1
2
3
4
5
6
7
8
9
10
11
12
13
14
15#include <linux/blkdev.h>
16#include <linux/blk-mq.h>
17#include <linux/delay.h>
18#include <linux/errno.h>
19#include <linux/hdreg.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/list_sort.h>
23#include <linux/slab.h>
24#include <linux/types.h>
25#include <linux/pr.h>
26#include <linux/ptrace.h>
27#include <linux/nvme_ioctl.h>
28#include <linux/t10-pi.h>
29#include <scsi/sg.h>
30#include <asm/unaligned.h>
31
32#include "nvme.h"
33#include "fabrics.h"
34
35#define NVME_MINORS (1U << MINORBITS)
36
37unsigned char admin_timeout = 60;
38module_param(admin_timeout, byte, 0644);
39MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40EXPORT_SYMBOL_GPL(admin_timeout);
41
42unsigned char nvme_io_timeout = 30;
43module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45EXPORT_SYMBOL_GPL(nvme_io_timeout);
46
47unsigned char shutdown_timeout = 5;
48module_param(shutdown_timeout, byte, 0644);
49MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50
51unsigned int nvme_max_retries = 5;
52module_param_named(max_retries, nvme_max_retries, uint, 0644);
53MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54EXPORT_SYMBOL_GPL(nvme_max_retries);
55
56static int nvme_char_major;
57module_param(nvme_char_major, int, 0);
58
59static LIST_HEAD(nvme_ctrl_list);
60static DEFINE_SPINLOCK(dev_list_lock);
61
62static struct class *nvme_class;
63
64void nvme_cancel_request(struct request *req, void *data, bool reserved)
65{
66 int status;
67
68 if (!blk_mq_request_started(req))
69 return;
70
71 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
72 "Cancelling I/O %d", req->tag);
73
74 status = NVME_SC_ABORT_REQ;
75 if (blk_queue_dying(req->q))
76 status |= NVME_SC_DNR;
77 blk_mq_complete_request(req, status);
78}
79EXPORT_SYMBOL_GPL(nvme_cancel_request);
80
81bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
82 enum nvme_ctrl_state new_state)
83{
84 enum nvme_ctrl_state old_state;
85 bool changed = false;
86
87 spin_lock_irq(&ctrl->lock);
88
89 old_state = ctrl->state;
90 switch (new_state) {
91 case NVME_CTRL_LIVE:
92 switch (old_state) {
93 case NVME_CTRL_NEW:
94 case NVME_CTRL_RESETTING:
95 case NVME_CTRL_RECONNECTING:
96 changed = true;
97
98 default:
99 break;
100 }
101 break;
102 case NVME_CTRL_RESETTING:
103 switch (old_state) {
104 case NVME_CTRL_NEW:
105 case NVME_CTRL_LIVE:
106 case NVME_CTRL_RECONNECTING:
107 changed = true;
108
109 default:
110 break;
111 }
112 break;
113 case NVME_CTRL_RECONNECTING:
114 switch (old_state) {
115 case NVME_CTRL_LIVE:
116 changed = true;
117
118 default:
119 break;
120 }
121 break;
122 case NVME_CTRL_DELETING:
123 switch (old_state) {
124 case NVME_CTRL_LIVE:
125 case NVME_CTRL_RESETTING:
126 case NVME_CTRL_RECONNECTING:
127 changed = true;
128
129 default:
130 break;
131 }
132 break;
133 case NVME_CTRL_DEAD:
134 switch (old_state) {
135 case NVME_CTRL_DELETING:
136 changed = true;
137
138 default:
139 break;
140 }
141 break;
142 default:
143 break;
144 }
145
146 if (changed)
147 ctrl->state = new_state;
148
149 spin_unlock_irq(&ctrl->lock);
150
151 return changed;
152}
153EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
154
155static void nvme_free_ns(struct kref *kref)
156{
157 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
158
159 if (ns->ndev)
160 nvme_nvm_unregister(ns);
161
162 if (ns->disk) {
163 spin_lock(&dev_list_lock);
164 ns->disk->private_data = NULL;
165 spin_unlock(&dev_list_lock);
166 }
167
168 put_disk(ns->disk);
169 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
170 nvme_put_ctrl(ns->ctrl);
171 kfree(ns);
172}
173
174static void nvme_put_ns(struct nvme_ns *ns)
175{
176 kref_put(&ns->kref, nvme_free_ns);
177}
178
179static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
180{
181 struct nvme_ns *ns;
182
183 spin_lock(&dev_list_lock);
184 ns = disk->private_data;
185 if (ns) {
186 if (!kref_get_unless_zero(&ns->kref))
187 goto fail;
188 if (!try_module_get(ns->ctrl->ops->module))
189 goto fail_put_ns;
190 }
191 spin_unlock(&dev_list_lock);
192
193 return ns;
194
195fail_put_ns:
196 kref_put(&ns->kref, nvme_free_ns);
197fail:
198 spin_unlock(&dev_list_lock);
199 return NULL;
200}
201
202void nvme_requeue_req(struct request *req)
203{
204 unsigned long flags;
205
206 blk_mq_requeue_request(req);
207 spin_lock_irqsave(req->q->queue_lock, flags);
208 if (!blk_queue_stopped(req->q))
209 blk_mq_kick_requeue_list(req->q);
210 spin_unlock_irqrestore(req->q->queue_lock, flags);
211}
212EXPORT_SYMBOL_GPL(nvme_requeue_req);
213
214struct request *nvme_alloc_request(struct request_queue *q,
215 struct nvme_command *cmd, unsigned int flags, int qid)
216{
217 struct request *req;
218
219 if (qid == NVME_QID_ANY) {
220 req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);
221 } else {
222 req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags,
223 qid ? qid - 1 : 0);
224 }
225 if (IS_ERR(req))
226 return req;
227
228 req->cmd_type = REQ_TYPE_DRV_PRIV;
229 req->cmd_flags |= REQ_FAILFAST_DRIVER;
230 req->cmd = (unsigned char *)cmd;
231 req->cmd_len = sizeof(struct nvme_command);
232
233 return req;
234}
235EXPORT_SYMBOL_GPL(nvme_alloc_request);
236
237static inline void nvme_setup_flush(struct nvme_ns *ns,
238 struct nvme_command *cmnd)
239{
240 memset(cmnd, 0, sizeof(*cmnd));
241 cmnd->common.opcode = nvme_cmd_flush;
242 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
243}
244
245static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
246 struct nvme_command *cmnd)
247{
248 struct nvme_dsm_range *range;
249 struct page *page;
250 int offset;
251 unsigned int nr_bytes = blk_rq_bytes(req);
252
253 range = kmalloc(sizeof(*range), GFP_ATOMIC);
254 if (!range)
255 return BLK_MQ_RQ_QUEUE_BUSY;
256
257 range->cattr = cpu_to_le32(0);
258 range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
259 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
260
261 memset(cmnd, 0, sizeof(*cmnd));
262 cmnd->dsm.opcode = nvme_cmd_dsm;
263 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
264 cmnd->dsm.nr = 0;
265 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
266
267 req->completion_data = range;
268 page = virt_to_page(range);
269 offset = offset_in_page(range);
270 blk_add_request_payload(req, page, offset, sizeof(*range));
271
272
273
274
275
276
277 req->__data_len = nr_bytes;
278
279 return 0;
280}
281
282static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
283 struct nvme_command *cmnd)
284{
285 u16 control = 0;
286 u32 dsmgmt = 0;
287
288 if (req->cmd_flags & REQ_FUA)
289 control |= NVME_RW_FUA;
290 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
291 control |= NVME_RW_LR;
292
293 if (req->cmd_flags & REQ_RAHEAD)
294 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
295
296 memset(cmnd, 0, sizeof(*cmnd));
297 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
298 cmnd->rw.command_id = req->tag;
299 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
300 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
301 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
302
303 if (ns->ms) {
