linux/drivers/net/ethernet/marvell/mvneta.c
<<
>>
Prefs
   1/*
   2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
   3 *
   4 * Copyright (C) 2012 Marvell
   5 *
   6 * Rami Rosen <rosenr@marvell.com>
   7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
   8 *
   9 * This file is licensed under the terms of the GNU General Public
  10 * License version 2. This program is licensed "as is" without any
  11 * warranty of any kind, whether express or implied.
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/cpu.h>
  16#include <linux/etherdevice.h>
  17#include <linux/if_vlan.h>
  18#include <linux/inetdevice.h>
  19#include <linux/interrupt.h>
  20#include <linux/io.h>
  21#include <linux/kernel.h>
  22#include <linux/mbus.h>
  23#include <linux/module.h>
  24#include <linux/netdevice.h>
  25#include <linux/of.h>
  26#include <linux/of_address.h>
  27#include <linux/of_irq.h>
  28#include <linux/of_mdio.h>
  29#include <linux/of_net.h>
  30#include <linux/phy.h>
  31#include <linux/platform_device.h>
  32#include <linux/skbuff.h>
  33#include <net/hwbm.h>
  34#include "mvneta_bm.h"
  35#include <net/ip.h>
  36#include <net/ipv6.h>
  37#include <net/tso.h>
  38
  39/* Registers */
  40#define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
  41#define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
  42#define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT     4
  43#define      MVNETA_RXQ_SHORT_POOL_ID_MASK      0x30
  44#define      MVNETA_RXQ_LONG_POOL_ID_SHIFT      6
  45#define      MVNETA_RXQ_LONG_POOL_ID_MASK       0xc0
  46#define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
  47#define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
  48#define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
  49#define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
  50#define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
  51#define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
  52#define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
  53#define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
  54#define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
  55#define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
  56#define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
  57#define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
  58#define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
  59#define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)    (0x1700 + ((pool) << 2))
  60#define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT   3
  61#define      MVNETA_PORT_POOL_BUFFER_SZ_MASK    0xfff8
  62#define MVNETA_PORT_RX_RESET                    0x1cc0
  63#define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
  64#define MVNETA_PHY_ADDR                         0x2000
  65#define      MVNETA_PHY_ADDR_MASK               0x1f
  66#define MVNETA_MBUS_RETRY                       0x2010
  67#define MVNETA_UNIT_INTR_CAUSE                  0x2080
  68#define MVNETA_UNIT_CONTROL                     0x20B0
  69#define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
  70#define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
  71#define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
  72#define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
  73#define MVNETA_BASE_ADDR_ENABLE                 0x2290
  74#define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
  75#define MVNETA_PORT_CONFIG                      0x2400
  76#define      MVNETA_UNI_PROMISC_MODE            BIT(0)
  77#define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
  78#define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
  79#define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
  80#define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
  81#define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
  82#define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
  83#define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
  84#define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
  85                                                 MVNETA_DEF_RXQ_ARP(q)   | \
  86                                                 MVNETA_DEF_RXQ_TCP(q)   | \
  87                                                 MVNETA_DEF_RXQ_UDP(q)   | \
  88                                                 MVNETA_DEF_RXQ_BPDU(q)  | \
  89                                                 MVNETA_TX_UNSET_ERR_SUM | \
  90                                                 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  91#define MVNETA_PORT_CONFIG_EXTEND                0x2404
  92#define MVNETA_MAC_ADDR_LOW                      0x2414
  93#define MVNETA_MAC_ADDR_HIGH                     0x2418
  94#define MVNETA_SDMA_CONFIG                       0x241c
  95#define      MVNETA_SDMA_BRST_SIZE_16            4
  96#define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
  97#define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
  98#define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
  99#define      MVNETA_DESC_SWAP                    BIT(6)
 100#define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
 101#define MVNETA_PORT_STATUS                       0x2444
 102#define      MVNETA_TX_IN_PRGRS                  BIT(1)
 103#define      MVNETA_TX_FIFO_EMPTY                BIT(8)
 104#define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
 105#define MVNETA_SERDES_CFG                        0x24A0
 106#define      MVNETA_SGMII_SERDES_PROTO           0x0cc7
 107#define      MVNETA_QSGMII_SERDES_PROTO          0x0667
 108#define MVNETA_TYPE_PRIO                         0x24bc
 109#define      MVNETA_FORCE_UNI                    BIT(21)
 110#define MVNETA_TXQ_CMD_1                         0x24e4
 111#define MVNETA_TXQ_CMD                           0x2448
 112#define      MVNETA_TXQ_DISABLE_SHIFT            8
 113#define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
 114#define MVNETA_RX_DISCARD_FRAME_COUNT            0x2484
 115#define MVNETA_OVERRUN_FRAME_COUNT               0x2488
 116#define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
 117#define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
 118#define MVNETA_ACC_MODE                          0x2500
 119#define MVNETA_BM_ADDRESS                        0x2504
 120#define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
 121#define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
 122#define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
 123#define      MVNETA_CPU_RXQ_ACCESS(rxq)          BIT(rxq)
 124#define      MVNETA_CPU_TXQ_ACCESS(txq)          BIT(txq + 8)
 125#define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
 126
 127/* Exception Interrupt Port/Queue Cause register
 128 *
 129 * Their behavior depend of the mapping done using the PCPX2Q
 130 * registers. For a given CPU if the bit associated to a queue is not
 131 * set, then for the register a read from this CPU will always return
 132 * 0 and a write won't do anything
 133 */
 134
 135#define MVNETA_INTR_NEW_CAUSE                    0x25a0
 136#define MVNETA_INTR_NEW_MASK                     0x25a4
 137
 138/* bits  0..7  = TXQ SENT, one bit per queue.
 139 * bits  8..15 = RXQ OCCUP, one bit per queue.
 140 * bits 16..23 = RXQ FREE, one bit per queue.
 141 * bit  29 = OLD_REG_SUM, see old reg ?
 142 * bit  30 = TX_ERR_SUM, one bit for 4 ports
 143 * bit  31 = MISC_SUM,   one bit for 4 ports
 144 */
 145#define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
 146#define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
 147#define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
 148#define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
 149#define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
 150
 151#define MVNETA_INTR_OLD_CAUSE                    0x25a8
 152#define MVNETA_INTR_OLD_MASK                     0x25ac
 153
 154/* Data Path Port/Queue Cause Register */
 155#define MVNETA_INTR_MISC_CAUSE                   0x25b0
 156#define MVNETA_INTR_MISC_MASK                    0x25b4
 157
 158#define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
 159#define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
 160#define      MVNETA_CAUSE_PTP                    BIT(4)
 161
 162#define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
 163#define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
 164#define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
 165#define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
 166#define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
 167#define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
 168#define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
 169#define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
 170
 171#define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
 172#define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
 173#define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
 174
 175#define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
 176#define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
 177#define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
 178
 179#define MVNETA_INTR_ENABLE                       0x25b8
 180#define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
 181#define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
 182
 183#define MVNETA_RXQ_CMD                           0x2680
 184#define      MVNETA_RXQ_DISABLE_SHIFT            8
 185#define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
 186#define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
 187#define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
 188#define MVNETA_GMAC_CTRL_0                       0x2c00
 189#define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
 190#define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
 191#define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
 192#define MVNETA_GMAC_CTRL_2                       0x2c08
 193#define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
 194#define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
 195#define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
 196#define      MVNETA_GMAC2_PORT_RESET             BIT(6)
 197#define MVNETA_GMAC_STATUS                       0x2c10
 198#define      MVNETA_GMAC_LINK_UP                 BIT(0)
 199#define      MVNETA_GMAC_SPEED_1000              BIT(1)
 200#define      MVNETA_GMAC_SPEED_100               BIT(2)
 201#define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
 202#define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
 203#define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
 204#define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
 205#define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
 206#define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
 207#define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
 208#define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
 209#define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
 210#define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
 211#define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
 212#define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
 213#define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
 214#define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
 215#define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
 216#define MVNETA_MIB_COUNTERS_BASE                 0x3000
 217#define      MVNETA_MIB_LATE_COLLISION           0x7c
 218#define MVNETA_DA_FILT_SPEC_MCAST                0x3400
 219#define MVNETA_DA_FILT_OTH_MCAST                 0x3500
 220#define MVNETA_DA_FILT_UCAST_BASE                0x3600
 221#define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
 222#define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
 223#define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
 224#define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
 225#define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
 226#define      MVNETA_TXQ_DEC_SENT_SHIFT           16
 227#define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
 228#define      MVNETA_TXQ_SENT_DESC_SHIFT          16
 229#define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
 230#define MVNETA_PORT_TX_RESET                     0x3cf0
 231#define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
 232#define MVNETA_TX_MTU                            0x3e0c
 233#define MVNETA_TX_TOKEN_SIZE                     0x3e14
 234#define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
 235#define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
 236#define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
 237
 238#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK      0xff
 239
 240/* Descriptor ring Macros */
 241#define MVNETA_QUEUE_NEXT_DESC(q, index)        \
 242        (((index) < (q)->last_desc) ? ((index) + 1) : 0)
 243
 244/* Various constants */
 245
 246/* Coalescing */
 247#define MVNETA_TXDONE_COAL_PKTS         0       /* interrupt per packet */
 248#define MVNETA_RX_COAL_PKTS             32
 249#define MVNETA_RX_COAL_USEC             100
 250
 251/* The two bytes Marvell header. Either contains a special value used
 252 * by Marvell switches when a specific hardware mode is enabled (not
 253 * supported by this driver) or is filled automatically by zeroes on
 254 * the RX side. Those two bytes being at the front of the Ethernet
 255 * header, they allow to have the IP header aligned on a 4 bytes
 256 * boundary automatically: the hardware skips those two bytes on its
 257 * own.
 258 */
 259#define MVNETA_MH_SIZE                  2
 260
 261#define MVNETA_VLAN_TAG_LEN             4
 262
 263#define MVNETA_TX_CSUM_DEF_SIZE         1600
 264#define MVNETA_TX_CSUM_MAX_SIZE         9800
 265#define MVNETA_ACC_MODE_EXT1            1
 266#define MVNETA_ACC_MODE_EXT2            2
 267
 268#define MVNETA_MAX_DECODE_WIN           6
 269
 270/* Timeout constants */
 271#define MVNETA_TX_DISABLE_TIMEOUT_MSEC  1000
 272#define MVNETA_RX_DISABLE_TIMEOUT_MSEC  1000
 273#define MVNETA_TX_FIFO_EMPTY_TIMEOUT    10000
 274
 275#define MVNETA_TX_MTU_MAX               0x3ffff
 276
 277/* The RSS lookup table actually has 256 entries but we do not use
 278 * them yet
 279 */
 280#define MVNETA_RSS_LU_TABLE_SIZE        1
 281
 282/* TSO header size */
 283#define TSO_HEADER_SIZE 128
 284
 285/* Max number of Rx descriptors */
 286#define MVNETA_MAX_RXD 128
 287
 288/* Max number of Tx descriptors */
 289#define MVNETA_MAX_TXD 532
 290
 291/* Max number of allowed TCP segments for software TSO */
 292#define MVNETA_MAX_TSO_SEGS 100
 293
 294#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 295
 296/* descriptor aligned size */
 297#define MVNETA_DESC_ALIGNED_SIZE        32
 298
 299#define MVNETA_RX_PKT_SIZE(mtu) \
 300        ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
 301              ETH_HLEN + ETH_FCS_LEN,                        \
 302              cache_line_size())
 303
 304#define IS_TSO_HEADER(txq, addr) \
 305        ((addr >= txq->tso_hdrs_phys) && \
 306         (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
 307
 308#define MVNETA_RX_GET_BM_POOL_ID(rxd) \
 309        (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
 310
 311struct mvneta_statistic {
 312        unsigned short offset;
 313        unsigned short type;
 314        const char name[ETH_GSTRING_LEN];
 315};
 316
 317#define T_REG_32        32
 318#define T_REG_64        64
 319
 320static const struct mvneta_statistic mvneta_statistics[] = {
 321        { 0x3000, T_REG_64, "good_octets_received", },
 322        { 0x3010, T_REG_32, "good_frames_received", },
 323        { 0x3008, T_REG_32, "bad_octets_received", },
 324        { 0x3014, T_REG_32, "bad_frames_received", },
 325        { 0x3018, T_REG_32, "broadcast_frames_received", },
 326        { 0x301c, T_REG_32, "multicast_frames_received", },
 327        { 0x3050, T_REG_32, "unrec_mac_control_received", },
 328        { 0x3058, T_REG_32, "good_fc_received", },
 329        { 0x305c, T_REG_32, "bad_fc_received", },
 330        { 0x3060, T_REG_32, "undersize_received", },
 331        { 0x3064, T_REG_32, "fragments_received", },
 332        { 0x3068, T_REG_32, "oversize_received", },
 333        { 0x306c, T_REG_32, "jabber_received", },
 334        { 0x3070, T_REG_32, "mac_receive_error", },
 335        { 0x3074, T_REG_32, "bad_crc_event", },
 336        { 0x3078, T_REG_32, "collision", },
 337        { 0x307c, T_REG_32, "late_collision", },
 338        { 0x2484, T_REG_32, "rx_discard", },
 339        { 0x2488, T_REG_32, "rx_overrun", },
 340        { 0x3020, T_REG_32, "frames_64_octets", },
 341        { 0x3024, T_REG_32, "frames_65_to_127_octets", },
 342        { 0x3028, T_REG_32, "frames_128_to_255_octets", },
 343        { 0x302c, T_REG_32, "frames_256_to_511_octets", },
 344        { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
 345        { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
 346        { 0x3038, T_REG_64, "good_octets_sent", },
 347        { 0x3040, T_REG_32, "good_frames_sent", },
 348        { 0x3044, T_REG_32, "excessive_collision", },
 349        { 0x3048, T_REG_32, "multicast_frames_sent", },
 350        { 0x304c, T_REG_32, "broadcast_frames_sent", },
 351        { 0x3054, T_REG_32, "fc_sent", },
 352        { 0x300c, T_REG_32, "internal_mac_transmit_err", },
 353};
 354
 355struct mvneta_pcpu_stats {
 356        struct  u64_stats_sync syncp;
 357        u64     rx_packets;
 358        u64     rx_bytes;
 359        u64     tx_packets;
 360        u64     tx_bytes;
 361};
 362
 363struct mvneta_pcpu_port {
 364        /* Pointer to the shared port */
 365        struct mvneta_port      *pp;
 366
 367        /* Pointer to the CPU-local NAPI struct */
 368        struct napi_struct      napi;
 369
 370        /* Cause of the previous interrupt */
 371        u32                     cause_rx_tx;
 372};
 373
 374struct mvneta_port {
 375        u8 id;
 376        struct mvneta_pcpu_port __percpu        *ports;
 377        struct mvneta_pcpu_stats __percpu       *stats;
 378
 379        int pkt_size;
 380        unsigned int frag_size;
 381        void __iomem *base;
 382        struct mvneta_rx_queue *rxqs;
 383        struct mvneta_tx_queue *txqs;
 384        struct net_device *dev;
 385        struct hlist_node node_online;
 386        struct hlist_node node_dead;
 387        int rxq_def;
 388        /* Protect the access to the percpu interrupt registers,
 389         * ensuring that the configuration remains coherent.
