1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/kernel.h>
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/interrupt.h>
38#include <linux/spinlock.h>
39#include <linux/platform_device.h>
40#include <linux/log2.h>
41#include <linux/pm.h>
42#include <linux/of.h>
43#include <linux/of_platform.h>
44
45
46#include <linux/mc146818rtc.h>
47
48struct cmos_rtc {
49 struct rtc_device *rtc;
50 struct device *dev;
51 int irq;
52 struct resource *iomem;
53 time64_t alarm_expires;
54
55 void (*wake_on)(struct device *);
56 void (*wake_off)(struct device *);
57
58 u8 enabled_wake;
59 u8 suspend_ctrl;
60
61
62 u8 day_alrm;
63 u8 mon_alrm;
64 u8 century;
65
66 struct rtc_wkalrm saved_wkalrm;
67};
68
69
70#define is_valid_irq(n) ((n) > 0)
71
72static const char driver_name[] = "rtc_cmos";
73
74
75
76
77
78#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
79
80static inline int is_intr(u8 rtc_intr)
81{
82 if (!(rtc_intr & RTC_IRQF))
83 return 0;
84 return rtc_intr & RTC_IRQMASK;
85}
86
87
88
89
90
91
92
93
94
95
96
97
98
99#ifdef CONFIG_HPET_EMULATE_RTC
100#include <asm/hpet.h>
101#else
102
103static inline int is_hpet_enabled(void)
104{
105 return 0;
106}
107
108static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
109{
110 return 0;
111}
112
113static inline int hpet_set_rtc_irq_bit(unsigned long mask)
114{
115 return 0;
116}
117
118static inline int
119hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
120{
121 return 0;
122}
123
124static inline int hpet_set_periodic_freq(unsigned long freq)
125{
126 return 0;
127}
128
129static inline int hpet_rtc_dropped_irq(void)
130{
131 return 0;
132}
133
134static inline int hpet_rtc_timer_init(void)
135{
136 return 0;
137}
138
139extern irq_handler_t hpet_rtc_interrupt;
140
141static inline int hpet_register_irq_handler(irq_handler_t handler)
142{
143 return 0;
144}
145
146static inline int hpet_unregister_irq_handler(irq_handler_t handler)
147{
148 return 0;
149}
150
151#endif
152
153
154
155#ifdef RTC_PORT
156
157
158
159
160
161#define can_bank2 true
162
163static inline unsigned char cmos_read_bank2(unsigned char addr)
164{
165 outb(addr, RTC_PORT(2));
166 return inb(RTC_PORT(3));
167}
168
169static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
170{
171 outb(addr, RTC_PORT(2));
172 outb(val, RTC_PORT(3));
173}
174
175#else
176
177#define can_bank2 false
178
179static inline unsigned char cmos_read_bank2(unsigned char addr)
180{
181 return 0;
182}
183
184static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
185{
186}
187
188#endif
189
190
191
192static int cmos_read_time(struct device *dev, struct rtc_time *t)
193{
194
195
196
197
198 mc146818_get_time(t);
199 return 0;
200}
201
202static int cmos_set_time(struct device *dev, struct rtc_time *t)
203{
204
205
206
207
208
209
210 return mc146818_set_time(t);
211}
212
213static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
214{
215 struct cmos_rtc *cmos = dev_get_drvdata(dev);
216 unsigned char rtc_control;
217
218 if (!is_valid_irq(cmos->irq))
219 return -EIO;
220
221
222
223
224
225
226 spin_lock_irq(&rtc_lock);
227 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
228 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
229 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
230
231 if (cmos->day_alrm) {
232
233 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
234 if (!t->time.tm_mday)
235 t->time.tm_mday = -1;
236
237 if (cmos->mon_alrm) {
238 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
239 if (!t->time.tm_mon)
