linux/drivers/pci/host/vmd.c
<<
>>
Prefs
   1/*
   2 * Volume Management Device driver
   3 * Copyright (c) 2015, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 */
  14
  15#include <linux/device.h>
  16#include <linux/interrupt.h>
  17#include <linux/irq.h>
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/msi.h>
  21#include <linux/pci.h>
  22#include <linux/rculist.h>
  23#include <linux/rcupdate.h>
  24
  25#include <asm/irqdomain.h>
  26#include <asm/device.h>
  27#include <asm/msi.h>
  28#include <asm/msidef.h>
  29
  30#define VMD_CFGBAR      0
  31#define VMD_MEMBAR1     2
  32#define VMD_MEMBAR2     4
  33
  34/*
  35 * Lock for manipulating VMD IRQ lists.
  36 */
  37static DEFINE_RAW_SPINLOCK(list_lock);
  38
  39/**
  40 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
  41 * @node:       list item for parent traversal.
  42 * @rcu:        RCU callback item for freeing.
  43 * @irq:        back pointer to parent.
  44 * @enabled:    true if driver enabled IRQ
  45 * @virq:       the virtual IRQ value provided to the requesting driver.
  46 *
  47 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
  48 * a VMD IRQ using this structure.
  49 */
  50struct vmd_irq {
  51        struct list_head        node;
  52        struct rcu_head         rcu;
  53        struct vmd_irq_list     *irq;
  54        bool                    enabled;
  55        unsigned int            virq;
  56};
  57
  58/**
  59 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
  60 * @irq_list:   the list of irq's the VMD one demuxes to.
  61 * @count:      number of child IRQs assigned to this vector; used to track
  62 *              sharing.
  63 */
  64struct vmd_irq_list {
  65        struct list_head        irq_list;
  66        unsigned int            count;
  67};
  68
  69struct vmd_dev {
  70        struct pci_dev          *dev;
  71
  72        spinlock_t              cfg_lock;
  73        char __iomem            *cfgbar;
  74
  75        int msix_count;
  76        struct vmd_irq_list     *irqs;
  77
  78        struct pci_sysdata      sysdata;
  79        struct resource         resources[3];
  80        struct irq_domain       *irq_domain;
  81        struct pci_bus          *bus;
  82
  83#ifdef CONFIG_X86_DEV_DMA_OPS
  84        struct dma_map_ops      dma_ops;
  85        struct dma_domain       dma_domain;
  86#endif
  87};
  88
  89static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
  90{
  91        return container_of(bus->sysdata, struct vmd_dev, sysdata);
  92}
  93
  94static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
  95                                           struct vmd_irq_list *irqs)
  96{
  97        return irqs - vmd->irqs;
  98}
  99
 100/*
 101 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
 102 * but the MSI entry for the hardware it's driving will be programmed with a
 103 * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
 104 * domain into one of its own, and the VMD driver de-muxes these for the
 105 * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
 106 * and irq_chip to set this up.
 107 */
 108static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
 109{
 110        struct vmd_irq *vmdirq = data->chip_data;
 111        struct vmd_irq_list *irq = vmdirq->irq;
 112        struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
 113
 114        msg->address_hi = MSI_ADDR_BASE_HI;
 115        msg->address_lo = MSI_ADDR_BASE_LO |
 116                          MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
 117        msg->data = 0;
 118}
 119
 120/*
 121 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
 122 */
 123static void vmd_irq_enable(struct irq_data *data)
 124{
 125        struct vmd_irq *vmdirq = data->chip_data;
 126        unsigned long flags;
 127
 128        raw_spin_lock_irqsave(&list_lock, flags);
 129        WARN_ON(vmdirq->enabled);
 130        list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
 131        vmdirq->enabled = true;
 132        raw_spin_unlock_irqrestore(&list_lock, flags);
 133
 134        data->chip->irq_unmask(data);
 135}
 136
 137static void vmd_irq_disable(struct irq_data *data)
 138{
 139        struct vmd_irq *vmdirq = data->chip_data;
 140        unsigned long flags;
 141
 142        data->chip->irq_mask(data);
 143
 144        raw_spin_lock_irqsave(&list_lock, flags);
 145        if (vmdirq->enabled) {
 146                list_del_rcu(&vmdirq->node);
 147                vmdirq->enabled = false;
 148        }
 149        raw_spin_unlock_irqrestore(&list_lock, flags);
 150}
 151
 152/*
 153 * XXX: Stubbed until we develop acceptable way to not create conflicts with
 154 * other devices sharing the same vector.
