linux/drivers/nvme/host/core.c
<<
>>
Prefs
   1/*
   2 * NVM Express device driver
   3 * Copyright (c) 2011-2014, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 */
  14
  15#include <linux/blkdev.h>
  16#include <linux/blk-mq.h>
  17#include <linux/delay.h>
  18#include <linux/errno.h>
  19#include <linux/hdreg.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/list_sort.h>
  23#include <linux/slab.h>
  24#include <linux/types.h>
  25#include <linux/pr.h>
  26#include <linux/ptrace.h>
  27#include <linux/nvme_ioctl.h>
  28#include <linux/t10-pi.h>
  29#include <scsi/sg.h>
  30#include <asm/unaligned.h>
  31
  32#include "nvme.h"
  33#include "fabrics.h"
  34
  35#define NVME_MINORS             (1U << MINORBITS)
  36
  37unsigned char admin_timeout = 60;
  38module_param(admin_timeout, byte, 0644);
  39MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
  40EXPORT_SYMBOL_GPL(admin_timeout);
  41
  42unsigned char nvme_io_timeout = 30;
  43module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
  44MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
  45EXPORT_SYMBOL_GPL(nvme_io_timeout);
  46
  47unsigned char shutdown_timeout = 5;
  48module_param(shutdown_timeout, byte, 0644);
  49MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
  50
  51unsigned int nvme_max_retries = 5;
  52module_param_named(max_retries, nvme_max_retries, uint, 0644);
  53MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
  54EXPORT_SYMBOL_GPL(nvme_max_retries);
  55
  56static int nvme_char_major;
  57module_param(nvme_char_major, int, 0);
  58
  59static LIST_HEAD(nvme_ctrl_list);
  60static DEFINE_SPINLOCK(dev_list_lock);
  61
  62static struct class *nvme_class;
  63
  64void nvme_cancel_request(struct request *req, void *data, bool reserved)
  65{
  66        int status;
  67
  68        if (!blk_mq_request_started(req))
  69                return;
  70
  71        dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
  72                                "Cancelling I/O %d", req->tag);
  73
  74        status = NVME_SC_ABORT_REQ;
  75        if (blk_queue_dying(req->q))
  76                status |= NVME_SC_DNR;
  77        blk_mq_complete_request(req, status);
  78}
  79EXPORT_SYMBOL_GPL(nvme_cancel_request);
  80
  81bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
  82                enum nvme_ctrl_state new_state)
  83{
  84        enum nvme_ctrl_state old_state;
  85        bool changed = false;
  86
  87        spin_lock_irq(&ctrl->lock);
  88
  89        old_state = ctrl->state;
  90        switch (new_state) {
  91        case NVME_CTRL_LIVE:
  92                switch (old_state) {
  93                case NVME_CTRL_NEW:
  94                case NVME_CTRL_RESETTING:
  95                case NVME_CTRL_RECONNECTING:
  96                        changed = true;
  97                        /* FALLTHRU */
  98                default:
  99                        break;
 100                }
 101                break;
 102        case NVME_CTRL_RESETTING:
 103                switch (old_state) {
 104                case NVME_CTRL_NEW:
 105                case NVME_CTRL_LIVE:
 106                case NVME_CTRL_RECONNECTING:
 107                        changed = true;
 108                        /* FALLTHRU */
 109                default:
 110                        break;
 111                }
 112                break;
 113        case NVME_CTRL_RECONNECTING:
 114                switch (old_state) {
 115                case NVME_CTRL_LIVE:
 116                        changed = true;
 117                        /* FALLTHRU */
 118                default:
 119                        break;
 120                }
 121                break;
 122        case NVME_CTRL_DELETING:
 123                switch (old_state) {
 124                case NVME_CTRL_LIVE:
 125                case NVME_CTRL_RESETTING:
 126                case NVME_CTRL_RECONNECTING:
 127                        changed = true;
 128                        /* FALLTHRU */
 129                default:
 130                        break;
 131                }
 132                break;
 133        case NVME_CTRL_DEAD:
 134                switch (old_state) {
 135                case NVME_CTRL_DELETING:
 136                        changed = true;
 137                        /* FALLTHRU */
 138                default:
 139                        break;
 140                }
 141                break;
 142        default:
 143                break;
 144        }
 145
 146        if (changed)
 147                ctrl->state = new_state;
 148
 149        spin_unlock_irq(&ctrl->lock);
 150
 151        return changed;
 152}
 153EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
 154
 155static void nvme_free_ns(struct kref *kref)
 156{
 157        struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
 158
 159        if (ns->ndev)
 160                nvme_nvm_unregister(ns);
 161
 162        if (ns->disk) {
 163                spin_lock(&dev_list_lock);
 164                ns->disk->private_data = NULL;
 165                spin_unlock(&dev_list_lock);
 166        }
 167
 168        put_disk(ns->disk);
 169        ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
 170        nvme_put_ctrl(ns->ctrl);
 171        kfree(ns);
 172}
 173
 174static void nvme_put_ns(struct nvme_ns *ns)
 175{
 176        kref_put(&ns->kref, nvme_free_ns);
 177}
 178
 179static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
 180{
 181        struct nvme_ns *ns;
 182
 183        spin_lock(&dev_list_lock);
 184        ns = disk->private_data;
 185        if (ns) {
 186                if (!kref_get_unless_zero(&ns->kref))
 187                        goto fail;
 188                if (!try_module_get(ns->ctrl->ops->module))
 189                        goto fail_put_ns;
 190        }
 191        spin_unlock(&dev_list_lock);
 192
 193        return ns;
 194
 195fail_put_ns:
 196        kref_put(&ns->kref, nvme_free_ns);
 197fail:
 198        spin_unlock(&dev_list_lock);
 199        return NULL;
 200}
 201
 202void nvme_requeue_req(struct request *req)
 203{
 204        unsigned long flags;
 205
 206        blk_mq_requeue_request(req);
 207        spin_lock_irqsave(req->q->queue_lock, flags);
 208        if (!blk_queue_stopped(req->q))
 209                blk_mq_kick_requeue_list(req->q);
 210        spin_unlock_irqrestore(req->q->queue_lock, flags);
 211}
 212EXPORT_SYMBOL_GPL(nvme_requeue_req);
 213
 214struct request *nvme_alloc_request(struct request_queue *q,
 215                struct nvme_command *cmd, unsigned int flags, int qid)
 216{
 217        struct request *req;
 218
 219        if (qid == NVME_QID_ANY) {
 220                req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);
 221        } else {
 222                req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags,
 223                                qid ? qid - 1 : 0);
 224        }
 225        if (IS_ERR(req))
 226                return req;
 227
 228        req->cmd_type = REQ_TYPE_DRV_PRIV;
 229        req->cmd_flags |= REQ_FAILFAST_DRIVER;
 230        req->cmd = (unsigned char *)cmd;
 231        req->cmd_len = sizeof(struct nvme_command);
 232
 233        return req;
 234}
 235EXPORT_SYMBOL_GPL(nvme_alloc_request);
 236
 237static inline void nvme_setup_flush(struct nvme_ns *ns,
 238                struct nvme_command *cmnd)
 239{
 240        memset(cmnd, 0, sizeof(*cmnd));
 241        cmnd->common.opcode = nvme_cmd_flush;
 242        cmnd->common.nsid = cpu_to_le32(ns->ns_id);
 243}
 244
 245static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
 246                struct nvme_command *cmnd)
 247{
 248        struct nvme_dsm_range *range;
 249        struct page *page;
 250        int offset;
 251        unsigned int nr_bytes = blk_rq_bytes(req);
 252
 253        range = kmalloc(sizeof(*range), GFP_ATOMIC);
 254        if (!range)
 255                return BLK_MQ_RQ_QUEUE_BUSY;
 256
 257        range->cattr = cpu_to_le32(0);
 258        range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
 259        range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
 260
 261        memset(cmnd, 0, sizeof(*cmnd));
 262        cmnd->dsm.opcode = nvme_cmd_dsm;
 263        cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
 264        cmnd->dsm.nr = 0;
 265        cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
 266
 267        req->completion_data = range;
 268        page = virt_to_page(range);
 269        offset = offset_in_page(range);
 270        blk_add_request_payload(req, page, offset, sizeof(*range));
 271
 272        /*
 273         * we set __data_len back to the size of the area to be discarded
 274         * on disk. This allows us to report completion on the full amount
 275         * of blocks described by the request.