240 t->time.tm_mon = -1;
241 }
242 }
243
244 rtc_control = CMOS_READ(RTC_CONTROL);
245 spin_unlock_irq(&rtc_lock);
246
247 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
248 if (((unsigned)t->time.tm_sec) < 0x60)
249 t->time.tm_sec = bcd2bin(t->time.tm_sec);
250 else
251 t->time.tm_sec = -1;
252 if (((unsigned)t->time.tm_min) < 0x60)
253 t->time.tm_min = bcd2bin(t->time.tm_min);
254 else
255 t->time.tm_min = -1;
256 if (((unsigned)t->time.tm_hour) < 0x24)
257 t->time.tm_hour = bcd2bin(t->time.tm_hour);
258 else
259 t->time.tm_hour = -1;
260
261 if (cmos->day_alrm) {
262 if (((unsigned)t->time.tm_mday) <= 0x31)
263 t->time.tm_mday = bcd2bin(t->time.tm_mday);
264 else
265 t->time.tm_mday = -1;
266
267 if (cmos->mon_alrm) {
268 if (((unsigned)t->time.tm_mon) <= 0x12)
269 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
270 else
271 t->time.tm_mon = -1;
272 }
273 }
274 }
275
276 t->enabled = !!(rtc_control & RTC_AIE);
277 t->pending = 0;
278
279 return 0;
280}
281
282static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
283{
284 unsigned char rtc_intr;
285
286
287
288
289 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
290
291 if (is_hpet_enabled())
292 return;
293
294 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
295 if (is_intr(rtc_intr))
296 rtc_update_irq(cmos->rtc, 1, rtc_intr);
297}
298
299static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
300{
301 unsigned char rtc_control;
302
303
304
305
306 rtc_control = CMOS_READ(RTC_CONTROL);
307 cmos_checkintr(cmos, rtc_control);
308
309 rtc_control |= mask;
310 CMOS_WRITE(rtc_control, RTC_CONTROL);
311 hpet_set_rtc_irq_bit(mask);
312
313 cmos_checkintr(cmos, rtc_control);
314}
315
316static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
317{
318 unsigned char rtc_control;
319
320 rtc_control = CMOS_READ(RTC_CONTROL);
321 rtc_control &= ~mask;
322 CMOS_WRITE(rtc_control, RTC_CONTROL);
323 hpet_mask_rtc_irq_bit(mask);
324
325 cmos_checkintr(cmos, rtc_control);
326}
327
328static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
329{
330 struct cmos_rtc *cmos = dev_get_drvdata(dev);
331 unsigned char mon, mday, hrs, min, sec, rtc_control;
332
333 if (!is_valid_irq(cmos->irq))
334 return -EIO;
335
336 mon = t->time.tm_mon + 1;
337 mday = t->time.tm_mday;
338 hrs = t->time.tm_hour;
339 min = t->time.tm_min;
340 sec = t->time.tm_sec;
341
342 rtc_control = CMOS_READ(RTC_CONTROL);
343 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
344
345 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
346 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
347 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
348 min = (min < 60) ? bin2bcd(min) : 0xff;
349 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
350 }
351
352 spin_lock_irq(&rtc_lock);
353
354
355 cmos_irq_disable(cmos, RTC_AIE);
356
357
358 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
359 CMOS_WRITE(min, RTC_MINUTES_ALARM);
360 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
361
362
363 if (cmos->day_alrm) {
364 CMOS_WRITE(mday, cmos->day_alrm);
365 if (cmos->mon_alrm)
366 CMOS_WRITE(mon, cmos->mon_alrm);
367 }
368
369
370
371
372 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
373
374 if (t->enabled)
375 cmos_irq_enable(cmos, RTC_AIE);
376
377 spin_unlock_irq(&rtc_lock);
378
379 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
380
381 return 0;
382}
383
384static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
385{
386 struct cmos_rtc *cmos = dev_get_drvdata(dev);
387 unsigned long flags;
388
