
 232 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
 233 * registered notifiers are called, otherwise only the @nb notifier is called.
 234 * Returns the number of sent notifications.
 235 */
 236int ubi_enumerate_volumes(struct notifier_block *nb)
 237{
 238        int i, count = 0;
 239
 240        /*
 241         * Since the @ubi_devices_mutex is locked, and we are not going to
 242         * change @ubi_devices, we do not have to lock @ubi_devices_lock.
 243         */
 244        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 245                struct ubi_device *ubi = ubi_devices[i];
 246
 247                if (!ubi)
 248                        continue;
 249                count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
 250        }
 251
 252        return count;
 253}
 254
 255/**
 256 * ubi_get_device - get UBI device.
 257 * @ubi_num: UBI device number
 258 *
 259 * This function returns UBI device description object for UBI device number
 260 * @ubi_num, or %NULL if the device does not exist. This function increases the
 261 * device reference count to prevent removal of the device. In other words, the
 262 * device cannot be removed if its reference count is not zero.
 263 */
 264struct ubi_device *ubi_get_device(int ubi_num)
 265{
 266        struct ubi_device *ubi;
 267
 268        spin_lock(&ubi_devices_lock);
 269        ubi = ubi_devices[ubi_num];
 270        if (ubi) {
 271                ubi_assert(ubi->ref_count >= 0);
 272                ubi->ref_count += 1;
 273                get_device(&ubi->dev);
 274        }
 275        spin_unlock(&ubi_devices_lock);
 276
 277        return ubi;
 278}
 279
 280/**
 281 * ubi_put_device - drop an UBI device reference.
 282 * @ubi: UBI device description object
 283 */
 284void ubi_put_device(struct ubi_device *ubi)
 285{
 286        spin_lock(&ubi_devices_lock);
 287        ubi->ref_count -= 1;
 288        put_device(&ubi->dev);
 289        spin_unlock(&ubi_devices_lock);
 290}
 291
 292/**
 293 * ubi_get_by_major - get UBI device by character device major number.
 294 * @major: major number
 295 *
 296 * This function is similar to 'ubi_get_device()', but it searches the device
 297 * by its major number.
 298 */
 299struct ubi_device *ubi_get_by_major(int major)
 300{
 301        int i;
 302        struct ubi_device *ubi;
 303
 304        spin_lock(&ubi_devices_lock);
 305        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 306                ubi = ubi_devices[i];
 307                if (ubi && MAJOR(ubi->cdev.dev) == major) {
 308                        ubi_assert(ubi->ref_count >= 0);
 309                        ubi->ref_count += 1;
 310                        get_device(&ubi->dev);
 311                        spin_unlock(&ubi_devices_lock);
 312                        return ubi;
 313                }
 314        }
 315        spin_unlock(&ubi_devices_lock);
 316
 317        return NULL;
 318}
 319
 320/**
 321 * ubi_major2num - get UBI device number by character device major number.
 322 * @major: major number
 323 *
 324 * This function searches UBI device number object by its major number. If UBI
 325 * device was not found, this function returns -ENODEV, otherwise the UBI device
 326 * number is returned.
 327 */
 328int ubi_major2num(int major)
 329{
 330        int i, ubi_num = -ENODEV;
 331
 332        spin_lock(&ubi_devices_lock);
 333        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 334                struct ubi_device *ubi = ubi_devices[i];
 335
 336                if (ubi && MAJOR(ubi->cdev.dev) == major) {
 337                        ubi_num = ubi->ubi_num;
 338                        break;
 339                }
 340        }
 341        spin_unlock(&ubi_devices_lock);
 342
 343        return ubi_num;
 344}
 345
 346/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
 347static ssize_t dev_attribute_show(struct device *dev,
 348                                  struct device_attribute *attr, char *buf)
 349{
 350        ssize_t ret;
 351        struct ubi_device *ubi;
 352
 353        /*
 354         * The below code looks weird, but it actually makes sense. We get the
 355         * UBI device reference from the contained 'struct ubi_device'. But it
 356         * is unclear if the device was removed or not yet. Indeed, if the
 357         * device was removed before we increased its reference count,
 358         * 'ubi_get_device()' will return -ENODEV and we fail.
 359         *
 360         * Remember, 'struct ubi_device' is freed in the release function, so
 361         * we still can use 'ubi->ubi_num'.