304 switch (ns->pi_type) {
305 case NVME_NS_DPS_PI_TYPE3:
306 control |= NVME_RW_PRINFO_PRCHK_GUARD;
307 break;
308 case NVME_NS_DPS_PI_TYPE1:
309 case NVME_NS_DPS_PI_TYPE2:
310 control |= NVME_RW_PRINFO_PRCHK_GUARD |
311 NVME_RW_PRINFO_PRCHK_REF;
312 cmnd->rw.reftag = cpu_to_le32(
313 nvme_block_nr(ns, blk_rq_pos(req)));
314 break;
315 }
316 if (!blk_integrity_rq(req))
317 control |= NVME_RW_PRINFO_PRACT;
318 }
319
320 cmnd->rw.control = cpu_to_le16(control);
321 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
322}
323
324int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
325 struct nvme_command *cmd)
326{
327 int ret = 0;
328
329 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
330 memcpy(cmd, req->cmd, sizeof(*cmd));
331 else if (req_op(req) == REQ_OP_FLUSH)
332 nvme_setup_flush(ns, cmd);
333 else if (req_op(req) == REQ_OP_DISCARD)
334 ret = nvme_setup_discard(ns, req, cmd);
335 else
336 nvme_setup_rw(ns, req, cmd);
337
338 return ret;
339}
340EXPORT_SYMBOL_GPL(nvme_setup_cmd);
341
342
343
344
345
346int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
347 struct nvme_completion *cqe, void *buffer, unsigned bufflen,
348 unsigned timeout, int qid, int at_head, int flags)
349{
350 struct request *req;
351 int ret;
352
353 req = nvme_alloc_request(q, cmd, flags, qid);
354 if (IS_ERR(req))
355 return PTR_ERR(req);
356
357 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
358 req->special = cqe;
359
360 if (buffer && bufflen) {
361 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
362 if (ret)
363 goto out;
364 }
365
366 blk_execute_rq(req->q, NULL, req, at_head);
367 ret = req->errors;
368 out:
369 blk_mq_free_request(req);
370 return ret;
371}
372EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
373
374int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
375 void *buffer, unsigned bufflen)
376{
377 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
378 NVME_QID_ANY, 0, 0);
379}
380EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
381
382int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
383 void __user *ubuffer, unsigned bufflen,
384 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
385 u32 *result, unsigned timeout)
386{
387 bool write = nvme_is_write(cmd);
388 struct nvme_completion cqe;
389 struct nvme_ns *ns = q->queuedata;
390 struct gendisk *disk = ns ? ns->disk : NULL;
391 struct request *req;
392 struct bio *bio = NULL;
393 void *meta = NULL;
394 int ret;
395
396 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
397 if (IS_ERR(req))
398 return PTR_ERR(req);
399
400 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
401 req->special = &cqe;
402
403 if (ubuffer && bufflen) {
404 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
405 GFP_KERNEL);
406 if (ret)
407 goto out;
408 bio = req->bio;
409
410 if (!disk)
411 goto submit;
412 bio->bi_bdev = bdget_disk(disk, 0);
413 if (!bio->bi_bdev) {
414 ret = -ENODEV;
415 goto out_unmap;
416 }
417
418 if (meta_buffer && meta_len) {
419 struct bio_integrity_payload *bip;
420
421 meta = kmalloc(meta_len, GFP_KERNEL);
422 if (!meta) {
423 ret = -ENOMEM;
424 goto out_unmap;
425 }
426
427 if (write) {
428 if (copy_from_user(meta, meta_buffer,
429 meta_len)) {
430 ret = -EFAULT;
431 goto out_free_meta;
432 }
433 }
434
435 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
436 if (IS_ERR(bip)) {
437 ret = PTR_ERR(bip);
438 goto out_free_meta;
439 }
440
441 bip->bip_iter.bi_size = meta_len;
442 bip->bip_iter.bi_sector = meta_seed;
443
444 ret = bio_integrity_add_page(bio, virt_to_page(meta),
445 meta_len, offset_in_page(meta));
446 if (ret != meta_len) {
447 ret = -ENOMEM;
448 goto out_free_meta;
449 }
450 }
451 }
452 submit:
453 blk_execute_rq(req->q, disk, req, 0);
454 ret = req->errors;
455 if (result)
456 *result = le32_to_cpu(cqe.result);
457 if (meta && !ret && !write) {
458 if (copy_to_user(meta_buffer, meta, meta_len))
459 ret = -EFAULT;
460 }
461 out_free_meta:
462 kfree(meta);
463 out_unmap:
464 if (bio) {
465 if (disk && bio->bi_bdev)
466 bdput(bio->bi_bdev);
467 blk_rq_unmap_user(bio);
468 }
469 out:
470 blk_mq_free_request(req);
471 return ret;
472}
473
474int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
475 void __user *ubuffer, unsigned bufflen, u32 *result,
476 unsigned timeout)
477{
478 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
479 result, timeout);
480}
481
482static void nvme_keep_alive_end_io(struct request *rq, int error)
483{
484 struct nvme_ctrl *ctrl = rq->end_io_data;
485
486 blk_mq_free_request(rq);
487
488 if (error) {
489 dev_err(ctrl->device,
490 "failed nvme_keep_alive_end_io error=%d\n", error);
491 return;
492 }
493
494 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
495}
496
497static int nvme_keep_alive(struct nvme_ctrl *ctrl)
498{
499 struct nvme_command c;
500 struct request *rq;
501
502 memset(&c, 0, sizeof(c));
503 c.common.opcode = nvme_admin_keep_alive;
504
505 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
506 NVME_QID_ANY);
507 if (IS_ERR(rq))
508 return PTR_ERR(rq);
509
510 rq->timeout = ctrl->kato * HZ;
511 rq->end_io_data = ctrl;
512
513 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
514
515 return 0;
516}
517
518static void nvme_keep_alive_work(struct work_struct *work)
519{
520 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
521 struct nvme_ctrl, ka_work);
522
523 if (nvme_keep_alive(ctrl)) {
524
525 dev_err(ctrl->device, "keep-alive failed\n");
526 ctrl->ops->reset_ctrl(ctrl);
527 return;
528 }
529}
530
531void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
532{
533 if (unlikely(ctrl->kato == 0))
534 return;
535
536 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
537 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
538}
539EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
540
541void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
542{
543 if (unlikely(ctrl->kato == 0))
544 return;
545
546 cancel_delayed_work_sync(&ctrl->ka_work);
547}
548EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
549
550int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
551{
552 struct nvme_command c = { };
553 int error;
554
555
556 c.identify.opcode = nvme_admin_identify;
557 c.identify.cns = cpu_to_le32(NVME_ID_CNS_CTRL);
558
559 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
560 if (!*id)
561 return -ENOMEM;
562
563 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
564 sizeof(struct nvme_id_ctrl));
565 if (error)
566 kfree(*id);
567 return error;
568}
569
570static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
571{
572 struct nvme_command c = { };
573
574 c.identify.opcode = nvme_admin_identify;
575 c.identify.cns = cpu_to_le32(NVME_ID_CNS_NS_ACTIVE_LIST);
576 c.identify.nsid = cpu_to_le32(nsid);
577 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
578}
579
580int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
581 struct nvme_id_ns **id)
582{
583 struct nvme_command c = { };
584 int error;
585
586
587 c.identify.opcode = nvme_admin_identify,
588 c.identify.nsid = cpu_to_le32(nsid),