389 if (!is_valid_irq(cmos->irq))
390 return -EINVAL;
391
392 spin_lock_irqsave(&rtc_lock, flags);
393
394 if (enabled)
395 cmos_irq_enable(cmos, RTC_AIE);
396 else
397 cmos_irq_disable(cmos, RTC_AIE);
398
399 spin_unlock_irqrestore(&rtc_lock, flags);
400 return 0;
401}
402
403#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
404
405static int cmos_procfs(struct device *dev, struct seq_file *seq)
406{
407 struct cmos_rtc *cmos = dev_get_drvdata(dev);
408 unsigned char rtc_control, valid;
409
410 spin_lock_irq(&rtc_lock);
411 rtc_control = CMOS_READ(RTC_CONTROL);
412 valid = CMOS_READ(RTC_VALID);
413 spin_unlock_irq(&rtc_lock);
414
415
416
417
418 seq_printf(seq,
419 "periodic_IRQ\t: %s\n"
420 "update_IRQ\t: %s\n"
421 "HPET_emulated\t: %s\n"
422
423 "BCD\t\t: %s\n"
424 "DST_enable\t: %s\n"
425 "periodic_freq\t: %d\n"
426 "batt_status\t: %s\n",
427 (rtc_control & RTC_PIE) ? "yes" : "no",
428 (rtc_control & RTC_UIE) ? "yes" : "no",
429 is_hpet_enabled() ? "yes" : "no",
430
431 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
432 (rtc_control & RTC_DST_EN) ? "yes" : "no",
433 cmos->rtc->irq_freq,
434 (valid & RTC_VRT) ? "okay" : "dead");
435
436 return 0;
437}
438
439#else
440#define cmos_procfs NULL
441#endif
442
443static const struct rtc_class_ops cmos_rtc_ops = {
444 .read_time = cmos_read_time,
445 .set_time = cmos_set_time,
446 .read_alarm = cmos_read_alarm,
447 .set_alarm = cmos_set_alarm,
448 .proc = cmos_procfs,
449 .alarm_irq_enable = cmos_alarm_irq_enable,
450};
451
452
453
454
455
456
457
458
459
460#define NVRAM_OFFSET (RTC_REG_D + 1)
461
462static ssize_t
463cmos_nvram_read(struct file *filp, struct kobject *kobj,
464 struct bin_attribute *attr,
465 char *buf, loff_t off, size_t count)
466{
467 int retval;
468
469 off += NVRAM_OFFSET;
470 spin_lock_irq(&rtc_lock);
471 for (retval = 0; count; count--, off++, retval++) {
472 if (off < 128)
473 *buf++ = CMOS_READ(off);
474 else if (can_bank2)
475 *buf++ = cmos_read_bank2(off);
476 else
477 break;
478 }
479 spin_unlock_irq(&rtc_lock);
480
481 return retval;
482}
483
484static ssize_t
485cmos_nvram_write(struct file *filp, struct kobject *kobj,
486 struct bin_attribute *attr,
487 char *buf, loff_t off, size_t count)
488{
489 struct cmos_rtc *cmos;
490 int retval;
491
492 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
493
494
495
496
497
498
499 off += NVRAM_OFFSET;
500 spin_lock_irq(&rtc_lock);
501 for (retval = 0; count; count--, off++, retval++) {
502
503 if (off == cmos->day_alrm
504 || off == cmos->mon_alrm
505 || off == cmos->century)
506 buf++;
507 else if (off < 128)
508 CMOS_WRITE(*buf++, off);
509 else if (can_bank2)
510 cmos_write_bank2(*buf++, off);
511 else
512 break;
513 }
514 spin_unlock_irq(&rtc_lock);
515
516 return retval;
517}
518
519static struct bin_attribute nvram = {
520 .attr = {
521 .name = "nvram",
522 .mode = S_IRUGO | S_IWUSR,
523 },
524
525 .read = cmos_nvram_read,
526 .write = cmos_nvram_write,
527
528};
529
530
531
532static struct cmos_rtc cmos_rtc;
533
534static irqreturn_t cmos_interrupt(int irq, void *p)
535{
536 u8 irqstat;
537 u8 rtc_control;
538
539 spin_lock(&rtc_lock);
540
541
542
543
544
545
546
547
548 irqstat = CMOS_READ(RTC_INTR_FLAGS);
549 rtc_control = CMOS_READ(RTC_CONTROL);
550 if (is_hpet_enabled())
551 irqstat = (unsigned long)irq & 0xF0;
552
553
554
555
556 if (!cmos_rtc.suspend_ctrl)
557 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
558 else
559 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
560
561
562
563
564
565 if (irqstat & RTC_AIE) {