 362         */
 363        ubi = container_of(dev, struct ubi_device, dev);
 364        ubi = ubi_get_device(ubi->ubi_num);
 365        if (!ubi)
 366                return -ENODEV;
 367
 368        if (attr == &dev_eraseblock_size)
 369                ret = sprintf(buf, "%d\n", ubi->leb_size);
 370        else if (attr == &dev_avail_eraseblocks)
 371                ret = sprintf(buf, "%d\n", ubi->avail_pebs);
 372        else if (attr == &dev_total_eraseblocks)
 373                ret = sprintf(buf, "%d\n", ubi->good_peb_count);
 374        else if (attr == &dev_volumes_count)
 375                ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
 376        else if (attr == &dev_max_ec)
 377                ret = sprintf(buf, "%d\n", ubi->max_ec);
 378        else if (attr == &dev_reserved_for_bad)
 379                ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
 380        else if (attr == &dev_bad_peb_count)
 381                ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
 382        else if (attr == &dev_max_vol_count)
 383                ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
 384        else if (attr == &dev_min_io_size)
 385                ret = sprintf(buf, "%d\n", ubi->min_io_size);
 386        else if (attr == &dev_bgt_enabled)
 387                ret = sprintf(buf, "%d\n", ubi->thread_enabled);
 388        else if (attr == &dev_mtd_num)
 389                ret = sprintf(buf, "%d\n", ubi->mtd->index);
 390        else if (attr == &dev_ro_mode)
 391                ret = sprintf(buf, "%d\n", ubi->ro_mode);
 392        else
 393                ret = -EINVAL;
 394
 395        ubi_put_device(ubi);
 396        return ret;
 397}
 398
 399static struct attribute *ubi_dev_attrs[] = {
 400        &dev_eraseblock_size.attr,
 401        &dev_avail_eraseblocks.attr,
 402        &dev_total_eraseblocks.attr,
 403        &dev_volumes_count.attr,
 404        &dev_max_ec.attr,
 405        &dev_reserved_for_bad.attr,
 406        &dev_bad_peb_count.attr,
 407        &dev_max_vol_count.attr,
 408        &dev_min_io_size.attr,
 409        &dev_bgt_enabled.attr,
 410        &dev_mtd_num.attr,
 411        &dev_ro_mode.attr,
 412        NULL
 413};
 414ATTRIBUTE_GROUPS(ubi_dev);
 415
 416static void dev_release(struct device *dev)
 417{
 418        struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
 419
 420        kfree(ubi);
 421}
 422
 423/**
 424 * ubi_sysfs_init - initialize sysfs for an UBI device.
 425 * @ubi: UBI device description object
 426 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
 427 *       taken
 428 *
 429 * This function returns zero in case of success and a negative error code in
 430 * case of failure.
 431 */
 432static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
 433{
 434        int err;
 435
 436        ubi->dev.release = dev_release;
 437        ubi->dev.devt = ubi->cdev.dev;
 438        ubi->dev.class = &ubi_class;
 439        ubi->dev.groups = ubi_dev_groups;
 440        dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
 441        err = device_register(&ubi->dev);
 442        if (err)
 443                return err;
 444
 445        *ref = 1;
 446        return 0;
 447}
 448
 449/**
 450 * ubi_sysfs_close - close sysfs for an UBI device.
 451 * @ubi: UBI device description object
 452 */
 453static void ubi_sysfs_close(struct ubi_device *ubi)
 454{
 455        device_unregister(&ubi->dev);
 456}
 457
 458/**
 459 * kill_volumes - destroy all user volumes.
 460 * @ubi: UBI device description object
 461 */
 462static void kill_volumes(struct ubi_device *ubi)
 463{
 464        int i;
 465
 466        for (i = 0; i < ubi->vtbl_slots; i++)
 467                if (ubi->volumes[i])
 468                        ubi_free_volume(ubi, ubi->volumes[i]);
 469}
 470
 471/**
 472 * uif_init - initialize user interfaces for an UBI device.
 473 * @ubi: UBI device description object
 474 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
 475 *       taken, otherwise set to %0
 476 *
 477 * This function initializes various user interfaces for an UBI device. If the
 478 * initialization fails at an early stage, this function frees all the
 479 * resources it allocated, returns an error, and @ref is set to %0. However,
 480 * if the initialization fails after the UBI device was registered in the
 481 * driver core subsystem, this function takes a reference to @ubi->dev, because
 482 * otherwise the release function ('dev_release()') would free whole @ubi
 483 * object. The @ref argument is set to %1 in this case. The caller has to put
 484 * this reference.
 485 *
 486 * This function returns zero in case of success and a negative error code in
 487 * case of failure.
 488 */
 489static int uif_init(struct ubi_device *ubi, int *ref)
 490{
 491        int i, err;
 492        dev_t dev;
 493
 494        *ref = 0;
 495        sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
 496
 497        /*
 498         * Major numbers for the UBI character devices are allocated
 499         * dynamically. Major numbers of volume character devices are
 500         * equivalent to ones of the corresponding UBI character device. Minor
 501         * numbers of UBI character devices are 0, while minor numbers of
 502         * volume character devices start from 1. Thus, we allocate one major
 503         * number and ubi->vtbl_slots + 1 minor numbers.
 504         */
 505        err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
 506        if (err) {
 507                ubi_err(ubi, "cannot register UBI character devices");
 508                return err;
 509        }
 510
 511        ubi_assert(MINOR(dev) == 0);
 512        cdev_init(&ubi->cdev, &ubi_cdev_operations);
 513        dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
 514        ubi->cdev.owner = THIS_MODULE;
 515
 516        err = cdev_add(&ubi->cdev, dev, 1);
 517        if (err) {
 518                ubi_err(ubi, "cannot add character device");
 519                goto out_unreg;
 520        }
 521
 522        err = ubi_sysfs_init(ubi, ref);
 523        if (err)
 524                goto out_sysfs;
 525
 526        for (i = 0; i < ubi->vtbl_slots; i++)
 527                if (ubi->volumes[i]) {
 528                        err = ubi_add_volume(ubi, ubi->volumes[i]);
 529                        if (err) {
 530                                ubi_err(ubi, "cannot add volume %d", i);
 531                                goto out_volumes;
 532                        }
 533                }
 534
 535        return 0;
 536
 537out_volumes:
 538        kill_volumes(ubi);
 539out_sysfs:
 540        if (*ref)
 541                get_device(&ubi->dev);
 542        ubi_sysfs_close(ubi);
 543        cdev_del(&ubi->cdev);
 544out_unreg:
 545        unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
 546        ubi_err(ubi, "cannot initialize UBI %s, error %d",
 547                ubi->ubi_name, err);
 548        return err;
 549}
 550
 551/**
 552 * uif_close - close user interfaces for an UBI device.