589
590 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
591 if (!*id)
592 return -ENOMEM;
593
594 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
595 sizeof(struct nvme_id_ns));
596 if (error)
597 kfree(*id);
598 return error;
599}
600
601int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
602 void *buffer, size_t buflen, u32 *result)
603{
604 struct nvme_command c;
605 struct nvme_completion cqe;
606 int ret;
607
608 memset(&c, 0, sizeof(c));
609 c.features.opcode = nvme_admin_get_features;
610 c.features.nsid = cpu_to_le32(nsid);
611 c.features.fid = cpu_to_le32(fid);
612
613 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, buffer, buflen, 0,
614 NVME_QID_ANY, 0, 0);
615 if (ret >= 0 && result)
616 *result = le32_to_cpu(cqe.result);
617 return ret;
618}
619
620int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
621 void *buffer, size_t buflen, u32 *result)
622{
623 struct nvme_command c;
624 struct nvme_completion cqe;
625 int ret;
626
627 memset(&c, 0, sizeof(c));
628 c.features.opcode = nvme_admin_set_features;
629 c.features.fid = cpu_to_le32(fid);
630 c.features.dword11 = cpu_to_le32(dword11);
631
632 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe,
633 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
634 if (ret >= 0 && result)
635 *result = le32_to_cpu(cqe.result);
636 return ret;
637}
638
639int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
640{
641 struct nvme_command c = { };
642 int error;
643
644 c.common.opcode = nvme_admin_get_log_page,
645 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
646 c.common.cdw10[0] = cpu_to_le32(
647 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
648 NVME_LOG_SMART),
649
650 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
651 if (!*log)
652 return -ENOMEM;
653
654 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
655 sizeof(struct nvme_smart_log));
656 if (error)
657 kfree(*log);
658 return error;
659}
660
661int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
662{
663 u32 q_count = (*count - 1) | ((*count - 1) << 16);
664 u32 result;
665 int status, nr_io_queues;
666
667 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
668 &result);
669 if (status < 0)
670 return status;
671
672
673
674
675
676
677 if (status > 0) {
678 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
679 *count = 0;
680 } else {
681 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
682 *count = min(*count, nr_io_queues);
683 }
684
685 return 0;
686}
687EXPORT_SYMBOL_GPL(nvme_set_queue_count);
688
689static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
690{
691 struct nvme_user_io io;
692 struct nvme_command c;
693 unsigned length, meta_len;
694 void __user *metadata;
695
696 if (copy_from_user(&io, uio, sizeof(io)))
697 return -EFAULT;
698 if (io.flags)
699 return -EINVAL;
700
701 switch (io.opcode) {
702 case nvme_cmd_write:
703 case nvme_cmd_read:
704 case nvme_cmd_compare:
705 break;
706 default:
707 return -EINVAL;
708 }
709
710 length = (io.nblocks + 1) << ns->lba_shift;
711 meta_len = (io.nblocks + 1) * ns->ms;
712 metadata = (void __user *)(uintptr_t)io.metadata;
713
714 if (ns->ext) {
715 length += meta_len;
716 meta_len = 0;
717 } else if (meta_len) {
718 if ((io.metadata & 3) || !io.metadata)
719 return -EINVAL;
720 }
721
722 memset(&c, 0, sizeof(c));
723 c.rw.opcode = io.opcode;
724 c.rw.flags = io.flags;
725 c.rw.nsid = cpu_to_le32(ns->ns_id);
726 c.rw.slba = cpu_to_le64(io.slba);
727 c.rw.length = cpu_to_le16(io.nblocks);
728 c.rw.control = cpu_to_le16(io.control);
729 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
730 c.rw.reftag = cpu_to_le32(io.reftag);
731 c.rw.apptag = cpu_to_le16(io.apptag);
732 c.rw.appmask = cpu_to_le16(io.appmask);
733
734 return __nvme_submit_user_cmd(ns->queue, &c,
735 (void __user *)(uintptr_t)io.addr, length,
736 metadata, meta_len, io.slba, NULL, 0);
737}
738
739static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
740 struct nvme_passthru_cmd __user *ucmd)
741{
742 struct nvme_passthru_cmd cmd;
743 struct nvme_command c;
744 unsigned timeout = 0;
745 int status;
746
747 if (!capable(CAP_SYS_ADMIN))
748 return -EACCES;
749 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
750 return -EFAULT;
751 if (cmd.flags)
752 return -EINVAL;
753
754 memset(&c, 0, sizeof(c));
755 c.common.opcode = cmd.opcode;
756 c.common.flags = cmd.flags;
757 c.common.nsid = cpu_to_le32(cmd.nsid);
758 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
759 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
760 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
761 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
762 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
763 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
764 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
765 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
766
767 if (cmd.timeout_ms)
768 timeout = msecs_to_jiffies(cmd.timeout_ms);
769
770 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
771 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
772 &cmd.result, timeout);
773 if (status >= 0) {
774 if (put_user(cmd.result, &ucmd->result))
775 return -EFAULT;
776 }
777
778 return status;
779}
780
781static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
782 unsigned int cmd, unsigned long arg)
783{
784 struct nvme_ns *ns = bdev->bd_disk->private_data;
785
786 switch (cmd) {
787 case NVME_IOCTL_ID:
788 force_successful_syscall_return();
789 return ns->ns_id;
790 case NVME_IOCTL_ADMIN_CMD:
791 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
792 case NVME_IOCTL_IO_CMD:
793 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
794 case NVME_IOCTL_SUBMIT_IO:
795 return nvme_submit_io(ns, (void __user *)arg);
796#ifdef CONFIG_BLK_DEV_NVME_SCSI
797 case SG_GET_VERSION_NUM:
798 return nvme_sg_get_version_num((void __user *)arg);
799 case SG_IO:
800 return nvme_sg_io(ns, (void __user *)arg);
801#endif
802 default:
803 return -ENOTTY;
804 }
805}
806
807#ifdef CONFIG_COMPAT
808static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
809 unsigned int cmd, unsigned long arg)
810{
811 switch (cmd) {
812 case SG_IO:
813 return -ENOIOCTLCMD;
814 }
815 return nvme_ioctl(bdev, mode, cmd, arg);
816}
817#else
818#define nvme_compat_ioctl NULL
819#endif
820
821static int nvme_open(struct block_device *bdev, fmode_t mode)
822{
823 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
824}
825
826static void nvme_release(struct gendisk *disk, fmode_t mode)
827{
828 struct nvme_ns *ns = disk->private_data;
829
830 module_put(ns->ctrl->ops->module);
831 nvme_put_ns(ns);
832}
833
834static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
835{
836
837 geo->heads = 1 << 6;
838 geo->sectors = 1 << 5;
839 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
840 return 0;
841}
842
843#ifdef CONFIG_BLK_DEV_INTEGRITY
844static void nvme_init_integrity(struct nvme_ns *ns)
845{
846 struct blk_integrity integrity;
847
848 memset(&integrity, 0, sizeof(integrity));
849 switch (ns->pi_type) {
850 case NVME_NS_DPS_PI_TYPE3:
851 integrity.profile = &t10_pi_type3_crc;
852 integrity.tag_size = sizeof(u16) + sizeof(u32);
853 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
854 break;
855 case NVME_NS_DPS_PI_TYPE1:
856 case NVME_NS_DPS_PI_TYPE2:
857 integrity.profile = &t10_pi_type1_crc;
858 integrity.tag_size = sizeof(u16);
859 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
860 break;
861 default:
862 integrity.profile = NULL;
863 break;
864 }
865 integrity.tuple_size = ns->ms;
866 blk_integrity_register(ns->disk, &integrity);
867 blk_queue_max_integrity_segments(ns->queue, 1);
868}
869#else
870static void nvme_init_integrity(struct nvme_ns *ns)
871{
872}
873#endif
874
875static void nvme_config_discard(struct nvme_ns *ns)
876{
877 struct nvme_ctrl *ctrl = ns->ctrl;
878 u32 logical_block_size = queue_logical_block_size(ns->queue);
879
880 if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
881 ns->queue->limits.discard_zeroes_data = 1;
882 else
883 ns->queue->limits.discard_zeroes_data = 0;
884
885 ns->queue->limits.discard_alignment = logical_block_size;
886 ns->queue->limits.discard_granularity = logical_block_size;
887 blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
888 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
889}
890
891static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
892{
893 if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
894 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
895 return -ENODEV;
896 }
897
898 if ((*id)->ncap == 0) {
899 kfree(*id);
900 return -ENODEV;
901 }
902
903 if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
904 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
905 if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
906 memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));
907
908 return 0;
909}
910
911static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
912{
913 struct nvme_ns *ns = disk->private_data;
914 u8 lbaf, pi_type;
915 u16 old_ms;
916 unsigned short bs;
917
918 old_ms = ns->ms;
919 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
920 ns->lba_shift = id->lbaf[lbaf].ds;
921 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
922 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
923
924
925
926
927
928 if (ns->lba_shift == 0)
929 ns->lba_shift = 9;
930 bs = 1 << ns->lba_shift;
931
932 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
933 id->dps & NVME_NS_DPS_PI_MASK : 0;
934
935 blk_mq_freeze_queue(disk->queue);
936 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
937 ns->ms != old_ms ||
938 bs != queue_logical_block_size(disk->queue) ||
939 (ns->ms && ns->ext)))
940 blk_integrity_unregister(disk);
941
942 ns->pi_type = pi_type;
943 blk_queue_logical_block_size(ns->queue, bs);
944
945 if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
946 nvme_init_integrity(ns);
947 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
948 set_capacity(disk, 0);
949 else
950 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
951
952 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
953 nvme_config_discard(ns);
954 blk_mq_unfreeze_queue(disk->queue);
955}
956
957static int nvme_revalidate_disk(struct gendisk *disk)
958{
959 struct nvme_ns *ns = disk->private_data;
960 struct nvme_id_ns *id = NULL;
961 int ret;
962
963 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
964 set_capacity(disk, 0);
965 return -ENODEV;
966 }
967
968 ret = nvme_revalidate_ns(ns, &id);
969 if (ret)
970 return ret;
971
972 __nvme_revalidate_disk(disk, id);
973 kfree(id);
974
975 return 0;
976}
977
978static char nvme_pr_type(enum pr_type type)
979{
980 switch (type) {
981 case PR_WRITE_EXCLUSIVE:
982 return 1;
983 case PR_EXCLUSIVE_ACCESS:
984 return 2;
985 case PR_WRITE_EXCLUSIVE_REG_ONLY:
986 return 3;
987 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
988 return 4;
989 case PR_WRITE_EXCLUSIVE_ALL_REGS:
990 return 5;
991 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
992 return 6;
993 default:
994 return 0;
995 }
996};
997
998static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
999 u64 key, u64 sa_key, u8 op)
1000{
1001 struct nvme_ns *ns = bdev->bd_disk->private_data;
1002 struct nvme_command c;
1003 u8 data[16] = { 0, };
1004
1005 put_unaligned_le64(key, &data[0]);
1006 put_unaligned_le64(sa_key, &data[8]);
1007
1008 memset(&c, 0, sizeof(c));
1009 c.common.opcode = op;
1010 c.common.nsid = cpu_to_le32(ns->ns_id);
1011 c.common.cdw10[0] = cpu_to_le32(cdw10);
1012
1013 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1014}
1015
1016static int nvme_pr_register(struct block_device *bdev, u64 old,
1017 u64 new, unsigned flags)
1018{
1019 u32 cdw10;
1020
1021 if (flags & ~PR_FL_IGNORE_KEY)
1022 return -EOPNOTSUPP;
1023
1024 cdw10 = old ? 2 : 0;
1025 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1026 cdw10 |= (1 << 30) | (1 << 31);
1027 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1028}
1029
1030static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1031 enum pr_type type, unsigned flags)
1032{
1033 u32 cdw10;
1034
1035 if (flags & ~PR_FL_IGNORE_KEY)
1036 return -EOPNOTSUPP;
1037
1038 cdw10 = nvme_pr_type(type) << 8;
1039 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1040 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1041}
1042
1043static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1044 enum pr_type type, bool abort)
1045{
1046 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1047 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1048}
1049
1050static int nvme_pr_clear(struct block_device *bdev, u64 key)
1051{
1052 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1053 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1054}
1055
1056static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1057{
1058 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1059 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1060}
1061
1062static const struct pr_ops nvme_pr_ops = {
1063 .pr_register = nvme_pr_register,
1064 .pr_reserve = nvme_pr_reserve,
1065 .pr_release = nvme_pr_release,
1066 .pr_preempt = nvme_pr_preempt,
1067 .pr_clear = nvme_pr_clear,
1068};
1069
1070static const struct block_device_operations nvme_fops = {
1071 .owner = THIS_MODULE,
1072 .ioctl = nvme_ioctl,
1073 .compat_ioctl = nvme_compat_ioctl,
1074 .open = nvme_open,
1075 .release = nvme_release,
1076 .getgeo = nvme_getgeo,
1077 .revalidate_disk= nvme_revalidate_disk,
1078 .pr_ops = &nvme_pr_ops,
1079};
1080
1081static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1082{
1083 unsigned long timeout =
1084 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1085 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1086 int ret;
1087
1088 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1089 if (csts == ~0)
1090 return -ENODEV;
1091 if ((csts & NVME_CSTS_RDY) == bit)
1092 break;
1093
1094 msleep(100);
1095 if (fatal_signal_pending(current))
1096 return -EINTR;
1097 if (time_after(jiffies, timeout)) {
1098 dev_err(ctrl->device,
1099 "Device not ready; aborting %s\n", enabled ?