566 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
567 rtc_control &= ~RTC_AIE;
568 CMOS_WRITE(rtc_control, RTC_CONTROL);
569 hpet_mask_rtc_irq_bit(RTC_AIE);
570 CMOS_READ(RTC_INTR_FLAGS);
571 }
572 spin_unlock(&rtc_lock);
573
574 if (is_intr(irqstat)) {
575 rtc_update_irq(p, 1, irqstat);
576 return IRQ_HANDLED;
577 } else
578 return IRQ_NONE;
579}
580
581#ifdef CONFIG_PNP
582#define INITSECTION
583
584#else
585#define INITSECTION __init
586#endif
587
588static int INITSECTION
589cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
590{
591 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
592 int retval = 0;
593 unsigned char rtc_control;
594 unsigned address_space;
595 u32 flags = 0;
596
597
598 if (cmos_rtc.dev)
599 return -EBUSY;
600
601 if (!ports)
602 return -ENODEV;
603
604
605
606
607
608
609 if (RTC_IOMAPPED)
610 ports = request_region(ports->start, resource_size(ports),
611 driver_name);
612 else
613 ports = request_mem_region(ports->start, resource_size(ports),
614 driver_name);
615 if (!ports) {
616 dev_dbg(dev, "i/o registers already in use\n");
617 return -EBUSY;
618 }
619
620 cmos_rtc.irq = rtc_irq;
621 cmos_rtc.iomem = ports;
622
623
624
625
626
627
628#if defined(CONFIG_ATARI)
629 address_space = 64;
630#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
631 || defined(__sparc__) || defined(__mips__) \
632 || defined(__powerpc__) || defined(CONFIG_MN10300)
633 address_space = 128;
634#else
635#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
636 address_space = 128;
637#endif
638 if (can_bank2 && ports->end > (ports->start + 1))
639 address_space = 256;
640
641
642
643
644
645
646
647
648
649
650 if (info) {
651 if (info->flags)
652 flags = info->flags;
653 if (info->address_space)
654 address_space = info->address_space;
655
656 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
657 cmos_rtc.day_alrm = info->rtc_day_alarm;
658 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
659 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
660 if (info->rtc_century && info->rtc_century < 128)
661 cmos_rtc.century = info->rtc_century;
662
663 if (info->wake_on && info->wake_off) {
664 cmos_rtc.wake_on = info->wake_on;
665 cmos_rtc.wake_off = info->wake_off;
666 }
667 }
668
669 cmos_rtc.dev = dev;
670 dev_set_drvdata(dev, &cmos_rtc);
671
672 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
673 &cmos_rtc_ops, THIS_MODULE);
674 if (IS_ERR(cmos_rtc.rtc)) {
675 retval = PTR_ERR(cmos_rtc.rtc);
676 goto cleanup0;
677 }
678
679 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
680
681 spin_lock_irq(&rtc_lock);
682
683 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
684
685
686
687
688
689
690 cmos_rtc.rtc->irq_freq = 1024;
691 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
692 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
693 }
694
695
696 if (is_valid_irq(rtc_irq))
697 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
698
699 rtc_control = CMOS_READ(RTC_CONTROL);
700
701 spin_unlock_irq(&rtc_lock);
702
703
704
705
706 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
707 dev_warn(dev, "only 24-hr supported\n");
708 retval = -ENXIO;
709 goto cleanup1;
710 }
711
712 hpet_rtc_timer_init();
713
714 if (is_valid_irq(rtc_irq)) {
715 irq_handler_t rtc_cmos_int_handler;
716
717 if (is_hpet_enabled()) {
718 rtc_cmos_int_handler = hpet_rtc_interrupt;
719 retval = hpet_register_irq_handler(cmos_interrupt);
720 if (retval) {
721 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
722 dev_warn(dev, "hpet_register_irq_handler "