 276         */
 277        req->__data_len = nr_bytes;
 278
 279        return 0;
 280}
 281
 282static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
 283                struct nvme_command *cmnd)
 284{
 285        u16 control = 0;
 286        u32 dsmgmt = 0;
 287
 288        if (req->cmd_flags & REQ_FUA)
 289                control |= NVME_RW_FUA;
 290        if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
 291                control |= NVME_RW_LR;
 292
 293        if (req->cmd_flags & REQ_RAHEAD)
 294                dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
 295
 296        memset(cmnd, 0, sizeof(*cmnd));
 297        cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
 298        cmnd->rw.command_id = req->tag;
 299        cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
 300        cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
 301        cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
 302
 303        if (ns->ms) {
 304                switch (ns->pi_type) {
 305                case NVME_NS_DPS_PI_TYPE3:
 306                        control |= NVME_RW_PRINFO_PRCHK_GUARD;
 307                        break;
 308                case NVME_NS_DPS_PI_TYPE1:
 309                case NVME_NS_DPS_PI_TYPE2:
 310                        control |= NVME_RW_PRINFO_PRCHK_GUARD |
 311                                        NVME_RW_PRINFO_PRCHK_REF;
 312                        cmnd->rw.reftag = cpu_to_le32(
 313                                        nvme_block_nr(ns, blk_rq_pos(req)));
 314                        break;
 315                }
 316                if (!blk_integrity_rq(req))
 317                        control |= NVME_RW_PRINFO_PRACT;
 318        }
 319
 320        cmnd->rw.control = cpu_to_le16(control);
 321        cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
 322}
 323
 324int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
 325                struct nvme_command *cmd)
 326{
 327        int ret = 0;
 328
 329        if (req->cmd_type == REQ_TYPE_DRV_PRIV)
 330                memcpy(cmd, req->cmd, sizeof(*cmd));
 331        else if (req_op(req) == REQ_OP_FLUSH)
 332                nvme_setup_flush(ns, cmd);
 333        else if (req_op(req) == REQ_OP_DISCARD)
 334                ret = nvme_setup_discard(ns, req, cmd);
 335        else
 336                nvme_setup_rw(ns, req, cmd);
 337
 338        return ret;
 339}
 340EXPORT_SYMBOL_GPL(nvme_setup_cmd);
 341
 342/*
 343 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 344 * if the result is positive, it's an NVM Express status code
 345 */
 346int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
 347                struct nvme_completion *cqe, void *buffer, unsigned bufflen,
 348                unsigned timeout, int qid, int at_head, int flags)
 349{
 350        struct request *req;
 351        int ret;
 352
 353        req = nvme_alloc_request(q, cmd, flags, qid);
 354        if (IS_ERR(req))
 355                return PTR_ERR(req);
 356
 357        req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
 358        req->special = cqe;
 359
 360        if (buffer && bufflen) {
 361                ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
 362                if (ret)
 363                        goto out;
 364        }
 365
 366        blk_execute_rq(req->q, NULL, req, at_head);
 367        ret = req->errors;
 368 out:
 369        blk_mq_free_request(req);
 370        return ret;
 371}
 372EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
 373
 374int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
 375                void *buffer, unsigned bufflen)
 376{
 377        return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
 378                        NVME_QID_ANY, 0, 0);
 379}
 380EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
 381
 382int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
 383                void __user *ubuffer, unsigned bufflen,
 384                void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
 385                u32 *result, unsigned timeout)
 386{
 387        bool write = nvme_is_write(cmd);
 388        struct nvme_completion cqe;
 389        struct nvme_ns *ns = q->queuedata;
 390        struct gendisk *disk = ns ? ns->disk : NULL;
 391        struct request *req;
 392        struct bio *bio = NULL;
 393        void *meta = NULL;
 394        int ret;
 395
 396        req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
 397        if (IS_ERR(req))
 398                return PTR_ERR(req);
 399
 400        req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
 401        req->special = &cqe;
 402
 403        if (ubuffer && bufflen) {
 404                ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
 405                                GFP_KERNEL);
 406                if (ret)
 407                        goto out;
 408                bio = req->bio;
 409
 410                if (!disk)
 411                        goto submit;
 412                bio->bi_bdev = bdget_disk(disk, 0);
 413                if (!bio->bi_bdev) {
 414                        ret = -ENODEV;
 415                        goto out_unmap;
 416                }
 417
 418                if (meta_buffer && meta_len) {
 419                        struct bio_integrity_payload *bip;
 420
 421                        meta = kmalloc(meta_len, GFP_KERNEL);
 422                        if (!meta) {
 423                                ret = -ENOMEM;
 424                                goto out_unmap;
 425                        }
 426
 427                        if (write) {
 428                                if (copy_from_user(meta, meta_buffer,
 429                                                meta_len)) {
 430                                        ret = -EFAULT;
 431                                        goto out_free_meta;
 432                                }
 433                        }
 434
 435                        bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
 436                        if (IS_ERR(bip)) {
 437                                ret = PTR_ERR(bip);
 438                                goto out_free_meta;
 439                        }
 440
 441                        bip->bip_iter.bi_size = meta_len;
 442                        bip->bip_iter.bi_sector = meta_seed;
 443
 444                        ret = bio_integrity_add_page(bio, virt_to_page(meta),
 445                                        meta_len, offset_in_page(meta));
 446                        if (ret != meta_len) {
 447                                ret = -ENOMEM;
 448                                goto out_free_meta;
 449                        }
 450                }
 451        }
 452 submit:
 453        blk_execute_rq(req->q, disk, req, 0);
 454        ret = req->errors;
 455        if (result)
 456                *result = le32_to_cpu(cqe.result);
 457        if (meta && !ret && !write) {
 458                if (copy_to_user(meta_buffer, meta, meta_len))
 459                        ret = -EFAULT;
 460        }
 461 out_free_meta:
 462        kfree(meta);
 463 out_unmap:
 464        if (bio) {
 465                if (disk && bio->bi_bdev)
 466                        bdput(bio->bi_bdev);
 467                blk_rq_unmap_user(bio);
 468        }
 469 out:
 470        blk_mq_free_request(req);
 471        return ret;
 472}
 473
 474int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
 475                void __user *ubuffer, unsigned bufflen, u32 *result,
 476                unsigned timeout)
 477{
 478        return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
 479                        result, timeout);
 480}
 481
 482static void nvme_keep_alive_end_io(struct request *rq, int error)
 483{
 484        struct nvme_ctrl *ctrl = rq->end_io_data;
 485
 486        blk_mq_free_request(rq);
 487
 488        if (error) {
 489                dev_err(ctrl->device,
 490                        "failed nvme_keep_alive_end_io error=%d\n", error);
 491                return;
 492        }
 493
 494        schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
 495}
 496
 497static int nvme_keep_alive(struct nvme_ctrl *ctrl)
 498{
 499        struct nvme_command c;
 500        struct request *rq;
 501
 502        memset(&c, 0, sizeof(c));
 503        c.common.opcode = nvme_admin_keep_alive;
 504
 505        rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
 506                        NVME_QID_ANY);
 507        if (IS_ERR(rq))
 508                return PTR_ERR(rq);
 509
 510        rq->timeout = ctrl->kato * HZ;
 511        rq->end_io_data = ctrl;
 512
 513        blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
 514
 515        return 0;
 516}
 517
 518static void nvme_keep_alive_work(struct work_struct *work)
 519{
 520        struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
 521                        struct nvme_ctrl, ka_work);
 522
 523        if (nvme_keep_alive(ctrl)) {
 524                /* allocation failure, reset the controller */
 525                dev_err(ctrl->device, "keep-alive failed\n");
 526                ctrl->ops->reset_ctrl(ctrl);
 527                return;
 528        }
 529}
 530
 531void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
 532{
 533        if (unlikely(ctrl->kato == 0))
 534                return;
 535
 536        INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
 537        schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
 538}
 539EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
 540
 541void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
 542{
 543        if (unlikely(ctrl->kato == 0))
 544                return;
 545
 546        cancel_delayed_work_sync(&ctrl->ka_work);
 547}
 548EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
 549
 550int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
 551{
 552        struct nvme_command c = { };
