linux/drivers/scsi/scsi_lib.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 1999 Eric Youngdale
   3 * Copyright (C) 2014 Christoph Hellwig
   4 *
   5 *  SCSI queueing library.
   6 *      Initial versions: Eric Youngdale (eric@andante.org).
   7 *                        Based upon conversations with large numbers
   8 *                        of people at Linux Expo.
   9 */
  10
  11#include <linux/bio.h>
  12#include <linux/bitops.h>
  13#include <linux/blkdev.h>
  14#include <linux/completion.h>
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/pci.h>
  19#include <linux/delay.h>
  20#include <linux/hardirq.h>
  21#include <linux/scatterlist.h>
  22#include <linux/blk-mq.h>
  23#include <linux/ratelimit.h>
  24#include <asm/unaligned.h>
  25
  26#include <scsi/scsi.h>
  27#include <scsi/scsi_cmnd.h>
  28#include <scsi/scsi_dbg.h>
  29#include <scsi/scsi_device.h>
  30#include <scsi/scsi_driver.h>
  31#include <scsi/scsi_eh.h>
  32#include <scsi/scsi_host.h>
  33#include <scsi/scsi_dh.h>
  34
  35#include <trace/events/scsi.h>
  36
  37#include "scsi_priv.h"
  38#include "scsi_logging.h"
  39
  40
  41struct kmem_cache *scsi_sdb_cache;
  42
  43/*
  44 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
  45 * not change behaviour from the previous unplug mechanism, experimentation
  46 * may prove this needs changing.
  47 */
  48#define SCSI_QUEUE_DELAY        3
  49
  50static void
  51scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
  52{
  53        struct Scsi_Host *host = cmd->device->host;
  54        struct scsi_device *device = cmd->device;
  55        struct scsi_target *starget = scsi_target(device);
  56
  57        /*
  58         * Set the appropriate busy bit for the device/host.
  59         *
  60         * If the host/device isn't busy, assume that something actually
  61         * completed, and that we should be able to queue a command now.
  62         *
  63         * Note that the prior mid-layer assumption that any host could
  64         * always queue at least one command is now broken.  The mid-layer
  65         * will implement a user specifiable stall (see
  66         * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
  67         * if a command is requeued with no other commands outstanding
  68         * either for the device or for the host.
  69         */
  70        switch (reason) {
  71        case SCSI_MLQUEUE_HOST_BUSY:
  72                atomic_set(&host->host_blocked, host->max_host_blocked);
  73                break;
  74        case SCSI_MLQUEUE_DEVICE_BUSY:
  75        case SCSI_MLQUEUE_EH_RETRY:
  76                atomic_set(&device->device_blocked,
  77                           device->max_device_blocked);
  78                break;
  79        case SCSI_MLQUEUE_TARGET_BUSY:
  80                atomic_set(&starget->target_blocked,
  81                           starget->max_target_blocked);
  82                break;
  83        }
  84}
  85
  86static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
  87{
  88        struct scsi_device *sdev = cmd->device;
  89        struct request_queue *q = cmd->request->q;
  90
  91        blk_mq_requeue_request(cmd->request);
  92        blk_mq_kick_requeue_list(q);
  93        put_device(&sdev->sdev_gendev);
  94}
  95
  96/**
  97 * __scsi_queue_insert - private queue insertion
  98 * @cmd: The SCSI command being requeued
  99 * @reason:  The reason for the requeue
 100 * @unbusy: Whether the queue should be unbusied
 101 *
 102 * This is a private queue insertion.  The public interface
 103 * scsi_queue_insert() always assumes the queue should be unbusied
 104 * because it's always called before the completion.  This function is
 105 * for a requeue after completion, which should only occur in this
 106 * file.
 107 */
 108static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
 109{
 110        struct scsi_device *device = cmd->device;
 111        struct request_queue *q = device->request_queue;
 112        unsigned long flags;
 113
 114        SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 115                "Inserting command %p into mlqueue\n", cmd));
 116
 117        scsi_set_blocked(cmd, reason);
 118
 119        /*
 120         * Decrement the counters, since these commands are no longer
 121         * active on the host/device.