723 " failed in rtc_init().");
724 goto cleanup1;
725 }
726 } else
727 rtc_cmos_int_handler = cmos_interrupt;
728
729 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
730 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
731 cmos_rtc.rtc);
732 if (retval < 0) {
733 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
734 goto cleanup1;
735 }
736 }
737
738
739 nvram.size = address_space - NVRAM_OFFSET;
740 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
741 if (retval < 0) {
742 dev_dbg(dev, "can't create nvram file? %d\n", retval);
743 goto cleanup2;
744 }
745
746 dev_info(dev, "%s%s, %zd bytes nvram%s\n",
747 !is_valid_irq(rtc_irq) ? "no alarms" :
748 cmos_rtc.mon_alrm ? "alarms up to one year" :
749 cmos_rtc.day_alrm ? "alarms up to one month" :
750 "alarms up to one day",
751 cmos_rtc.century ? ", y3k" : "",
752 nvram.size,
753 is_hpet_enabled() ? ", hpet irqs" : "");
754
755 return 0;
756
757cleanup2:
758 if (is_valid_irq(rtc_irq))
759 free_irq(rtc_irq, cmos_rtc.rtc);
760cleanup1:
761 cmos_rtc.dev = NULL;
762 rtc_device_unregister(cmos_rtc.rtc);
763cleanup0:
764 if (RTC_IOMAPPED)
765 release_region(ports->start, resource_size(ports));
766 else
767 release_mem_region(ports->start, resource_size(ports));
768 return retval;
769}
770
771static void cmos_do_shutdown(int rtc_irq)
772{
773 spin_lock_irq(&rtc_lock);
774 if (is_valid_irq(rtc_irq))
775 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
776 spin_unlock_irq(&rtc_lock);
777}
778
779static void cmos_do_remove(struct device *dev)
780{
781 struct cmos_rtc *cmos = dev_get_drvdata(dev);
782 struct resource *ports;
783
784 cmos_do_shutdown(cmos->irq);
785
786 sysfs_remove_bin_file(&dev->kobj, &nvram);
787
788 if (is_valid_irq(cmos->irq)) {
789 free_irq(cmos->irq, cmos->rtc);
790 hpet_unregister_irq_handler(cmos_interrupt);
791 }
792
793 rtc_device_unregister(cmos->rtc);
794 cmos->rtc = NULL;
795
796 ports = cmos->iomem;
797 if (RTC_IOMAPPED)
798 release_region(ports->start, resource_size(ports));
799 else
800 release_mem_region(ports->start, resource_size(ports));
801 cmos->iomem = NULL;
802
803 cmos->dev = NULL;
804}
805
806static int cmos_aie_poweroff(struct device *dev)
807{
808 struct cmos_rtc *cmos = dev_get_drvdata(dev);
809 struct rtc_time now;
810 time64_t t_now;
811 int retval = 0;
812 unsigned char rtc_control;
813
814 if (!cmos->alarm_expires)
815 return -EINVAL;
816
817 spin_lock_irq(&rtc_lock);
818 rtc_control = CMOS_READ(RTC_CONTROL);
819 spin_unlock_irq(&rtc_lock);
820
821
822 if (rtc_control & RTC_AIE)
823 return -EBUSY;
824
825 cmos_read_time(dev, &now);
826 t_now = rtc_tm_to_time64(&now);
827
828
829
830
831
832
833
834
835
836
837 if (cmos->alarm_expires == t_now + 1) {
838 struct rtc_wkalrm alarm;
839
840
841 rtc_time64_to_tm(t_now - 1, &alarm.time);
842 alarm.enabled = 0;
843 retval = cmos_set_alarm(dev, &alarm);
844 } else if (cmos->alarm_expires > t_now + 1) {
845 retval = -EBUSY;
846 }
847
848 return retval;
849}
850
851static int cmos_suspend(struct device *dev)
852{
853 struct cmos_rtc *cmos = dev_get_drvdata(dev);
854 unsigned char tmp;
855
856
857 spin_lock_irq(&rtc_lock);
858 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
859 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
860 unsigned char mask;
861
862 if (device_may_wakeup(dev))
863 mask = RTC_IRQMASK & ~RTC_AIE;
864 else
865 mask = RTC_IRQMASK;
866 tmp &= ~mask;
867 CMOS_WRITE(tmp, RTC_CONTROL);
868 hpet_mask_rtc_irq_bit(mask);
869
870 cmos_checkintr(cmos, tmp);
871 }