 553        int error;
 554
 555        /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
 556        c.identify.opcode = nvme_admin_identify;
 557        c.identify.cns = cpu_to_le32(NVME_ID_CNS_CTRL);
 558
 559        *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
 560        if (!*id)
 561                return -ENOMEM;
 562
 563        error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
 564                        sizeof(struct nvme_id_ctrl));
 565        if (error)
 566                kfree(*id);
 567        return error;
 568}
 569
 570static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
 571{
 572        struct nvme_command c = { };
 573
 574        c.identify.opcode = nvme_admin_identify;
 575        c.identify.cns = cpu_to_le32(NVME_ID_CNS_NS_ACTIVE_LIST);
 576        c.identify.nsid = cpu_to_le32(nsid);
 577        return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
 578}
 579
 580int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
 581                struct nvme_id_ns **id)
 582{
 583        struct nvme_command c = { };
 584        int error;
 585
 586        /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
 587        c.identify.opcode = nvme_admin_identify,
 588        c.identify.nsid = cpu_to_le32(nsid),
 589
 590        *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
 591        if (!*id)
 592                return -ENOMEM;
 593
 594        error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
 595                        sizeof(struct nvme_id_ns));
 596        if (error)
 597                kfree(*id);
 598        return error;
 599}
 600
 601int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
 602                      void *buffer, size_t buflen, u32 *result)
 603{
 604        struct nvme_command c;
 605        struct nvme_completion cqe;
 606        int ret;
 607
 608        memset(&c, 0, sizeof(c));
 609        c.features.opcode = nvme_admin_get_features;
 610        c.features.nsid = cpu_to_le32(nsid);
 611        c.features.fid = cpu_to_le32(fid);
 612
 613        ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, buffer, buflen, 0,
 614                        NVME_QID_ANY, 0, 0);
 615        if (ret >= 0 && result)
 616                *result = le32_to_cpu(cqe.result);
 617        return ret;
 618}
 619
 620int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
 621                      void *buffer, size_t buflen, u32 *result)
 622{
 623        struct nvme_command c;
 624        struct nvme_completion cqe;
 625        int ret;
 626
 627        memset(&c, 0, sizeof(c));
 628        c.features.opcode = nvme_admin_set_features;
 629        c.features.fid = cpu_to_le32(fid);
 630        c.features.dword11 = cpu_to_le32(dword11);
 631
 632        ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe,
 633                        buffer, buflen, 0, NVME_QID_ANY, 0, 0);
 634        if (ret >= 0 && result)
 635                *result = le32_to_cpu(cqe.result);
 636        return ret;
 637}
 638
 639int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
 640{
 641        struct nvme_command c = { };
 642        int error;
 643
 644        c.common.opcode = nvme_admin_get_log_page,
 645        c.common.nsid = cpu_to_le32(0xFFFFFFFF),
 646        c.common.cdw10[0] = cpu_to_le32(
 647                        (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
 648                         NVME_LOG_SMART),
 649
 650        *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
 651        if (!*log)
 652                return -ENOMEM;
 653
 654        error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
 655                        sizeof(struct nvme_smart_log));
 656        if (error)
 657                kfree(*log);
 658        return error;
 659}
 660
 661int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
 662{
 663        u32 q_count = (*count - 1) | ((*count - 1) << 16);
 664        u32 result;
 665        int status, nr_io_queues;
 666
 667        status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
 668                        &result);
 669        if (status < 0)
 670                return status;
 671
 672        /*
 673         * Degraded controllers might return an error when setting the queue
 674         * count.  We still want to be able to bring them online and offer
 675         * access to the admin queue, as that might be only way to fix them up.
 676         */
 677        if (status > 0) {
 678                dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
 679                *count = 0;
 680        } else {
 681                nr_io_queues = min(result & 0xffff, result >> 16) + 1;
 682                *count = min(*count, nr_io_queues);
 683        }
 684
 685        return 0;
 686}
 687EXPORT_SYMBOL_GPL(nvme_set_queue_count);
 688
 689static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
 690{
 691        struct nvme_user_io io;
 692        struct nvme_command c;
 693        unsigned length, meta_len;
 694        void __user *metadata;
 695
 696        if (copy_from_user(&io, uio, sizeof(io)))
 697                return -EFAULT;
 698        if (io.flags)
 699                return -EINVAL;
 700
 701        switch (io.opcode) {
 702        case nvme_cmd_write:
 703        case nvme_cmd_read:
 704        case nvme_cmd_compare:
 705                break;
 706        default:
 707                return -EINVAL;
 708        }
 709
 710        length = (io.nblocks + 1) << ns->lba_shift;
 711        meta_len = (io.nblocks + 1) * ns->ms;
 712        metadata = (void __user *)(uintptr_t)io.metadata;
 713
 714        if (ns->ext) {
 715                length += meta_len;
 716                meta_len = 0;
 717        } else if (meta_len) {
 718                if ((io.metadata & 3) || !io.metadata)
 719                        return -EINVAL;
 720        }
 721
 722        memset(&c, 0, sizeof(c));
 723        c.rw.opcode = io.opcode;
 724        c.rw.flags = io.flags;
 725        c.rw.nsid = cpu_to_le32(ns->ns_id);
 726        c.rw.slba = cpu_to_le64(io.slba);
 727        c.rw.length = cpu_to_le16(io.nblocks);
 728        c.rw.control = cpu_to_le16(io.control);
 729        c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
 730        c.rw.reftag = cpu_to_le32(io.reftag);
 731        c.rw.apptag = cpu_to_le16(io.apptag);
 732        c.rw.appmask = cpu_to_le16(io.appmask);
 733
 734        return __nvme_submit_user_cmd(ns->queue, &c,
 735                        (void __user *)(uintptr_t)io.addr, length,
 736                        metadata, meta_len, io.slba, NULL, 0);
 737}
 738
 739static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
 740                        struct nvme_passthru_cmd __user *ucmd)
 741{
 742        struct nvme_passthru_cmd cmd;
 743        struct nvme_command c;
 744        unsigned timeout = 0;
 745        int status;
 746
 747        if (!capable(CAP_SYS_ADMIN))
 748                return -EACCES;
 749        if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
 750                return -EFAULT;
 751        if (cmd.flags)
 752                return -EINVAL;
 753
 754        memset(&c, 0, sizeof(c));
 755        c.common.opcode = cmd.opcode;
 756        c.common.flags = cmd.flags;
 757        c.common.nsid = cpu_to_le32(cmd.nsid);
 758        c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
 759        c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
 760        c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
 761        c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
 762        c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
 763        c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
 764        c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
 765        c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
 766
 767        if (cmd.timeout_ms)
 768                timeout = msecs_to_jiffies(cmd.timeout_ms);
 769
 770        status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
 771                        (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
 772                        &cmd.result, timeout);
 773        if (status >= 0) {
 774                if (put_user(cmd.result, &ucmd->result))
 775                        return -EFAULT;
 776        }
 777
 778        return status;
 779}
 780
 781static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
 782                unsigned int cmd, unsigned long arg)
 783{
 784        struct nvme_ns *ns = bdev->bd_disk->private_data;
 785
 786        switch (cmd) {
 787        case NVME_IOCTL_ID:
 788                force_successful_syscall_return();
 789                return ns->ns_id;
 790        case NVME_IOCTL_ADMIN_CMD:
 791                return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
 792        case NVME_IOCTL_IO_CMD:
 793                return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
 794        case NVME_IOCTL_SUBMIT_IO:
 795                return nvme_submit_io(ns, (void __user *)arg);
 796#ifdef CONFIG_BLK_DEV_NVME_SCSI
 797        case SG_GET_VERSION_NUM:
 798                return nvme_sg_get_version_num((void __user *)arg);
 799        case SG_IO:
 800                return nvme_sg_io(ns, (void __user *)arg);
 801#endif
 802        default:
 803                return -ENOTTY;
 804        }
 805}
 806
 807#ifdef CONFIG_COMPAT
 808static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
 809                        unsigned int cmd, unsigned long arg)
 810{
 811        switch (cmd) {
 812        case SG_IO:
 813                return -ENOIOCTLCMD;
 814        }
 815        return nvme_ioctl(bdev, mode, cmd, arg);
 816}
 817#else
 818#define nvme_compat_ioctl       NULL
 819#endif
 820
 821static int nvme_open(struct block_device *bdev, fmode_t mode)
 822{
 823        return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
 824}
 825
 826static void nvme_release(struct gendisk *disk, fmode_t mode)