 390         */
 391        spinlock_t lock;
 392        bool is_stopped;
 393
 394        /* Core clock */
 395        struct clk *clk;
 396        /* AXI clock */
 397        struct clk *clk_bus;
 398        u8 mcast_count[256];
 399        u16 tx_ring_size;
 400        u16 rx_ring_size;
 401
 402        struct mii_bus *mii_bus;
 403        phy_interface_t phy_interface;
 404        struct device_node *phy_node;
 405        unsigned int link;
 406        unsigned int duplex;
 407        unsigned int speed;
 408        unsigned int tx_csum_limit;
 409        unsigned int use_inband_status:1;
 410
 411        struct mvneta_bm *bm_priv;
 412        struct mvneta_bm_pool *pool_long;
 413        struct mvneta_bm_pool *pool_short;
 414        int bm_win_id;
 415
 416        u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
 417
 418        u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
 419};
 420
 421/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
 422 * layout of the transmit and reception DMA descriptors, and their
 423 * layout is therefore defined by the hardware design
 424 */
 425
 426#define MVNETA_TX_L3_OFF_SHIFT  0
 427#define MVNETA_TX_IP_HLEN_SHIFT 8
 428#define MVNETA_TX_L4_UDP        BIT(16)
 429#define MVNETA_TX_L3_IP6        BIT(17)
 430#define MVNETA_TXD_IP_CSUM      BIT(18)
 431#define MVNETA_TXD_Z_PAD        BIT(19)
 432#define MVNETA_TXD_L_DESC       BIT(20)
 433#define MVNETA_TXD_F_DESC       BIT(21)
 434#define MVNETA_TXD_FLZ_DESC     (MVNETA_TXD_Z_PAD  | \
 435                                 MVNETA_TXD_L_DESC | \
 436                                 MVNETA_TXD_F_DESC)
 437#define MVNETA_TX_L4_CSUM_FULL  BIT(30)
 438#define MVNETA_TX_L4_CSUM_NOT   BIT(31)
 439
 440#define MVNETA_RXD_ERR_CRC              0x0
 441#define MVNETA_RXD_BM_POOL_SHIFT        13
 442#define MVNETA_RXD_BM_POOL_MASK         (BIT(13) | BIT(14))
 443#define MVNETA_RXD_ERR_SUMMARY          BIT(16)
 444#define MVNETA_RXD_ERR_OVERRUN          BIT(17)
 445#define MVNETA_RXD_ERR_LEN              BIT(18)
 446#define MVNETA_RXD_ERR_RESOURCE         (BIT(17) | BIT(18))
 447#define MVNETA_RXD_ERR_CODE_MASK        (BIT(17) | BIT(18))
 448#define MVNETA_RXD_L3_IP4               BIT(25)
 449#define MVNETA_RXD_FIRST_LAST_DESC      (BIT(26) | BIT(27))
 450#define MVNETA_RXD_L4_CSUM_OK           BIT(30)
 451
 452#if defined(__LITTLE_ENDIAN)
 453struct mvneta_tx_desc {
 454        u32  command;           /* Options used by HW for packet transmitting.*/
 455        u16  reserverd1;        /* csum_l4 (for future use)             */
 456        u16  data_size;         /* Data size of transmitted packet in bytes */
 457        u32  buf_phys_addr;     /* Physical addr of transmitted buffer  */
 458        u32  reserved2;         /* hw_cmd - (for future use, PMT)       */
 459        u32  reserved3[4];      /* Reserved - (for future use)          */
 460};
 461
 462struct mvneta_rx_desc {
 463        u32  status;            /* Info about received packet           */
 464        u16  reserved1;         /* pnc_info - (for future use, PnC)     */
 465        u16  data_size;         /* Size of received packet in bytes     */
 466
 467        u32  buf_phys_addr;     /* Physical address of the buffer       */
 468        u32  reserved2;         /* pnc_flow_id  (for future use, PnC)   */
 469
 470        u32  buf_cookie;        /* cookie for access to RX buffer in rx path */
 471        u16  reserved3;         /* prefetch_cmd, for future use         */
 472        u16  reserved4;         /* csum_l4 - (for future use, PnC)      */
 473
 474        u32  reserved5;         /* pnc_extra PnC (for future use, PnC)  */
 475        u32  reserved6;         /* hw_cmd (for future use, PnC and HWF) */
 476};
 477#else
 478struct mvneta_tx_desc {
 479        u16  data_size;         /* Data size of transmitted packet in bytes */
 480        u16  reserverd1;        /* csum_l4 (for future use)             */
 481        u32  command;           /* Options used by HW for packet transmitting.*/
 482        u32  reserved2;         /* hw_cmd - (for future use, PMT)       */
 483        u32  buf_phys_addr;     /* Physical addr of transmitted buffer  */
 484        u32  reserved3[4];      /* Reserved - (for future use)          */
 485};
 486
 487struct mvneta_rx_desc {
 488        u16  data_size;         /* Size of received packet in bytes     */
 489        u16  reserved1;         /* pnc_info - (for future use, PnC)     */
 490        u32  status;            /* Info about received packet           */
 491
 492        u32  reserved2;         /* pnc_flow_id  (for future use, PnC)   */
 493        u32  buf_phys_addr;     /* Physical address of the buffer       */
 494
 495        u16  reserved4;         /* csum_l4 - (for future use, PnC)      */
 496        u16  reserved3;         /* prefetch_cmd, for future use         */
 497        u32  buf_cookie;        /* cookie for access to RX buffer in rx path */
 498
 499        u32  reserved5;         /* pnc_extra PnC (for future use, PnC)  */
 500        u32  reserved6;         /* hw_cmd (for future use, PnC and HWF) */
 501};
 502#endif
 503
 504struct mvneta_tx_queue {
 505        /* Number of this TX queue, in the range 0-7 */
 506        u8 id;
 507
 508        /* Number of TX DMA descriptors in the descriptor ring */
 509        int size;
 510
 511        /* Number of currently used TX DMA descriptor in the
 512         * descriptor ring
 513         */
 514        int count;
 515        int tx_stop_threshold;
 516        int tx_wake_threshold;
 517
 518        /* Array of transmitted skb */
 519        struct sk_buff **tx_skb;
 520
 521        /* Index of last TX DMA descriptor that was inserted */
 522        int txq_put_index;
 523
 524        /* Index of the TX DMA descriptor to be cleaned up */
 525        int txq_get_index;
 526
 527        u32 done_pkts_coal;
 528
 529        /* Virtual address of the TX DMA descriptors array */
 530        struct mvneta_tx_desc *descs;
 531
 532        /* DMA address of the TX DMA descriptors array */
 533        dma_addr_t descs_phys;
 534
 535        /* Index of the last TX DMA descriptor */
 536        int last_desc;
 537
 538        /* Index of the next TX DMA descriptor to process */
 539        int next_desc_to_proc;
 540
 541        /* DMA buffers for TSO headers */
 542        char *tso_hdrs;
 543
 544        /* DMA address of TSO headers */
 545        dma_addr_t tso_hdrs_phys;
 546
 547        /* Affinity mask for CPUs*/
 548        cpumask_t affinity_mask;
 549};
 550
 551struct mvneta_rx_queue {
 552        /* rx queue number, in the range 0-7 */
 553        u8 id;
 554
 555        /* num of rx descriptors in the rx descriptor ring */
 556        int size;
 557
 558        /* counter of times when mvneta_refill() failed */
 559        int missed;
 560
 561        u32 pkts_coal;
 562        u32 time_coal;
 563
 564        /* Virtual address of the RX DMA descriptors array */
 565        struct mvneta_rx_desc *descs;
 566
 567        /* DMA address of the RX DMA descriptors array */
 568        dma_addr_t descs_phys;
 569
 570        /* Index of the last RX DMA descriptor */
 571        int last_desc;
 572
 573        /* Index of the next RX DMA descriptor to process */
 574        int next_desc_to_proc;
 575};
 576
 577static enum cpuhp_state online_hpstate;
 578/* The hardware supports eight (8) rx queues, but we are only allowing
 579 * the first one to be used. Therefore, let's just allocate one queue.
 580 */
 581static int rxq_number = 8;
 582static int txq_number = 8;
 583
 584static int rxq_def;
 585
 586static int rx_copybreak __read_mostly = 256;
 587
 588/* HW BM need that each port be identify by a unique ID */
 589static int global_port_id;
 590
 591#define MVNETA_DRIVER_NAME "mvneta"
 592#define MVNETA_DRIVER_VERSION "1.0"
 593
 594/* Utility/helper methods */
 595
 596/* Write helper method */
 597static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
 598{
 599        writel(data, pp->base + offset);
 600}
 601
 602/* Read helper method */
 603static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
 604{
 605        return readl(pp->base + offset);
 606}
 607
 608/* Increment txq get counter */
 609static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
 610{
 611        txq->txq_get_index++;
 612        if (txq->txq_get_index == txq->size)
 613                txq->txq_get_index = 0;
 614}
 615
 616/* Increment txq put counter */
 617static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
 618{
 619        txq->txq_put_index++;
 620        if (txq->txq_put_index == txq->size)
 621                txq->txq_put_index = 0;
 622}
 623
 624
 625/* Clear all MIB counters */
 626static void mvneta_mib_counters_clear(struct mvneta_port *pp)
 627{
 628        int i;
 629        u32 dummy;
 630
 631        /* Perform dummy reads from MIB counters */
 632        for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
 633                dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
 634        dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
 635        dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
 636}
 637
 638/* Get System Network Statistics */
 639static struct rtnl_link_stats64 *
 640mvneta_get_stats64(struct net_device *dev,
 641                   struct rtnl_link_stats64 *stats)
 642{
 643        struct mvneta_port *pp = netdev_priv(dev);
 644        unsigned int start;
 645        int cpu;
 646
 647        for_each_possible_cpu(cpu) {
 648                struct mvneta_pcpu_stats *cpu_stats;
 649                u64 rx_packets;
 650                u64 rx_bytes;
 651                u64 tx_packets;
 652                u64 tx_bytes;
 653
 654                cpu_stats = per_cpu_ptr(pp->stats, cpu);
 655                do {
 656                        start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
 657                        rx_packets = cpu_stats->rx_packets;
 658                        rx_bytes   = cpu_stats->rx_bytes;
 659                        tx_packets = cpu_stats->tx_packets;
 660                        tx_bytes   = cpu_stats->tx_bytes;
 661                } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
 662
 663                stats->rx_packets += rx_packets;
 664                stats->rx_bytes   += rx_bytes;
 665                stats->tx_packets += tx_packets;
 666                stats->tx_bytes   += tx_bytes;
 667        }
 668
 669        stats->rx_errors        = dev->stats.rx_errors;
 670        stats->rx_dropped       = dev->stats.rx_dropped;
 671
 672        stats->tx_dropped       = dev->stats.tx_dropped;
 673
 674        return stats;
 675}
 676
 677/* Rx descriptors helper methods */
 678
 679/* Checks whether the RX descriptor having this status is both the first
 680 * and the last descriptor for the RX packet. Each RX packet is currently
 681 * received through a single RX descriptor, so not having each RX
 682 * descriptor with its first and last bits set is an error
 683 */
 684static int mvneta_rxq_desc_is_first_last(u32 status)
 685{
 686        return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
 687                MVNETA_RXD_FIRST_LAST_DESC;
 688}
 689
 690/* Add number of descriptors ready to receive new packets */
 691static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
 692                                          struct mvneta_rx_queue *rxq,
 693                                          int ndescs)
 694{
 695        /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
 696         * be added at once
 697         */
 698        while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
 699                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
 700                            (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
 701                             MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
 702                ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
 703        }
 704
 705        mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
 706                    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
 707}
 708
 709/* Get number of RX descriptors occupied by received packets */
 710static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
 711                                        struct mvneta_rx_queue *rxq)
 712{
 713        u32 val;
 714
 715        val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
 716        return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
 717}
 718
 719/* Update num of rx desc called upon return from rx path or
 720 * from mvneta_rxq_drop_pkts().
 721 */
 722static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
 723                                       struct mvneta_rx_queue *rxq,
 724                                       int rx_done, int rx_filled)
 725{
 726        u32 val;
 727
 728        if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
 729                val = rx_done |
 730                  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
 731                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
 732                return;
 733        }
 734
 735        /* Only 255 descriptors can be added at once */
 736        while ((rx_done > 0) || (rx_filled > 0)) {
 737                if (rx_done <= 0xff) {
 738                        val = rx_done;
 739                        rx_done = 0;
 740                } else {
 741                        val = 0xff;
 742                        rx_done -= 0xff;
 743                }
 744                if (rx_filled <= 0xff) {
 745                        val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
 746                        rx_filled = 0;
 747                } else {
 748                        val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
 749                        rx_filled -= 0xff;
 750                }
 751                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
 752        }
 753}
 754
 755/* Get pointer to next RX descriptor to be processed by SW */
 756static struct mvneta_rx_desc *
 757mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
 758{
 759        int rx_desc = rxq->next_desc_to_proc;
 760
 761        rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
 762        prefetch(rxq->descs + rxq->next_desc_to_proc);
 763        return rxq->descs + rx_desc;
 764}
 765
 766/* Change maximum receive size of the port. */
 767static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
 768{
 769        u32 val;
 770
 771        val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
 772        val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
 773        val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
 774                MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
 775        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
 776}
 777
 778
 779/* Set rx queue offset */
 780static void mvneta_rxq_offset_set(struct mvneta_port *pp,
 781                                  struct mvneta_rx_queue *rxq,
 782                                  int offset)
 783{
 784        u32 val;
 785
 786        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 787        val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
 788
 789        /* Offset is in */
 790        val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
 791        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 792}
 793
 794
 795/* Tx descriptors helper methods */
 796
 797/* Update HW with number of TX descriptors to be sent */
 798static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
 799                                     struct mvneta_tx_queue *txq,
 800                                     int pend_desc)
 801{
 802        u32 val;
 803
 804        /* Only 255 descriptors can be added at once ; Assume caller
 805         * process TX desriptors in quanta less than 256
 806         */
 807        val = pend_desc;
 808        mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
 809}
 810
 811/* Get pointer to next TX descriptor to be processed (send) by HW */
 812static struct mvneta_tx_desc *
 813mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
 814{
 815        int tx_desc = txq->next_desc_to_proc;
 816
 817        txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
 818        return txq->descs + tx_desc;
 819}
 820
 821/* Release the last allocated TX descriptor. Useful to handle DMA
 822 * mapping failures in the TX path.
 823 */
 824static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
 825{
 826        if (txq->next_desc_to_proc == 0)
 827                txq->next_desc_to_proc = txq->last_desc - 1;
 828        else
 829                txq->next_desc_to_proc--;
 830}
 831
 832/* Set rxq buf size */
 833static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
 834                                    struct mvneta_rx_queue *rxq,
 835                                    int buf_size)
 836{
 837        u32 val;
 838
 839        val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
 840
 841        val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
 842        val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
 843
 844        mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
 845}
 846
 847/* Disable buffer management (BM) */
 848static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
 849                                  struct mvneta_rx_queue *rxq)
 850{
 851        u32 val;
 852
 853        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 854        val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
 855        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 856}
 857
 858/* Enable buffer management (BM) */
 859static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
 860                                 struct mvneta_rx_queue *rxq)
 861{
 862        u32 val;
 863
 864        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 865        val |= MVNETA_RXQ_HW_BUF_ALLOC;
 866        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 867}
 868
 869/* Notify HW about port's assignment of pool for bigger packets */
 870static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
 871                                     struct mvneta_rx_queue *rxq)
 872{
 873        u32 val;
 874
 875        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 876        val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
 877        val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
 878
 879        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 880}
 881
 882/* Notify HW about port's assignment of pool for smaller packets */
 883static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
 884                                      struct mvneta_rx_queue *rxq)
 885{
 886        u32 val;
 887
 888        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 889        val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
 890        val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
 891
 892        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 893}
 894
 895/* Set port's receive buffer size for assigned BM pool */
 896static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
 897                                              int buf_size,
 898                                              u8 pool_id)
 899{
 900        u32 val;
 901
 902        if (!IS_ALIGNED(buf_size, 8)) {
 903                dev_warn(pp->dev->dev.parent,
 904                         "illegal buf_size value %d, round to %d\n",
 905                         buf_size, ALIGN(buf_size, 8));
 906                buf_size = ALIGN(buf_size, 8);
 907        }
 908
 909        val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
 910        val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
 911        mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
 912}
 913
 914/* Configure MBUS window in order to enable access BM internal SRAM */
 915static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
 916                                  u8 target, u8 attr)
 917{
 918        u32 win_enable, win_protect;
 919        int i;
 920
 921        win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
 922
 923        if (pp->bm_win_id < 0) {
 924                /* Find first not occupied window */
 925                for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
 926                        if (win_enable & (1 << i)) {
 927                                pp->bm_win_id = i;
 928                                break;
 929                        }
 930                }
 931                if (i == MVNETA_MAX_DECODE_WIN)
 932                        return -ENOMEM;
 933        } else {
 934                i = pp->bm_win_id;
 935        }
 936
 937        mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
 938        mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
 939
 940        if (i < 4)
 941                mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
 942
 943        mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
 944                    (attr << 8) | target);
 945
 946        mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
 947
 948        win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
 949        win_protect |= 3 << (2 * i);
 950        mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
 951
 952        win_enable &= ~(1 << i);
 953        mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
 954
 955        return 0;
 956}
 957
 958/* Assign and initialize pools for port. In case of fail
 959 * buffer manager will remain disabled for current port.