872 spin_unlock_irq(&rtc_lock);
873
874 if (tmp & RTC_AIE) {
875 cmos->enabled_wake = 1;
876 if (cmos->wake_on)
877 cmos->wake_on(dev);
878 else
879 enable_irq_wake(cmos->irq);
880 }
881
882 cmos_read_alarm(dev, &cmos->saved_wkalrm);
883
884 dev_dbg(dev, "suspend%s, ctrl %02x\n",
885 (tmp & RTC_AIE) ? ", alarm may wake" : "",
886 tmp);
887
888 return 0;
889}
890
891
892
893
894
895
896
897static inline int cmos_poweroff(struct device *dev)
898{
899 if (!IS_ENABLED(CONFIG_PM))
900 return -ENOSYS;
901
902 return cmos_suspend(dev);
903}
904
905static void cmos_check_wkalrm(struct device *dev)
906{
907 struct cmos_rtc *cmos = dev_get_drvdata(dev);
908 struct rtc_wkalrm current_alarm;
909 time64_t t_current_expires;
910 time64_t t_saved_expires;
911
912 cmos_read_alarm(dev, ¤t_alarm);
913 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
914 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
915 if (t_current_expires != t_saved_expires ||
916 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
917 cmos_set_alarm(dev, &cmos->saved_wkalrm);
918 }
919}
920
921static void cmos_check_acpi_rtc_status(struct device *dev,
922 unsigned char *rtc_control);
923
924static int __maybe_unused cmos_resume(struct device *dev)
925{
926 struct cmos_rtc *cmos = dev_get_drvdata(dev);
927 unsigned char tmp;
928
929 if (cmos->enabled_wake) {
930 if (cmos->wake_off)
931 cmos->wake_off(dev);
932 else
933 disable_irq_wake(cmos->irq);
934 cmos->enabled_wake = 0;
935 }
936
937
938 cmos_check_wkalrm(dev);
939
940 spin_lock_irq(&rtc_lock);
941 tmp = cmos->suspend_ctrl;
942 cmos->suspend_ctrl = 0;
943
944 if (tmp & RTC_IRQMASK) {
945 unsigned char mask;
946
947 if (device_may_wakeup(dev))
948 hpet_rtc_timer_init();
949
950 do {
951 CMOS_WRITE(tmp, RTC_CONTROL);
952 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
953
954 mask = CMOS_READ(RTC_INTR_FLAGS);
955 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
956 if (!is_hpet_enabled() || !is_intr(mask))
957 break;
958
959
960
961
962 rtc_update_irq(cmos->rtc, 1, mask);
963 tmp &= ~RTC_AIE;
964 hpet_mask_rtc_irq_bit(RTC_AIE);
965 } while (mask & RTC_AIE);
966
967 if (tmp & RTC_AIE)
968 cmos_check_acpi_rtc_status(dev, &tmp);
969 }
970 spin_unlock_irq(&rtc_lock);
971
972 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
973
974 return 0;
975}
976
977static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
978
979
980
981
982
983
984
985
986
987
988
989#ifdef CONFIG_ACPI
990
991#include <linux/acpi.h>
992
993static u32 rtc_handler(void *context)
994{
995 struct device *dev = context;
996 struct cmos_rtc *cmos = dev_get_drvdata(dev);
997 unsigned char rtc_control = 0;
998 unsigned char rtc_intr;
999 unsigned long flags;
1000
1001 spin_lock_irqsave(&rtc_lock, flags);
1002 if (cmos_rtc.suspend_ctrl)
1003 rtc_control = CMOS_READ(RTC_CONTROL);
1004 if (rtc_control & RTC_AIE) {
1005 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1006 CMOS_WRITE(rtc_control, RTC_CONTROL);
1007 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1008 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1009 }
1010 spin_unlock_irqrestore(&rtc_lock, flags);
1011
1012 pm_wakeup_event(dev, 0);
1013 acpi_clear_event(ACPI_EVENT_RTC);
1014 acpi_disable_event(ACPI_EVENT_RTC, 0);
1015 return ACPI_INTERRUPT_HANDLED;
1016}
1017
1018static inline void rtc_wake_setup(struct device *dev)
1019{
1020 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1021
1022
1023
1024
1025 acpi_clear_event(ACPI_EVENT_RTC);
1026 acpi_disable_event(ACPI_EVENT_RTC, 0);
1027}
1028