1100 "initialisation" : "reset");
1101 return -ENODEV;
1102 }
1103 }
1104
1105 return ret;
1106}
1107
1108
1109
1110
1111
1112
1113
1114int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1115{
1116 int ret;
1117
1118 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1119 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1120
1121 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1122 if (ret)
1123 return ret;
1124
1125
1126
1127
1128
1129
1130 if ((ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) && ctrl->tagset)
1131 msleep(NVME_QUIRK_DELAY_AMOUNT);
1132
1133 return nvme_wait_ready(ctrl, cap, false);
1134}
1135EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1136
1137int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1138{
1139
1140
1141
1142
1143
1144 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1145 int ret;
1146
1147 if (page_shift < dev_page_min) {
1148 dev_err(ctrl->device,
1149 "Minimum device page size %u too large for host (%u)\n",
1150 1 << dev_page_min, 1 << page_shift);
1151 return -ENODEV;
1152 }
1153
1154 ctrl->page_size = 1 << page_shift;
1155
1156 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1157 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1158 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1159 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1160 ctrl->ctrl_config |= NVME_CC_ENABLE;
1161
1162 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1163 if (ret)
1164 return ret;
1165 return nvme_wait_ready(ctrl, cap, true);
1166}
1167EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1168
1169int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1170{
1171 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1172 u32 csts;
1173 int ret;
1174
1175 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1176 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1177
1178 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1179 if (ret)
1180 return ret;
1181
1182 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1183 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1184 break;
1185
1186 msleep(100);
1187 if (fatal_signal_pending(current))
1188 return -EINTR;
1189 if (time_after(jiffies, timeout)) {
1190 dev_err(ctrl->device,
1191 "Device shutdown incomplete; abort shutdown\n");
1192 return -ENODEV;
1193 }
1194 }
1195
1196 return ret;
1197}
1198EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1199
1200static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1201 struct request_queue *q)
1202{
1203 bool vwc = false;
1204
1205 if (ctrl->max_hw_sectors) {
1206 u32 max_segments =
1207 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1208
1209 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1210 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1211 }
1212 if (ctrl->stripe_size)
1213 blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
1214 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1215 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1216 vwc = true;
1217 blk_queue_write_cache(q, vwc, vwc);
1218}
1219
1220
1221
1222
1223
1224
1225int nvme_init_identify(struct nvme_ctrl *ctrl)
1226{
1227 struct nvme_id_ctrl *id;
1228 u64 cap;
1229 int ret, page_shift;
1230 u32 max_hw_sectors;
1231
1232 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1233 if (ret) {
1234 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1235 return ret;
1236 }
1237
1238 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1239 if (ret) {
1240 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1241 return ret;
1242 }
1243 page_shift = NVME_CAP_MPSMIN(cap) + 12;
1244
1245 if (ctrl->vs >= NVME_VS(1, 1, 0))
1246 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1247
1248 ret = nvme_identify_ctrl(ctrl, &id);
1249 if (ret) {
1250 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1251 return -EIO;
1252 }
1253
1254 ctrl->vid = le16_to_cpu(id->vid);
1255 ctrl->oncs = le16_to_cpup(&id->oncs);
1256 atomic_set(&ctrl->abort_limit, id->acl + 1);
1257 ctrl->vwc = id->vwc;
1258 ctrl->cntlid = le16_to_cpup(&id->cntlid);
1259 memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1260 memcpy(ctrl->model, id->mn, sizeof(id->mn));
1261 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1262 if (id->mdts)
1263 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1264 else
1265 max_hw_sectors = UINT_MAX;
1266 ctrl->max_hw_sectors =
1267 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1268
1269 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
1270 unsigned int max_hw_sectors;
1271
1272 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
1273 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
1274 if (ctrl->max_hw_sectors) {
1275 ctrl->max_hw_sectors = min(max_hw_sectors,
1276 ctrl->max_hw_sectors);
1277 } else {
1278 ctrl->max_hw_sectors = max_hw_sectors;
1279 }
1280 }
1281
1282 nvme_set_queue_limits(ctrl, ctrl->admin_q);
1283 ctrl->sgls = le32_to_cpu(id->sgls);
1284 ctrl->kas = le16_to_cpu(id->kas);
1285
1286 if (ctrl->ops->is_fabrics) {
1287 ctrl->icdoff = le16_to_cpu(id->icdoff);
1288 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1289 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1290 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1291
1292
1293
1294
1295
1296 if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1297 ret = -EINVAL;
1298
1299 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1300 dev_err(ctrl->dev,
1301 "keep-alive support is mandatory for fabrics\n");
1302 ret = -EINVAL;
1303 }
1304 } else {
1305 ctrl->cntlid = le16_to_cpu(id->cntlid);
1306 }
1307
1308 kfree(id);
1309 return ret;
1310}
1311EXPORT_SYMBOL_GPL(nvme_init_identify);
1312
1313static int nvme_dev_open(struct inode *inode, struct file *file)
1314{
1315 struct nvme_ctrl *ctrl;
1316 int instance = iminor(inode);
1317 int ret = -ENODEV;
1318
1319 spin_lock(&dev_list_lock);
1320 list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1321 if (ctrl->instance != instance)
1322 continue;
1323
1324 if (!ctrl->admin_q) {
1325 ret = -EWOULDBLOCK;
1326 break;
1327 }
1328 if (!kref_get_unless_zero(&ctrl->kref))
1329 break;
1330 file->private_data = ctrl;
1331 ret = 0;
1332 break;
1333 }
1334 spin_unlock(&dev_list_lock);
1335
1336 return ret;
1337}
1338
1339static int nvme_dev_release(struct inode *inode, struct file *file)
1340{
1341 nvme_put_ctrl(file->private_data);
1342 return 0;
1343}
1344
1345static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1346{
1347 struct nvme_ns *ns;
1348 int ret;
1349
1350 mutex_lock(&ctrl->namespaces_mutex);
1351 if (list_empty(&ctrl->namespaces)) {
1352 ret = -ENOTTY;
1353 goto out_unlock;
1354 }
1355
1356 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1357 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1358 dev_warn(ctrl->device,
1359 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1360 ret = -EINVAL;
1361 goto out_unlock;
1362 }
1363
1364 dev_warn(ctrl->device,