 553 * @ubi: UBI device description object
 554 *
 555 * Note, since this function un-registers UBI volume device objects (@vol->dev),
 556 * the memory allocated voe the volumes is freed as well (in the release
 557 * function).
 558 */
 559static void uif_close(struct ubi_device *ubi)
 560{
 561        kill_volumes(ubi);
 562        ubi_sysfs_close(ubi);
 563        cdev_del(&ubi->cdev);
 564        unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
 565}
 566
 567/**
 568 * ubi_free_internal_volumes - free internal volumes.
 569 * @ubi: UBI device description object
 570 */
 571void ubi_free_internal_volumes(struct ubi_device *ubi)
 572{
 573        int i;
 574
 575        for (i = ubi->vtbl_slots;
 576             i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
 577                ubi_eba_replace_table(ubi->volumes[i], NULL);
 578                kfree(ubi->volumes[i]);
 579        }
 580}
 581
 582static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
 583{
 584        int limit, device_pebs;
 585        uint64_t device_size;
 586
 587        if (!max_beb_per1024)
 588                return 0;
 589
 590        /*
 591         * Here we are using size of the entire flash chip and
 592         * not just the MTD partition size because the maximum
 593         * number of bad eraseblocks is a percentage of the
 594         * whole device and bad eraseblocks are not fairly
 595         * distributed over the flash chip. So the worst case
 596         * is that all the bad eraseblocks of the chip are in
 597         * the MTD partition we are attaching (ubi->mtd).
 598         */
 599        device_size = mtd_get_device_size(ubi->mtd);
 600        device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
 601        limit = mult_frac(device_pebs, max_beb_per1024, 1024);
 602
 603        /* Round it up */
 604        if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
 605                limit += 1;
 606
 607        return limit;
 608}
 609
 610/**
 611 * io_init - initialize I/O sub-system for a given UBI device.
 612 * @ubi: UBI device description object
 613 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 614 *
 615 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
 616 * assumed:
 617 *   o EC header is always at offset zero - this cannot be changed;
 618 *   o VID header starts just after the EC header at the closest address
 619 *     aligned to @io->hdrs_min_io_size;
 620 *   o data starts just after the VID header at the closest address aligned to
 621 *     @io->min_io_size
 622 *
 623 * This function returns zero in case of success and a negative error code in
 624 * case of failure.
 625 */
 626static int io_init(struct ubi_device *ubi, int max_beb_per1024)
 627{
 628        dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
 629        dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
 630
 631        if (ubi->mtd->numeraseregions != 0) {
 632                /*
 633                 * Some flashes have several erase regions. Different regions
 634                 * may have different eraseblock size and other
 635                 * characteristics. It looks like mostly multi-region flashes
 636                 * have one "main" region and one or more small regions to
 637                 * store boot loader code or boot parameters or whatever. I
 638                 * guess we should just pick the largest region. But this is
 639                 * not implemented.
 640                 */
 641                ubi_err(ubi, "multiple regions, not implemented");
 642                return -EINVAL;
 643        }
 644
 645        if (ubi->vid_hdr_offset < 0)
 646                return -EINVAL;
 647
 648        /*
 649         * Note, in this implementation we support MTD devices with 0x7FFFFFFF
 650         * physical eraseblocks maximum.
 651         */
 652
 653        ubi->peb_size   = ubi->mtd->erasesize;
 654        ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
 655        ubi->flash_size = ubi->mtd->size;
 656
 657        if (mtd_can_have_bb(ubi->mtd)) {
 658                ubi->bad_allowed = 1;
 659                ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
 660        }
 661
 662        if (ubi->mtd->type == MTD_NORFLASH) {
 663                ubi_assert(ubi->mtd->writesize == 1);
 664                ubi->nor_flash = 1;
 665        }
 666
 667        ubi->min_io_size = ubi->mtd->writesize;
 668        ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
 669
 670        /*
 671         * Make sure minimal I/O unit is power of 2. Note, there is no
 672         * fundamental reason for this assumption. It is just an optimization
 673         * which allows us to avoid costly division operations.
 674         */
 675        if (!is_power_of_2(ubi->min_io_size)) {
 676                ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
 677                        ubi->min_io_size);
 678                return -EINVAL;
 679        }
 680
 681        ubi_assert(ubi->hdrs_min_io_size > 0);
 682        ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
 683        ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
 684
 685        ubi->max_write_size = ubi->mtd->writebufsize;
 686        /*
 687         * Maximum write size has to be greater or equivalent to min. I/O
 688         * size, and be multiple of min. I/O size.