 122         */
 123        if (unbusy)
 124                scsi_device_unbusy(device);
 125
 126        /*
 127         * Requeue this command.  It will go before all other commands
 128         * that are already in the queue. Schedule requeue work under
 129         * lock such that the kblockd_schedule_work() call happens
 130         * before blk_cleanup_queue() finishes.
 131         */
 132        cmd->result = 0;
 133        if (q->mq_ops) {
 134                scsi_mq_requeue_cmd(cmd);
 135                return;
 136        }
 137        spin_lock_irqsave(q->queue_lock, flags);
 138        blk_requeue_request(q, cmd->request);
 139        kblockd_schedule_work(&device->requeue_work);
 140        spin_unlock_irqrestore(q->queue_lock, flags);
 141}
 142
 143/*
 144 * Function:    scsi_queue_insert()
 145 *
 146 * Purpose:     Insert a command in the midlevel queue.
 147 *
 148 * Arguments:   cmd    - command that we are adding to queue.
 149 *              reason - why we are inserting command to queue.
 150 *
 151 * Lock status: Assumed that lock is not held upon entry.
 152 *
 153 * Returns:     Nothing.
 154 *
 155 * Notes:       We do this for one of two cases.  Either the host is busy
 156 *              and it cannot accept any more commands for the time being,
 157 *              or the device returned QUEUE_FULL and can accept no more
 158 *              commands.
 159 * Notes:       This could be called either from an interrupt context or a
 160 *              normal process context.
 161 */
 162void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 163{
 164        __scsi_queue_insert(cmd, reason, 1);
 165}
 166/**
 167 * scsi_execute - insert request and wait for the result
 168 * @sdev:       scsi device
 169 * @cmd:        scsi command
 170 * @data_direction: data direction
 171 * @buffer:     data buffer
 172 * @bufflen:    len of buffer
 173 * @sense:      optional sense buffer
 174 * @timeout:    request timeout in seconds
 175 * @retries:    number of times to retry request
 176 * @flags:      or into request flags;
 177 * @resid:      optional residual length
 178 *
 179 * returns the req->errors value which is the scsi_cmnd result
 180 * field.
 181 */
 182int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 183                 int data_direction, void *buffer, unsigned bufflen,
 184                 unsigned char *sense, int timeout, int retries, u64 flags,
 185                 int *resid)
 186{
 187        struct request *req;
 188        int write = (data_direction == DMA_TO_DEVICE);
 189        int ret = DRIVER_ERROR << 24;
 190
 191        req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
 192        if (IS_ERR(req))
 193                return ret;
 194        blk_rq_set_block_pc(req);
 195
 196        if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
 197                                        buffer, bufflen, __GFP_RECLAIM))
 198                goto out;
 199
 200        req->cmd_len = COMMAND_SIZE(cmd[0]);
 201        memcpy(req->cmd, cmd, req->cmd_len);
 202        req->sense = sense;
 203        req->sense_len = 0;
 204        req->retries = retries;
 205        req->timeout = timeout;
 206        req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
 207
 208        /*
 209         * head injection *required* here otherwise quiesce won't work
 210         */
 211        blk_execute_rq(req->q, NULL, req, 1);
 212
 213        /*
 214         * Some devices (USB mass-storage in particular) may transfer
 215         * garbage data together with a residue indicating that the data
 216         * is invalid.  Prevent the garbage from being misinterpreted
 217         * and prevent security leaks by zeroing out the excess data.