1365 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1366 kref_get(&ns->kref);
1367 mutex_unlock(&ctrl->namespaces_mutex);
1368
1369 ret = nvme_user_cmd(ctrl, ns, argp);
1370 nvme_put_ns(ns);
1371 return ret;
1372
1373out_unlock:
1374 mutex_unlock(&ctrl->namespaces_mutex);
1375 return ret;
1376}
1377
1378static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1379 unsigned long arg)
1380{
1381 struct nvme_ctrl *ctrl = file->private_data;
1382 void __user *argp = (void __user *)arg;
1383
1384 switch (cmd) {
1385 case NVME_IOCTL_ADMIN_CMD:
1386 return nvme_user_cmd(ctrl, NULL, argp);
1387 case NVME_IOCTL_IO_CMD:
1388 return nvme_dev_user_cmd(ctrl, argp);
1389 case NVME_IOCTL_RESET:
1390 dev_warn(ctrl->device, "resetting controller\n");
1391 return ctrl->ops->reset_ctrl(ctrl);
1392 case NVME_IOCTL_SUBSYS_RESET:
1393 return nvme_reset_subsystem(ctrl);
1394 case NVME_IOCTL_RESCAN:
1395 nvme_queue_scan(ctrl);
1396 return 0;
1397 default:
1398 return -ENOTTY;
1399 }
1400}
1401
1402static const struct file_operations nvme_dev_fops = {
1403 .owner = THIS_MODULE,
1404 .open = nvme_dev_open,
1405 .release = nvme_dev_release,
1406 .unlocked_ioctl = nvme_dev_ioctl,
1407 .compat_ioctl = nvme_dev_ioctl,
1408};
1409
1410static ssize_t nvme_sysfs_reset(struct device *dev,
1411 struct device_attribute *attr, const char *buf,
1412 size_t count)
1413{
1414 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1415 int ret;
1416
1417 ret = ctrl->ops->reset_ctrl(ctrl);
1418 if (ret < 0)
1419 return ret;
1420 return count;
1421}
1422static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1423
1424static ssize_t nvme_sysfs_rescan(struct device *dev,
1425 struct device_attribute *attr, const char *buf,
1426 size_t count)
1427{
1428 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1429
1430 nvme_queue_scan(ctrl);
1431 return count;
1432}
1433static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1434
1435static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1436 char *buf)
1437{
1438 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1439 struct nvme_ctrl *ctrl = ns->ctrl;
1440 int serial_len = sizeof(ctrl->serial);
1441 int model_len = sizeof(ctrl->model);
1442
1443 if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1444 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1445
1446 if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1447 return sprintf(buf, "eui.%8phN\n", ns->eui);
1448
1449 while (ctrl->serial[serial_len - 1] == ' ')
1450 serial_len--;
1451 while (ctrl->model[model_len - 1] == ' ')
1452 model_len--;
1453
1454 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1455 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1456}
1457static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1458
1459static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1460 char *buf)
1461{
1462 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1463 return sprintf(buf, "%pU\n", ns->uuid);
1464}
1465static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1466
1467static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1468 char *buf)
1469{
1470 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1471 return sprintf(buf, "%8phd\n", ns->eui);
1472}
1473static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1474
1475static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1476 char *buf)
1477{
1478 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1479 return sprintf(buf, "%d\n", ns->ns_id);
1480}
1481static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1482
1483static struct attribute *nvme_ns_attrs[] = {
1484 &dev_attr_wwid.attr,
1485 &dev_attr_uuid.attr,
1486 &dev_attr_eui.attr,
1487 &dev_attr_nsid.attr,
1488 NULL,
1489};
1490
1491static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1492 struct attribute *a, int n)
1493{
1494 struct device *dev = container_of(kobj, struct device, kobj);
1495 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1496
1497 if (a == &dev_attr_uuid.attr) {
1498 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1499 return 0;
1500 }
1501 if (a == &dev_attr_eui.attr) {
1502 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1503 return 0;
1504 }
1505 return a->mode;
1506}
1507
1508static const struct attribute_group nvme_ns_attr_group = {
1509 .attrs = nvme_ns_attrs,
1510 .is_visible = nvme_ns_attrs_are_visible,
1511};
1512
1513#define nvme_show_str_function(field) \
1514static ssize_t field##_show(struct device *dev, \
1515 struct device_attribute *attr, char *buf) \
1516{ \
1517 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1518 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
1519} \
1520static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1521
1522#define nvme_show_int_function(field) \
1523static ssize_t field##_show(struct device *dev, \
1524 struct device_attribute *attr, char *buf) \
1525{ \
1526 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1527 return sprintf(buf, "%d\n", ctrl->field); \
1528} \
1529static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1530
1531nvme_show_str_function(model);
1532nvme_show_str_function(serial);
1533nvme_show_str_function(firmware_rev);
1534nvme_show_int_function(cntlid);
1535
1536static ssize_t nvme_sysfs_delete(struct device *dev,
1537 struct device_attribute *attr, const char *buf,
1538 size_t count)
1539{
1540 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1541
1542 if (device_remove_file_self(dev, attr))
1543 ctrl->ops->delete_ctrl(ctrl);
1544 return count;
1545}
1546static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1547
1548static ssize_t nvme_sysfs_show_transport(struct device *dev,
1549 struct device_attribute *attr,
1550 char *buf)
1551{
1552 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1553
1554 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1555}
1556static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1557
1558static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1559 struct device_attribute *attr,
1560 char *buf)
1561{
1562 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1563
1564 return snprintf(buf, PAGE_SIZE, "%s\n",
1565 ctrl->ops->get_subsysnqn(ctrl));
1566}
1567static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1568
1569static ssize_t nvme_sysfs_show_address(struct device *dev,
1570 struct device_attribute *attr,
1571 char *buf)
1572{
1573 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1574
1575 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1576}
1577static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1578
1579static struct attribute *nvme_dev_attrs[] = {
1580 &dev_attr_reset_controller.attr,
1581 &dev_attr_rescan_controller.attr,
1582 &dev_attr_model.attr,
1583 &dev_attr_serial.attr,
1584 &dev_attr_firmware_rev.attr,
1585 &dev_attr_cntlid.attr,
1586 &dev_attr_delete_controller.attr,
1587 &dev_attr_transport.attr,
1588 &dev_attr_subsysnqn.attr,
1589 &dev_attr_address.attr,
1590 NULL