 827{
 828        struct nvme_ns *ns = disk->private_data;
 829
 830        module_put(ns->ctrl->ops->module);
 831        nvme_put_ns(ns);
 832}
 833
 834static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 835{
 836        /* some standard values */
 837        geo->heads = 1 << 6;
 838        geo->sectors = 1 << 5;
 839        geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
 840        return 0;
 841}
 842
 843#ifdef CONFIG_BLK_DEV_INTEGRITY
 844static void nvme_init_integrity(struct nvme_ns *ns)
 845{
 846        struct blk_integrity integrity;
 847
 848        memset(&integrity, 0, sizeof(integrity));
 849        switch (ns->pi_type) {
 850        case NVME_NS_DPS_PI_TYPE3:
 851                integrity.profile = &t10_pi_type3_crc;
 852                integrity.tag_size = sizeof(u16) + sizeof(u32);
 853                integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
 854                break;
 855        case NVME_NS_DPS_PI_TYPE1:
 856        case NVME_NS_DPS_PI_TYPE2:
 857                integrity.profile = &t10_pi_type1_crc;
 858                integrity.tag_size = sizeof(u16);
 859                integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
 860                break;
 861        default:
 862                integrity.profile = NULL;
 863                break;
 864        }
 865        integrity.tuple_size = ns->ms;
 866        blk_integrity_register(ns->disk, &integrity);
 867        blk_queue_max_integrity_segments(ns->queue, 1);
 868}
 869#else
 870static void nvme_init_integrity(struct nvme_ns *ns)
 871{
 872}
 873#endif /* CONFIG_BLK_DEV_INTEGRITY */
 874
 875static void nvme_config_discard(struct nvme_ns *ns)
 876{
 877        struct nvme_ctrl *ctrl = ns->ctrl;
 878        u32 logical_block_size = queue_logical_block_size(ns->queue);
 879
 880        if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
 881                ns->queue->limits.discard_zeroes_data = 1;
 882        else
 883                ns->queue->limits.discard_zeroes_data = 0;
 884
 885        ns->queue->limits.discard_alignment = logical_block_size;
 886        ns->queue->limits.discard_granularity = logical_block_size;
 887        blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
 888        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
 889}
 890
 891static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
 892{
 893        if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
 894                dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
 895                return -ENODEV;
 896        }
 897
 898        if ((*id)->ncap == 0) {
 899                kfree(*id);
 900                return -ENODEV;
 901        }
 902
 903        if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
 904                memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
 905        if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
 906                memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));
 907
 908        return 0;
 909}
 910
 911static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
 912{
 913        struct nvme_ns *ns = disk->private_data;
 914        u8 lbaf, pi_type;
 915        u16 old_ms;
 916        unsigned short bs;
 917
 918        old_ms = ns->ms;
 919        lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
 920        ns->lba_shift = id->lbaf[lbaf].ds;
 921        ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
 922        ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
 923
 924        /*
 925         * If identify namespace failed, use default 512 byte block size so
 926         * block layer can use before failing read/write for 0 capacity.
 927         */
 928        if (ns->lba_shift == 0)
 929                ns->lba_shift = 9;
 930        bs = 1 << ns->lba_shift;
 931        /* XXX: PI implementation requires metadata equal t10 pi tuple size */
 932        pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
 933                                        id->dps & NVME_NS_DPS_PI_MASK : 0;
 934
 935        blk_mq_freeze_queue(disk->queue);
 936        if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
 937                                ns->ms != old_ms ||
 938                                bs != queue_logical_block_size(disk->queue) ||
 939                                (ns->ms && ns->ext)))
 940                blk_integrity_unregister(disk);
 941
 942        ns->pi_type = pi_type;
 943        blk_queue_logical_block_size(ns->queue, bs);
 944
 945        if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
 946                nvme_init_integrity(ns);
 947        if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
 948                set_capacity(disk, 0);
 949        else
 950                set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
 951
 952        if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
 953                nvme_config_discard(ns);
 954        blk_mq_unfreeze_queue(disk->queue);
 955}
 956
 957static int nvme_revalidate_disk(struct gendisk *disk)
 958{
 959        struct nvme_ns *ns = disk->private_data;
 960        struct nvme_id_ns *id = NULL;
 961        int ret;
 962
 963        if (test_bit(NVME_NS_DEAD, &ns->flags)) {
 964                set_capacity(disk, 0);
 965                return -ENODEV;
 966        }
 967
 968        ret = nvme_revalidate_ns(ns, &id);
 969        if (ret)
 970                return ret;
 971
 972        __nvme_revalidate_disk(disk, id);
 973        kfree(id);
 974
 975        return 0;
 976}
 977
 978static char nvme_pr_type(enum pr_type type)
 979{
 980        switch (type) {
 981        case PR_WRITE_EXCLUSIVE:
 982                return 1;
 983        case PR_EXCLUSIVE_ACCESS:
 984                return 2;
 985        case PR_WRITE_EXCLUSIVE_REG_ONLY:
 986                return 3;
 987        case PR_EXCLUSIVE_ACCESS_REG_ONLY:
 988                return 4;
 989        case PR_WRITE_EXCLUSIVE_ALL_REGS:
 990                return 5;
 991        case PR_EXCLUSIVE_ACCESS_ALL_REGS:
 992                return 6;
 993        default:
 994                return 0;
 995        }
 996};
 997
 998static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
 999                                u64 key, u64 sa_key, u8 op)
1000{
1001        struct nvme_ns *ns = bdev->bd_disk->private_data;
1002        struct nvme_command c;
1003        u8 data[16] = { 0, };
1004
1005        put_unaligned_le64(key, &data[0]);
1006        put_unaligned_le64(sa_key, &data[8]);
1007
1008        memset(&c, 0, sizeof(c));
1009        c.common.opcode = op;
1010        c.common.nsid = cpu_to_le32(ns->ns_id);
1011        c.common.cdw10[0] = cpu_to_le32(cdw10);
1012
1013        return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1014}
1015
1016static int nvme_pr_register(struct block_device *bdev, u64 old,
1017                u64 new, unsigned flags)
1018{
1019        u32 cdw10;
1020
1021        if (flags & ~PR_FL_IGNORE_KEY)
1022                return -EOPNOTSUPP;
1023
1024        cdw10 = old ? 2 : 0;
1025        cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1026        cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1027        return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1028}
1029
1030static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1031                enum pr_type type, unsigned flags)
1032{
1033        u32 cdw10;
1034
1035        if (flags & ~PR_FL_IGNORE_KEY)
1036                return -EOPNOTSUPP;
1037
1038        cdw10 = nvme_pr_type(type) << 8;
1039        cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1040        return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1041}
1042
1043static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1044                enum pr_type type, bool abort)
1045{
1046        u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1047        return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1048}
1049
1050static int nvme_pr_clear(struct block_device *bdev, u64 key)
1051{
1052        u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1053        return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1054}
1055
1056static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1057{
1058        u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1059        return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1060}
1061
1062static const struct pr_ops nvme_pr_ops = {
1063        .pr_register    = nvme_pr_register,
1064        .pr_reserve     = nvme_pr_reserve,
1065        .pr_release     = nvme_pr_release,
1066        .pr_preempt     = nvme_pr_preempt,
1067        .pr_clear       = nvme_pr_clear,
1068};
1069
1070static const struct block_device_operations nvme_fops = {
1071        .owner          = THIS_MODULE,
1072        .ioctl          = nvme_ioctl,
1073        .compat_ioctl   = nvme_compat_ioctl,
1074        .open           = nvme_open,
1075        .release        = nvme_release,
1076        .getgeo         = nvme_getgeo,
1077        .revalidate_disk= nvme_revalidate_disk,
1078        .pr_ops         = &nvme_pr_ops,
1079};
1080
1081static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1082{
1083        unsigned long timeout =
1084                ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1085        u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1086        int ret;
1087
1088        while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1089                if (csts == ~0)
1090                        return -ENODEV;
1091                if ((csts & NVME_CSTS_RDY) == bit)
1092                        break;
1093
1094                msleep(100);
1095                if (fatal_signal_pending(current))
1096                        return -EINTR;
1097                if (time_after(jiffies, timeout)) {
1098                        dev_err(ctrl->device,
1099                                "Device not ready; aborting %s\n", enabled ?