 155 */
 156static int vmd_irq_set_affinity(struct irq_data *data,
 157                                const struct cpumask *dest, bool force)
 158{
 159        return -EINVAL;
 160}
 161
 162static struct irq_chip vmd_msi_controller = {
 163        .name                   = "VMD-MSI",
 164        .irq_enable             = vmd_irq_enable,
 165        .irq_disable            = vmd_irq_disable,
 166        .irq_compose_msi_msg    = vmd_compose_msi_msg,
 167        .irq_set_affinity       = vmd_irq_set_affinity,
 168};
 169
 170static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
 171                                     msi_alloc_info_t *arg)
 172{
 173        return 0;
 174}
 175
 176/*
 177 * XXX: We can be even smarter selecting the best IRQ once we solve the
 178 * affinity problem.
 179 */
 180static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
 181{
 182        int i, best = 1;
 183        unsigned long flags;
 184
 185        if (!desc->msi_attrib.is_msix || vmd->msix_count == 1)
 186                return &vmd->irqs[0];
 187
 188        raw_spin_lock_irqsave(&list_lock, flags);
 189        for (i = 1; i < vmd->msix_count; i++)
 190                if (vmd->irqs[i].count < vmd->irqs[best].count)
 191                        best = i;
 192        vmd->irqs[best].count++;
 193        raw_spin_unlock_irqrestore(&list_lock, flags);
 194
 195        return &vmd->irqs[best];
 196}
 197
 198static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
 199                        unsigned int virq, irq_hw_number_t hwirq,
 200                        msi_alloc_info_t *arg)
 201{
 202        struct msi_desc *desc = arg->desc;
 203        struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
 204        struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
 205        unsigned int index, vector;
 206
 207        if (!vmdirq)
 208                return -ENOMEM;
 209
 210        INIT_LIST_HEAD(&vmdirq->node);
 211        vmdirq->irq = vmd_next_irq(vmd, desc);
 212        vmdirq->virq = virq;
 213        index = index_from_irqs(vmd, vmdirq->irq);
 214        vector = pci_irq_vector(vmd->dev, index);
 215
 216        irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
 217                            handle_untracked_irq, vmd, NULL);
 218        return 0;
 219}
 220
 221static void vmd_msi_free(struct irq_domain *domain,
 222                        struct msi_domain_info *info, unsigned int virq)
 223{
 224        struct vmd_irq *vmdirq = irq_get_chip_data(virq);
 225        unsigned long flags;
 226
 227        synchronize_rcu();
 228
 229        /* XXX: Potential optimization to rebalance */
 230        raw_spin_lock_irqsave(&list_lock, flags);
 231        vmdirq->irq->count--;
 232        raw_spin_unlock_irqrestore(&list_lock, flags);
 233
 234        kfree_rcu(vmdirq, rcu);
 235}
 236
 237static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
 238                           int nvec, msi_alloc_info_t *arg)
 239{
 240        struct pci_dev *pdev = to_pci_dev(dev);
 241        struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
 242
 243        if (nvec > vmd->msix_count)
 244                return vmd->msix_count;
 245
 246        memset(arg, 0, sizeof(*arg));
 247        return 0;
 248}
 249
 250static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
 251{
 252        arg->desc = desc;
 253}
 254
 255static struct msi_domain_ops vmd_msi_domain_ops = {
 256        .get_hwirq      = vmd_get_hwirq,
 257        .msi_init       = vmd_msi_init,
 258        .msi_free       = vmd_msi_free,
 259        .msi_prepare    = vmd_msi_prepare,
 260        .set_desc       = vmd_set_desc,
 261};
 262
 263static struct msi_domain_info vmd_msi_domain_info = {
 264        .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
 265                          MSI_FLAG_PCI_MSIX,
 266        .ops            = &vmd_msi_domain_ops,
 267        .chip           = &vmd_msi_controller,
 268};
 269
 270#ifdef CONFIG_X86_DEV_DMA_OPS
 271/*
 272 * VMD replaces the requester ID with its own.  DMA mappings for devices in a
 273 * VMD domain need to be mapped for the VMD, not the device requiring
 274 * the mapping.