1591};
1592
1593#define CHECK_ATTR(ctrl, a, name) \
1594 if ((a) == &dev_attr_##name.attr && \
1595 !(ctrl)->ops->get_##name) \
1596 return 0
1597
1598static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1599 struct attribute *a, int n)
1600{
1601 struct device *dev = container_of(kobj, struct device, kobj);
1602 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1603
1604 if (a == &dev_attr_delete_controller.attr) {
1605 if (!ctrl->ops->delete_ctrl)
1606 return 0;
1607 }
1608
1609 CHECK_ATTR(ctrl, a, subsysnqn);
1610 CHECK_ATTR(ctrl, a, address);
1611
1612 return a->mode;
1613}
1614
1615static struct attribute_group nvme_dev_attrs_group = {
1616 .attrs = nvme_dev_attrs,
1617 .is_visible = nvme_dev_attrs_are_visible,
1618};
1619
1620static const struct attribute_group *nvme_dev_attr_groups[] = {
1621 &nvme_dev_attrs_group,
1622 NULL,
1623};
1624
1625static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1626{
1627 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1628 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1629
1630 return nsa->ns_id - nsb->ns_id;
1631}
1632
1633static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1634{
1635 struct nvme_ns *ns, *ret = NULL;
1636
1637 mutex_lock(&ctrl->namespaces_mutex);
1638 list_for_each_entry(ns, &ctrl->namespaces, list) {
1639 if (ns->ns_id == nsid) {
1640 kref_get(&ns->kref);
1641 ret = ns;
1642 break;
1643 }
1644 if (ns->ns_id > nsid)
1645 break;
1646 }
1647 mutex_unlock(&ctrl->namespaces_mutex);
1648 return ret;
1649}
1650
1651static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1652{
1653 struct nvme_ns *ns;
1654 struct gendisk *disk;
1655 struct nvme_id_ns *id;
1656 char disk_name[DISK_NAME_LEN];
1657 int node = dev_to_node(ctrl->dev);
1658
1659 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1660 if (!ns)
1661 return;
1662
1663 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1664 if (ns->instance < 0)
1665 goto out_free_ns;
1666
1667 ns->queue = blk_mq_init_queue(ctrl->tagset);
1668 if (IS_ERR(ns->queue))
1669 goto out_release_instance;
1670 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1671 ns->queue->queuedata = ns;
1672 ns->ctrl = ctrl;
1673
1674 kref_init(&ns->kref);
1675 ns->ns_id = nsid;
1676 ns->lba_shift = 9;
1677
1678 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1679 nvme_set_queue_limits(ctrl, ns->queue);
1680
1681 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1682
1683 if (nvme_revalidate_ns(ns, &id))
1684 goto out_free_queue;
1685
1686 if (nvme_nvm_ns_supported(ns, id)) {
1687 if (nvme_nvm_register(ns, disk_name, node,
1688 &nvme_ns_attr_group)) {
1689 dev_warn(ctrl->dev, "%s: LightNVM init failure\n",
1690 __func__);
1691 goto out_free_id;
1692 }
1693 } else {
1694 disk = alloc_disk_node(0, node);
1695 if (!disk)
1696 goto out_free_id;
1697
1698 disk->fops = &nvme_fops;
1699 disk->private_data = ns;
1700 disk->queue = ns->queue;
1701 disk->flags = GENHD_FL_EXT_DEVT;
1702 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
1703 ns->disk = disk;
1704
1705 __nvme_revalidate_disk(disk, id);
1706 }
1707
1708 mutex_lock(&ctrl->namespaces_mutex);
1709 list_add_tail(&ns->list, &ctrl->namespaces);
1710 mutex_unlock(&ctrl->namespaces_mutex);
1711
1712 kref_get(&ctrl->kref);
1713
1714 kfree(id);
1715
1716 if (ns->ndev)
1717 return;
1718
1719 device_add_disk(ctrl->device, ns->disk);
1720 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1721 &nvme_ns_attr_group))
1722 pr_warn("%s: failed to create sysfs group for identification\n",
1723 ns->disk->disk_name);
1724 return;
1725 out_free_id:
1726 kfree(id);
1727 out_free_queue:
1728 blk_cleanup_queue(ns->queue);
1729 out_release_instance:
1730 ida_simple_remove(&ctrl->ns_ida, ns->instance);
1731 out_free_ns:
1732 kfree(ns);
1733}
1734
1735static void nvme_ns_remove(struct nvme_ns *ns)
1736{
1737 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1738 return;
1739
1740 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
1741 if (blk_get_integrity(ns->disk))
1742 blk_integrity_unregister(ns->disk);
1743 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1744 &nvme_ns_attr_group);
1745 del_gendisk(ns->disk);
1746 blk_mq_abort_requeue_list(ns->queue);
1747 blk_cleanup_queue(ns->queue);
1748 }
1749
1750 mutex_lock(&ns->ctrl->namespaces_mutex);
1751 list_del_init(&ns->list);
1752 mutex_unlock(&ns->ctrl->namespaces_mutex);
1753
1754 nvme_put_ns(ns);
1755}
1756
1757static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1758{
1759 struct nvme_ns *ns;
1760
1761 ns = nvme_find_get_ns(ctrl, nsid);
1762 if (ns) {
1763 if (ns->disk && revalidate_disk(ns->disk))
1764 nvme_ns_remove(ns);
1765 nvme_put_ns(ns);
1766 } else
1767 nvme_alloc_ns(ctrl, nsid);
1768}
1769
1770static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
1771 unsigned nsid)
1772{
1773 struct nvme_ns *ns, *next;
1774
1775 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1776 if (ns->ns_id > nsid)
1777 nvme_ns_remove(ns);
1778 }
1779}
1780
1781static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1782{
1783 struct nvme_ns *ns;
1784 __le32 *ns_list;
1785 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1786 int ret = 0;
1787
1788 ns_list = kzalloc(0x1000, GFP_KERNEL);
1789 if (!ns_list)
1790 return -ENOMEM;
1791
1792 for (i = 0; i < num_lists; i++) {
1793 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1794 if (ret)
1795 goto free;
1796
1797 for (j = 0; j < min(nn, 1024U); j++) {
1798 nsid = le32_to_cpu(ns_list[j]);
1799 if (!nsid)
1800 goto out;
1801
1802 nvme_validate_ns(ctrl, nsid);
1803
1804 while (++prev < nsid) {
1805 ns = nvme_find_get_ns(ctrl, prev);
1806 if (ns) {
1807 nvme_ns_remove(ns);
1808 nvme_put_ns(ns);
1809 }
1810 }
1811 }
1812 nn -= j;
1813 }
1814 out:
1815 nvme_remove_invalid_namespaces(ctrl, prev);
1816 free:
1817 kfree(ns_list);
1818 return ret;
1819}
1820
1821static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1822{
1823 unsigned i;
1824
1825 for (i = 1; i <= nn; i++)
1826 nvme_validate_ns(ctrl, i);
1827
1828 nvme_remove_invalid_namespaces(ctrl, nn);
1829}
1830
1831static void nvme_scan_work(struct work_struct *work)
1832{
1833 struct nvme_ctrl *ctrl =
1834 container_of(work, struct nvme_ctrl, scan_work);
1835 struct nvme_id_ctrl *id;
1836 unsigned nn;
1837
1838 if (ctrl->state != NVME_CTRL_LIVE)
1839 return;
1840
1841 if (nvme_identify_ctrl(ctrl, &id))
1842 return;
1843
1844 nn = le32_to_cpu(id->nn);
1845 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1846 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1847 if (!nvme_scan_ns_list(ctrl, nn))
1848 goto done;
1849 }
1850 nvme_scan_ns_sequential(ctrl, nn);
1851 done:
1852 mutex_lock(&ctrl->namespaces_mutex);
1853 list_sort(NULL, &ctrl->namespaces, ns_cmp);
1854 mutex_unlock(&ctrl->namespaces_mutex);
1855 kfree(id);
1856}
1857
1858void nvme_queue_scan(struct nvme_ctrl *ctrl)
1859{
1860
1861
1862
1863
1864 if (ctrl->state == NVME_CTRL_LIVE)
1865 schedule_work(&ctrl->scan_work);