 960 */
 961static int mvneta_bm_port_init(struct platform_device *pdev,
 962                               struct mvneta_port *pp)
 963{
 964        struct device_node *dn = pdev->dev.of_node;
 965        u32 long_pool_id, short_pool_id, wsize;
 966        u8 target, attr;
 967        int err;
 968
 969        /* Get BM window information */
 970        err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
 971                                         &target, &attr);
 972        if (err < 0)
 973                return err;
 974
 975        pp->bm_win_id = -1;
 976
 977        /* Open NETA -> BM window */
 978        err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
 979                                     target, attr);
 980        if (err < 0) {
 981                netdev_info(pp->dev, "fail to configure mbus window to BM\n");
 982                return err;
 983        }
 984
 985        if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
 986                netdev_info(pp->dev, "missing long pool id\n");
 987                return -EINVAL;
 988        }
 989
 990        /* Create port's long pool depending on mtu */
 991        pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
 992                                           MVNETA_BM_LONG, pp->id,
 993                                           MVNETA_RX_PKT_SIZE(pp->dev->mtu));
 994        if (!pp->pool_long) {
 995                netdev_info(pp->dev, "fail to obtain long pool for port\n");
 996                return -ENOMEM;
 997        }
 998
 999        pp->pool_long->port_map |= 1 << pp->id;
1000
1001        mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1002                                   pp->pool_long->id);
1003
1004        /* If short pool id is not defined, assume using single pool */
1005        if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1006                short_pool_id = long_pool_id;
1007
1008        /* Create port's short pool */
1009        pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1010                                            MVNETA_BM_SHORT, pp->id,
1011                                            MVNETA_BM_SHORT_PKT_SIZE);
1012        if (!pp->pool_short) {
1013                netdev_info(pp->dev, "fail to obtain short pool for port\n");
1014                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1015                return -ENOMEM;
1016        }
1017
1018        if (short_pool_id != long_pool_id) {
1019                pp->pool_short->port_map |= 1 << pp->id;
1020                mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1021                                           pp->pool_short->id);
1022        }
1023
1024        return 0;
1025}
1026
1027/* Update settings of a pool for bigger packets */
1028static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1029{
1030        struct mvneta_bm_pool *bm_pool = pp->pool_long;
1031        struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1032        int num;
1033
1034        /* Release all buffers from long pool */
1035        mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1036        if (hwbm_pool->buf_num) {
1037                WARN(1, "cannot free all buffers in pool %d\n",
1038                     bm_pool->id);
1039                goto bm_mtu_err;
1040        }
1041
1042        bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1043        bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1044        hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1045                        SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1046
1047        /* Fill entire long pool */
1048        num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1049        if (num != hwbm_pool->size) {
1050                WARN(1, "pool %d: %d of %d allocated\n",
1051                     bm_pool->id, num, hwbm_pool->size);
1052                goto bm_mtu_err;
1053        }
1054        mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1055
1056        return;
1057
1058bm_mtu_err:
1059        mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1060        mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1061
1062        pp->bm_priv = NULL;
1063        mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1064        netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1065}
1066
1067/* Start the Ethernet port RX and TX activity */
1068static void mvneta_port_up(struct mvneta_port *pp)
1069{
1070        int queue;
1071        u32 q_map;
1072
1073        /* Enable all initialized TXs. */
1074        q_map = 0;
1075        for (queue = 0; queue < txq_number; queue++) {
1076                struct mvneta_tx_queue *txq = &pp->txqs[queue];
1077                if (txq->descs != NULL)
1078                        q_map |= (1 << queue);
1079        }
1080        mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1081
1082        /* Enable all initialized RXQs. */
1083        for (queue = 0; queue < rxq_number; queue++) {
1084                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1085
1086                if (rxq->descs != NULL)
1087                        q_map |= (1 << queue);
1088        }
1089        mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1090}
1091
1092/* Stop the Ethernet port activity */
1093static void mvneta_port_down(struct mvneta_port *pp)
1094{
1095        u32 val;
1096        int count;
1097
1098        /* Stop Rx port activity. Check port Rx activity. */
1099        val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1100
1101        /* Issue stop command for active channels only */
1102        if (val != 0)
1103                mvreg_write(pp, MVNETA_RXQ_CMD,
1104                            val << MVNETA_RXQ_DISABLE_SHIFT);
1105
1106        /* Wait for all Rx activity to terminate. */
1107        count = 0;
1108        do {
1109                if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1110                        netdev_warn(pp->dev,
1111                                    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1112                                    val);
1113                        break;
1114                }
1115                mdelay(1);
1116
1117                val = mvreg_read(pp, MVNETA_RXQ_CMD);
1118        } while (val & MVNETA_RXQ_ENABLE_MASK);
1119
1120        /* Stop Tx port activity. Check port Tx activity. Issue stop
1121         * command for active channels only
1122         */
1123        val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1124
1125        if (val != 0)
1126                mvreg_write(pp, MVNETA_TXQ_CMD,
1127                            (val << MVNETA_TXQ_DISABLE_SHIFT));
1128
1129        /* Wait for all Tx activity to terminate. */
1130        count = 0;
1131        do {
1132                if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1133                        netdev_warn(pp->dev,
1134                                    "TIMEOUT for TX stopped status=0x%08x\n",
1135                                    val);
1136                        break;
1137                }
1138                mdelay(1);
1139
1140                /* Check TX Command reg that all Txqs are stopped */
1141                val = mvreg_read(pp, MVNETA_TXQ_CMD);
1142
1143        } while (val & MVNETA_TXQ_ENABLE_MASK);
1144
1145        /* Double check to verify that TX FIFO is empty */
1146        count = 0;
1147        do {
1148                if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1149                        netdev_warn(pp->dev,
1150                                    "TX FIFO empty timeout status=0x%08x\n",
1151                                    val);
1152                        break;
1153                }
1154                mdelay(1);
1155
1156                val = mvreg_read(pp, MVNETA_PORT_STATUS);
1157        } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1158                 (val & MVNETA_TX_IN_PRGRS));
1159
1160        udelay(200);
1161}
1162
1163/* Enable the port by setting the port enable bit of the MAC control register */
1164static void mvneta_port_enable(struct mvneta_port *pp)
1165{
1166        u32 val;
1167
1168        /* Enable port */
1169        val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1170        val |= MVNETA_GMAC0_PORT_ENABLE;
1171        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1172}
1173
1174/* Disable the port and wait for about 200 usec before retuning */
1175static void mvneta_port_disable(struct mvneta_port *pp)
1176{
1177        u32 val;
1178
1179        /* Reset the Enable bit in the Serial Control Register */
1180        val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1181        val &= ~MVNETA_GMAC0_PORT_ENABLE;
1182        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1183
1184        udelay(200);
1185}
1186
1187/* Multicast tables methods */
1188
1189/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1190static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1191{
1192        int offset;
1193        u32 val;
1194
1195        if (queue == -1) {
1196                val = 0;
1197        } else {
1198                val = 0x1 | (queue << 1);
1199                val |= (val << 24) | (val << 16) | (val << 8);
1200        }
1201
1202        for (offset = 0; offset <= 0xc; offset += 4)
1203                mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1204}
1205
1206/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1207static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1208{
1209        int offset;
1210        u32 val;
1211
1212        if (queue == -1) {
1213                val = 0;
1214        } else {
1215                val = 0x1 | (queue << 1);
1216                val |= (val << 24) | (val << 16) | (val << 8);
1217        }
1218
1219        for (offset = 0; offset <= 0xfc; offset += 4)
1220                mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1221
1222}
1223
1224/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1225static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1226{
1227        int offset;
1228        u32 val;
1229
1230        if (queue == -1) {
1231                memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1232                val = 0;
1233        } else {
1234                memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1235                val = 0x1 | (queue << 1);
1236                val |= (val << 24) | (val << 16) | (val << 8);
1237        }
1238
1239        for (offset = 0; offset <= 0xfc; offset += 4)
1240                mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1241}
1242
1243static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1244{
1245        u32 val;
1246
1247        if (enable) {
1248                val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1249                val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1250                         MVNETA_GMAC_FORCE_LINK_DOWN |
1251                         MVNETA_GMAC_AN_FLOW_CTRL_EN);
1252                val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1253                       MVNETA_GMAC_AN_SPEED_EN |
1254                       MVNETA_GMAC_AN_DUPLEX_EN;
1255                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1256
1257                val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1258                val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1259                mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1260
1261                val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1262                val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1263                mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1264        } else {
1265                val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1266                val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1267                       MVNETA_GMAC_AN_SPEED_EN |
1268                       MVNETA_GMAC_AN_DUPLEX_EN);
1269                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1270
1271                val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1272                val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1273                mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1274
1275                val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1276                val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1277                mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1278        }
1279}
1280
1281static void mvneta_percpu_unmask_interrupt(void *arg)
1282{
1283        struct mvneta_port *pp = arg;
1284
1285        /* All the queue are unmasked, but actually only the ones
1286         * mapped to this CPU will be unmasked
1287         */
1288        mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1289                    MVNETA_RX_INTR_MASK_ALL |
1290                    MVNETA_TX_INTR_MASK_ALL |
1291                    MVNETA_MISCINTR_INTR_MASK);
1292}
1293
1294static void mvneta_percpu_mask_interrupt(void *arg)
1295{
1296        struct mvneta_port *pp = arg;
1297
1298        /* All the queue are masked, but actually only the ones
1299         * mapped to this CPU will be masked
1300         */
1301        mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1302        mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1303        mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1304}
1305
1306static void mvneta_percpu_clear_intr_cause(void *arg)
1307{
1308        struct mvneta_port *pp = arg;
1309
1310        /* All the queue are cleared, but actually only the ones
1311         * mapped to this CPU will be cleared
1312         */
1313        mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1314        mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1315        mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1316}
1317
1318/* This method sets defaults to the NETA port:
1319 *      Clears interrupt Cause and Mask registers.
1320 *      Clears all MAC tables.
1321 *      Sets defaults to all registers.
1322 *      Resets RX and TX descriptor rings.
1323 *      Resets PHY.
1324 * This method can be called after mvneta_port_down() to return the port
1325 *      settings to defaults.
1326 */
1327static void mvneta_defaults_set(struct mvneta_port *pp)
1328{
1329        int cpu;
1330        int queue;
1331        u32 val;
1332        int max_cpu = num_present_cpus();
1333
1334        /* Clear all Cause registers */
1335        on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1336
1337        /* Mask all interrupts */
1338        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1339        mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1340
1341        /* Enable MBUS Retry bit16 */
1342        mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1343
1344        /* Set CPU queue access map. CPUs are assigned to the RX and
1345         * TX queues modulo their number. If there is only one TX
1346         * queue then it is assigned to the CPU associated to the
1347         * default RX queue.
1348         */
1349        for_each_present_cpu(cpu) {
1350                int rxq_map = 0, txq_map = 0;
1351                int rxq, txq;
1352
1353                for (rxq = 0; rxq < rxq_number; rxq++)
1354                        if ((rxq % max_cpu) == cpu)
1355                                rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1356
1357                for (txq = 0; txq < txq_number; txq++)
1358                        if ((txq % max_cpu) == cpu)
1359                                txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1360
1361                /* With only one TX queue we configure a special case
1362                 * which will allow to get all the irq on a single
1363                 * CPU
1364                 */
1365                if (txq_number == 1)
1366                        txq_map = (cpu == pp->rxq_def) ?
1367                                MVNETA_CPU_TXQ_ACCESS(1) : 0;
1368
1369                mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1370        }
1371
1372        /* Reset RX and TX DMAs */
1373        mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1374        mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1375
1376        /* Disable Legacy WRR, Disable EJP, Release from reset */
1377        mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1378        for (queue = 0; queue < txq_number; queue++) {
1379                mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1380                mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1381        }
1382
1383        mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1384        mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1385
1386        /* Set Port Acceleration Mode */
1387        if (pp->bm_priv)
1388                /* HW buffer management + legacy parser */
1389                val = MVNETA_ACC_MODE_EXT2;
1390        else
1391                /* SW buffer management + legacy parser */
1392                val = MVNETA_ACC_MODE_EXT1;
1393        mvreg_write(pp, MVNETA_ACC_MODE, val);
1394
1395        if (pp->bm_priv)
1396                mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1397
1398        /* Update val of portCfg register accordingly with all RxQueue types */
1399        val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1400        mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1401
1402        val = 0;
1403        mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1404        mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1405
1406        /* Build PORT_SDMA_CONFIG_REG */
1407        val = 0;
1408
1409        /* Default burst size */
1410        val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1411        val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1412        val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1413
1414#if defined(__BIG_ENDIAN)
1415        val |= MVNETA_DESC_SWAP;
1416#endif
1417
1418        /* Assign port SDMA configuration */
1419        mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1420
1421        /* Disable PHY polling in hardware, since we're using the
1422         * kernel phylib to do this.
1423         */
1424        val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1425        val &= ~MVNETA_PHY_POLLING_ENABLE;
1426        mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1427
1428        mvneta_set_autoneg(pp, pp->use_inband_status);
1429        mvneta_set_ucast_table(pp, -1);
1430        mvneta_set_special_mcast_table(pp, -1);
1431        mvneta_set_other_mcast_table(pp, -1);
1432
1433        /* Set port interrupt enable register - default enable all */
1434        mvreg_write(pp, MVNETA_INTR_ENABLE,
1435                    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1436                     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1437
1438        mvneta_mib_counters_clear(pp);
1439}
1440
1441/* Set max sizes for tx queues */
1442static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1443
1444{
1445        u32 val, size, mtu;
1446        int queue;
1447
1448        mtu = max_tx_size * 8;
1449        if (mtu > MVNETA_TX_MTU_MAX)
1450                mtu = MVNETA_TX_MTU_MAX;
1451
1452        /* Set MTU */
1453        val = mvreg_read(pp, MVNETA_TX_MTU);
1454        val &= ~MVNETA_TX_MTU_MAX;
1455        val |= mtu;
1456        mvreg_write(pp, MVNETA_TX_MTU, val);
1457
1458        /* TX token size and all TXQs token size must be larger that MTU */
1459        val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1460
1461        size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1462        if (size < mtu) {
1463                size = mtu;
1464                val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1465                val |= size;
1466                mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1467        }
1468        for (queue = 0; queue < txq_number; queue++) {
1469                val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1470
1471                size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1472                if (size < mtu) {
1473                        size = mtu;
1474                        val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1475                        val |= size;
1476                        mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1477                }
1478        }
1479}
1480
1481/* Set unicast address */
1482static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1483                                  int queue)
1484{
1485        unsigned int unicast_reg;
1486        unsigned int tbl_offset;
1487        unsigned int reg_offset;
1488
1489        /* Locate the Unicast table entry */
1490        last_nibble = (0xf & last_nibble);
1491
1492        /* offset from unicast tbl base */
1493        tbl_offset = (last_nibble / 4) * 4;
1494
1495        /* offset within the above reg  */
1496        reg_offset = last_nibble % 4;
1497
1498        unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1499
1500        if (queue == -1) {
1501                /* Clear accepts frame bit at specified unicast DA tbl entry */
1502                unicast_reg &= ~(0xff << (8 * reg_offset));
1503        } else {
1504                unicast_reg &= ~(0xff << (8 * reg_offset));
1505                unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1506        }
1507
1508        mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1509}
1510
1511/* Set mac address */
1512static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1513                                int queue)
1514{
1515        unsigned int mac_h;
1516        unsigned int mac_l;
1517
1518        if (queue != -1) {
1519                mac_l = (addr[4] << 8) | (addr[5]);
1520                mac_h = (addr[0] << 24) | (addr[1] << 16) |
1521                        (addr[2] << 8) | (addr[3] << 0);
1522
1523                mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1524                mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1525        }
1526
1527        /* Accept frames of this address */
1528        mvneta_set_ucast_addr(pp, addr[5], queue);
1529}
1530
1531/* Set the number of packets that will be received before RX interrupt
1532 * will be generated by HW.
1533 */
1534static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1535                                    struct mvneta_rx_queue *rxq, u32 value)
1536{
1537        mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1538                    value | MVNETA_RXQ_NON_OCCUPIED(0));
1539        rxq->pkts_coal = value;
1540}
1541
1542/* Set the time delay in usec before RX interrupt will be generated by
1543 * HW.