 275 */
 276static struct device *to_vmd_dev(struct device *dev)
 277{
 278        struct pci_dev *pdev = to_pci_dev(dev);
 279        struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
 280
 281        return &vmd->dev->dev;
 282}
 283
 284static struct dma_map_ops *vmd_dma_ops(struct device *dev)
 285{
 286        return get_dma_ops(to_vmd_dev(dev));
 287}
 288
 289static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
 290                       gfp_t flag, unsigned long attrs)
 291{
 292        return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
 293                                       attrs);
 294}
 295
 296static void vmd_free(struct device *dev, size_t size, void *vaddr,
 297                     dma_addr_t addr, unsigned long attrs)
 298{
 299        return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
 300                                      attrs);
 301}
 302
 303static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
 304                    void *cpu_addr, dma_addr_t addr, size_t size,
 305                    unsigned long attrs)
 306{
 307        return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
 308                                      size, attrs);
 309}
 310
 311static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
 312                           void *cpu_addr, dma_addr_t addr, size_t size,
 313                           unsigned long attrs)
 314{
 315        return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
 316                                             addr, size, attrs);
 317}
 318
 319static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
 320                               unsigned long offset, size_t size,
 321                               enum dma_data_direction dir,
 322                               unsigned long attrs)
 323{
 324        return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
 325                                          dir, attrs);
 326}
 327
 328static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
 329                           enum dma_data_direction dir, unsigned long attrs)
 330{
 331        vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
 332}
 333
 334static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 335                      enum dma_data_direction dir, unsigned long attrs)
 336{
 337        return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
 338}
 339
 340static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 341                         enum dma_data_direction dir, unsigned long attrs)
 342{
 343        vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
 344}
 345
 346static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
 347                                    size_t size, enum dma_data_direction dir)
 348{
 349        vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
 350}
 351
 352static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
 353                                       size_t size, enum dma_data_direction dir)
 354{
 355        vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
 356                                                 dir);
 357}
 358
 359static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 360                                int nents, enum dma_data_direction dir)
 361{
 362        vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
 363}
 364
 365static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 366                                   int nents, enum dma_data_direction dir)
 367{
 368        vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
 369}
 370
 371static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
 372{
 373        return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
 374}
 375
 376static int vmd_dma_supported(struct device *dev, u64 mask)
 377{
 378        return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
 379}
 380
 381#ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
 382static u64 vmd_get_required_mask(struct device *dev)
 383{
 384        return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
 385}
 386#endif
 387
 388static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
 389{
 390        struct dma_domain *domain = &vmd->dma_domain;
 391
 392        if (get_dma_ops(&vmd->dev->dev))
 393                del_dma_domain(domain);
 394}
 395
 396#define ASSIGN_VMD_DMA_OPS(source, dest, fn)    \
 397        do {                                    \
 398                if (source->fn)                 \
 399                        dest->fn = vmd_##fn;    \
 400        } while (0)
 401
 402static void vmd_setup_dma_ops(struct vmd_dev *vmd)
 403{
 404        const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
 405        struct dma_map_ops *dest = &vmd->dma_ops;