1029static void rtc_wake_on(struct device *dev)
1030{
1031 acpi_clear_event(ACPI_EVENT_RTC);
1032 acpi_enable_event(ACPI_EVENT_RTC, 0);
1033}
1034
1035static void rtc_wake_off(struct device *dev)
1036{
1037 acpi_disable_event(ACPI_EVENT_RTC, 0);
1038}
1039
1040
1041
1042
1043
1044
1045static struct cmos_rtc_board_info acpi_rtc_info;
1046
1047static void cmos_wake_setup(struct device *dev)
1048{
1049 if (acpi_disabled)
1050 return;
1051
1052 rtc_wake_setup(dev);
1053 acpi_rtc_info.wake_on = rtc_wake_on;
1054 acpi_rtc_info.wake_off = rtc_wake_off;
1055
1056
1057 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1058 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1059 acpi_gbl_FADT.month_alarm);
1060 acpi_gbl_FADT.month_alarm = 0;
1061 }
1062
1063 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1064 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1065 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1066
1067
1068 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1069 dev_info(dev, "RTC can wake from S4\n");
1070
1071 dev->platform_data = &acpi_rtc_info;
1072
1073
1074 device_init_wakeup(dev, 1);
1075}
1076
1077static void cmos_check_acpi_rtc_status(struct device *dev,
1078 unsigned char *rtc_control)
1079{
1080 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1081 acpi_event_status rtc_status;
1082 acpi_status status;
1083
1084 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1085 return;
1086
1087 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1088 if (ACPI_FAILURE(status)) {
1089 dev_err(dev, "Could not get RTC status\n");
1090 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1091 unsigned char mask;
1092 *rtc_control &= ~RTC_AIE;
1093 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1094 mask = CMOS_READ(RTC_INTR_FLAGS);
1095 rtc_update_irq(cmos->rtc, 1, mask);
1096 }
1097}
1098
1099#else
1100
1101static void cmos_wake_setup(struct device *dev)
1102{
1103}
1104
1105static void cmos_check_acpi_rtc_status(struct device *dev,
1106 unsigned char *rtc_control)
1107{
1108}
1109
1110#endif
1111
1112#ifdef CONFIG_PNP
1113
1114#include <linux/pnp.h>
1115
1116static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1117{
1118 cmos_wake_setup(&pnp->dev);
1119
1120 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1121
1122
1123
1124
1125 return cmos_do_probe(&pnp->dev,
1126 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1127 else
1128 return cmos_do_probe(&pnp->dev,
1129 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1130 pnp_irq(pnp, 0));
1131}
1132
1133static void cmos_pnp_remove(struct pnp_dev *pnp)
1134{
1135 cmos_do_remove(&pnp->dev);
1136}
1137
1138static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1139{
1140 struct device *dev = &pnp->dev;
1141 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1142
1143 if (system_state == SYSTEM_POWER_OFF) {
1144 int retval = cmos_poweroff(dev);
1145
1146 if (cmos_aie_poweroff(dev) < 0 && !retval)
1147 return;
1148 }
1149
1150 cmos_do_shutdown(cmos->irq);
1151}
1152
1153static const struct pnp_device_id rtc_ids[] = {
1154 { .id = "PNP0b00", },
1155 { .id = "PNP0b01", },
1156 { .id = "PNP0b02", },
1157 { },
1158};
1159MODULE_DEVICE_TABLE(pnp, rtc_ids);
1160
1161static struct pnp_driver cmos_pnp_driver = {
1162 .name = (char *) driver_name,
1163 .id_table = rtc_ids,
1164 .probe = cmos_pnp_probe,
1165 .remove = cmos_pnp_remove,
1166 .shutdown = cmos_pnp_shutdown,
1167
1168
1169 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1170 .driver = {
1171 .pm = &cmos_pm_ops,
1172 },