1544 */
1545static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1546                                    struct mvneta_rx_queue *rxq, u32 value)
1547{
1548        u32 val;
1549        unsigned long clk_rate;
1550
1551        clk_rate = clk_get_rate(pp->clk);
1552        val = (clk_rate / 1000000) * value;
1553
1554        mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1555        rxq->time_coal = value;
1556}
1557
1558/* Set threshold for TX_DONE pkts coalescing */
1559static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1560                                         struct mvneta_tx_queue *txq, u32 value)
1561{
1562        u32 val;
1563
1564        val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1565
1566        val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1567        val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1568
1569        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1570
1571        txq->done_pkts_coal = value;
1572}
1573
1574/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1575static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1576                                u32 phys_addr, u32 cookie)
1577{
1578        rx_desc->buf_cookie = cookie;
1579        rx_desc->buf_phys_addr = phys_addr;
1580}
1581
1582/* Decrement sent descriptors counter */
1583static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1584                                     struct mvneta_tx_queue *txq,
1585                                     int sent_desc)
1586{
1587        u32 val;
1588
1589        /* Only 255 TX descriptors can be updated at once */
1590        while (sent_desc > 0xff) {
1591                val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1592                mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1593                sent_desc = sent_desc - 0xff;
1594        }
1595
1596        val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1597        mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1598}
1599
1600/* Get number of TX descriptors already sent by HW */
1601static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1602                                        struct mvneta_tx_queue *txq)
1603{
1604        u32 val;
1605        int sent_desc;
1606
1607        val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1608        sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1609                MVNETA_TXQ_SENT_DESC_SHIFT;
1610
1611        return sent_desc;
1612}
1613
1614/* Get number of sent descriptors and decrement counter.
1615 *  The number of sent descriptors is returned.
1616 */
1617static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1618                                     struct mvneta_tx_queue *txq)
1619{
1620        int sent_desc;
1621
1622        /* Get number of sent descriptors */
1623        sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1624
1625        /* Decrement sent descriptors counter */
1626        if (sent_desc)
1627                mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1628
1629        return sent_desc;
1630}
1631
1632/* Set TXQ descriptors fields relevant for CSUM calculation */
1633static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1634                                int ip_hdr_len, int l4_proto)
1635{
1636        u32 command;
1637
1638        /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1639         * G_L4_chk, L4_type; required only for checksum
1640         * calculation
1641         */
1642        command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1643        command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1644
1645        if (l3_proto == htons(ETH_P_IP))
1646                command |= MVNETA_TXD_IP_CSUM;
1647        else
1648                command |= MVNETA_TX_L3_IP6;
1649
1650        if (l4_proto == IPPROTO_TCP)
1651                command |=  MVNETA_TX_L4_CSUM_FULL;
1652        else if (l4_proto == IPPROTO_UDP)
1653                command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1654        else
1655                command |= MVNETA_TX_L4_CSUM_NOT;
1656
1657        return command;
1658}
1659
1660
1661/* Display more error info */
1662static void mvneta_rx_error(struct mvneta_port *pp,
1663                            struct mvneta_rx_desc *rx_desc)
1664{
1665        u32 status = rx_desc->status;
1666
1667        if (!mvneta_rxq_desc_is_first_last(status)) {
1668                netdev_err(pp->dev,
1669                           "bad rx status %08x (buffer oversize), size=%d\n",
1670                           status, rx_desc->data_size);
1671                return;
1672        }
1673
1674        switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1675        case MVNETA_RXD_ERR_CRC:
1676                netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1677                           status, rx_desc->data_size);
1678                break;
1679        case MVNETA_RXD_ERR_OVERRUN:
1680                netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1681                           status, rx_desc->data_size);
1682                break;
1683        case MVNETA_RXD_ERR_LEN:
1684                netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1685                           status, rx_desc->data_size);
1686                break;
1687        case MVNETA_RXD_ERR_RESOURCE:
1688                netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1689                           status, rx_desc->data_size);
1690                break;
1691        }
1692}
1693
1694/* Handle RX checksum offload based on the descriptor's status */
1695static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1696                           struct sk_buff *skb)
1697{
1698        if ((status & MVNETA_RXD_L3_IP4) &&
1699            (status & MVNETA_RXD_L4_CSUM_OK)) {
1700                skb->csum = 0;
1701                skb->ip_summed = CHECKSUM_UNNECESSARY;
1702                return;
1703        }
1704
1705        skb->ip_summed = CHECKSUM_NONE;
1706}
1707
1708/* Return tx queue pointer (find last set bit) according to <cause> returned
1709 * form tx_done reg. <cause> must not be null. The return value is always a
1710 * valid queue for matching the first one found in <cause>.
1711 */
1712static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1713                                                     u32 cause)
1714{
1715        int queue = fls(cause) - 1;
1716
1717        return &pp->txqs[queue];
1718}
1719
1720/* Free tx queue skbuffs */
1721static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1722                                 struct mvneta_tx_queue *txq, int num)
1723{
1724        int i;
1725
1726        for (i = 0; i < num; i++) {
1727                struct mvneta_tx_desc *tx_desc = txq->descs +
1728                        txq->txq_get_index;
1729                struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1730
1731                mvneta_txq_inc_get(txq);
1732
1733                if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1734                        dma_unmap_single(pp->dev->dev.parent,
1735                                         tx_desc->buf_phys_addr,
1736                                         tx_desc->data_size, DMA_TO_DEVICE);
1737                if (!skb)
1738                        continue;
1739                dev_kfree_skb_any(skb);
1740        }
1741}
1742
1743/* Handle end of transmission */
1744static void mvneta_txq_done(struct mvneta_port *pp,
1745                           struct mvneta_tx_queue *txq)
1746{
1747        struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1748        int tx_done;
1749
1750        tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1751        if (!tx_done)
1752                return;
1753
1754        mvneta_txq_bufs_free(pp, txq, tx_done);
1755
1756        txq->count -= tx_done;
1757
1758        if (netif_tx_queue_stopped(nq)) {
1759                if (txq->count <= txq->tx_wake_threshold)
1760                        netif_tx_wake_queue(nq);
1761        }
1762}
1763
1764void *mvneta_frag_alloc(unsigned int frag_size)
1765{
1766        if (likely(frag_size <= PAGE_SIZE))
1767                return netdev_alloc_frag(frag_size);
1768        else
1769                return kmalloc(frag_size, GFP_ATOMIC);
1770}
1771EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1772
1773void mvneta_frag_free(unsigned int frag_size, void *data)
1774{
1775        if (likely(frag_size <= PAGE_SIZE))
1776                skb_free_frag(data);
1777        else
1778                kfree(data);
1779}
1780EXPORT_SYMBOL_GPL(mvneta_frag_free);
1781
1782/* Refill processing for SW buffer management */
1783static int mvneta_rx_refill(struct mvneta_port *pp,
1784                            struct mvneta_rx_desc *rx_desc)
1785
1786{
1787        dma_addr_t phys_addr;
1788        void *data;
1789
1790        data = mvneta_frag_alloc(pp->frag_size);
1791        if (!data)
1792                return -ENOMEM;
1793
1794        phys_addr = dma_map_single(pp->dev->dev.parent, data,
1795                                   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1796                                   DMA_FROM_DEVICE);
1797        if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1798                mvneta_frag_free(pp->frag_size, data);
1799                return -ENOMEM;
1800        }
1801
1802        mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1803        return 0;
1804}
1805
1806/* Handle tx checksum */
1807static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1808{
1809        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1810                int ip_hdr_len = 0;
1811                __be16 l3_proto = vlan_get_protocol(skb);
1812                u8 l4_proto;
1813
1814                if (l3_proto == htons(ETH_P_IP)) {
1815                        struct iphdr *ip4h = ip_hdr(skb);
1816
1817                        /* Calculate IPv4 checksum and L4 checksum */
1818                        ip_hdr_len = ip4h->ihl;
1819                        l4_proto = ip4h->protocol;
1820                } else if (l3_proto == htons(ETH_P_IPV6)) {
1821                        struct ipv6hdr *ip6h = ipv6_hdr(skb);
1822
1823                        /* Read l4_protocol from one of IPv6 extra headers */
1824                        if (skb_network_header_len(skb) > 0)
1825                                ip_hdr_len = (skb_network_header_len(skb) >> 2);
1826                        l4_proto = ip6h->nexthdr;
1827                } else
1828                        return MVNETA_TX_L4_CSUM_NOT;
1829
1830                return mvneta_txq_desc_csum(skb_network_offset(skb),
1831                                            l3_proto, ip_hdr_len, l4_proto);
1832        }
1833
1834        return MVNETA_TX_L4_CSUM_NOT;
1835}
1836
1837/* Drop packets received by the RXQ and free buffers */
1838static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1839                                 struct mvneta_rx_queue *rxq)
1840{
1841        int rx_done, i;
1842
1843        rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1844        if (rx_done)
1845                mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1846
1847        if (pp->bm_priv) {
1848                for (i = 0; i < rx_done; i++) {
1849                        struct mvneta_rx_desc *rx_desc =
1850                                                  mvneta_rxq_next_desc_get(rxq);
1851                        u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1852                        struct mvneta_bm_pool *bm_pool;
1853
1854                        bm_pool = &pp->bm_priv->bm_pools[pool_id];
1855                        /* Return dropped buffer to the pool */
1856                        mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1857                                              rx_desc->buf_phys_addr);
1858                }
1859                return;
1860        }
1861
1862        for (i = 0; i < rxq->size; i++) {
1863                struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1864                void *data = (void *)rx_desc->buf_cookie;
1865
1866                dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1867                                 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1868                mvneta_frag_free(pp->frag_size, data);
1869        }
1870}
1871
1872/* Main rx processing when using software buffer management */
1873static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1874                          struct mvneta_rx_queue *rxq)
1875{
1876        struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1877        struct net_device *dev = pp->dev;
1878        int rx_done;
1879        u32 rcvd_pkts = 0;
1880        u32 rcvd_bytes = 0;
1881
1882        /* Get number of received packets */
1883        rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1884
1885        if (rx_todo > rx_done)
1886                rx_todo = rx_done;
1887
1888        rx_done = 0;
1889
1890        /* Fairness NAPI loop */
1891        while (rx_done < rx_todo) {
1892                struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1893                struct sk_buff *skb;
1894                unsigned char *data;
1895                dma_addr_t phys_addr;
1896                u32 rx_status, frag_size;
1897                int rx_bytes, err;
1898
1899                rx_done++;
1900                rx_status = rx_desc->status;
1901                rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1902                data = (unsigned char *)rx_desc->buf_cookie;
1903                phys_addr = rx_desc->buf_phys_addr;
1904
1905                if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1906                    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1907err_drop_frame:
1908                        dev->stats.rx_errors++;
1909                        mvneta_rx_error(pp, rx_desc);
1910                        /* leave the descriptor untouched */
1911                        continue;
1912                }
1913
1914                if (rx_bytes <= rx_copybreak) {
1915                /* better copy a small frame and not unmap the DMA region */
1916                        skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1917                        if (unlikely(!skb))
1918                                goto err_drop_frame;
1919
1920                        dma_sync_single_range_for_cpu(dev->dev.parent,
1921                                                      rx_desc->buf_phys_addr,
1922                                                      MVNETA_MH_SIZE + NET_SKB_PAD,
1923                                                      rx_bytes,
1924                                                      DMA_FROM_DEVICE);
1925                        memcpy(skb_put(skb, rx_bytes),
1926                               data + MVNETA_MH_SIZE + NET_SKB_PAD,
1927                               rx_bytes);
1928
1929                        skb->protocol = eth_type_trans(skb, dev);
1930                        mvneta_rx_csum(pp, rx_status, skb);
1931                        napi_gro_receive(&port->napi, skb);
1932
1933                        rcvd_pkts++;
1934                        rcvd_bytes += rx_bytes;
1935
1936                        /* leave the descriptor and buffer untouched */
1937                        continue;
1938                }
1939
1940                /* Refill processing */
1941                err = mvneta_rx_refill(pp, rx_desc);
1942                if (err) {
1943                        netdev_err(dev, "Linux processing - Can't refill\n");
1944                        rxq->missed++;
1945                        goto err_drop_frame;
1946                }
1947
1948                frag_size = pp->frag_size;
1949
1950                skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
1951
1952                /* After refill old buffer has to be unmapped regardless
1953                 * the skb is successfully built or not.
1954                 */
1955                dma_unmap_single(dev->dev.parent, phys_addr,
1956                                 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1957                                 DMA_FROM_DEVICE);
1958
1959                if (!skb)
1960                        goto err_drop_frame;
1961
1962                rcvd_pkts++;
1963                rcvd_bytes += rx_bytes;
1964
1965                /* Linux processing */
1966                skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1967                skb_put(skb, rx_bytes);
1968
1969                skb->protocol = eth_type_trans(skb, dev);
1970
1971                mvneta_rx_csum(pp, rx_status, skb);
1972
1973                napi_gro_receive(&port->napi, skb);
1974        }
1975
1976        if (rcvd_pkts) {
1977                struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1978
1979                u64_stats_update_begin(&stats->syncp);
1980                stats->rx_packets += rcvd_pkts;
1981                stats->rx_bytes   += rcvd_bytes;
1982                u64_stats_update_end(&stats->syncp);
1983        }
1984
1985        /* Update rxq management counters */
1986        mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1987
1988        return rx_done;
1989}
1990
1991/* Main rx processing when using hardware buffer management */
1992static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
1993                          struct mvneta_rx_queue *rxq)
1994{
1995        struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1996        struct net_device *dev = pp->dev;
1997        int rx_done;
1998        u32 rcvd_pkts = 0;
1999        u32 rcvd_bytes = 0;
2000
2001        /* Get number of received packets */
2002        rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2003
2004        if (rx_todo > rx_done)
2005                rx_todo = rx_done;
2006
2007        rx_done = 0;
2008
2009        /* Fairness NAPI loop */
2010        while (rx_done < rx_todo) {
2011                struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2012                struct mvneta_bm_pool *bm_pool = NULL;
2013                struct sk_buff *skb;
2014                unsigned char *data;
2015                dma_addr_t phys_addr;
2016                u32 rx_status, frag_size;
2017                int rx_bytes, err;
2018                u8 pool_id;
2019
2020                rx_done++;
2021                rx_status = rx_desc->status;
2022                rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2023                data = (unsigned char *)rx_desc->buf_cookie;
2024                phys_addr = rx_desc->buf_phys_addr;
2025                pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2026                bm_pool = &pp->bm_priv->bm_pools[pool_id];
2027
2028                if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2029                    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2030err_drop_frame_ret_pool:
2031                        /* Return the buffer to the pool */
2032                        mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2033                                              rx_desc->buf_phys_addr);
2034err_drop_frame:
2035                        dev->stats.rx_errors++;
2036                        mvneta_rx_error(pp, rx_desc);
2037                        /* leave the descriptor untouched */
2038                        continue;
2039                }
2040
2041                if (rx_bytes <= rx_copybreak) {
2042                        /* better copy a small frame and not unmap the DMA region */
2043                        skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2044                        if (unlikely(!skb))
2045                                goto err_drop_frame_ret_pool;
2046
2047                        dma_sync_single_range_for_cpu(dev->dev.parent,
2048                                                      rx_desc->buf_phys_addr,
2049                                                      MVNETA_MH_SIZE + NET_SKB_PAD,
2050                                                      rx_bytes,
2051                                                      DMA_FROM_DEVICE);
2052                        memcpy(skb_put(skb, rx_bytes),
2053                               data + MVNETA_MH_SIZE + NET_SKB_PAD,
2054                               rx_bytes);
2055
2056                        skb->protocol = eth_type_trans(skb, dev);
2057                        mvneta_rx_csum(pp, rx_status, skb);
2058                        napi_gro_receive(&port->napi, skb);
2059
2060                        rcvd_pkts++;
2061                        rcvd_bytes += rx_bytes;
2062
2063                        /* Return the buffer to the pool */
2064                        mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2065                                              rx_desc->buf_phys_addr);
2066
2067                        /* leave the descriptor and buffer untouched */
2068                        continue;
2069                }
2070
2071                /* Refill processing */
2072                err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2073                if (err) {
2074                        netdev_err(dev, "Linux processing - Can't refill\n");
2075                        rxq->missed++;
2076                        goto err_drop_frame_ret_pool;
2077                }
2078
2079                frag_size = bm_pool->hwbm_pool.frag_size;
2080
2081                skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2082
2083                /* After refill old buffer has to be unmapped regardless
2084                 * the skb is successfully built or not.