 689         */
 690        if (ubi->max_write_size < ubi->min_io_size ||
 691            ubi->max_write_size % ubi->min_io_size ||
 692            !is_power_of_2(ubi->max_write_size)) {
 693                ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
 694                        ubi->max_write_size, ubi->min_io_size);
 695                return -EINVAL;
 696        }
 697
 698        /* Calculate default aligned sizes of EC and VID headers */
 699        ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
 700        ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
 701
 702        dbg_gen("min_io_size      %d", ubi->min_io_size);
 703        dbg_gen("max_write_size   %d", ubi->max_write_size);
 704        dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
 705        dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
 706        dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
 707
 708        if (ubi->vid_hdr_offset == 0)
 709                /* Default offset */
 710                ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
 711                                      ubi->ec_hdr_alsize;
 712        else {
 713                ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
 714                                                ~(ubi->hdrs_min_io_size - 1);
 715                ubi->vid_hdr_shift = ubi->vid_hdr_offset -
 716                                                ubi->vid_hdr_aloffset;
 717        }
 718
 719        /* Similar for the data offset */
 720        ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
 721        ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
 722
 723        dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
 724        dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
 725        dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
 726        dbg_gen("leb_start        %d", ubi->leb_start);
 727
 728        /* The shift must be aligned to 32-bit boundary */
 729        if (ubi->vid_hdr_shift % 4) {
 730                ubi_err(ubi, "unaligned VID header shift %d",
 731                        ubi->vid_hdr_shift);
 732                return -EINVAL;
 733        }
 734
 735        /* Check sanity */
 736        if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
 737            ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
 738            ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
 739            ubi->leb_start & (ubi->min_io_size - 1)) {
 740                ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
 741                        ubi->vid_hdr_offset, ubi->leb_start);
 742                return -EINVAL;
 743        }
 744
 745        /*
 746         * Set maximum amount of physical erroneous eraseblocks to be 10%.
 747         * Erroneous PEB are those which have read errors.
 748         */
 749        ubi->max_erroneous = ubi->peb_count / 10;
 750        if (ubi->max_erroneous < 16)
 751                ubi->max_erroneous = 16;
 752        dbg_gen("max_erroneous    %d", ubi->max_erroneous);
 753
 754        /*
 755         * It may happen that EC and VID headers are situated in one minimal
 756         * I/O unit. In this case we can only accept this UBI image in
 757         * read-only mode.
 758         */
 759        if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
 760                ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
 761                ubi->ro_mode = 1;
 762        }
 763
 764        ubi->leb_size = ubi->peb_size - ubi->leb_start;
 765
 766        if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
 767                ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
 768                        ubi->mtd->index);
 769                ubi->ro_mode = 1;
 770        }
 771
 772        /*
 773         * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
 774         * unfortunately, MTD does not provide this information. We should loop
 775         * over all physical eraseblocks and invoke mtd->block_is_bad() for
 776         * each physical eraseblock. So, we leave @ubi->bad_peb_count
 777         * uninitialized so far.
 778         */
 779
 780        return 0;
 781}
 782
 783/**
 784 * autoresize - re-size the volume which has the "auto-resize" flag set.
 785 * @ubi: UBI device description object
 786 * @vol_id: ID of the volume to re-size
 787 *
 788 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
 789 * the volume table to the largest possible size. See comments in ubi-header.h
 790 * for more description of the flag. Returns zero in case of success and a
 791 * negative error code in case of failure.
 792 */
 793static int autoresize(struct ubi_device *ubi, int vol_id)
 794{
 795        struct ubi_volume_desc desc;
 796        struct ubi_volume *vol = ubi->volumes[vol_id];
 797        int err, old_reserved_pebs = vol->reserved_pebs;
 798
 799        if (ubi->ro_mode) {
 800                ubi_warn(ubi, "skip auto-resize because of R/O mode");
 801                return 0;
 802        }
 803
 804        /*
 805         * Clear the auto-resize flag in the volume in-memory copy of the
 806         * volume table, and 'ubi_resize_volume()' will propagate this change
 807         * to the flash.
 808         */
 809        ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
 810
 811        if (ubi->avail_pebs == 0) {
 812                struct ubi_vtbl_record vtbl_rec;
 813
 814                /*
 815                 * No available PEBs to re-size the volume, clear the flag on
 816                 * flash and exit.
 817                 */
 818                vtbl_rec = ubi->vtbl[vol_id];
 819                err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
 820                if (err)
 821                        ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
 822                                vol_id);
 823        } else {
 824                desc.vol = vol;
 825                err = ubi_resize_volume(&desc,
 826                                        old_reserved_pebs + ubi->avail_pebs);
 827                if (err)
 828                        ubi_err(ubi, "cannot auto-resize volume %d",
 829                                vol_id);
 830        }
 831
 832        if (err)
 833                return err;
 834
 835        ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
 836                vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
 837        return 0;
 838}
 839
 840/**
 841 * ubi_attach_mtd_dev - attach an MTD device.
 842 * @mtd: MTD device description object
 843 * @ubi_num: number to assign to the new UBI device
 844 * @vid_hdr_offset: VID header offset
 845 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 846 *
 847 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
 848 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
 849 * which case this function finds a vacant device number and assigns it
 850 * automatically. Returns the new UBI device number in case of success and a
 851 * negative error code in case of failure.