 406        struct dma_domain *domain = &vmd->dma_domain;
 407
 408        domain->domain_nr = vmd->sysdata.domain;
 409        domain->dma_ops = dest;
 410
 411        if (!source)
 412                return;
 413        ASSIGN_VMD_DMA_OPS(source, dest, alloc);
 414        ASSIGN_VMD_DMA_OPS(source, dest, free);
 415        ASSIGN_VMD_DMA_OPS(source, dest, mmap);
 416        ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
 417        ASSIGN_VMD_DMA_OPS(source, dest, map_page);
 418        ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
 419        ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
 420        ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
 421        ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
 422        ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
 423        ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
 424        ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
 425        ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
 426        ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
 427#ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
 428        ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
 429#endif
 430        add_dma_domain(domain);
 431}
 432#undef ASSIGN_VMD_DMA_OPS
 433#else
 434static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
 435static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
 436#endif
 437
 438static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
 439                                  unsigned int devfn, int reg, int len)
 440{
 441        char __iomem *addr = vmd->cfgbar +
 442                             (bus->number << 20) + (devfn << 12) + reg;
 443
 444        if ((addr - vmd->cfgbar) + len >=
 445            resource_size(&vmd->dev->resource[VMD_CFGBAR]))
 446                return NULL;
 447
 448        return addr;
 449}
 450
 451/*
 452 * CPU may deadlock if config space is not serialized on some versions of this
 453 * hardware, so all config space access is done under a spinlock.
 454 */
 455static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
 456                        int len, u32 *value)
 457{
 458        struct vmd_dev *vmd = vmd_from_bus(bus);
 459        char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
 460        unsigned long flags;
 461        int ret = 0;
 462
 463        if (!addr)
 464                return -EFAULT;
 465
 466        spin_lock_irqsave(&vmd->cfg_lock, flags);
 467        switch (len) {
 468        case 1:
 469                *value = readb(addr);
 470                break;
 471        case 2:
 472                *value = readw(addr);
 473                break;
 474        case 4:
 475                *value = readl(addr);
 476                break;
 477        default:
 478                ret = -EINVAL;
 479                break;
 480        }
 481        spin_unlock_irqrestore(&vmd->cfg_lock, flags);
 482        return ret;
 483}
 484
 485/*
 486 * VMD h/w converts non-posted config writes to posted memory writes. The
 487 * read-back in this function forces the completion so it returns only after
 488 * the config space was written, as expected.
 489 */
 490static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
 491                         int len, u32 value)
 492{
 493        struct vmd_dev *vmd = vmd_from_bus(bus);
 494        char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
 495        unsigned long flags;
 496        int ret = 0;
 497
 498        if (!addr)
 499                return -EFAULT;
 500
 501        spin_lock_irqsave(&vmd->cfg_lock, flags);
 502        switch (len) {
 503        case 1:
 504                writeb(value, addr);
 505                readb(addr);
 506                break;
 507        case 2:
 508                writew(value, addr);
 509                readw(addr);
 510                break;
 511        case 4:
 512                writel(value, addr);
 513                readl(addr);
 514                break;
 515        default:
 516                ret = -EINVAL;
 517                break;
 518        }
 519        spin_unlock_irqrestore(&vmd->cfg_lock, flags);
 520        return ret;
 521}
 522
 523static struct pci_ops vmd_ops = {
 524        .read           = vmd_pci_read,
 525        .write          = vmd_pci_write,
 526};
 527
 528static void vmd_attach_resources(struct vmd_dev *vmd)
 529{
 530        vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
 531        vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
 532}
 533
 534static void vmd_detach_resources(struct vmd_dev *vmd)
 535{
 536        vmd->dev->resource[VMD_MEMBAR1].child = NULL;
 537        vmd->dev->resource[VMD_MEMBAR2].child = NULL;
 538}
 539
 540/*
 541 * VMD domains start at 0x1000 to not clash with ACPI _SEG domains.