2085                 */
2086                dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2087                                 bm_pool->buf_size, DMA_FROM_DEVICE);
2088                if (!skb)
2089                        goto err_drop_frame;
2090
2091                rcvd_pkts++;
2092                rcvd_bytes += rx_bytes;
2093
2094                /* Linux processing */
2095                skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2096                skb_put(skb, rx_bytes);
2097
2098                skb->protocol = eth_type_trans(skb, dev);
2099
2100                mvneta_rx_csum(pp, rx_status, skb);
2101
2102                napi_gro_receive(&port->napi, skb);
2103        }
2104
2105        if (rcvd_pkts) {
2106                struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2107
2108                u64_stats_update_begin(&stats->syncp);
2109                stats->rx_packets += rcvd_pkts;
2110                stats->rx_bytes   += rcvd_bytes;
2111                u64_stats_update_end(&stats->syncp);
2112        }
2113
2114        /* Update rxq management counters */
2115        mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2116
2117        return rx_done;
2118}
2119
2120static inline void
2121mvneta_tso_put_hdr(struct sk_buff *skb,
2122                   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2123{
2124        struct mvneta_tx_desc *tx_desc;
2125        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2126
2127        txq->tx_skb[txq->txq_put_index] = NULL;
2128        tx_desc = mvneta_txq_next_desc_get(txq);
2129        tx_desc->data_size = hdr_len;
2130        tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2131        tx_desc->command |= MVNETA_TXD_F_DESC;
2132        tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2133                                 txq->txq_put_index * TSO_HEADER_SIZE;
2134        mvneta_txq_inc_put(txq);
2135}
2136
2137static inline int
2138mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2139                    struct sk_buff *skb, char *data, int size,
2140                    bool last_tcp, bool is_last)
2141{
2142        struct mvneta_tx_desc *tx_desc;
2143
2144        tx_desc = mvneta_txq_next_desc_get(txq);
2145        tx_desc->data_size = size;
2146        tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2147                                                size, DMA_TO_DEVICE);
2148        if (unlikely(dma_mapping_error(dev->dev.parent,
2149                     tx_desc->buf_phys_addr))) {
2150                mvneta_txq_desc_put(txq);
2151                return -ENOMEM;
2152        }
2153
2154        tx_desc->command = 0;
2155        txq->tx_skb[txq->txq_put_index] = NULL;
2156
2157        if (last_tcp) {
2158                /* last descriptor in the TCP packet */
2159                tx_desc->command = MVNETA_TXD_L_DESC;
2160
2161                /* last descriptor in SKB */
2162                if (is_last)
2163                        txq->tx_skb[txq->txq_put_index] = skb;
2164        }
2165        mvneta_txq_inc_put(txq);
2166        return 0;
2167}
2168
2169static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2170                         struct mvneta_tx_queue *txq)
2171{
2172        int total_len, data_left;
2173        int desc_count = 0;
2174        struct mvneta_port *pp = netdev_priv(dev);
2175        struct tso_t tso;
2176        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2177        int i;
2178
2179        /* Count needed descriptors */
2180        if ((txq->count + tso_count_descs(skb)) >= txq->size)
2181                return 0;
2182
2183        if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2184                pr_info("*** Is this even  possible???!?!?\n");
2185                return 0;
2186        }
2187
2188        /* Initialize the TSO handler, and prepare the first payload */
2189        tso_start(skb, &tso);
2190
2191        total_len = skb->len - hdr_len;
2192        while (total_len > 0) {
2193                char *hdr;
2194
2195                data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2196                total_len -= data_left;
2197                desc_count++;
2198
2199                /* prepare packet headers: MAC + IP + TCP */
2200                hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2201                tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2202
2203                mvneta_tso_put_hdr(skb, pp, txq);
2204
2205                while (data_left > 0) {
2206                        int size;
2207                        desc_count++;
2208
2209                        size = min_t(int, tso.size, data_left);
2210
2211                        if (mvneta_tso_put_data(dev, txq, skb,
2212                                                 tso.data, size,
2213                                                 size == data_left,
2214                                                 total_len == 0))
2215                                goto err_release;
2216                        data_left -= size;
2217
2218                        tso_build_data(skb, &tso, size);
2219                }
2220        }
2221
2222        return desc_count;
2223
2224err_release:
2225        /* Release all used data descriptors; header descriptors must not
2226         * be DMA-unmapped.
2227         */
2228        for (i = desc_count - 1; i >= 0; i--) {
2229                struct mvneta_tx_desc *tx_desc = txq->descs + i;
2230                if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2231                        dma_unmap_single(pp->dev->dev.parent,
2232                                         tx_desc->buf_phys_addr,
2233                                         tx_desc->data_size,
2234                                         DMA_TO_DEVICE);
2235                mvneta_txq_desc_put(txq);
2236        }
2237        return 0;
2238}
2239
2240/* Handle tx fragmentation processing */
2241static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2242                                  struct mvneta_tx_queue *txq)
2243{
2244        struct mvneta_tx_desc *tx_desc;
2245        int i, nr_frags = skb_shinfo(skb)->nr_frags;
2246
2247        for (i = 0; i < nr_frags; i++) {
2248                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2249                void *addr = page_address(frag->page.p) + frag->page_offset;
2250
2251                tx_desc = mvneta_txq_next_desc_get(txq);
2252                tx_desc->data_size = frag->size;
2253
2254                tx_desc->buf_phys_addr =
2255                        dma_map_single(pp->dev->dev.parent, addr,
2256                                       tx_desc->data_size, DMA_TO_DEVICE);
2257
2258                if (dma_mapping_error(pp->dev->dev.parent,
2259                                      tx_desc->buf_phys_addr)) {
2260                        mvneta_txq_desc_put(txq);
2261                        goto error;
2262                }
2263
2264                if (i == nr_frags - 1) {
2265                        /* Last descriptor */
2266                        tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2267                        txq->tx_skb[txq->txq_put_index] = skb;
2268                } else {
2269                        /* Descriptor in the middle: Not First, Not Last */
2270                        tx_desc->command = 0;
2271                        txq->tx_skb[txq->txq_put_index] = NULL;
2272                }
2273                mvneta_txq_inc_put(txq);
2274        }
2275
2276        return 0;
2277
2278error:
2279        /* Release all descriptors that were used to map fragments of
2280         * this packet, as well as the corresponding DMA mappings
2281         */
2282        for (i = i - 1; i >= 0; i--) {
2283                tx_desc = txq->descs + i;
2284                dma_unmap_single(pp->dev->dev.parent,
2285                                 tx_desc->buf_phys_addr,
2286                                 tx_desc->data_size,
2287                                 DMA_TO_DEVICE);
2288                mvneta_txq_desc_put(txq);
2289        }
2290
2291        return -ENOMEM;
2292}
2293
2294/* Main tx processing */
2295static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2296{
2297        struct mvneta_port *pp = netdev_priv(dev);
2298        u16 txq_id = skb_get_queue_mapping(skb);
2299        struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2300        struct mvneta_tx_desc *tx_desc;
2301        int len = skb->len;
2302        int frags = 0;
2303        u32 tx_cmd;
2304
2305        if (!netif_running(dev))
2306                goto out;
2307
2308        if (skb_is_gso(skb)) {
2309                frags = mvneta_tx_tso(skb, dev, txq);
2310                goto out;
2311        }
2312
2313        frags = skb_shinfo(skb)->nr_frags + 1;
2314
2315        /* Get a descriptor for the first part of the packet */
2316        tx_desc = mvneta_txq_next_desc_get(txq);
2317
2318        tx_cmd = mvneta_skb_tx_csum(pp, skb);
2319
2320        tx_desc->data_size = skb_headlen(skb);
2321
2322        tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2323                                                tx_desc->data_size,
2324                                                DMA_TO_DEVICE);
2325        if (unlikely(dma_mapping_error(dev->dev.parent,
2326                                       tx_desc->buf_phys_addr))) {
2327                mvneta_txq_desc_put(txq);
2328                frags = 0;
2329                goto out;
2330        }
2331
2332        if (frags == 1) {
2333                /* First and Last descriptor */
2334                tx_cmd |= MVNETA_TXD_FLZ_DESC;
2335                tx_desc->command = tx_cmd;
2336                txq->tx_skb[txq->txq_put_index] = skb;
2337                mvneta_txq_inc_put(txq);
2338        } else {
2339                /* First but not Last */
2340                tx_cmd |= MVNETA_TXD_F_DESC;
2341                txq->tx_skb[txq->txq_put_index] = NULL;
2342                mvneta_txq_inc_put(txq);
2343                tx_desc->command = tx_cmd;
2344                /* Continue with other skb fragments */
2345                if (mvneta_tx_frag_process(pp, skb, txq)) {
2346                        dma_unmap_single(dev->dev.parent,
2347                                         tx_desc->buf_phys_addr,
2348                                         tx_desc->data_size,
2349                                         DMA_TO_DEVICE);
2350                        mvneta_txq_desc_put(txq);
2351                        frags = 0;
2352                        goto out;
2353                }
2354        }
2355
2356out:
2357        if (frags > 0) {
2358                struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2359                struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2360
2361                txq->count += frags;
2362                mvneta_txq_pend_desc_add(pp, txq, frags);
2363
2364                if (txq->count >= txq->tx_stop_threshold)
2365                        netif_tx_stop_queue(nq);
2366
2367                u64_stats_update_begin(&stats->syncp);
2368                stats->tx_packets++;
2369                stats->tx_bytes  += len;
2370                u64_stats_update_end(&stats->syncp);
2371        } else {
2372                dev->stats.tx_dropped++;
2373                dev_kfree_skb_any(skb);
2374        }
2375
2376        return NETDEV_TX_OK;
2377}
2378
2379
2380/* Free tx resources, when resetting a port */
2381static void mvneta_txq_done_force(struct mvneta_port *pp,
2382                                  struct mvneta_tx_queue *txq)
2383
2384{
2385        int tx_done = txq->count;
2386
2387        mvneta_txq_bufs_free(pp, txq, tx_done);
2388
2389        /* reset txq */
2390        txq->count = 0;
2391        txq->txq_put_index = 0;
2392        txq->txq_get_index = 0;
2393}
2394
2395/* Handle tx done - called in softirq context. The <cause_tx_done> argument
2396 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2397 */
2398static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2399{
2400        struct mvneta_tx_queue *txq;
2401        struct netdev_queue *nq;
2402
2403        while (cause_tx_done) {
2404                txq = mvneta_tx_done_policy(pp, cause_tx_done);
2405
2406                nq = netdev_get_tx_queue(pp->dev, txq->id);
2407                __netif_tx_lock(nq, smp_processor_id());
2408
2409                if (txq->count)
2410                        mvneta_txq_done(pp, txq);
2411
2412                __netif_tx_unlock(nq);
2413                cause_tx_done &= ~((1 << txq->id));
2414        }
2415}
2416
2417/* Compute crc8 of the specified address, using a unique algorithm ,
2418 * according to hw spec, different than generic crc8 algorithm
2419 */
2420static int mvneta_addr_crc(unsigned char *addr)
2421{
2422        int crc = 0;
2423        int i;
2424
2425        for (i = 0; i < ETH_ALEN; i++) {
2426                int j;
2427
2428                crc = (crc ^ addr[i]) << 8;
2429                for (j = 7; j >= 0; j--) {
2430                        if (crc & (0x100 << j))
2431                                crc ^= 0x107 << j;
2432                }
2433        }
2434
2435        return crc;
2436}
2437
2438/* This method controls the net device special MAC multicast support.
2439 * The Special Multicast Table for MAC addresses supports MAC of the form
2440 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2441 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2442 * Table entries in the DA-Filter table. This method set the Special
2443 * Multicast Table appropriate entry.
2444 */
2445static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2446                                          unsigned char last_byte,
2447                                          int queue)
2448{
2449        unsigned int smc_table_reg;
2450        unsigned int tbl_offset;
2451        unsigned int reg_offset;
2452
2453        /* Register offset from SMC table base    */
2454        tbl_offset = (last_byte / 4);
2455        /* Entry offset within the above reg */
2456        reg_offset = last_byte % 4;
2457
2458        smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2459                                        + tbl_offset * 4));
2460
2461        if (queue == -1)
2462                smc_table_reg &= ~(0xff << (8 * reg_offset));
2463        else {
2464                smc_table_reg &= ~(0xff << (8 * reg_offset));
2465                smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2466        }
2467
2468        mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2469                    smc_table_reg);
2470}
2471
2472/* This method controls the network device Other MAC multicast support.
2473 * The Other Multicast Table is used for multicast of another type.
2474 * A CRC-8 is used as an index to the Other Multicast Table entries
2475 * in the DA-Filter table.
2476 * The method gets the CRC-8 value from the calling routine and
2477 * sets the Other Multicast Table appropriate entry according to the
2478 * specified CRC-8 .
2479 */
2480static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2481                                        unsigned char crc8,
2482                                        int queue)
2483{
2484        unsigned int omc_table_reg;
2485        unsigned int tbl_offset;
2486        unsigned int reg_offset;
2487
2488        tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2489        reg_offset = crc8 % 4;       /* Entry offset within the above reg   */
2490
2491        omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2492
2493        if (queue == -1) {
2494                /* Clear accepts frame bit at specified Other DA table entry */
2495                omc_table_reg &= ~(0xff << (8 * reg_offset));
2496        } else {
2497                omc_table_reg &= ~(0xff << (8 * reg_offset));
2498                omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2499        }
2500
2501        mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2502}
2503
2504/* The network device supports multicast using two tables:
2505 *    1) Special Multicast Table for MAC addresses of the form
2506 *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2507 *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2508 *       Table entries in the DA-Filter table.
2509 *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2510 *       is used as an index to the Other Multicast Table entries in the
2511 *       DA-Filter table.