 218         */
 219        if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
 220                memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
 221
 222        if (resid)
 223                *resid = req->resid_len;
 224        ret = req->errors;
 225 out:
 226        blk_put_request(req);
 227
 228        return ret;
 229}
 230EXPORT_SYMBOL(scsi_execute);
 231
 232int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
 233                     int data_direction, void *buffer, unsigned bufflen,
 234                     struct scsi_sense_hdr *sshdr, int timeout, int retries,
 235                     int *resid, u64 flags)
 236{
 237        char *sense = NULL;
 238        int result;
 239        
 240        if (sshdr) {
 241                sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
 242                if (!sense)
 243                        return DRIVER_ERROR << 24;
 244        }
 245        result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
 246                              sense, timeout, retries, flags, resid);
 247        if (sshdr)
 248                scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
 249
 250        kfree(sense);
 251        return result;
 252}
 253EXPORT_SYMBOL(scsi_execute_req_flags);
 254
 255/*
 256 * Function:    scsi_init_cmd_errh()
 257 *
 258 * Purpose:     Initialize cmd fields related to error handling.
 259 *
 260 * Arguments:   cmd     - command that is ready to be queued.
 261 *
 262 * Notes:       This function has the job of initializing a number of
 263 *              fields related to error handling.   Typically this will
 264 *              be called once for each command, as required.
 265 */
 266static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 267{
 268        cmd->serial_number = 0;
 269        scsi_set_resid(cmd, 0);
 270        memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 271        if (cmd->cmd_len == 0)
 272                cmd->cmd_len = scsi_command_size(cmd->cmnd);
 273}
 274
 275void scsi_device_unbusy(struct scsi_device *sdev)
 276{
 277        struct Scsi_Host *shost = sdev->host;
 278        struct scsi_target *starget = scsi_target(sdev);
 279        unsigned long flags;
 280
 281        atomic_dec(&shost->host_busy);
 282        if (starget->can_queue > 0)
 283                atomic_dec(&starget->target_busy);
 284
 285        if (unlikely(scsi_host_in_recovery(shost) &&
 286                     (shost->host_failed || shost->host_eh_scheduled))) {
 287                spin_lock_irqsave(shost->host_lock, flags);
 288                scsi_eh_wakeup(shost);
 289                spin_unlock_irqrestore(shost->host_lock, flags);
 290        }
 291
 292        atomic_dec(&sdev->device_busy);
 293}
 294
 295static void scsi_kick_queue(struct request_queue *q)
 296{
 297        if (q->mq_ops)
 298                blk_mq_start_hw_queues(q);
 299        else
 300                blk_run_queue(q);
 301}
 302
 303/*
 304 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 305 * and call blk_run_queue for all the scsi_devices on the target -
 306 * including current_sdev first.
 307 *
 308 * Called with *no* scsi locks held.
 309 */
 310static void scsi_single_lun_run(struct scsi_device *current_sdev)
 311{
 312        struct Scsi_Host *shost = current_sdev->host;
 313        struct scsi_device *sdev, *tmp;
 314        struct scsi_target *starget = scsi_target(current_sdev);
 315        unsigned long flags;
 316
 317        spin_lock_irqsave(shost->host_lock, flags);
 318        starget->starget_sdev_user = NULL;
 319        spin_unlock_irqrestore(shost->host_lock, flags);
 320
 321        /*
 322         * Call blk_run_queue for all LUNs on the target, starting with
 323         * current_sdev. We race with others (to set starget_sdev_user),
 324         * but in most cases, we will be first. Ideally, each LU on the
 325         * target would get some limited time or requests on the target.