1100                                                "initialisation" : "reset");
1101                        return -ENODEV;
1102                }
1103        }
1104
1105        return ret;
1106}
1107
1108/*
1109 * If the device has been passed off to us in an enabled state, just clear
1110 * the enabled bit.  The spec says we should set the 'shutdown notification
1111 * bits', but doing so may cause the device to complete commands to the
1112 * admin queue ... and we don't know what memory that might be pointing at!
1113 */
1114int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1115{
1116        int ret;
1117
1118        ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1119        ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1120
1121        ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1122        if (ret)
1123                return ret;
1124
1125        /* Checking for ctrl->tagset is a trick to avoid sleeping on module
1126         * load, since we only need the quirk on reset_controller. Notice
1127         * that the HGST device needs this delay only in firmware activation
1128         * procedure; unfortunately we have no (easy) way to verify this.
1129         */
1130        if ((ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) && ctrl->tagset)
1131                msleep(NVME_QUIRK_DELAY_AMOUNT);
1132
1133        return nvme_wait_ready(ctrl, cap, false);
1134}
1135EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1136
1137int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1138{
1139        /*
1140         * Default to a 4K page size, with the intention to update this
1141         * path in the future to accomodate architectures with differing
1142         * kernel and IO page sizes.
1143         */
1144        unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1145        int ret;
1146
1147        if (page_shift < dev_page_min) {
1148                dev_err(ctrl->device,
1149                        "Minimum device page size %u too large for host (%u)\n",
1150                        1 << dev_page_min, 1 << page_shift);
1151                return -ENODEV;
1152        }
1153
1154        ctrl->page_size = 1 << page_shift;
1155
1156        ctrl->ctrl_config = NVME_CC_CSS_NVM;
1157        ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1158        ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1159        ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1160        ctrl->ctrl_config |= NVME_CC_ENABLE;
1161
1162        ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1163        if (ret)
1164                return ret;
1165        return nvme_wait_ready(ctrl, cap, true);
1166}
1167EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1168
1169int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1170{
1171        unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1172        u32 csts;
1173        int ret;
1174
1175        ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1176        ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1177
1178        ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1179        if (ret)
1180                return ret;
1181
1182        while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1183                if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1184                        break;
1185
1186                msleep(100);
1187                if (fatal_signal_pending(current))
1188                        return -EINTR;
1189                if (time_after(jiffies, timeout)) {
1190                        dev_err(ctrl->device,
1191                                "Device shutdown incomplete; abort shutdown\n");
1192                        return -ENODEV;
1193                }
1194        }
1195
1196        return ret;
1197}
1198EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1199
1200static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1201                struct request_queue *q)
1202{
1203        bool vwc = false;
1204
1205        if (ctrl->max_hw_sectors) {
1206                u32 max_segments =
1207                        (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1208
1209                blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1210                blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1211        }
1212        if (ctrl->stripe_size)
1213                blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
1214        blk_queue_virt_boundary(q, ctrl->page_size - 1);
1215        if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1216                vwc = true;
1217        blk_queue_write_cache(q, vwc, vwc);
1218}
1219
1220/*
1221 * Initialize the cached copies of the Identify data and various controller
1222 * register in our nvme_ctrl structure.  This should be called as soon as
1223 * the admin queue is fully up and running.
1224 */
1225int nvme_init_identify(struct nvme_ctrl *ctrl)
1226{
1227        struct nvme_id_ctrl *id;
1228        u64 cap;
1229        int ret, page_shift;
1230        u32 max_hw_sectors;
1231
1232        ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1233        if (ret) {
1234                dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1235                return ret;
1236        }
1237
1238        ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1239        if (ret) {
1240                dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1241                return ret;
1242        }
1243        page_shift = NVME_CAP_MPSMIN(cap) + 12;
1244
1245        if (ctrl->vs >= NVME_VS(1, 1, 0))
1246                ctrl->subsystem = NVME_CAP_NSSRC(cap);
1247
1248        ret = nvme_identify_ctrl(ctrl, &id);
1249        if (ret) {
1250                dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1251                return -EIO;
1252        }
1253
1254        ctrl->vid = le16_to_cpu(id->vid);
1255        ctrl->oncs = le16_to_cpup(&id->oncs);
1256        atomic_set(&ctrl->abort_limit, id->acl + 1);
1257        ctrl->vwc = id->vwc;
1258        ctrl->cntlid = le16_to_cpup(&id->cntlid);
1259        memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1260        memcpy(ctrl->model, id->mn, sizeof(id->mn));
1261        memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1262        if (id->mdts)
1263                max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1264        else
1265                max_hw_sectors = UINT_MAX;
1266        ctrl->max_hw_sectors =
1267                min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1268
1269        if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
1270                unsigned int max_hw_sectors;
1271
1272                ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
1273                max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
1274                if (ctrl->max_hw_sectors) {
1275                        ctrl->max_hw_sectors = min(max_hw_sectors,
1276                                                        ctrl->max_hw_sectors);
1277                } else {
1278                        ctrl->max_hw_sectors = max_hw_sectors;
1279                }
1280        }
1281
1282        nvme_set_queue_limits(ctrl, ctrl->admin_q);
1283        ctrl->sgls = le32_to_cpu(id->sgls);
1284        ctrl->kas = le16_to_cpu(id->kas);
1285
1286        if (ctrl->ops->is_fabrics) {
1287                ctrl->icdoff = le16_to_cpu(id->icdoff);
1288                ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1289                ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1290                ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1291
1292                /*
1293                 * In fabrics we need to verify the cntlid matches the
1294                 * admin connect
1295                 */
1296                if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1297                        ret = -EINVAL;
1298
1299                if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1300                        dev_err(ctrl->dev,
1301                                "keep-alive support is mandatory for fabrics\n");
1302                        ret = -EINVAL;
1303                }
1304        } else {
1305                ctrl->cntlid = le16_to_cpu(id->cntlid);
1306        }
1307
1308        kfree(id);
1309        return ret;
1310}
1311EXPORT_SYMBOL_GPL(nvme_init_identify);
1312
1313static int nvme_dev_open(struct inode *inode, struct file *file)
1314{
1315        struct nvme_ctrl *ctrl;
1316        int instance = iminor(inode);
1317        int ret = -ENODEV;
1318
1319        spin_lock(&dev_list_lock);
1320        list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1321                if (ctrl->instance != instance)
1322                        continue;
1323
1324                if (!ctrl->admin_q) {
1325                        ret = -EWOULDBLOCK;
1326                        break;
1327                }
1328                if (!kref_get_unless_zero(&ctrl->kref))
1329                        break;
1330                file->private_data = ctrl;
1331                ret = 0;
1332                break;
1333        }
1334        spin_unlock(&dev_list_lock);
1335
1336        return ret;
1337}
1338
1339static int nvme_dev_release(struct inode *inode, struct file *file)
1340{
1341        nvme_put_ctrl(file->private_data);
1342        return 0;
1343}
1344
1345static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1346{
1347        struct nvme_ns *ns;
1348        int ret;
1349
1350        mutex_lock(&ctrl->namespaces_mutex);
1351        if (list_empty(&ctrl->namespaces)) {
1352                ret = -ENOTTY;
1353                goto out_unlock;
1354        }
1355
1356        ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1357        if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1358                dev_warn(ctrl->device,