2512 */
2513static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2514                                 int queue)
2515{
2516        unsigned char crc_result = 0;
2517
2518        if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2519                mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2520                return 0;
2521        }
2522
2523        crc_result = mvneta_addr_crc(p_addr);
2524        if (queue == -1) {
2525                if (pp->mcast_count[crc_result] == 0) {
2526                        netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2527                                    crc_result);
2528                        return -EINVAL;
2529                }
2530
2531                pp->mcast_count[crc_result]--;
2532                if (pp->mcast_count[crc_result] != 0) {
2533                        netdev_info(pp->dev,
2534                                    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2535                                    pp->mcast_count[crc_result], crc_result);
2536                        return -EINVAL;
2537                }
2538        } else
2539                pp->mcast_count[crc_result]++;
2540
2541        mvneta_set_other_mcast_addr(pp, crc_result, queue);
2542
2543        return 0;
2544}
2545
2546/* Configure Fitering mode of Ethernet port */
2547static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2548                                          int is_promisc)
2549{
2550        u32 port_cfg_reg, val;
2551
2552        port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2553
2554        val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2555
2556        /* Set / Clear UPM bit in port configuration register */
2557        if (is_promisc) {
2558                /* Accept all Unicast addresses */
2559                port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2560                val |= MVNETA_FORCE_UNI;
2561                mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2562                mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2563        } else {
2564                /* Reject all Unicast addresses */
2565                port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2566                val &= ~MVNETA_FORCE_UNI;
2567        }
2568
2569        mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2570        mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2571}
2572
2573/* register unicast and multicast addresses */
2574static void mvneta_set_rx_mode(struct net_device *dev)
2575{
2576        struct mvneta_port *pp = netdev_priv(dev);
2577        struct netdev_hw_addr *ha;
2578
2579        if (dev->flags & IFF_PROMISC) {
2580                /* Accept all: Multicast + Unicast */
2581                mvneta_rx_unicast_promisc_set(pp, 1);
2582                mvneta_set_ucast_table(pp, pp->rxq_def);
2583                mvneta_set_special_mcast_table(pp, pp->rxq_def);
2584                mvneta_set_other_mcast_table(pp, pp->rxq_def);
2585        } else {
2586                /* Accept single Unicast */
2587                mvneta_rx_unicast_promisc_set(pp, 0);
2588                mvneta_set_ucast_table(pp, -1);
2589                mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2590
2591                if (dev->flags & IFF_ALLMULTI) {
2592                        /* Accept all multicast */
2593                        mvneta_set_special_mcast_table(pp, pp->rxq_def);
2594                        mvneta_set_other_mcast_table(pp, pp->rxq_def);
2595                } else {
2596                        /* Accept only initialized multicast */
2597                        mvneta_set_special_mcast_table(pp, -1);
2598                        mvneta_set_other_mcast_table(pp, -1);
2599
2600                        if (!netdev_mc_empty(dev)) {
2601                                netdev_for_each_mc_addr(ha, dev) {
2602                                        mvneta_mcast_addr_set(pp, ha->addr,
2603                                                              pp->rxq_def);
2604                                }
2605                        }
2606                }
2607        }
2608}
2609
2610/* Interrupt handling - the callback for request_irq() */
2611static irqreturn_t mvneta_isr(int irq, void *dev_id)
2612{
2613        struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2614
2615        disable_percpu_irq(port->pp->dev->irq);
2616        napi_schedule(&port->napi);
2617
2618        return IRQ_HANDLED;
2619}
2620
2621static int mvneta_fixed_link_update(struct mvneta_port *pp,
2622                                    struct phy_device *phy)
2623{
2624        struct fixed_phy_status status;
2625        struct fixed_phy_status changed = {};
2626        u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2627
2628        status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2629        if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2630                status.speed = SPEED_1000;
2631        else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2632                status.speed = SPEED_100;
2633        else
2634                status.speed = SPEED_10;
2635        status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2636        changed.link = 1;
2637        changed.speed = 1;
2638        changed.duplex = 1;
2639        fixed_phy_update_state(phy, &status, &changed);
2640        return 0;
2641}
2642
2643/* NAPI handler
2644 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2645 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2646 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2647 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2648 * Each CPU has its own causeRxTx register
2649 */
2650static int mvneta_poll(struct napi_struct *napi, int budget)
2651{
2652        int rx_done = 0;
2653        u32 cause_rx_tx;
2654        int rx_queue;
2655        struct mvneta_port *pp = netdev_priv(napi->dev);
2656        struct net_device *ndev = pp->dev;
2657        struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2658
2659        if (!netif_running(pp->dev)) {
2660                napi_complete(&port->napi);
2661                return rx_done;
2662        }
2663
2664        /* Read cause register */
2665        cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2666        if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2667                u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2668
2669                mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2670                if (pp->use_inband_status && (cause_misc &
2671                                (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2672                                 MVNETA_CAUSE_LINK_CHANGE |
2673                                 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2674                        mvneta_fixed_link_update(pp, ndev->phydev);
2675                }
2676        }
2677
2678        /* Release Tx descriptors */
2679        if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2680                mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2681                cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2682        }
2683
2684        /* For the case where the last mvneta_poll did not process all
2685         * RX packets
2686         */
2687        rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2688
2689        cause_rx_tx |= port->cause_rx_tx;
2690
2691        if (rx_queue) {
2692                rx_queue = rx_queue - 1;
2693                if (pp->bm_priv)
2694                        rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2695                else
2696                        rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2697        }
2698
2699        budget -= rx_done;
2700
2701        if (budget > 0) {
2702                cause_rx_tx = 0;
2703                napi_complete(&port->napi);
2704                enable_percpu_irq(pp->dev->irq, 0);
2705        }
2706
2707        port->cause_rx_tx = cause_rx_tx;
2708        return rx_done;
2709}
2710
2711/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2712static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2713                           int num)
2714{
2715        int i;
2716
2717        for (i = 0; i < num; i++) {
2718                memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2719                if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2720                        netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2721                                __func__, rxq->id, i, num);
2722                        break;
2723                }
2724        }
2725
2726        /* Add this number of RX descriptors as non occupied (ready to
2727         * get packets)
2728         */
2729        mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2730
2731        return i;
2732}
2733
2734/* Free all packets pending transmit from all TXQs and reset TX port */
2735static void mvneta_tx_reset(struct mvneta_port *pp)
2736{
2737        int queue;
2738
2739        /* free the skb's in the tx ring */
2740        for (queue = 0; queue < txq_number; queue++)
2741                mvneta_txq_done_force(pp, &pp->txqs[queue]);
2742
2743        mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2744        mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2745}
2746
2747static void mvneta_rx_reset(struct mvneta_port *pp)
2748{
2749        mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2750        mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2751}
2752
2753/* Rx/Tx queue initialization/cleanup methods */
2754
2755/* Create a specified RX queue */
2756static int mvneta_rxq_init(struct mvneta_port *pp,
2757                           struct mvneta_rx_queue *rxq)
2758
2759{
2760        rxq->size = pp->rx_ring_size;
2761
2762        /* Allocate memory for RX descriptors */
2763        rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2764                                        rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2765                                        &rxq->descs_phys, GFP_KERNEL);
2766        if (rxq->descs == NULL)
2767                return -ENOMEM;
2768
2769        rxq->last_desc = rxq->size - 1;
2770
2771        /* Set Rx descriptors queue starting address */
2772        mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2773        mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2774
2775        /* Set Offset */
2776        mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2777
2778        /* Set coalescing pkts and time */
2779        mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2780        mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2781
2782        if (!pp->bm_priv) {
2783                /* Fill RXQ with buffers from RX pool */
2784                mvneta_rxq_buf_size_set(pp, rxq,
2785                                        MVNETA_RX_BUF_SIZE(pp->pkt_size));
2786                mvneta_rxq_bm_disable(pp, rxq);
2787        } else {
2788                mvneta_rxq_bm_enable(pp, rxq);
2789                mvneta_rxq_long_pool_set(pp, rxq);
2790                mvneta_rxq_short_pool_set(pp, rxq);
2791        }
2792
2793        mvneta_rxq_fill(pp, rxq, rxq->size);
2794
2795        return 0;
2796}
2797
2798/* Cleanup Rx queue */
2799static void mvneta_rxq_deinit(struct mvneta_port *pp,
2800                              struct mvneta_rx_queue *rxq)
2801{
2802        mvneta_rxq_drop_pkts(pp, rxq);
2803
2804        if (rxq->descs)
2805                dma_free_coherent(pp->dev->dev.parent,
2806                                  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2807                                  rxq->descs,
2808                                  rxq->descs_phys);
2809
2810        rxq->descs             = NULL;
2811        rxq->last_desc         = 0;
2812        rxq->next_desc_to_proc = 0;
2813        rxq->descs_phys        = 0;
2814}
2815
2816/* Create and initialize a tx queue */
2817static int mvneta_txq_init(struct mvneta_port *pp,
2818                           struct mvneta_tx_queue *txq)
2819{
2820        int cpu;
2821
2822        txq->size = pp->tx_ring_size;
2823
2824        /* A queue must always have room for at least one skb.
2825         * Therefore, stop the queue when the free entries reaches
2826         * the maximum number of descriptors per skb.
2827         */
2828        txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2829        txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2830
2831
2832        /* Allocate memory for TX descriptors */
2833        txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2834                                        txq->size * MVNETA_DESC_ALIGNED_SIZE,
2835                                        &txq->descs_phys, GFP_KERNEL);
2836        if (txq->descs == NULL)
2837                return -ENOMEM;
2838
2839        txq->last_desc = txq->size - 1;
2840
2841        /* Set maximum bandwidth for enabled TXQs */
2842        mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2843        mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2844
2845        /* Set Tx descriptors queue starting address */
2846        mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2847        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2848
2849        txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2850        if (txq->tx_skb == NULL) {
2851                dma_free_coherent(pp->dev->dev.parent,
2852                                  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2853                                  txq->descs, txq->descs_phys);
2854                return -ENOMEM;
2855        }
2856
2857        /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2858        txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2859                                           txq->size * TSO_HEADER_SIZE,
2860                                           &txq->tso_hdrs_phys, GFP_KERNEL);
2861        if (txq->tso_hdrs == NULL) {
2862                kfree(txq->tx_skb);
2863                dma_free_coherent(pp->dev->dev.parent,
2864                                  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2865                                  txq->descs, txq->descs_phys);
2866                return -ENOMEM;
2867        }
2868        mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2869
2870        /* Setup XPS mapping */
2871        if (txq_number > 1)
2872                cpu = txq->id % num_present_cpus();
2873        else
2874                cpu = pp->rxq_def % num_present_cpus();
2875        cpumask_set_cpu(cpu, &txq->affinity_mask);
2876        netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2877
2878        return 0;
2879}
2880
2881/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2882static void mvneta_txq_deinit(struct mvneta_port *pp,
2883                              struct mvneta_tx_queue *txq)
2884{
2885        kfree(txq->tx_skb);
2886
2887        if (txq->tso_hdrs)
2888                dma_free_coherent(pp->dev->dev.parent,
2889                                  txq->size * TSO_HEADER_SIZE,
2890                                  txq->tso_hdrs, txq->tso_hdrs_phys);
2891        if (txq->descs)
2892                dma_free_coherent(pp->dev->dev.parent,
2893                                  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2894                                  txq->descs, txq->descs_phys);
2895
2896        txq->descs             = NULL;
2897        txq->last_desc         = 0;
2898        txq->next_desc_to_proc = 0;
2899        txq->descs_phys        = 0;
2900
2901        /* Set minimum bandwidth for disabled TXQs */
2902        mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2903        mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2904
2905        /* Set Tx descriptors queue starting address and size */
2906        mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2907        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2908}
2909
2910/* Cleanup all Tx queues */
2911static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2912{
2913        int queue;
2914
2915        for (queue = 0; queue < txq_number; queue++)
2916                mvneta_txq_deinit(pp, &pp->txqs[queue]);
2917}
2918
2919/* Cleanup all Rx queues */
2920static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2921{
2922        int queue;
2923
2924        for (queue = 0; queue < txq_number; queue++)
2925                mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2926}
2927
2928
2929/* Init all Rx queues */
2930static int mvneta_setup_rxqs(struct mvneta_port *pp)
2931{
2932        int queue;
2933
2934        for (queue = 0; queue < rxq_number; queue++) {
2935                int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2936
2937                if (err) {
2938                        netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2939                                   __func__, queue);
2940                        mvneta_cleanup_rxqs(pp);
2941                        return err;
2942                }
2943        }
2944
2945        return 0;
2946}
2947
2948/* Init all tx queues */
2949static int mvneta_setup_txqs(struct mvneta_port *pp)
2950{
2951        int queue;
2952
2953        for (queue = 0; queue < txq_number; queue++) {
2954                int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2955                if (err) {
2956                        netdev_err(pp->dev, "%s: can't create txq=%d\n",
2957                                   __func__, queue);
2958                        mvneta_cleanup_txqs(pp);
2959                        return err;
2960                }
2961        }
2962
2963        return 0;
2964}
2965
2966static void mvneta_start_dev(struct mvneta_port *pp)
2967{
2968        int cpu;
2969        struct net_device *ndev = pp->dev;
2970
2971        mvneta_max_rx_size_set(pp, pp->pkt_size);
2972        mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2973
2974        /* start the Rx/Tx activity */
2975        mvneta_port_enable(pp);
2976
2977        /* Enable polling on the port */
2978        for_each_online_cpu(cpu) {
2979                struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2980
2981                napi_enable(&port->napi);
2982        }
2983
2984        /* Unmask interrupts. It has to be done from each CPU */
2985        on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
2986
2987        mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2988                    MVNETA_CAUSE_PHY_STATUS_CHANGE |
2989                    MVNETA_CAUSE_LINK_CHANGE |
2990                    MVNETA_CAUSE_PSC_SYNC_CHANGE);
2991
2992        phy_start(ndev->phydev);
2993        netif_tx_start_all_queues(pp->dev);
2994}
2995
2996static void mvneta_stop_dev(struct mvneta_port *pp)
2997{
2998        unsigned int cpu;
2999        struct net_device *ndev = pp->dev;
3000
3001        phy_stop(ndev->phydev);
3002
3003        for_each_online_cpu(cpu) {
3004                struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3005
3006                napi_disable(&port->napi);
3007        }
3008
3009        netif_carrier_off(pp->dev);
3010
3011        mvneta_port_down(pp);
3012        netif_tx_stop_all_queues(pp->dev);
3013
3014        /* Stop the port activity */
3015        mvneta_port_disable(pp);
3016
3017        /* Clear all ethernet port interrupts */
3018        on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3019
3020        /* Mask all ethernet port interrupts */
3021        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3022
3023        mvneta_tx_reset(pp);
3024        mvneta_rx_reset(pp);
3025}
3026
3027/* Return positive if MTU is valid */
3028static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
3029{
3030        if (mtu < 68) {
3031                netdev_err(dev, "cannot change mtu to less than 68\n");
3032                return -EINVAL;
3033        }
3034
3035        /* 9676 == 9700 - 20 and rounding to 8 */
3036        if (mtu > 9676) {
3037                netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
3038                mtu = 9676;
3039        }
3040
3041        if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3042                netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3043                        mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3044                mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3045        }
3046
3047        return mtu;
3048}
3049
3050static void mvneta_percpu_enable(void *arg)
3051{
3052        struct mvneta_port *pp = arg;
3053
3054        enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3055}
3056
3057static void mvneta_percpu_disable(void *arg)
3058{
3059        struct mvneta_port *pp = arg;
3060
3061        disable_percpu_irq(pp->dev->irq);
3062}
3063
3064/* Change the device mtu */
3065static int mvneta_change_mtu(struct net_device *dev, int mtu)
3066{
3067        struct mvneta_port *pp = netdev_priv(dev);
3068        int ret;
3069
3070        mtu = mvneta_check_mtu_valid(dev, mtu);
3071        if (mtu < 0)
3072                return -EINVAL;
3073
3074        dev->mtu = mtu;
3075
3076        if (!netif_running(dev)) {
3077                if (pp->bm_priv)
3078                        mvneta_bm_update_mtu(pp, mtu);
3079
3080                netdev_update_features(dev);
3081                return 0;
3082        }
3083
3084        /* The interface is running, so we have to force a
3085         * reallocation of the queues
3086         */
3087        mvneta_stop_dev(pp);
3088        on_each_cpu(mvneta_percpu_disable, pp, true);
3089
3090        mvneta_cleanup_txqs(pp);
3091        mvneta_cleanup_rxqs(pp);
3092
3093        if (pp->bm_priv)
3094                mvneta_bm_update_mtu(pp, mtu);
3095
3096        pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3097        pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3098                        SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3099
3100        ret = mvneta_setup_rxqs(pp);
3101        if (ret) {
3102                netdev_err(dev, "unable to setup rxqs after MTU change\n");
3103                return ret;
3104        }
3105
3106        ret = mvneta_setup_txqs(pp);
3107        if (ret) {
3108                netdev_err(dev, "unable to setup txqs after MTU change\n");
3109                return ret;
3110        }
3111
3112        on_each_cpu(mvneta_percpu_enable, pp, true);
3113        mvneta_start_dev(pp);
3114        mvneta_port_up(pp);
3115
3116        netdev_update_features(dev);
3117
3118        return 0;
3119}
3120
3121static netdev_features_t mvneta_fix_features(struct net_device *dev,
3122                                             netdev_features_t features)
3123{
3124        struct mvneta_port *pp = netdev_priv(dev);
3125
3126        if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3127                features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3128                netdev_info(dev,
3129                            "Disable IP checksum for MTU greater than %dB\n",
3130                            pp->tx_csum_limit);
3131        }
3132
3133        return features;
3134}
3135
3136/* Get mac address */
3137static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3138{
3139        u32 mac_addr_l, mac_addr_h;
3140
3141        mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3142        mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3143        addr[0] = (mac_addr_h >> 24) & 0xFF;
3144        addr[1] = (mac_addr_h >> 16) & 0xFF;
3145        addr[2] = (mac_addr_h >> 8) & 0xFF;
3146        addr[3] = mac_addr_h & 0xFF;
3147        addr[4] = (mac_addr_l >> 8) & 0xFF;
3148        addr[5] = mac_addr_l & 0xFF;
3149}
3150
3151/* Handle setting mac address */
3152static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3153{
3154        struct mvneta_port *pp = netdev_priv(dev);
3155        struct sockaddr *sockaddr = addr;
3156        int ret;
3157
3158        ret = eth_prepare_mac_addr_change(dev, addr);
3159        if (ret < 0)
3160                return ret;
3161        /* Remove previous address table entry */
3162        mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3163
3164        /* Set new addr in hw */
3165        mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3166
3167        eth_commit_mac_addr_change(dev, addr);
3168        return 0;
3169}
3170
3171static void mvneta_adjust_link(struct net_device *ndev)
3172{
3173        struct mvneta_port *pp = netdev_priv(ndev);
3174        struct phy_device *phydev = ndev->phydev;
3175        int status_change = 0;
3176
3177        if (phydev->link) {
3178                if ((pp->speed != phydev->speed) ||
3179                    (pp->duplex != phydev->duplex)) {
3180                        u32 val;
3181
3182                        val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3183                        val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3184                                 MVNETA_GMAC_CONFIG_GMII_SPEED |
3185                                 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3186
3187                        if (phydev->duplex)
3188                                val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3189
3190                        if (phydev->speed == SPEED_1000)
3191                                val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3192                        else if (phydev->speed == SPEED_100)
3193                                val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3194
3195                        mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3196
3197                        pp->duplex = phydev->duplex;
3198                        pp->speed  = phydev->speed;
3199                }
3200        }
3201
3202        if (phydev->link != pp->link) {
3203                if (!phydev->link) {
3204                        pp->duplex = -1;
3205                        pp->speed = 0;
3206                }
3207
3208                pp->link = phydev->link;
3209                status_change = 1;
3210        }
3211
3212        if (status_change) {
3213                if (phydev->link) {
3214                        if (!pp->use_inband_status) {
3215                                u32 val = mvreg_read(pp,
3216                                                  MVNETA_GMAC_AUTONEG_CONFIG);
3217                                val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3218                                val |= MVNETA_GMAC_FORCE_LINK_PASS;
3219                                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3220                                            val);
3221                        }
3222                        mvneta_port_up(pp);
3223                } else {
3224                        if (!pp->use_inband_status) {
3225                                u32 val = mvreg_read(pp,
3226                                                  MVNETA_GMAC_AUTONEG_CONFIG);
3227                                val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3228                                val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3229                                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3230                                            val);
3231                        }
3232                        mvneta_port_down(pp);
3233                }
3234                phy_print_status(phydev);
3235        }
3236}
3237
3238static int mvneta_mdio_probe(struct mvneta_port *pp)
3239{
3240        struct phy_device *phy_dev;
3241
3242        phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
3243                                 pp->phy_interface);
3244        if (!phy_dev) {
3245                netdev_err(pp->dev, "could not find the PHY\n");
3246                return -ENODEV;
3247        }
3248
3249        phy_dev->supported &= PHY_GBIT_FEATURES;
3250        phy_dev->advertising = phy_dev->supported;
3251
3252        pp->link    = 0;
3253        pp->duplex  = 0;
3254        pp->speed   = 0;
3255
3256        return 0;
3257}
3258
3259static void mvneta_mdio_remove(struct mvneta_port *pp)
3260{
3261        struct net_device *ndev = pp->dev;
3262
3263        phy_disconnect(ndev->phydev);
3264}
3265
3266/* Electing a CPU must be done in an atomic way: it should be done
3267 * after or before the removal/insertion of a CPU and this function is
3268 * not reentrant.