 326         */
 327        scsi_kick_queue(current_sdev->request_queue);
 328
 329        spin_lock_irqsave(shost->host_lock, flags);
 330        if (starget->starget_sdev_user)
 331                goto out;
 332        list_for_each_entry_safe(sdev, tmp, &starget->devices,
 333                        same_target_siblings) {
 334                if (sdev == current_sdev)
 335                        continue;
 336                if (scsi_device_get(sdev))
 337                        continue;
 338
 339                spin_unlock_irqrestore(shost->host_lock, flags);
 340                scsi_kick_queue(sdev->request_queue);
 341                spin_lock_irqsave(shost->host_lock, flags);
 342        
 343                scsi_device_put(sdev);
 344        }
 345 out:
 346        spin_unlock_irqrestore(shost->host_lock, flags);
 347}
 348
 349static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 350{
 351        if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 352                return true;
 353        if (atomic_read(&sdev->device_blocked) > 0)
 354                return true;
 355        return false;
 356}
 357
 358static inline bool scsi_target_is_busy(struct scsi_target *starget)
 359{
 360        if (starget->can_queue > 0) {
 361                if (atomic_read(&starget->target_busy) >= starget->can_queue)
 362                        return true;
 363                if (atomic_read(&starget->target_blocked) > 0)
 364                        return true;
 365        }
 366        return false;
 367}
 368
 369static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 370{
 371        if (shost->can_queue > 0 &&
 372            atomic_read(&shost->host_busy) >= shost->can_queue)
 373                return true;
 374        if (atomic_read(&shost->host_blocked) > 0)
 375                return true;
 376        if (shost->host_self_blocked)
 377                return true;
 378        return false;
 379}
 380
 381static void scsi_starved_list_run(struct Scsi_Host *shost)
 382{
 383        LIST_HEAD(starved_list);
 384        struct scsi_device *sdev;
 385        unsigned long flags;
 386
 387        spin_lock_irqsave(shost->host_lock, flags);
 388        list_splice_init(&shost->starved_list, &starved_list);
 389
 390        while (!list_empty(&starved_list)) {
 391                struct request_queue *slq;
 392
 393                /*
 394                 * As long as shost is accepting commands and we have
 395                 * starved queues, call blk_run_queue. scsi_request_fn
 396                 * drops the queue_lock and can add us back to the
 397                 * starved_list.
 398                 *
 399                 * host_lock protects the starved_list and starved_entry.
 400                 * scsi_request_fn must get the host_lock before checking
 401                 * or modifying starved_list or starved_entry.
 402                 */
 403                if (scsi_host_is_busy(shost))
 404                        break;
 405
 406                sdev = list_entry(starved_list.next,
 407                                  struct scsi_device, starved_entry);
 408                list_del_init(&sdev->starved_entry);
 409                if (scsi_target_is_busy(scsi_target(sdev))) {
 410                        list_move_tail(&sdev->starved_entry,
 411                                       &shost->starved_list);
 412                        continue;
 413                }
 414
 415                /*
 416                 * Once we drop the host lock, a racing scsi_remove_device()
 417                 * call may remove the sdev from the starved list and destroy
 418                 * it and the queue.  Mitigate by taking a reference to the
 419                 * queue and never touching the sdev again after we drop the
 420                 * host lock.  Note: if __scsi_remove_device() invokes
 421                 * blk_cleanup_queue() before the queue is run from this
 422                 * function then blk_run_queue() will return immediately since
 423                 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 424                 */
 425                slq = sdev->request_queue;
 426                if (!blk_get_queue(slq))
 427                        continue;
 428                spin_unlock_irqrestore(shost->host_lock, flags);
 429
 430                scsi_kick_queue(slq);
 431                blk_put_queue(slq);
 432
 433                spin_lock_irqsave(shost->host_lock, flags);
 434        }
 435        /* put any unprocessed entries back */
 436        list_splice(&starved_list, &shost->starved_list);
 437        spin_unlock_irqrestore(shost->host_lock, flags);
 438}
 439
 440/*
 441 * Function:   scsi_run_queue()
 442 *
 443 * Purpose:    Select a proper request queue to serve next
 444 *
 445 * Arguments:  q       - last request's queue
 446 *
 447 * Returns:     Nothing
 448 *
 449 * Notes:      The previous command was completely finished, start
 450 *             a new one if possible.
 451 */
 452static void scsi_run_queue(struct request_queue *q)
 453{
 454        struct scsi_device *sdev = q->queuedata;
 455
 456        if (scsi_target(sdev)->single_lun)
 457                scsi_single_lun_run(sdev);
 458        if (!list_empty(&sdev->host->starved_list))
 459                scsi_starved_list_run(sdev->host);
 460
 461        if (q->mq_ops)
 462                blk_mq_start_stopped_hw_queues(q, false);
 463        else
 464                blk_run_queue(q);
 465}
 466
 467void scsi_requeue_run_queue(struct work_struct *work)
 468{
 469        struct scsi_device *sdev;
 470        struct request_queue *q;
 471
 472        sdev = container_of(work, struct scsi_device, requeue_work);
 473        q = sdev->request_queue;
 474        scsi_run_queue(q);
 475}
 476
 477/*
 478 * Function:    scsi_requeue_command()
 479 *
 480 * Purpose:     Handle post-processing of completed commands.