1866}
1867EXPORT_SYMBOL_GPL(nvme_queue_scan);
1868
1869
1870
1871
1872
1873
1874void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1875{
1876 struct nvme_ns *ns, *next;
1877
1878
1879
1880
1881
1882
1883
1884 if (ctrl->state == NVME_CTRL_DEAD)
1885 nvme_kill_queues(ctrl);
1886
1887 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1888 nvme_ns_remove(ns);
1889}
1890EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1891
1892static void nvme_async_event_work(struct work_struct *work)
1893{
1894 struct nvme_ctrl *ctrl =
1895 container_of(work, struct nvme_ctrl, async_event_work);
1896
1897 spin_lock_irq(&ctrl->lock);
1898 while (ctrl->event_limit > 0) {
1899 int aer_idx = --ctrl->event_limit;
1900
1901 spin_unlock_irq(&ctrl->lock);
1902 ctrl->ops->submit_async_event(ctrl, aer_idx);
1903 spin_lock_irq(&ctrl->lock);
1904 }
1905 spin_unlock_irq(&ctrl->lock);
1906}
1907
1908void nvme_complete_async_event(struct nvme_ctrl *ctrl,
1909 struct nvme_completion *cqe)
1910{
1911 u16 status = le16_to_cpu(cqe->status) >> 1;
1912 u32 result = le32_to_cpu(cqe->result);
1913
1914 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
1915 ++ctrl->event_limit;
1916 schedule_work(&ctrl->async_event_work);
1917 }
1918
1919 if (status != NVME_SC_SUCCESS)
1920 return;
1921
1922 switch (result & 0xff07) {
1923 case NVME_AER_NOTICE_NS_CHANGED:
1924 dev_info(ctrl->device, "rescanning\n");
1925 nvme_queue_scan(ctrl);
1926 break;
1927 default:
1928 dev_warn(ctrl->device, "async event result %08x\n", result);
1929 }
1930}
1931EXPORT_SYMBOL_GPL(nvme_complete_async_event);
1932
1933void nvme_queue_async_events(struct nvme_ctrl *ctrl)
1934{
1935 ctrl->event_limit = NVME_NR_AERS;
1936 schedule_work(&ctrl->async_event_work);
1937}
1938EXPORT_SYMBOL_GPL(nvme_queue_async_events);
1939
1940static DEFINE_IDA(nvme_instance_ida);
1941
1942static int nvme_set_instance(struct nvme_ctrl *ctrl)
1943{
1944 int instance, error;
1945
1946 do {
1947 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1948 return -ENODEV;
1949
1950 spin_lock(&dev_list_lock);
1951 error = ida_get_new(&nvme_instance_ida, &instance);
1952 spin_unlock(&dev_list_lock);
1953 } while (error == -EAGAIN);
1954
1955 if (error)
1956 return -ENODEV;
1957
1958 ctrl->instance = instance;
1959 return 0;
1960}
1961
1962static void nvme_release_instance(struct nvme_ctrl *ctrl)
1963{
1964 spin_lock(&dev_list_lock);
1965 ida_remove(&nvme_instance_ida, ctrl->instance);
1966 spin_unlock(&dev_list_lock);
1967}
1968
1969void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1970{
1971 flush_work(&ctrl->async_event_work);
1972 flush_work(&ctrl->scan_work);
1973 nvme_remove_namespaces(ctrl);
1974
1975 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1976
1977 spin_lock(&dev_list_lock);
1978 list_del(&ctrl->node);
1979 spin_unlock(&dev_list_lock);
1980}
1981EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1982
1983static void nvme_free_ctrl(struct kref *kref)
1984{
1985 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1986
1987 put_device(ctrl->device);
1988 nvme_release_instance(ctrl);
1989 ida_destroy(&ctrl->ns_ida);
1990
1991 ctrl->ops->free_ctrl(ctrl);
1992}
1993
1994void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1995{
1996 kref_put(&ctrl->kref, nvme_free_ctrl);
1997}
1998EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1999
2000
2001
2002
2003
2004
2005int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2006 const struct nvme_ctrl_ops *ops, unsigned long quirks)
2007{
2008 int ret;
2009
2010 ctrl->state = NVME_CTRL_NEW;
2011 spin_lock_init(&ctrl->lock);
2012 INIT_LIST_HEAD(&ctrl->namespaces);
2013 mutex_init(&ctrl->namespaces_mutex);
2014 kref_init(&ctrl->kref);
2015 ctrl->dev = dev;
2016 ctrl->ops = ops;
2017 ctrl->quirks = quirks;
2018 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2019 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2020
2021 ret = nvme_set_instance(ctrl);
2022 if (ret)
2023 goto out;
2024
2025 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2026 MKDEV(nvme_char_major, ctrl->instance),
2027 ctrl, nvme_dev_attr_groups,
2028 "nvme%d", ctrl->instance);
2029 if (IS_ERR(ctrl->device)) {
2030 ret = PTR_ERR(ctrl->device);
2031 goto out_release_instance;
2032 }
2033 get_device(ctrl->device);
2034 ida_init(&ctrl->ns_ida);
2035
2036 spin_lock(&dev_list_lock);
2037 list_add_tail(&ctrl->node, &nvme_ctrl_list);
2038 spin_unlock(&dev_list_lock);
2039
2040 return 0;
2041out_release_instance:
2042 nvme_release_instance(ctrl);
2043out:
2044 return ret;
2045}
2046EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2047
2048
2049
2050
2051
2052
2053
2054
2055void nvme_kill_queues(struct nvme_ctrl *ctrl)
2056{
2057 struct nvme_ns *ns;
2058
2059 mutex_lock(&ctrl->namespaces_mutex);
2060 list_for_each_entry(ns, &ctrl->namespaces, list) {
2061
2062
2063
2064
2065 if (ns->disk && !test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2066 revalidate_disk(ns->disk);
2067
2068 blk_set_queue_dying(ns->queue);
2069 blk_mq_abort_requeue_list(ns->queue);
2070 blk_mq_start_stopped_hw_queues(ns->queue, true);
2071 }
2072 mutex_unlock(&ctrl->namespaces_mutex);
2073}
2074EXPORT_SYMBOL_GPL(nvme_kill_queues);
2075
2076void nvme_stop_queues(struct nvme_ctrl *ctrl)
2077{
2078 struct nvme_ns *ns;
2079
2080 mutex_lock(&ctrl->namespaces_mutex);
2081 list_for_each_entry(ns, &ctrl->namespaces, list) {
2082 spin_lock_irq(ns->queue->queue_lock);
2083 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2084 spin_unlock_irq(ns->queue->queue_lock);
2085
2086 blk_mq_cancel_requeue_work(ns->queue);
2087 blk_mq_stop_hw_queues(ns->queue);
2088 }
2089 mutex_unlock(&ctrl->namespaces_mutex);
2090}
2091EXPORT_SYMBOL_GPL(nvme_stop_queues);
2092
2093void nvme_start_queues(struct nvme_ctrl *ctrl)
2094{
2095 struct nvme_ns *ns;
2096
2097 mutex_lock(&ctrl->namespaces_mutex);
2098 list_for_each_entry(ns, &ctrl->namespaces, list) {
2099 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2100 blk_mq_start_stopped_hw_queues(ns->queue, true);
2101 blk_mq_kick_requeue_list(ns->queue);
2102 }
2103 mutex_unlock(&ctrl->namespaces_mutex);
2104}
2105EXPORT_SYMBOL_GPL(nvme_start_queues);
2106
2107int __init nvme_core_init(void)
2108{
2109 int result;
2110
2111 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2112 &nvme_dev_fops);
2113 if (result < 0)
2114 return result;
2115 else if (result > 0)
2116 nvme_char_major = result;
2117
2118 nvme_class = class_create(THIS_MODULE, "nvme");
2119 if (IS_ERR(nvme_class)) {
2120 result = PTR_ERR(nvme_class);
2121 goto unregister_chrdev;
2122 }
2123
2124 return 0;
2125
2126 unregister_chrdev:
2127 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2128 return result;
2129}
2130
2131void nvme_core_exit(void)
2132{
2133 class_destroy(nvme_class);
2134 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2135}
2136
2137MODULE_LICENSE("GPL");
2138MODULE_VERSION("1.0");
2139module_init(nvme_core_init);
2140module_exit(nvme_core_exit);
2141