1359                        "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1360                ret = -EINVAL;
1361                goto out_unlock;
1362        }
1363
1364        dev_warn(ctrl->device,
1365                "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1366        kref_get(&ns->kref);
1367        mutex_unlock(&ctrl->namespaces_mutex);
1368
1369        ret = nvme_user_cmd(ctrl, ns, argp);
1370        nvme_put_ns(ns);
1371        return ret;
1372
1373out_unlock:
1374        mutex_unlock(&ctrl->namespaces_mutex);
1375        return ret;
1376}
1377
1378static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1379                unsigned long arg)
1380{
1381        struct nvme_ctrl *ctrl = file->private_data;
1382        void __user *argp = (void __user *)arg;
1383
1384        switch (cmd) {
1385        case NVME_IOCTL_ADMIN_CMD:
1386                return nvme_user_cmd(ctrl, NULL, argp);
1387        case NVME_IOCTL_IO_CMD:
1388                return nvme_dev_user_cmd(ctrl, argp);
1389        case NVME_IOCTL_RESET:
1390                dev_warn(ctrl->device, "resetting controller\n");
1391                return ctrl->ops->reset_ctrl(ctrl);
1392        case NVME_IOCTL_SUBSYS_RESET:
1393                return nvme_reset_subsystem(ctrl);
1394        case NVME_IOCTL_RESCAN:
1395                nvme_queue_scan(ctrl);
1396                return 0;
1397        default:
1398                return -ENOTTY;
1399        }
1400}
1401
1402static const struct file_operations nvme_dev_fops = {
1403        .owner          = THIS_MODULE,
1404        .open           = nvme_dev_open,
1405        .release        = nvme_dev_release,
1406        .unlocked_ioctl = nvme_dev_ioctl,
1407        .compat_ioctl   = nvme_dev_ioctl,
1408};
1409
1410static ssize_t nvme_sysfs_reset(struct device *dev,
1411                                struct device_attribute *attr, const char *buf,
1412                                size_t count)
1413{
1414        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1415        int ret;
1416
1417        ret = ctrl->ops->reset_ctrl(ctrl);
1418        if (ret < 0)
1419                return ret;
1420        return count;
1421}
1422static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1423
1424static ssize_t nvme_sysfs_rescan(struct device *dev,
1425                                struct device_attribute *attr, const char *buf,
1426                                size_t count)
1427{
1428        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1429
1430        nvme_queue_scan(ctrl);
1431        return count;
1432}
1433static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1434
1435static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1436                                                                char *buf)
1437{
1438        struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1439        struct nvme_ctrl *ctrl = ns->ctrl;
1440        int serial_len = sizeof(ctrl->serial);
1441        int model_len = sizeof(ctrl->model);
1442
1443        if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1444                return sprintf(buf, "eui.%16phN\n", ns->uuid);
1445
1446        if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1447                return sprintf(buf, "eui.%8phN\n", ns->eui);
1448
1449        while (ctrl->serial[serial_len - 1] == ' ')
1450                serial_len--;
1451        while (ctrl->model[model_len - 1] == ' ')
1452                model_len--;
1453
1454        return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1455                serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1456}
1457static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1458
1459static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1460                                                                char *buf)
1461{
1462        struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1463        return sprintf(buf, "%pU\n", ns->uuid);
1464}
1465static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1466
1467static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1468                                                                char *buf)
1469{
1470        struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1471        return sprintf(buf, "%8phd\n", ns->eui);
1472}
1473static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1474
1475static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1476                                                                char *buf)
1477{
1478        struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1479        return sprintf(buf, "%d\n", ns->ns_id);
1480}
1481static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1482
1483static struct attribute *nvme_ns_attrs[] = {
1484        &dev_attr_wwid.attr,
1485        &dev_attr_uuid.attr,
1486        &dev_attr_eui.attr,
1487        &dev_attr_nsid.attr,
1488        NULL,
1489};
1490
1491static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1492                struct attribute *a, int n)
1493{
1494        struct device *dev = container_of(kobj, struct device, kobj);
1495        struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1496
1497        if (a == &dev_attr_uuid.attr) {
1498                if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1499                        return 0;
1500        }
1501        if (a == &dev_attr_eui.attr) {
1502                if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1503                        return 0;
1504        }
1505        return a->mode;
1506}
1507
1508static const struct attribute_group nvme_ns_attr_group = {
1509        .attrs          = nvme_ns_attrs,
1510        .is_visible     = nvme_ns_attrs_are_visible,
1511};
1512
1513#define nvme_show_str_function(field)                                           \
1514static ssize_t  field##_show(struct device *dev,                                \
1515                            struct device_attribute *attr, char *buf)           \
1516{                                                                               \
1517        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1518        return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);   \
1519}                                                                               \
1520static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1521
1522#define nvme_show_int_function(field)                                           \
1523static ssize_t  field##_show(struct device *dev,                                \
1524                            struct device_attribute *attr, char *buf)           \
1525{                                                                               \
1526        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1527        return sprintf(buf, "%d\n", ctrl->field);       \
1528}                                                                               \
1529static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1530
1531nvme_show_str_function(model);
1532nvme_show_str_function(serial);
1533nvme_show_str_function(firmware_rev);
1534nvme_show_int_function(cntlid);
1535
1536static ssize_t nvme_sysfs_delete(struct device *dev,
1537                                struct device_attribute *attr, const char *buf,
1538                                size_t count)
1539{
1540        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1541
1542        if (device_remove_file_self(dev, attr))
1543                ctrl->ops->delete_ctrl(ctrl);
1544        return count;
1545}
1546static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1547
1548static ssize_t nvme_sysfs_show_transport(struct device *dev,
1549                                         struct device_attribute *attr,
1550                                         char *buf)
1551{
1552        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1553
1554        return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1555}
1556static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1557
1558static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1559                                         struct device_attribute *attr,
1560                                         char *buf)
1561{
1562        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1563
1564        return snprintf(buf, PAGE_SIZE, "%s\n",
1565                        ctrl->ops->get_subsysnqn(ctrl));
1566}
1567static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1568
1569static ssize_t nvme_sysfs_show_address(struct device *dev,
1570                                         struct device_attribute *attr,
1571                                         char *buf)
1572{
1573        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1574
1575        return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1576}
1577static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1578
1579static struct attribute *nvme_dev_attrs[] = {
1580        &dev_attr_reset_controller.attr,
1581        &dev_attr_rescan_controller.attr,
1582        &dev_attr_model.attr,
1583        &dev_attr_serial.attr,
1584        &dev_attr_firmware_rev.attr,
1585        &dev_attr_cntlid.attr,
1586        &dev_attr_delete_controller.attr,
1587        &dev_attr_transport.attr,
1588        &dev_attr_subsysnqn.attr,
1589        &dev_attr_address.attr,
1590        NULL
1591};
1592
1593#define CHECK_ATTR(ctrl, a, name)               \
1594        if ((a) == &dev_attr_##name.attr &&     \
1595            !(ctrl)->ops->get_##name)           \
1596                return 0
1597
1598static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1599                struct attribute *a, int n)
1600{