3269 */
3270static void mvneta_percpu_elect(struct mvneta_port *pp)
3271{
3272        int elected_cpu = 0, max_cpu, cpu, i = 0;
3273
3274        /* Use the cpu associated to the rxq when it is online, in all
3275         * the other cases, use the cpu 0 which can't be offline.
3276         */
3277        if (cpu_online(pp->rxq_def))
3278                elected_cpu = pp->rxq_def;
3279
3280        max_cpu = num_present_cpus();
3281
3282        for_each_online_cpu(cpu) {
3283                int rxq_map = 0, txq_map = 0;
3284                int rxq;
3285
3286                for (rxq = 0; rxq < rxq_number; rxq++)
3287                        if ((rxq % max_cpu) == cpu)
3288                                rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3289
3290                if (cpu == elected_cpu)
3291                        /* Map the default receive queue queue to the
3292                         * elected CPU
3293                         */
3294                        rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3295
3296                /* We update the TX queue map only if we have one
3297                 * queue. In this case we associate the TX queue to
3298                 * the CPU bound to the default RX queue
3299                 */
3300                if (txq_number == 1)
3301                        txq_map = (cpu == elected_cpu) ?
3302                                MVNETA_CPU_TXQ_ACCESS(1) : 0;
3303                else
3304                        txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3305                                MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3306
3307                mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3308
3309                /* Update the interrupt mask on each CPU according the
3310                 * new mapping
3311                 */
3312                smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3313                                         pp, true);
3314                i++;
3315
3316        }
3317};
3318
3319static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3320{
3321        int other_cpu;
3322        struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3323                                                  node_online);
3324        struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3325
3326
3327        spin_lock(&pp->lock);
3328        /*
3329         * Configuring the driver for a new CPU while the driver is
3330         * stopping is racy, so just avoid it.
3331         */
3332        if (pp->is_stopped) {
3333                spin_unlock(&pp->lock);
3334                return 0;
3335        }
3336        netif_tx_stop_all_queues(pp->dev);
3337
3338        /*
3339         * We have to synchronise on tha napi of each CPU except the one
3340         * just being woken up
3341         */
3342        for_each_online_cpu(other_cpu) {
3343                if (other_cpu != cpu) {
3344                        struct mvneta_pcpu_port *other_port =
3345                                per_cpu_ptr(pp->ports, other_cpu);
3346
3347                        napi_synchronize(&other_port->napi);
3348                }
3349        }
3350
3351        /* Mask all ethernet port interrupts */
3352        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3353        napi_enable(&port->napi);
3354
3355        /*
3356         * Enable per-CPU interrupts on the CPU that is
3357         * brought up.
3358         */
3359        mvneta_percpu_enable(pp);
3360
3361        /*
3362         * Enable per-CPU interrupt on the one CPU we care
3363         * about.
3364         */
3365        mvneta_percpu_elect(pp);
3366
3367        /* Unmask all ethernet port interrupts */
3368        on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3369        mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3370                    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3371                    MVNETA_CAUSE_LINK_CHANGE |
3372                    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3373        netif_tx_start_all_queues(pp->dev);
3374        spin_unlock(&pp->lock);
3375        return 0;
3376}
3377
3378static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3379{
3380        struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3381                                                  node_online);
3382        struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3383
3384        /*
3385         * Thanks to this lock we are sure that any pending cpu election is
3386         * done.
3387         */
3388        spin_lock(&pp->lock);
3389        /* Mask all ethernet port interrupts */
3390        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3391        spin_unlock(&pp->lock);
3392
3393        napi_synchronize(&port->napi);
3394        napi_disable(&port->napi);
3395        /* Disable per-CPU interrupts on the CPU that is brought down. */
3396        mvneta_percpu_disable(pp);
3397        return 0;
3398}
3399
3400static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3401{
3402        struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3403                                                  node_dead);
3404
3405        /* Check if a new CPU must be elected now this on is down */
3406        spin_lock(&pp->lock);
3407        mvneta_percpu_elect(pp);
3408        spin_unlock(&pp->lock);
3409        /* Unmask all ethernet port interrupts */
3410        on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3411        mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3412                    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3413                    MVNETA_CAUSE_LINK_CHANGE |
3414                    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3415        netif_tx_start_all_queues(pp->dev);
3416        return 0;
3417}
3418
3419static int mvneta_open(struct net_device *dev)
3420{
3421        struct mvneta_port *pp = netdev_priv(dev);
3422        int ret;
3423
3424        pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3425        pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3426                        SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3427
3428        ret = mvneta_setup_rxqs(pp);
3429        if (ret)
3430                return ret;
3431
3432        ret = mvneta_setup_txqs(pp);
3433        if (ret)
3434                goto err_cleanup_rxqs;
3435
3436        /* Connect to port interrupt line */
3437        ret = request_percpu_irq(pp->dev->irq, mvneta_isr,
3438                                 MVNETA_DRIVER_NAME, pp->ports);
3439        if (ret) {
3440                netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3441                goto err_cleanup_txqs;
3442        }
3443
3444        /* Enable per-CPU interrupt on all the CPU to handle our RX
3445         * queue interrupts
3446         */
3447        on_each_cpu(mvneta_percpu_enable, pp, true);
3448
3449        pp->is_stopped = false;
3450        /* Register a CPU notifier to handle the case where our CPU
3451         * might be taken offline.
3452         */
3453        ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3454                                               &pp->node_online);
3455        if (ret)
3456                goto err_free_irq;
3457
3458        ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3459                                               &pp->node_dead);
3460        if (ret)
3461                goto err_free_online_hp;
3462
3463        /* In default link is down */
3464        netif_carrier_off(pp->dev);
3465
3466        ret = mvneta_mdio_probe(pp);
3467        if (ret < 0) {
3468                netdev_err(dev, "cannot probe MDIO bus\n");
3469                goto err_free_dead_hp;
3470        }
3471
3472        mvneta_start_dev(pp);
3473
3474        return 0;
3475
3476err_free_dead_hp:
3477        cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3478                                            &pp->node_dead);
3479err_free_online_hp:
3480        cpuhp_state_remove_instance_nocalls(online_hpstate, &pp->node_online);
3481err_free_irq:
3482        on_each_cpu(mvneta_percpu_disable, pp, true);
3483        free_percpu_irq(pp->dev->irq, pp->ports);
3484err_cleanup_txqs:
3485        mvneta_cleanup_txqs(pp);
3486err_cleanup_rxqs:
3487        mvneta_cleanup_rxqs(pp);
3488        return ret;
3489}
3490
3491/* Stop the port, free port interrupt line */
3492static int mvneta_stop(struct net_device *dev)
3493{
3494        struct mvneta_port *pp = netdev_priv(dev);
3495
3496        /* Inform that we are stopping so we don't want to setup the
3497         * driver for new CPUs in the notifiers. The code of the
3498         * notifier for CPU online is protected by the same spinlock,
3499         * so when we get the lock, the notifer work is done.
3500         */
3501        spin_lock(&pp->lock);
3502        pp->is_stopped = true;
3503        spin_unlock(&pp->lock);
3504
3505        mvneta_stop_dev(pp);
3506        mvneta_mdio_remove(pp);
3507
3508        cpuhp_state_remove_instance_nocalls(online_hpstate, &pp->node_online);
3509        cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3510                                            &pp->node_dead);
3511        on_each_cpu(mvneta_percpu_disable, pp, true);
3512        free_percpu_irq(dev->irq, pp->ports);
3513        mvneta_cleanup_rxqs(pp);
3514        mvneta_cleanup_txqs(pp);
3515
3516        return 0;
3517}
3518
3519static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3520{
3521        if (!dev->phydev)
3522                return -ENOTSUPP;
3523
3524        return phy_mii_ioctl(dev->phydev, ifr, cmd);
3525}
3526
3527/* Ethtool methods */
3528
3529/* Set link ksettings (phy address, speed) for ethtools */
3530static int
3531mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3532                                  const struct ethtool_link_ksettings *cmd)
3533{
3534        struct mvneta_port *pp = netdev_priv(ndev);
3535        struct phy_device *phydev = ndev->phydev;
3536
3537        if (!phydev)
3538                return -ENODEV;
3539
3540        if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3541                u32 val;
3542
3543                mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE);
3544
3545                if (cmd->base.autoneg == AUTONEG_DISABLE) {
3546                        val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3547                        val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3548                                 MVNETA_GMAC_CONFIG_GMII_SPEED |
3549                                 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3550
3551                        if (phydev->duplex)
3552                                val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3553
3554                        if (phydev->speed == SPEED_1000)
3555                                val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3556                        else if (phydev->speed == SPEED_100)
3557                                val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3558
3559                        mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3560                }
3561
3562                pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE);
3563                netdev_info(pp->dev, "autoneg status set to %i\n",
3564                            pp->use_inband_status);
3565
3566                if (netif_running(ndev)) {
3567                        mvneta_port_down(pp);
3568                        mvneta_port_up(pp);
3569                }
3570        }
3571
3572        return phy_ethtool_ksettings_set(ndev->phydev, cmd);
3573}
3574
3575/* Set interrupt coalescing for ethtools */
3576static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3577                                       struct ethtool_coalesce *c)
3578{
3579        struct mvneta_port *pp = netdev_priv(dev);
3580        int queue;
3581
3582        for (queue = 0; queue < rxq_number; queue++) {
3583                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3584                rxq->time_coal = c->rx_coalesce_usecs;
3585                rxq->pkts_coal = c->rx_max_coalesced_frames;
3586                mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3587                mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3588        }
3589
3590        for (queue = 0; queue < txq_number; queue++) {
3591                struct mvneta_tx_queue *txq = &pp->txqs[queue];
3592                txq->done_pkts_coal = c->tx_max_coalesced_frames;
3593                mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3594        }
3595
3596        return 0;
3597}
3598
3599/* get coalescing for ethtools */
3600static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3601                                       struct ethtool_coalesce *c)
3602{
3603        struct mvneta_port *pp = netdev_priv(dev);
3604
3605        c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3606        c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3607
3608        c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3609        return 0;
3610}
3611
3612
3613static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3614                                    struct ethtool_drvinfo *drvinfo)
3615{
3616        strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3617                sizeof(drvinfo->driver));
3618        strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3619                sizeof(drvinfo->version));
3620        strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3621                sizeof(drvinfo->bus_info));
3622}
3623
3624
3625static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3626                                         struct ethtool_ringparam *ring)
3627{
3628        struct mvneta_port *pp = netdev_priv(netdev);
3629
3630        ring->rx_max_pending = MVNETA_MAX_RXD;
3631        ring->tx_max_pending = MVNETA_MAX_TXD;
3632        ring->rx_pending = pp->rx_ring_size;
3633        ring->tx_pending = pp->tx_ring_size;
3634}
3635
3636static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3637                                        struct ethtool_ringparam *ring)
3638{
3639        struct mvneta_port *pp = netdev_priv(dev);
3640
3641        if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3642                return -EINVAL;
3643        pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3644                ring->rx_pending : MVNETA_MAX_RXD;
3645
3646        pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3647                                   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3648        if (pp->tx_ring_size != ring->tx_pending)
3649                netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3650                            pp->tx_ring_size, ring->tx_pending);
3651
3652        if (netif_running(dev)) {
3653                mvneta_stop(dev);
3654                if (mvneta_open(dev)) {
3655                        netdev_err(dev,
3656                                   "error on opening device after ring param change\n");
3657                        return -ENOMEM;
3658                }
3659        }
3660
3661        return 0;
3662}
3663
3664static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3665                                       u8 *data)
3666{
3667        if (sset == ETH_SS_STATS) {
3668                int i;
3669
3670                for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3671                        memcpy(data + i * ETH_GSTRING_LEN,
3672                               mvneta_statistics[i].name, ETH_GSTRING_LEN);
3673        }
3674}
3675
3676static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3677{
3678        const struct mvneta_statistic *s;
3679        void __iomem *base = pp->base;
3680        u32 high, low, val;
3681        u64 val64;
3682        int i;
3683
3684        for (i = 0, s = mvneta_statistics;
3685             s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3686             s++, i++) {
3687                switch (s->type) {
3688                case T_REG_32:
3689                        val = readl_relaxed(base + s->offset);
3690                        pp->ethtool_stats[i] += val;
3691                        break;
3692                case T_REG_64:
3693                        /* Docs say to read low 32-bit then high */
3694                        low = readl_relaxed(base + s->offset);
3695                        high = readl_relaxed(base + s->offset + 4);
3696                        val64 = (u64)high << 32 | low;
3697                        pp->ethtool_stats[i] += val64;
3698                        break;
3699                }
3700        }
3701}
3702
3703static void mvneta_ethtool_get_stats(struct net_device *dev,
3704                                     struct ethtool_stats *stats, u64 *data)
3705{
3706        struct mvneta_port *pp = netdev_priv(dev);
3707        int i;
3708
3709        mvneta_ethtool_update_stats(pp);
3710
3711        for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3712                *data++ = pp->ethtool_stats[i];
3713}
3714
3715static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3716{
3717        if (sset == ETH_SS_STATS)
3718                return ARRAY_SIZE(mvneta_statistics);
3719        return -EOPNOTSUPP;
3720}
3721
3722static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3723{
3724        return MVNETA_RSS_LU_TABLE_SIZE;
3725}
3726
3727static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3728                                    struct ethtool_rxnfc *info,
3729                                    u32 *rules __always_unused)
3730{
3731        switch (info->cmd) {
3732        case ETHTOOL_GRXRINGS:
3733                info->data =  rxq_number;
3734                return 0;
3735        case ETHTOOL_GRXFH:
3736                return -EOPNOTSUPP;
3737        default:
3738                return -EOPNOTSUPP;
3739        }
3740}
3741
3742static int  mvneta_config_rss(struct mvneta_port *pp)
3743{
3744        int cpu;
3745        u32 val;
3746
3747        netif_tx_stop_all_queues(pp->dev);
3748
3749        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3750
3751        /* We have to synchronise on the napi of each CPU */
3752        for_each_online_cpu(cpu) {
3753                struct mvneta_pcpu_port *pcpu_port =
3754                        per_cpu_ptr(pp->ports, cpu);
3755
3756                napi_synchronize(&pcpu_port->napi);
3757                napi_disable(&pcpu_port->napi);
3758        }
3759
3760        pp->rxq_def = pp->indir[0];
3761
3762        /* Update unicast mapping */
3763        mvneta_set_rx_mode(pp->dev);
3764
3765        /* Update val of portCfg register accordingly with all RxQueue types */
3766        val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3767        mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3768