1173};
1174
1175#endif
1176
1177#ifdef CONFIG_OF
1178static const struct of_device_id of_cmos_match[] = {
1179 {
1180 .compatible = "motorola,mc146818",
1181 },
1182 { },
1183};
1184MODULE_DEVICE_TABLE(of, of_cmos_match);
1185
1186static __init void cmos_of_init(struct platform_device *pdev)
1187{
1188 struct device_node *node = pdev->dev.of_node;
1189 struct rtc_time time;
1190 int ret;
1191 const __be32 *val;
1192
1193 if (!node)
1194 return;
1195
1196 val = of_get_property(node, "ctrl-reg", NULL);
1197 if (val)
1198 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1199
1200 val = of_get_property(node, "freq-reg", NULL);
1201 if (val)
1202 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1203
1204 cmos_read_time(&pdev->dev, &time);
1205 ret = rtc_valid_tm(&time);
1206 if (ret) {
1207 struct rtc_time def_time = {
1208 .tm_year = 1,
1209 .tm_mday = 1,
1210 };
1211 cmos_set_time(&pdev->dev, &def_time);
1212 }
1213}
1214#else
1215static inline void cmos_of_init(struct platform_device *pdev) {}
1216#endif
1217
1218
1219
1220
1221
1222
1223static int __init cmos_platform_probe(struct platform_device *pdev)
1224{
1225 struct resource *resource;
1226 int irq;
1227
1228 cmos_of_init(pdev);
1229 cmos_wake_setup(&pdev->dev);
1230
1231 if (RTC_IOMAPPED)
1232 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1233 else
1234 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1235 irq = platform_get_irq(pdev, 0);
1236 if (irq < 0)
1237 irq = -1;
1238
1239 return cmos_do_probe(&pdev->dev, resource, irq);
1240}
1241
1242static int cmos_platform_remove(struct platform_device *pdev)
1243{
1244 cmos_do_remove(&pdev->dev);
1245 return 0;
1246}
1247
1248static void cmos_platform_shutdown(struct platform_device *pdev)
1249{
1250 struct device *dev = &pdev->dev;
1251 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1252
1253 if (system_state == SYSTEM_POWER_OFF) {
1254 int retval = cmos_poweroff(dev);
1255
1256 if (cmos_aie_poweroff(dev) < 0 && !retval)
1257 return;
1258 }
1259
1260 cmos_do_shutdown(cmos->irq);
1261}
1262
1263
1264MODULE_ALIAS("platform:rtc_cmos");
1265
1266static struct platform_driver cmos_platform_driver = {
1267 .remove = cmos_platform_remove,
1268 .shutdown = cmos_platform_shutdown,
1269 .driver = {
1270 .name = driver_name,
1271 .pm = &cmos_pm_ops,
1272 .of_match_table = of_match_ptr(of_cmos_match),
1273 }
1274};
1275
1276#ifdef CONFIG_PNP
1277static bool pnp_driver_registered;
1278#endif
1279static bool platform_driver_registered;
1280
1281static int __init cmos_init(void)
1282{
1283 int retval = 0;
1284
1285#ifdef CONFIG_PNP
1286 retval = pnp_register_driver(&cmos_pnp_driver);
1287 if (retval == 0)
1288 pnp_driver_registered = true;
1289#endif
1290
1291 if (!cmos_rtc.dev) {
1292 retval = platform_driver_probe(&cmos_platform_driver,
1293 cmos_platform_probe);
1294 if (retval == 0)
1295 platform_driver_registered = true;
1296 }
1297
1298 if (retval == 0)
1299 return 0;
1300
1301#ifdef CONFIG_PNP
1302 if (pnp_driver_registered)
1303 pnp_unregister_driver(&cmos_pnp_driver);
1304#endif
1305 return retval;
1306}
1307module_init(cmos_init);
1308
1309static void __exit cmos_exit(void)
1310{
1311#ifdef CONFIG_PNP
1312 if (pnp_driver_registered)
1313 pnp_unregister_driver(&cmos_pnp_driver);
1314#endif
1315 if (platform_driver_registered)
1316 platform_driver_unregister(&cmos_platform_driver);
1317}
1318module_exit(cmos_exit);
1319
1320
1321MODULE_AUTHOR("David Brownell");
1322MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1323MODULE_LICENSE("GPL");
1324