1601        struct device *dev = container_of(kobj, struct device, kobj);
1602        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1603
1604        if (a == &dev_attr_delete_controller.attr) {
1605                if (!ctrl->ops->delete_ctrl)
1606                        return 0;
1607        }
1608
1609        CHECK_ATTR(ctrl, a, subsysnqn);
1610        CHECK_ATTR(ctrl, a, address);
1611
1612        return a->mode;
1613}
1614
1615static struct attribute_group nvme_dev_attrs_group = {
1616        .attrs          = nvme_dev_attrs,
1617        .is_visible     = nvme_dev_attrs_are_visible,
1618};
1619
1620static const struct attribute_group *nvme_dev_attr_groups[] = {
1621        &nvme_dev_attrs_group,
1622        NULL,
1623};
1624
1625static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1626{
1627        struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1628        struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1629
1630        return nsa->ns_id - nsb->ns_id;
1631}
1632
1633static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1634{
1635        struct nvme_ns *ns, *ret = NULL;
1636
1637        mutex_lock(&ctrl->namespaces_mutex);
1638        list_for_each_entry(ns, &ctrl->namespaces, list) {
1639                if (ns->ns_id == nsid) {
1640                        kref_get(&ns->kref);
1641                        ret = ns;
1642                        break;
1643                }
1644                if (ns->ns_id > nsid)
1645                        break;
1646        }
1647        mutex_unlock(&ctrl->namespaces_mutex);
1648        return ret;
1649}
1650
1651static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1652{
1653        struct nvme_ns *ns;
1654        struct gendisk *disk;
1655        struct nvme_id_ns *id;
1656        char disk_name[DISK_NAME_LEN];
1657        int node = dev_to_node(ctrl->dev);
1658
1659        ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1660        if (!ns)
1661                return;
1662
1663        ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1664        if (ns->instance < 0)
1665                goto out_free_ns;
1666
1667        ns->queue = blk_mq_init_queue(ctrl->tagset);
1668        if (IS_ERR(ns->queue))
1669                goto out_release_instance;
1670        queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1671        ns->queue->queuedata = ns;
1672        ns->ctrl = ctrl;
1673
1674        kref_init(&ns->kref);
1675        ns->ns_id = nsid;
1676        ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1677
1678        blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1679        nvme_set_queue_limits(ctrl, ns->queue);
1680
1681        sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1682
1683        if (nvme_revalidate_ns(ns, &id))
1684                goto out_free_queue;
1685
1686        if (nvme_nvm_ns_supported(ns, id)) {
1687                if (nvme_nvm_register(ns, disk_name, node,
1688                                                        &nvme_ns_attr_group)) {
1689                        dev_warn(ctrl->dev, "%s: LightNVM init failure\n",
1690                                                                __func__);
1691                        goto out_free_id;
1692                }
1693        } else {
1694                disk = alloc_disk_node(0, node);
1695                if (!disk)
1696                        goto out_free_id;
1697
1698                disk->fops = &nvme_fops;
1699                disk->private_data = ns;
1700                disk->queue = ns->queue;
1701                disk->flags = GENHD_FL_EXT_DEVT;
1702                memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
1703                ns->disk = disk;
1704
1705                __nvme_revalidate_disk(disk, id);
1706        }
1707
1708        mutex_lock(&ctrl->namespaces_mutex);
1709        list_add_tail(&ns->list, &ctrl->namespaces);
1710        mutex_unlock(&ctrl->namespaces_mutex);
1711
1712        kref_get(&ctrl->kref);
1713
1714        kfree(id);
1715
1716        if (ns->ndev)
1717                return;
1718
1719        device_add_disk(ctrl->device, ns->disk);
1720        if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1721                                        &nvme_ns_attr_group))
1722                pr_warn("%s: failed to create sysfs group for identification\n",
1723                        ns->disk->disk_name);
1724        return;
1725 out_free_id:
1726        kfree(id);
1727 out_free_queue:
1728        blk_cleanup_queue(ns->queue);
1729 out_release_instance:
1730        ida_simple_remove(&ctrl->ns_ida, ns->instance);
1731 out_free_ns:
1732        kfree(ns);
1733}
1734
1735static void nvme_ns_remove(struct nvme_ns *ns)
1736{
1737        if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1738                return;
1739
1740        if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
1741                if (blk_get_integrity(ns->disk))
1742                        blk_integrity_unregister(ns->disk);
1743                sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1744                                        &nvme_ns_attr_group);
1745                del_gendisk(ns->disk);
1746                blk_mq_abort_requeue_list(ns->queue);
1747                blk_cleanup_queue(ns->queue);
1748        }
1749
1750        mutex_lock(&ns->ctrl->namespaces_mutex);
1751        list_del_init(&ns->list);
1752        mutex_unlock(&ns->ctrl->namespaces_mutex);
1753
1754        nvme_put_ns(ns);
1755}
1756
1757static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1758{
1759        struct nvme_ns *ns;
1760
1761        ns = nvme_find_get_ns(ctrl, nsid);
1762        if (ns) {
1763                if (ns->disk && revalidate_disk(ns->disk))
1764                        nvme_ns_remove(ns);
1765                nvme_put_ns(ns);
1766        } else
1767                nvme_alloc_ns(ctrl, nsid);
1768}
1769
1770static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
1771                                        unsigned nsid)
1772{
1773        struct nvme_ns *ns, *next;
1774
1775        list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1776                if (ns->ns_id > nsid)
1777                        nvme_ns_remove(ns);
1778        }
1779}
1780
1781static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1782{
1783        struct nvme_ns *ns;
1784        __le32 *ns_list;
1785        unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1786        int ret = 0;
1787
1788        ns_list = kzalloc(0x1000, GFP_KERNEL);
1789        if (!ns_list)
1790                return -ENOMEM;
1791
1792        for (i = 0; i < num_lists; i++) {
1793                ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1794                if (ret)
1795                        goto free;
1796
1797                for (j = 0; j < min(nn, 1024U); j++) {
1798                        nsid = le32_to_cpu(ns_list[j]);
1799                        if (!nsid)
1800                                goto out;
1801
1802                        nvme_validate_ns(ctrl, nsid);
1803
1804                        while (++prev < nsid) {
1805                                ns = nvme_find_get_ns(ctrl, prev);
1806                                if (ns) {
1807                                        nvme_ns_remove(ns);
1808                                        nvme_put_ns(ns);
1809                                }
1810                        }
1811                }
1812                nn -= j;
1813        }
1814 out:
1815        nvme_remove_invalid_namespaces(ctrl, prev);
1816 free:
1817        kfree(ns_list);
1818        return ret;
1819}
1820
1821static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1822{
1823        unsigned i;
1824
1825        for (i = 1; i <= nn; i++)
1826                nvme_validate_ns(ctrl, i);
1827
1828        nvme_remove_invalid_namespaces(ctrl, nn);
1829}
1830
1831static void nvme_scan_work(struct work_struct *work)
1832{
1833        struct nvme_ctrl *ctrl =
1834                container_of(work, struct nvme_ctrl, scan_work);
1835        struct nvme_id_ctrl *id;
1836        unsigned nn;
1837
1838        if (ctrl->state != NVME_CTRL_LIVE)
1839                return;
1840
1841        if (nvme_identify_ctrl(ctrl, &id))
1842                return;
1843
1844        nn = le32_to_cpu(id->nn);
1845        if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1846            !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1847                if (!nvme_scan_ns_list(ctrl, nn))
1848                        goto done;
1849        }
1850        nvme_scan_ns_sequential(ctrl, nn);
1851 done:
1852        mutex_lock(&ctrl->namespaces_mutex);
1853        list_sort(NULL, &ctrl->namespaces, ns_cmp);
1854        mutex_unlock(&ctrl->namespaces_mutex);
1855        kfree(id);
1856}
1857
1858void nvme_queue_scan(struct nvme_ctrl *ctrl)
1859{
1860        /*
1861         * Do not queue new scan work when a controller is reset during
1862         * removal.
1863         */
1864        if (ctrl->state == NVME_CTRL_LIVE)
1865                schedule_work(&ctrl->scan_work);
1866}
1867EXPORT_SYMBOL_GPL(nvme_queue_scan);
1868
1869/*
1870 * This function iterates the namespace list unlocked to allow recovery from
1871 * controller failure. It is up to the caller to ensure the namespace list is
1872 * not modified by scan work while this function is executing.
1873 */
1874void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1875{
1876        struct nvme_ns *ns, *next;
1877
1878        /*
1879         * The dead states indicates the controller was not gracefully
1880         * disconnected. In that case, we won't be able to flush any data while
1881         * removing the namespaces' disks; fail all the queues now to avoid
1882         * potentially having to clean up the failed sync later.