 852 *
 853 * Note, the invocations of this function has to be serialized by the
 854 * @ubi_devices_mutex.
 855 */
 856int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
 857                       int vid_hdr_offset, int max_beb_per1024)
 858{
 859        struct ubi_device *ubi;
 860        int i, err, ref = 0;
 861
 862        if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
 863                return -EINVAL;
 864
 865        if (!max_beb_per1024)
 866                max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
 867
 868        /*
 869         * Check if we already have the same MTD device attached.
 870         *
 871         * Note, this function assumes that UBI devices creations and deletions
 872         * are serialized, so it does not take the &ubi_devices_lock.
 873         */
 874        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 875                ubi = ubi_devices[i];
 876                if (ubi && mtd->index == ubi->mtd->index) {
 877                        pr_err("ubi: mtd%d is already attached to ubi%d",
 878                                mtd->index, i);
 879                        return -EEXIST;
 880                }
 881        }
 882
 883        /*
 884         * Make sure this MTD device is not emulated on top of an UBI volume
 885         * already. Well, generally this recursion works fine, but there are
 886         * different problems like the UBI module takes a reference to itself
 887         * by attaching (and thus, opening) the emulated MTD device. This
 888         * results in inability to unload the module. And in general it makes
 889         * no sense to attach emulated MTD devices, so we prohibit this.
 890         */
 891        if (mtd->type == MTD_UBIVOLUME) {
 892                pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI",
 893                        mtd->index);
 894                return -EINVAL;
 895        }
 896
 897        if (ubi_num == UBI_DEV_NUM_AUTO) {
 898                /* Search for an empty slot in the @ubi_devices array */
 899                for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
 900                        if (!ubi_devices[ubi_num])
 901                                break;
 902                if (ubi_num == UBI_MAX_DEVICES) {
 903                        pr_err("ubi: only %d UBI devices may be created",
 904                                UBI_MAX_DEVICES);
 905                        return -ENFILE;
 906                }
 907        } else {
 908                if (ubi_num >= UBI_MAX_DEVICES)
 909                        return -EINVAL;
 910
 911                /* Make sure ubi_num is not busy */
 912                if (ubi_devices[ubi_num]) {
 913                        pr_err("ubi: ubi%i already exists", ubi_num);
 914                        return -EEXIST;
 915                }
 916        }
 917
 918        ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
 919        if (!ubi)
 920                return -ENOMEM;
 921
 922        ubi->mtd = mtd;
 923        ubi->ubi_num = ubi_num;
 924        ubi->vid_hdr_offset = vid_hdr_offset;
 925        ubi->autoresize_vol_id = -1;
 926
 927#ifdef CONFIG_MTD_UBI_FASTMAP
 928        ubi->fm_pool.used = ubi->fm_pool.size = 0;
 929        ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
 930
 931        /*
 932         * fm_pool.max_size is 5% of the total number of PEBs but it's also
 933         * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
 934         */
 935        ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
 936                ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
 937        ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
 938                UBI_FM_MIN_POOL_SIZE);
 939
 940        ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
 941        ubi->fm_disabled = !fm_autoconvert;
 942        if (fm_debug)
 943                ubi_enable_dbg_chk_fastmap(ubi);
 944
 945        if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
 946            <= UBI_FM_MAX_START) {
 947                ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
 948                        UBI_FM_MAX_START);
 949                ubi->fm_disabled = 1;
 950        }
 951
 952        ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
 953        ubi_msg(ubi, "default fastmap WL pool size: %d",
 954                ubi->fm_wl_pool.max_size);
 955#else
 956        ubi->fm_disabled = 1;
 957#endif
 958        mutex_init(&ubi->buf_mutex);
 959        mutex_init(&ubi->ckvol_mutex);
 960        mutex_init(&ubi->device_mutex);
 961        spin_lock_init(&ubi->volumes_lock);
 962        init_rwsem(&ubi->fm_protect);
 963        init_rwsem(&ubi->fm_eba_sem);
 964
 965        ubi_msg(ubi, "attaching mtd%d", mtd->index);
 966
 967        err = io_init(ubi, max_beb_per1024);
 968        if (err)
 969                goto out_free;
 970
 971        err = -ENOMEM;
 972        ubi->peb_buf = vmalloc(ubi->peb_size);
 973        if (!ubi->peb_buf)
 974                goto out_free;
 975
 976#ifdef CONFIG_MTD_UBI_FASTMAP
 977        ubi->fm_size = ubi_calc_fm_size(ubi);
 978        ubi->fm_buf = vzalloc(ubi->fm_size);
 979        if (!ubi->fm_buf)
 980                goto out_free;
 981#endif
 982        err = ubi_attach(ubi, 0);
 983        if (err) {
 984                ubi_err(ubi, "failed to attach mtd%d, error %d",
 985                        mtd->index, err);
 986                goto out_free;
 987        }
 988
 989        if (ubi->autoresize_vol_id != -1) {
 990                err = autoresize(ubi, ubi->autoresize_vol_id);
 991                if (err)
 992                        goto out_detach;
 993        }
 994
 995        /* Make device "available" before it becomes accessible via sysfs */
 996        ubi_devices[ubi_num] = ubi;
 997
 998        err = uif_init(ubi, &ref);
 999        if (err)