 542 */
 543static int vmd_find_free_domain(void)
 544{
 545        int domain = 0xffff;
 546        struct pci_bus *bus = NULL;
 547
 548        while ((bus = pci_find_next_bus(bus)) != NULL)
 549                domain = max_t(int, domain, pci_domain_nr(bus));
 550        return domain + 1;
 551}
 552
 553static int vmd_enable_domain(struct vmd_dev *vmd)
 554{
 555        struct pci_sysdata *sd = &vmd->sysdata;
 556        struct resource *res;
 557        u32 upper_bits;
 558        unsigned long flags;
 559        LIST_HEAD(resources);
 560
 561        res = &vmd->dev->resource[VMD_CFGBAR];
 562        vmd->resources[0] = (struct resource) {
 563                .name  = "VMD CFGBAR",
 564                .start = 0,
 565                .end   = (resource_size(res) >> 20) - 1,
 566                .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
 567        };
 568
 569        /*
 570         * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
 571         * put 32-bit resources in the window.
 572         *
 573         * There's no hardware reason why a 64-bit window *couldn't*
 574         * contain a 32-bit resource, but pbus_size_mem() computes the
 575         * bridge window size assuming a 64-bit window will contain no
 576         * 32-bit resources.  __pci_assign_resource() enforces that
 577         * artificial restriction to make sure everything will fit.
 578         *
 579         * The only way we could use a 64-bit non-prefechable MEMBAR is
 580         * if its address is <4GB so that we can convert it to a 32-bit
 581         * resource.  To be visible to the host OS, all VMD endpoints must
 582         * be initially configured by platform BIOS, which includes setting
 583         * up these resources.  We can assume the device is configured
 584         * according to the platform needs.
 585         */
 586        res = &vmd->dev->resource[VMD_MEMBAR1];
 587        upper_bits = upper_32_bits(res->end);
 588        flags = res->flags & ~IORESOURCE_SIZEALIGN;
 589        if (!upper_bits)
 590                flags &= ~IORESOURCE_MEM_64;
 591        vmd->resources[1] = (struct resource) {
 592                .name  = "VMD MEMBAR1",
 593                .start = res->start,
 594                .end   = res->end,
 595                .flags = flags,
 596                .parent = res,
 597        };
 598
 599        res = &vmd->dev->resource[VMD_MEMBAR2];
 600        upper_bits = upper_32_bits(res->end);
 601        flags = res->flags & ~IORESOURCE_SIZEALIGN;
 602        if (!upper_bits)
 603                flags &= ~IORESOURCE_MEM_64;
 604        vmd->resources[2] = (struct resource) {
 605                .name  = "VMD MEMBAR2",
 606                .start = res->start + 0x2000,
 607                .end   = res->end,
 608                .flags = flags,
 609                .parent = res,
 610        };
 611
 612        sd->vmd_domain = true;
 613        sd->domain = vmd_find_free_domain();
 614        if (sd->domain < 0)
 615                return sd->domain;
 616
 617        sd->node = pcibus_to_node(vmd->dev->bus);
 618
 619        vmd->irq_domain = pci_msi_create_irq_domain(NULL, &vmd_msi_domain_info,
 620                                                    x86_vector_domain);
 621        if (!vmd->irq_domain)
 622                return -ENODEV;
 623
 624        pci_add_resource(&resources, &vmd->resources[0]);
 625        pci_add_resource(&resources, &vmd->resources[1]);
 626        pci_add_resource(&resources, &vmd->resources[2]);
 627        vmd->bus = pci_create_root_bus(&vmd->dev->dev, 0, &vmd_ops, sd,
 628                                       &resources);
 629        if (!vmd->bus) {
 630                pci_free_resource_list(&resources);
 631                irq_domain_remove(vmd->irq_domain);
 632                return -ENODEV;
 633        }
 634
 635        vmd_attach_resources(vmd);
 636        vmd_setup_dma_ops(vmd);
 637        dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
 638        pci_rescan_bus(vmd->bus);
 639
 640        WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