1883         */
1884        if (ctrl->state == NVME_CTRL_DEAD)
1885                nvme_kill_queues(ctrl);
1886
1887        list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1888                nvme_ns_remove(ns);
1889}
1890EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1891
1892static void nvme_async_event_work(struct work_struct *work)
1893{
1894        struct nvme_ctrl *ctrl =
1895                container_of(work, struct nvme_ctrl, async_event_work);
1896
1897        spin_lock_irq(&ctrl->lock);
1898        while (ctrl->event_limit > 0) {
1899                int aer_idx = --ctrl->event_limit;
1900
1901                spin_unlock_irq(&ctrl->lock);
1902                ctrl->ops->submit_async_event(ctrl, aer_idx);
1903                spin_lock_irq(&ctrl->lock);
1904        }
1905        spin_unlock_irq(&ctrl->lock);
1906}
1907
1908void nvme_complete_async_event(struct nvme_ctrl *ctrl,
1909                struct nvme_completion *cqe)
1910{
1911        u16 status = le16_to_cpu(cqe->status) >> 1;
1912        u32 result = le32_to_cpu(cqe->result);
1913
1914        if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
1915                ++ctrl->event_limit;
1916                schedule_work(&ctrl->async_event_work);
1917        }
1918
1919        if (status != NVME_SC_SUCCESS)
1920                return;
1921
1922        switch (result & 0xff07) {
1923        case NVME_AER_NOTICE_NS_CHANGED:
1924                dev_info(ctrl->device, "rescanning\n");
1925                nvme_queue_scan(ctrl);
1926                break;
1927        default:
1928                dev_warn(ctrl->device, "async event result %08x\n", result);
1929        }
1930}
1931EXPORT_SYMBOL_GPL(nvme_complete_async_event);
1932
1933void nvme_queue_async_events(struct nvme_ctrl *ctrl)
1934{
1935        ctrl->event_limit = NVME_NR_AERS;
1936        schedule_work(&ctrl->async_event_work);
1937}
1938EXPORT_SYMBOL_GPL(nvme_queue_async_events);
1939
1940static DEFINE_IDA(nvme_instance_ida);
1941
1942static int nvme_set_instance(struct nvme_ctrl *ctrl)
1943{
1944        int instance, error;
1945
1946        do {
1947                if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1948                        return -ENODEV;
1949
1950                spin_lock(&dev_list_lock);
1951                error = ida_get_new(&nvme_instance_ida, &instance);
1952                spin_unlock(&dev_list_lock);
1953        } while (error == -EAGAIN);
1954
1955        if (error)
1956                return -ENODEV;
1957
1958        ctrl->instance = instance;
1959        return 0;
1960}
1961
1962static void nvme_release_instance(struct nvme_ctrl *ctrl)
1963{
1964        spin_lock(&dev_list_lock);
1965        ida_remove(&nvme_instance_ida, ctrl->instance);
1966        spin_unlock(&dev_list_lock);
1967}
1968
1969void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1970{
1971        flush_work(&ctrl->async_event_work);
1972        flush_work(&ctrl->scan_work);
1973        nvme_remove_namespaces(ctrl);
1974
1975        device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1976
1977        spin_lock(&dev_list_lock);
1978        list_del(&ctrl->node);
1979        spin_unlock(&dev_list_lock);
1980}
1981EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1982
1983static void nvme_free_ctrl(struct kref *kref)
1984{
1985        struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1986
1987        put_device(ctrl->device);
1988        nvme_release_instance(ctrl);
1989        ida_destroy(&ctrl->ns_ida);
1990
1991        ctrl->ops->free_ctrl(ctrl);
1992}
1993
1994void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1995{
1996        kref_put(&ctrl->kref, nvme_free_ctrl);
1997}
1998EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1999
2000/*
2001 * Initialize a NVMe controller structures.  This needs to be called during
2002 * earliest initialization so that we have the initialized structured around
2003 * during probing.
2004 */
2005int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2006                const struct nvme_ctrl_ops *ops, unsigned long quirks)
2007{
2008        int ret;
2009
2010        ctrl->state = NVME_CTRL_NEW;
2011        spin_lock_init(&ctrl->lock);
2012        INIT_LIST_HEAD(&ctrl->namespaces);
2013        mutex_init(&ctrl->namespaces_mutex);
2014        kref_init(&ctrl->kref);
2015        ctrl->dev = dev;
2016        ctrl->ops = ops;
2017        ctrl->quirks = quirks;
2018        INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2019        INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2020
2021        ret = nvme_set_instance(ctrl);
2022        if (ret)
2023                goto out;
2024
2025        ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2026                                MKDEV(nvme_char_major, ctrl->instance),
2027                                ctrl, nvme_dev_attr_groups,
2028                                "nvme%d", ctrl->instance);
2029        if (IS_ERR(ctrl->device)) {
2030                ret = PTR_ERR(ctrl->device);
2031                goto out_release_instance;
2032        }
2033        get_device(ctrl->device);
2034        ida_init(&ctrl->ns_ida);
2035
2036        spin_lock(&dev_list_lock);
2037        list_add_tail(&ctrl->node, &nvme_ctrl_list);
2038        spin_unlock(&dev_list_lock);
2039
2040        return 0;
2041out_release_instance:
2042        nvme_release_instance(ctrl);
2043out:
2044        return ret;
2045}
2046EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2047
2048/**
2049 * nvme_kill_queues(): Ends all namespace queues
2050 * @ctrl: the dead controller that needs to end
2051 *
2052 * Call this function when the driver determines it is unable to get the
2053 * controller in a state capable of servicing IO.
2054 */
2055void nvme_kill_queues(struct nvme_ctrl *ctrl)
2056{
2057        struct nvme_ns *ns;
2058
2059        mutex_lock(&ctrl->namespaces_mutex);
2060        list_for_each_entry(ns, &ctrl->namespaces, list) {
2061                /*
2062                 * Revalidating a dead namespace sets capacity to 0. This will
2063                 * end buffered writers dirtying pages that can't be synced.
2064                 */
2065                if (ns->disk && !test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2066                        revalidate_disk(ns->disk);
2067
2068                blk_set_queue_dying(ns->queue);
2069                blk_mq_abort_requeue_list(ns->queue);
2070                blk_mq_start_stopped_hw_queues(ns->queue, true);
2071        }
2072        mutex_unlock(&ctrl->namespaces_mutex);
2073}
2074EXPORT_SYMBOL_GPL(nvme_kill_queues);
2075
2076void nvme_stop_queues(struct nvme_ctrl *ctrl)
2077{
2078        struct nvme_ns *ns;
2079
2080        mutex_lock(&ctrl->namespaces_mutex);
2081        list_for_each_entry(ns, &ctrl->namespaces, list) {
2082                spin_lock_irq(ns->queue->queue_lock);
2083                queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2084                spin_unlock_irq(ns->queue->queue_lock);
2085
2086                blk_mq_cancel_requeue_work(ns->queue);
2087                blk_mq_stop_hw_queues(ns->queue);
2088        }
2089        mutex_unlock(&ctrl->namespaces_mutex);
2090}
2091EXPORT_SYMBOL_GPL(nvme_stop_queues);
2092
2093void nvme_start_queues(struct nvme_ctrl *ctrl)
2094{
2095        struct nvme_ns *ns;
2096
2097        mutex_lock(&ctrl->namespaces_mutex);
2098        list_for_each_entry(ns, &ctrl->namespaces, list) {
2099                queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2100                blk_mq_start_stopped_hw_queues(ns->queue, true);
2101                blk_mq_kick_requeue_list(ns->queue);
2102        }
2103        mutex_unlock(&ctrl->namespaces_mutex);
2104}
2105EXPORT_SYMBOL_GPL(nvme_start_queues);
2106
2107int __init nvme_core_init(void)
2108{
2109        int result;
2110
2111        result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2112                                                        &nvme_dev_fops);
2113        if (result < 0)
2114                return result;
2115        else if (result > 0)
2116                nvme_char_major = result;
2117
2118        nvme_class = class_create(THIS_MODULE, "nvme");
2119        if (IS_ERR(nvme_class)) {
2120                result = PTR_ERR(nvme_class);
2121                goto unregister_chrdev;
2122        }
2123
2124        return 0;
2125
2126 unregister_chrdev:
2127        __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2128        return result;
2129}
2130
2131void nvme_core_exit(void)
2132{
2133        class_destroy(nvme_class);
2134        __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2135}
2136
2137MODULE_LICENSE("GPL");
2138MODULE_VERSION("1.0");
2139module_init(nvme_core_init);
2140module_exit(nvme_core_exit);
2141