1000                goto out_detach;
1001
1002        err = ubi_debugfs_init_dev(ubi);
1003        if (err)
1004                goto out_uif;
1005
1006        ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1007        if (IS_ERR(ubi->bgt_thread)) {
1008                err = PTR_ERR(ubi->bgt_thread);
1009                ubi_err(ubi, "cannot spawn \"%s\", error %d",
1010                        ubi->bgt_name, err);
1011                goto out_debugfs;
1012        }
1013
1014        ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1015                mtd->index, mtd->name, ubi->flash_size >> 20);
1016        ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1017                ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1018        ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1019                ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1020        ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1021                ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1022        ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1023                ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1024        ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1025                ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1026                ubi->vtbl_slots);
1027        ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1028                ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1029                ubi->image_seq);
1030        ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1031                ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1032
1033        /*
1034         * The below lock makes sure we do not race with 'ubi_thread()' which
1035         * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1036         */
1037        spin_lock(&ubi->wl_lock);
1038        ubi->thread_enabled = 1;
1039        wake_up_process(ubi->bgt_thread);
1040        spin_unlock(&ubi->wl_lock);
1041
1042        ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1043        return ubi_num;
1044
1045out_debugfs:
1046        ubi_debugfs_exit_dev(ubi);
1047out_uif:
1048        get_device(&ubi->dev);
1049        ubi_assert(ref);
1050        uif_close(ubi);
1051out_detach:
1052        ubi_devices[ubi_num] = NULL;
1053        ubi_wl_close(ubi);
1054        ubi_free_internal_volumes(ubi);
1055        vfree(ubi->vtbl);
1056out_free:
1057        vfree(ubi->peb_buf);
1058        vfree(ubi->fm_buf);
1059        if (ref)
1060                put_device(&ubi->dev);
1061        else
1062                kfree(ubi);
1063        return err;
1064}
1065
1066/**
1067 * ubi_detach_mtd_dev - detach an MTD device.
1068 * @ubi_num: UBI device number to detach from
1069 * @anyway: detach MTD even if device reference count is not zero
1070 *
1071 * This function destroys an UBI device number @ubi_num and detaches the
1072 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1073 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1074 * exist.
1075 *
1076 * Note, the invocations of this function has to be serialized by the
1077 * @ubi_devices_mutex.
1078 */
1079int ubi_detach_mtd_dev(int ubi_num, int anyway)
1080{
1081        struct ubi_device *ubi;
1082
1083        if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1084                return -EINVAL;
1085
1086        ubi = ubi_get_device(ubi_num);
1087        if (!ubi)
1088                return -EINVAL;
1089
1090        spin_lock(&ubi_devices_lock);
1091        put_device(&ubi->dev);
1092        ubi->ref_count -= 1;
1093        if (ubi->ref_count) {
1094                if (!anyway) {
1095                        spin_unlock(&ubi_devices_lock);
1096                        return -EBUSY;
1097                }
1098                /* This may only happen if there is a bug */
1099                ubi_err(ubi, "%s reference count %d, destroy anyway",
1100                        ubi->ubi_name, ubi->ref_count);
1101        }
1102        ubi_devices[ubi_num] = NULL;
1103        spin_unlock(&ubi_devices_lock);
1104
1105        ubi_assert(ubi_num == ubi->ubi_num);
1106        ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1107        ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1108#ifdef CONFIG_MTD_UBI_FASTMAP
1109        /* If we don't write a new fastmap at detach time we lose all
1110         * EC updates that have been made since the last written fastmap.
1111         * In case of fastmap debugging we omit the update to simulate an
1112         * unclean shutdown. */
1113        if (!ubi_dbg_chk_fastmap(ubi))
1114                ubi_update_fastmap(ubi);
1115#endif
1116        /*
1117         * Before freeing anything, we have to stop the background thread to
1118         * prevent it from doing anything on this device while we are freeing.
1119         */
1120        if (ubi->bgt_thread)
1121                kthread_stop(ubi->bgt_thread);
1122
1123        /*
1124         * Get a reference to the device in order to prevent 'dev_release()'
1125         * from freeing the @ubi object.
1126         */
1127        get_device(&ubi->dev);
1128
1129        ubi_debugfs_exit_dev(ubi);
1130        uif_close(ubi);
1131
1132        ubi_wl_close(ubi);
1133        ubi_free_internal_volumes(ubi);
1134        vfree(ubi->vtbl);
1135        put_mtd_device(ubi->mtd);
1136        vfree(ubi->peb_buf);
1137        vfree(ubi->fm_buf);
1138        ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1139        put_device(&ubi->dev);
1140        return 0;
1141}
1142
1143/**
1144 * open_mtd_by_chdev - open an MTD device by its character device node path.
1145 * @mtd_dev: MTD character device node path
1146 *
1147 * This helper function opens an MTD device by its character node device path.
1148 * Returns MTD device description object in case of success and a negative
1149 * error code in case of failure.