 641                               "domain"), "Can't create symlink to domain\n");
 642        return 0;
 643}
 644
 645static irqreturn_t vmd_irq(int irq, void *data)
 646{
 647        struct vmd_irq_list *irqs = data;
 648        struct vmd_irq *vmdirq;
 649
 650        rcu_read_lock();
 651        list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
 652                generic_handle_irq(vmdirq->virq);
 653        rcu_read_unlock();
 654
 655        return IRQ_HANDLED;
 656}
 657
 658static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
 659{
 660        struct vmd_dev *vmd;
 661        int i, err;
 662
 663        if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
 664                return -ENOMEM;
 665
 666        vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
 667        if (!vmd)
 668                return -ENOMEM;
 669
 670        vmd->dev = dev;
 671        err = pcim_enable_device(dev);
 672        if (err < 0)
 673                return err;
 674
 675        vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
 676        if (!vmd->cfgbar)
 677                return -ENOMEM;
 678
 679        pci_set_master(dev);
 680        if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
 681            dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
 682                return -ENODEV;
 683
 684        vmd->msix_count = pci_msix_vec_count(dev);
 685        if (vmd->msix_count < 0)
 686                return -ENODEV;
 687
 688        vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
 689                                        PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
 690        if (vmd->msix_count < 0)
 691                return vmd->msix_count;
 692
 693        vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
 694                                 GFP_KERNEL);
 695        if (!vmd->irqs)
 696                return -ENOMEM;
 697
 698        for (i = 0; i < vmd->msix_count; i++) {
 699                INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
 700                err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
 701                                       vmd_irq, 0, "vmd", &vmd->irqs[i]);
 702                if (err)
 703                        return err;
 704        }
 705
 706        spin_lock_init(&vmd->cfg_lock);
 707        pci_set_drvdata(dev, vmd);
 708        err = vmd_enable_domain(vmd);
 709        if (err)
 710                return err;
 711
 712        dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
 713                 vmd->sysdata.domain);
 714        return 0;
 715}
 716
 717static void vmd_remove(struct pci_dev *dev)
 718{
 719        struct vmd_dev *vmd = pci_get_drvdata(dev);
 720
 721        vmd_detach_resources(vmd);
 722        pci_set_drvdata(dev, NULL);
 723        sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
 724        pci_stop_root_bus(vmd->bus);
 725        pci_remove_root_bus(vmd->bus);
 726        vmd_teardown_dma_ops(vmd);
 727        irq_domain_remove(vmd->irq_domain);
 728}
 729
 730#ifdef CONFIG_PM
 731static int vmd_suspend(struct device *dev)
 732{
 733        struct pci_dev *pdev = to_pci_dev(dev);
 734
 735        pci_save_state(pdev);
 736        return 0;
 737}
 738
 739static int vmd_resume(struct device *dev)
 740{
 741        struct pci_dev *pdev = to_pci_dev(dev);
 742
 743        pci_restore_state(pdev);
 744        return 0;
 745}
 746#endif
 747static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
 748
 749static const struct pci_device_id vmd_ids[] = {
 750        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x201d),},
 751        {0,}
 752};
 753MODULE_DEVICE_TABLE(pci, vmd_ids);
 754
 755static struct pci_driver vmd_drv = {
 756        .name           = "vmd",
 757        .id_table       = vmd_ids,
 758        .probe          = vmd_probe,
 759        .remove         = vmd_remove,
 760        .driver         = {
 761                .pm     = &vmd_dev_pm_ops,
 762        },
 763};
 764module_pci_driver(vmd_drv);
 765
 766MODULE_AUTHOR("Intel Corporation");
 767MODULE_LICENSE("GPL v2");
 768MODULE_VERSION("0.6");
 769