3769        /* Update the elected CPU matching the new rxq_def */
3770        spin_lock(&pp->lock);
3771        mvneta_percpu_elect(pp);
3772        spin_unlock(&pp->lock);
3773
3774        /* We have to synchronise on the napi of each CPU */
3775        for_each_online_cpu(cpu) {
3776                struct mvneta_pcpu_port *pcpu_port =
3777                        per_cpu_ptr(pp->ports, cpu);
3778
3779                napi_enable(&pcpu_port->napi);
3780        }
3781
3782        netif_tx_start_all_queues(pp->dev);
3783
3784        return 0;
3785}
3786
3787static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3788                                   const u8 *key, const u8 hfunc)
3789{
3790        struct mvneta_port *pp = netdev_priv(dev);
3791        /* We require at least one supported parameter to be changed
3792         * and no change in any of the unsupported parameters
3793         */
3794        if (key ||
3795            (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3796                return -EOPNOTSUPP;
3797
3798        if (!indir)
3799                return 0;
3800
3801        memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3802
3803        return mvneta_config_rss(pp);
3804}
3805
3806static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3807                                   u8 *hfunc)
3808{
3809        struct mvneta_port *pp = netdev_priv(dev);
3810
3811        if (hfunc)
3812                *hfunc = ETH_RSS_HASH_TOP;
3813
3814        if (!indir)
3815                return 0;
3816
3817        memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3818
3819        return 0;
3820}
3821
3822static const struct net_device_ops mvneta_netdev_ops = {
3823        .ndo_open            = mvneta_open,
3824        .ndo_stop            = mvneta_stop,
3825        .ndo_start_xmit      = mvneta_tx,
3826        .ndo_set_rx_mode     = mvneta_set_rx_mode,
3827        .ndo_set_mac_address = mvneta_set_mac_addr,
3828        .ndo_change_mtu      = mvneta_change_mtu,
3829        .ndo_fix_features    = mvneta_fix_features,
3830        .ndo_get_stats64     = mvneta_get_stats64,
3831        .ndo_do_ioctl        = mvneta_ioctl,
3832};
3833
3834const struct ethtool_ops mvneta_eth_tool_ops = {
3835        .get_link       = ethtool_op_get_link,
3836        .set_coalesce   = mvneta_ethtool_set_coalesce,
3837        .get_coalesce   = mvneta_ethtool_get_coalesce,
3838        .get_drvinfo    = mvneta_ethtool_get_drvinfo,
3839        .get_ringparam  = mvneta_ethtool_get_ringparam,
3840        .set_ringparam  = mvneta_ethtool_set_ringparam,
3841        .get_strings    = mvneta_ethtool_get_strings,
3842        .get_ethtool_stats = mvneta_ethtool_get_stats,
3843        .get_sset_count = mvneta_ethtool_get_sset_count,
3844        .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3845        .get_rxnfc      = mvneta_ethtool_get_rxnfc,
3846        .get_rxfh       = mvneta_ethtool_get_rxfh,
3847        .set_rxfh       = mvneta_ethtool_set_rxfh,
3848        .get_link_ksettings = phy_ethtool_get_link_ksettings,
3849        .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
3850};
3851
3852/* Initialize hw */
3853static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3854{
3855        int queue;
3856
3857        /* Disable port */
3858        mvneta_port_disable(pp);
3859
3860        /* Set port default values */
3861        mvneta_defaults_set(pp);
3862
3863        pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3864                                GFP_KERNEL);
3865        if (!pp->txqs)
3866                return -ENOMEM;
3867
3868        /* Initialize TX descriptor rings */
3869        for (queue = 0; queue < txq_number; queue++) {
3870                struct mvneta_tx_queue *txq = &pp->txqs[queue];
3871                txq->id = queue;
3872                txq->size = pp->tx_ring_size;
3873                txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3874        }
3875
3876        pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3877                                GFP_KERNEL);
3878        if (!pp->rxqs)
3879                return -ENOMEM;
3880
3881        /* Create Rx descriptor rings */
3882        for (queue = 0; queue < rxq_number; queue++) {
3883                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3884                rxq->id = queue;
3885                rxq->size = pp->rx_ring_size;
3886                rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3887                rxq->time_coal = MVNETA_RX_COAL_USEC;
3888        }
3889
3890        return 0;
3891}
3892
3893/* platform glue : initialize decoding windows */
3894static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3895                                     const struct mbus_dram_target_info *dram)
3896{
3897        u32 win_enable;
3898        u32 win_protect;
3899        int i;
3900
3901        for (i = 0; i < 6; i++) {
3902                mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3903                mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
3904
3905                if (i < 4)
3906                        mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
3907        }
3908
3909        win_enable = 0x3f;
3910        win_protect = 0;
3911
3912        for (i = 0; i < dram->num_cs; i++) {
3913                const struct mbus_dram_window *cs = dram->cs + i;
3914                mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
3915                            (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
3916
3917                mvreg_write(pp, MVNETA_WIN_SIZE(i),
3918                            (cs->size - 1) & 0xffff0000);
3919
3920                win_enable &= ~(1 << i);
3921                win_protect |= 3 << (2 * i);
3922        }
3923
3924        mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
3925        mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
3926}
3927
3928/* Power up the port */
3929static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
3930{
3931        u32 ctrl;
3932
3933        /* MAC Cause register should be cleared */
3934        mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
3935
3936        ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3937
3938        /* Even though it might look weird, when we're configured in
3939         * SGMII or QSGMII mode, the RGMII bit needs to be set.
3940         */
3941        switch(phy_mode) {
3942        case PHY_INTERFACE_MODE_QSGMII:
3943                mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
3944                ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3945                break;
3946        case PHY_INTERFACE_MODE_SGMII:
3947                mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
3948                ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3949                break;
3950        case PHY_INTERFACE_MODE_RGMII:
3951        case PHY_INTERFACE_MODE_RGMII_ID:
3952                ctrl |= MVNETA_GMAC2_PORT_RGMII;
3953                break;
3954        default:
3955                return -EINVAL;
3956        }
3957
3958        /* Cancel Port Reset */
3959        ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3960        mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3961
3962        while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3963                MVNETA_GMAC2_PORT_RESET) != 0)
3964                continue;
3965
3966        return 0;
3967}
3968
3969/* Device initialization routine */
3970static int mvneta_probe(struct platform_device *pdev)
3971{
3972        const struct mbus_dram_target_info *dram_target_info;
3973        struct resource *res;
3974        struct device_node *dn = pdev->dev.of_node;
3975        struct device_node *phy_node;
3976        struct device_node *bm_node;
3977        struct mvneta_port *pp;
3978        struct net_device *dev;
3979        const char *dt_mac_addr;
3980        char hw_mac_addr[ETH_ALEN];
3981        const char *mac_from;
3982        const char *managed;
3983        int tx_csum_limit;
3984        int phy_mode;
3985        int err;
3986        int cpu;
3987
3988        dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3989        if (!dev)
3990                return -ENOMEM;
3991
3992        dev->irq = irq_of_parse_and_map(dn, 0);
3993        if (dev->irq == 0) {
3994                err = -EINVAL;
3995                goto err_free_netdev;
3996        }
3997
3998        phy_node = of_parse_phandle(dn, "phy", 0);
3999        if (!phy_node) {
4000                if (!of_phy_is_fixed_link(dn)) {
4001                        dev_err(&pdev->dev, "no PHY specified\n");
4002                        err = -ENODEV;
4003                        goto err_free_irq;
4004                }
4005
4006                err = of_phy_register_fixed_link(dn);
4007                if (err < 0) {
4008                        dev_err(&pdev->dev, "cannot register fixed PHY\n");
4009                        goto err_free_irq;
4010                }
4011
4012                /* In the case of a fixed PHY, the DT node associated
4013                 * to the PHY is the Ethernet MAC DT node.
4014                 */
4015                phy_node = of_node_get(dn);
4016        }
4017
4018        phy_mode = of_get_phy_mode(dn);
4019        if (phy_mode < 0) {
4020                dev_err(&pdev->dev, "incorrect phy-mode\n");
4021                err = -EINVAL;
4022                goto err_put_phy_node;
4023        }
4024
4025        dev->tx_queue_len = MVNETA_MAX_TXD;
4026        dev->watchdog_timeo = 5 * HZ;
4027        dev->netdev_ops = &mvneta_netdev_ops;
4028
4029        dev->ethtool_ops = &mvneta_eth_tool_ops;
4030
4031        pp = netdev_priv(dev);
4032        spin_lock_init(&pp->lock);
4033        pp->phy_node = phy_node;
4034        pp->phy_interface = phy_mode;
4035
4036        err = of_property_read_string(dn, "managed", &managed);
4037        pp->use_inband_status = (err == 0 &&
4038                                 strcmp(managed, "in-band-status") == 0);
4039
4040        pp->rxq_def = rxq_def;
4041
4042        pp->indir[0] = rxq_def;
4043
4044        pp->clk = devm_clk_get(&pdev->dev, "core");
4045        if (IS_ERR(pp->clk))
4046                pp->clk = devm_clk_get(&pdev->dev, NULL);
4047        if (IS_ERR(pp->clk)) {
4048                err = PTR_ERR(pp->clk);
4049                goto err_put_phy_node;
4050        }
4051
4052        clk_prepare_enable(pp->clk);
4053
4054        pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4055        if (!IS_ERR(pp->clk_bus))
4056                clk_prepare_enable(pp->clk_bus);
4057
4058        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4059        pp->base = devm_ioremap_resource(&pdev->dev, res);
4060        if (IS_ERR(pp->base)) {
4061                err = PTR_ERR(pp->base);
4062                goto err_clk;
4063        }
4064
4065        /* Alloc per-cpu port structure */
4066        pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4067        if (!pp->ports) {
4068                err = -ENOMEM;
4069                goto err_clk;
4070        }
4071
4072        /* Alloc per-cpu stats */
4073        pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4074        if (!pp->stats) {
4075                err = -ENOMEM;
4076                goto err_free_ports;
4077        }
4078
4079        dt_mac_addr = of_get_mac_address(dn);
4080        if (dt_mac_addr) {
4081                mac_from = "device tree";
4082                memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4083        } else {
4084                mvneta_get_mac_addr(pp, hw_mac_addr);
4085                if (is_valid_ether_addr(hw_mac_addr)) {
4086                        mac_from = "hardware";
4087                        memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4088                } else {
4089                        mac_from = "random";
4090                        eth_hw_addr_random(dev);
4091                }
4092        }
4093
4094        if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4095                if (tx_csum_limit < 0 ||
4096                    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4097                        tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4098                        dev_info(&pdev->dev,
4099                                 "Wrong TX csum limit in DT, set to %dB\n",
4100                                 MVNETA_TX_CSUM_DEF_SIZE);
4101                }
4102        } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4103                tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4104        } else {
4105                tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4106        }
4107
4108        pp->tx_csum_limit = tx_csum_limit;
4109
4110        dram_target_info = mv_mbus_dram_info();
4111        if (dram_target_info)
4112                mvneta_conf_mbus_windows(pp, dram_target_info);
4113
4114        pp->tx_ring_size = MVNETA_MAX_TXD;
4115        pp->rx_ring_size = MVNETA_MAX_RXD;
4116
4117        pp->dev = dev;
4118        SET_NETDEV_DEV(dev, &pdev->dev);
4119
4120        pp->id = global_port_id++;
4121
4122        /* Obtain access to BM resources if enabled and already initialized */
4123        bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4124        if (bm_node && bm_node->data) {
4125                pp->bm_priv = bm_node->data;
4126                err = mvneta_bm_port_init(pdev, pp);
4127                if (err < 0) {
4128                        dev_info(&pdev->dev, "use SW buffer management\n");
4129                        pp->bm_priv = NULL;
4130                }
4131        }
4132        of_node_put(bm_node);
4133
4134        err = mvneta_init(&pdev->dev, pp);
4135        if (err < 0)
4136                goto err_netdev;
4137
4138        err = mvneta_port_power_up(pp, phy_mode);
4139        if (err < 0) {
4140                dev_err(&pdev->dev, "can't power up port\n");
4141                goto err_netdev;
4142        }
4143
4144        for_each_present_cpu(cpu) {
4145                struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4146
4147                netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4148                port->pp = pp;
4149        }
4150
4151        dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
4152        dev->hw_features |= dev->features;
4153        dev->vlan_features |= dev->features;
4154        dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4155        dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4156
4157        err = register_netdev(dev);
4158        if (err < 0) {
4159                dev_err(&pdev->dev, "failed to register\n");
4160                goto err_free_stats;
4161        }
4162
4163        netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4164                    dev->dev_addr);
4165
4166        platform_set_drvdata(pdev, pp->dev);
4167
4168        if (pp->use_inband_status) {
4169                struct phy_device *phy = of_phy_find_device(dn);
4170
4171                mvneta_fixed_link_update(pp, phy);
4172
4173                put_device(&phy->mdio.dev);
4174        }
4175
4176        return 0;
4177
4178err_netdev:
4179        unregister_netdev(dev);
4180        if (pp->bm_priv) {
4181                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4182                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4183                                       1 << pp->id);
4184        }
4185err_free_stats:
4186        free_percpu(pp->stats);
4187err_free_ports:
4188        free_percpu(pp->ports);
4189err_clk:
4190        clk_disable_unprepare(pp->clk_bus);
4191        clk_disable_unprepare(pp->clk);
4192err_put_phy_node:
4193        of_node_put(phy_node);
4194        if (of_phy_is_fixed_link(dn))
4195                of_phy_deregister_fixed_link(dn);
4196err_free_irq:
4197        irq_dispose_mapping(dev->irq);
4198err_free_netdev:
4199        free_netdev(dev);
4200        return err;
4201}
4202
4203/* Device removal routine */
4204static int mvneta_remove(struct platform_device *pdev)
4205{
4206        struct net_device  *dev = platform_get_drvdata(pdev);
4207        struct device_node *dn = pdev->dev.of_node;
4208        struct mvneta_port *pp = netdev_priv(dev);
4209
4210        unregister_netdev(dev);
4211        clk_disable_unprepare(pp->clk_bus);
4212        clk_disable_unprepare(pp->clk);
4213        free_percpu(pp->ports);
4214        free_percpu(pp->stats);
4215        if (of_phy_is_fixed_link(dn))
4216                of_phy_deregister_fixed_link(dn);
4217        irq_dispose_mapping(dev->irq);
4218        of_node_put(pp->phy_node);
4219        free_netdev(dev);
4220
4221        if (pp->bm_priv) {
4222                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4223                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4224                                       1 << pp->id);
4225        }
4226
4227        return 0;
4228}
4229
4230static const struct of_device_id mvneta_match[] = {
4231        { .compatible = "marvell,armada-370-neta" },
4232        { .compatible = "marvell,armada-xp-neta" },
4233        { }
4234};
4235MODULE_DEVICE_TABLE(of, mvneta_match);
4236
4237static struct platform_driver mvneta_driver = {
4238        .probe = mvneta_probe,
4239        .remove = mvneta_remove,
4240        .driver = {
4241                .name = MVNETA_DRIVER_NAME,
4242                .of_match_table = mvneta_match,
4243        },
4244};
4245
4246static int __init mvneta_driver_init(void)
4247{
4248        int ret;
4249
4250        ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4251                                      mvneta_cpu_online,
4252                                      mvneta_cpu_down_prepare);
4253        if (ret < 0)
4254                goto out;
4255        online_hpstate = ret;
4256        ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4257                                      NULL, mvneta_cpu_dead);
4258        if (ret)
4259                goto err_dead;
4260
4261        ret = platform_driver_register(&mvneta_driver);
4262        if (ret)
4263                goto err;
4264        return 0;
4265
4266err:
4267        cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4268err_dead:
4269        cpuhp_remove_multi_state(online_hpstate);
4270out:
4271        return ret;
4272}
4273module_init(mvneta_driver_init);
4274
4275static void __exit mvneta_driver_exit(void)
4276{
4277        platform_driver_unregister(&mvneta_driver);
4278        cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4279        cpuhp_remove_multi_state(online_hpstate);
4280}
4281module_exit(mvneta_driver_exit);
4282
4283MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4284MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4285MODULE_LICENSE("GPL");
4286
4287module_param(rxq_number, int, S_IRUGO);
4288module_param(txq_number, int, S_IRUGO);
4289
4290module_param(rxq_def, int, S_IRUGO);
4291module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
4292