1150 */
1151static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1152{
1153        int err, minor;
1154        struct path path;
1155        struct kstat stat;
1156
1157        /* Probably this is an MTD character device node path */
1158        err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1159        if (err)
1160                return ERR_PTR(err);
1161
1162        err = vfs_getattr(&path, &stat);
1163        path_put(&path);
1164        if (err)
1165                return ERR_PTR(err);
1166
1167        /* MTD device number is defined by the major / minor numbers */
1168        if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1169                return ERR_PTR(-EINVAL);
1170
1171        minor = MINOR(stat.rdev);
1172
1173        if (minor & 1)
1174                /*
1175                 * Just do not think the "/dev/mtdrX" devices support is need,
1176                 * so do not support them to avoid doing extra work.
1177                 */
1178                return ERR_PTR(-EINVAL);
1179
1180        return get_mtd_device(NULL, minor / 2);
1181}
1182
1183/**
1184 * open_mtd_device - open MTD device by name, character device path, or number.
1185 * @mtd_dev: name, character device node path, or MTD device device number
1186 *
1187 * This function tries to open and MTD device described by @mtd_dev string,
1188 * which is first treated as ASCII MTD device number, and if it is not true, it
1189 * is treated as MTD device name, and if that is also not true, it is treated
1190 * as MTD character device node path. Returns MTD device description object in
1191 * case of success and a negative error code in case of failure.
1192 */
1193static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1194{
1195        struct mtd_info *mtd;
1196        int mtd_num;
1197        char *endp;
1198
1199        mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1200        if (*endp != '\0' || mtd_dev == endp) {
1201                /*
1202                 * This does not look like an ASCII integer, probably this is
1203                 * MTD device name.
1204                 */
1205                mtd = get_mtd_device_nm(mtd_dev);
1206                if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1207                        /* Probably this is an MTD character device node path */
1208                        mtd = open_mtd_by_chdev(mtd_dev);
1209        } else
1210                mtd = get_mtd_device(NULL, mtd_num);
1211
1212        return mtd;
1213}
1214
1215static int __init ubi_init(void)
1216{
1217        int err, i, k;
1218
1219        /* Ensure that EC and VID headers have correct size */
1220        BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1221        BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1222
1223        if (mtd_devs > UBI_MAX_DEVICES) {
1224                pr_err("UBI error: too many MTD devices, maximum is %d",
1225                       UBI_MAX_DEVICES);
1226                return -EINVAL;
1227        }
1228
1229        /* Create base sysfs directory and sysfs files */
1230        err = class_register(&ubi_class);
1231        if (err < 0)
1232                return err;
1233
1234        err = misc_register(&ubi_ctrl_cdev);
1235        if (err) {
1236                pr_err("UBI error: cannot register device");
1237                goto out;
1238        }
1239
1240        ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1241                                              sizeof(struct ubi_wl_entry),
1242                                              0, 0, NULL);
1243        if (!ubi_wl_entry_slab) {
1244                err = -ENOMEM;
1245                goto out_dev_unreg;
1246        }
1247
1248        err = ubi_debugfs_init();
1249        if (err)
1250                goto out_slab;
1251
1252
1253        /* Attach MTD devices */
1254        for (i = 0; i < mtd_devs; i++) {
1255                struct mtd_dev_param *p = &mtd_dev_param[i];
1256                struct mtd_info *mtd;
1257
1258                cond_resched();
1259
1260                mtd = open_mtd_device(p->name);
1261                if (IS_ERR(mtd)) {
1262                        err = PTR_ERR(mtd);
1263                        pr_err("UBI error: cannot open mtd %s, error %d",
1264                               p->name, err);
1265                        /* See comment below re-ubi_is_module(). */
1266                        if (ubi_is_module())
1267                                goto out_detach;
1268                        continue;
1269                }
1270
1271                mutex_lock(&ubi_devices_mutex);
1272                err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1273                                         p->vid_hdr_offs, p->max_beb_per1024);
1274                mutex_unlock(&ubi_devices_mutex);
1275                if (err < 0) {
1276                        pr_err("UBI error: cannot attach mtd%d",
1277                               mtd->index);
1278                        put_mtd_device(mtd);
1279
1280                        /*
1281                         * Originally UBI stopped initializing on any error.
1282                         * However, later on it was found out that this
1283                         * behavior is not very good when UBI is compiled into
1284                         * the kernel and the MTD devices to attach are passed
1285                         * through the command line. Indeed, UBI failure
1286                         * stopped whole boot sequence.
1287                         *
1288                         * To fix this, we changed the behavior for the
1289                         * non-module case, but preserved the old behavior for
1290                         * the module case, just for compatibility. This is a
1291                         * little inconsistent, though.
1292                         */
1293                        if (ubi_is_module())
1294                                goto out_detach;
1295                }
1296        }
1297
1298        err = ubiblock_init();
1299        if (err) {
1300                pr_err("UBI error: block: cannot initialize, error %d", err);
1301
1302                /* See comment above re-ubi_is_module(). */
1303                if (ubi_is_module())
1304                        goto out_detach;
1305        }
1306
1307        return 0;
1308
1309out_detach:
1310        for (k = 0; k < i; k++)
1311                if (ubi_devices[k]) {
1312                        mutex_lock(&ubi_devices_mutex);
1313                        ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1314                        mutex_unlock(&ubi_devices_mutex);
1315                }
1316        ubi_debugfs_exit();
1317out_slab:
1318        kmem_cache_destroy(ubi_wl_entry_slab);
1319out_dev_unreg:
1320        misc_deregister(&ubi_ctrl_cdev);
1321out:
1322        class_unregister(&ubi_class);
1323        pr_err("UBI error: cannot initialize UBI, error %d", err);
1324        return err;
1325}
1326late_initcall(ubi_init);
1327
1328static void __exit ubi_exit(void)
1329{
1330        int i;
1331
1332        ubiblock_exit();
1333
1334        for (i = 0; i < UBI_MAX_DEVICES; i++)
1335                if (ubi_devices[i]) {
1336                        mutex_lock(&ubi_devices_mutex);
1337                        ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1338                        mutex_unlock(&ubi_devices_mutex);
1339                }
1340        ubi_debugfs_exit();
1341        kmem_cache_destroy(ubi_wl_entry_slab);
1342        misc_deregister(&ubi_ctrl_cdev);
1343        class_unregister(&ubi_class);
1344}
1345module_exit(ubi_exit);
1346
1347/**
1348 * bytes_str_to_int - convert a number of bytes string into an integer.
1349 * @str: the string to convert
1350 *
1351 * This function returns positive resulting integer in case of success and a
1352 * negative error code in case of failure.
1353 */
1354static int __init bytes_str_to_int(const char *str)
1355{
1356        char *endp;
1357        unsigned long result;
1358
1359        result = simple_strtoul(str, &endp, 0);
1360        if (str == endp || result >= INT_MAX) {
1361                pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1362                return -EINVAL;
1363        }
1364
1365        switch (*endp) {
1366        case 'G':
1367                result *= 1024;
1368        case 'M':
1369                result *= 1024;
1370        case 'K':
1371                result *= 1024;
1372                if (endp[1] == 'i' && endp[2] == 'B')
1373                        endp += 2;
1374        case '\0':
1375                break;
1376        default:
1377                pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1378                return -EINVAL;
1379        }
1380
1381        return result;
1382}
1383
1384/**
1385 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1386 * @val: the parameter value to parse
1387 * @kp: not used
1388 *
1389 * This function returns zero in case of success and a negative error code in
1390 * case of error.
1391 */
1392static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1393{
1394        int i, len;
1395        struct mtd_dev_param *p;
1396        char buf[MTD_PARAM_LEN_MAX];
1397        char *pbuf = &buf[0];
1398        char *tokens[MTD_PARAM_MAX_COUNT], *token;
1399
1400        if (!val)
1401                return -EINVAL;
1402
1403        if (mtd_devs == UBI_MAX_DEVICES) {
1404                pr_err("UBI error: too many parameters, max. is %d\n",
1405                       UBI_MAX_DEVICES);
1406                return -EINVAL;
1407        }
1408
1409        len = strnlen(val, MTD_PARAM_LEN_MAX);
1410        if (len == MTD_PARAM_LEN_MAX) {
1411                pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1412                       val, MTD_PARAM_LEN_MAX);
1413                return -EINVAL;
1414        }
1415
1416        if (len == 0) {
1417                pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1418                return 0;
1419        }
1420
1421        strcpy(buf, val);
1422
1423        /* Get rid of the final newline */
1424        if (buf[len - 1] == '\n')
1425                buf[len - 1] = '\0';
1426
1427        for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1428                tokens[i] = strsep(&pbuf, ",");
1429
1430        if (pbuf) {
1431                pr_err("UBI error: too many arguments at \"%s\"\n", val);
1432                return -EINVAL;
1433        }
1434
1435        p = &mtd_dev_param[mtd_devs];
1436        strcpy(&p->name[0], tokens[0]);
1437
1438        token = tokens[1];
1439        if (token) {
1440                p->vid_hdr_offs = bytes_str_to_int(token);
1441
1442                if (p->vid_hdr_offs < 0)
1443                        return p->vid_hdr_offs;
1444        }
1445
1446        token = tokens[2];
1447        if (token) {
1448                int err = kstrtoint(token, 10, &p->max_beb_per1024);
1449
1450                if (err) {
1451                        pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1452                               token);
1453                        return -EINVAL;
1454                }
1455        }
1456
1457        token = tokens[3];
1458        if (token) {
1459                int err = kstrtoint(token, 10, &p->ubi_num);
1460
1461                if (err) {
1462                        pr_err("UBI error: bad value for ubi_num parameter: %s",
1463                               token);
1464                        return -EINVAL;
1465                }
1466        } else
1467                p->ubi_num = UBI_DEV_NUM_AUTO;
1468
1469        mtd_devs += 1;
1470        return 0;
1471}
1472
1473module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1474MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1475                      "Multiple \"mtd\" parameters may be specified.\n"
1476                      "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1477                      "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1478                      "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1479                      __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1480                      "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1481                      "\n"
1482                      "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1483                      "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1484                      "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1485                      "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1486                      "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1487#ifdef CONFIG_MTD_UBI_FASTMAP
1488module_param(fm_autoconvert, bool, 0644);
1489MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1490module_param(fm_debug, bool, 0);
1491MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1492#endif
1493MODULE_VERSION(__stringify(UBI_VERSION));
1494MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1495MODULE_AUTHOR("Artem Bityutskiy");
1496MODULE_LICENSE("GPL");
1497