 481 *
 482 * Arguments:   q       - queue to operate on
 483 *              cmd     - command that may need to be requeued.
 484 *
 485 * Returns:     Nothing
 486 *
 487 * Notes:       After command completion, there may be blocks left
 488 *              over which weren't finished by the previous command
 489 *              this can be for a number of reasons - the main one is
 490 *              I/O errors in the middle of the request, in which case
 491 *              we need to request the blocks that come after the bad
 492 *              sector.
 493 * Notes:       Upon return, cmd is a stale pointer.
 494 */
 495static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 496{
 497        struct scsi_device *sdev = cmd->device;
 498        struct request *req = cmd->request;
 499        unsigned long flags;
 500
 501        spin_lock_irqsave(q->queue_lock, flags);
 502        blk_unprep_request(req);
 503        req->special = NULL;
 504        scsi_put_command(cmd);
 505        blk_requeue_request(q, req);
 506        spin_unlock_irqrestore(q->queue_lock, flags);
 507
 508        scsi_run_queue(q);
 509
 510        put_device(&sdev->sdev_gendev);
 511}
 512
 513void scsi_run_host_queues(struct Scsi_Host *shost)
 514{
 515        struct scsi_device *sdev;
 516
 517        shost_for_each_device(sdev, shost)
 518                scsi_run_queue(sdev->request_queue);
 519}
 520
 521static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 522{
 523        if (cmd->request->cmd_type == REQ_TYPE_FS) {
 524                struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 525
 526                if (drv->uninit_command)
 527                        drv->uninit_command(cmd);
 528        }
 529}
 530
 531static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
 532{
 533        struct scsi_data_buffer *sdb;
 534
 535        if (cmd->sdb.table.nents)
 536                sg_free_table_chained(&cmd->sdb.table, true);
 537        if (cmd->request->next_rq) {
 538                sdb = cmd->request->next_rq->special;
 539                if (sdb)
 540                        sg_free_table_chained(&sdb->table, true);
 541        }
 542        if (scsi_prot_sg_count(cmd))
 543                sg_free_table_chained(&cmd->prot_sdb->table, true);
 544}
 545
 546static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 547{
 548        struct scsi_device *sdev = cmd->device;
 549        struct Scsi_Host *shost = sdev->host;
 550        unsigned long flags;
 551
 552        scsi_mq_free_sgtables(cmd);
 553        scsi_uninit_cmd(cmd);
 554
 555        if (shost->use_cmd_list) {
 556                BUG_ON(list_empty(&cmd->list));
 557                spin_lock_irqsave(&sdev->list_lock, flags);
 558                list_del_init(&cmd->list);
 559                spin_unlock_irqrestore(&sdev->list_lock, flags);
 560        }
 561}
 562
 563/*
 564 * Function:    scsi_release_buffers()
 565 *
 566 * Purpose:     Free resources allocate for a scsi_command.
 567 *
 568 * Arguments:   cmd     - command that we are bailing.
 569 *
 570 * Lock status: Assumed that no lock is held upon entry.
 571 *
 572 * Returns:     Nothing
 573 *
 574 * Notes:       In the event that an upper level driver rejects a
 575 *              command, we must release resources allocated during
 576 *              the __init_io() function.  Primarily this would involve
 577 *              the scatter-gather table.
 578 */
 579static void scsi_release_buffers(struct scsi_cmnd *cmd)
 580{
 581        if (cmd->sdb.table.nents)
 582                sg_free_table_chained(&cmd->sdb.table, false);
 583
 584        memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 585
 586        if (scsi_prot_sg_count(cmd))
 587                sg_free_table_chained(&cmd->prot_sdb->table, false);
 588}
 589
 590static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
 591{
 592        struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
 593
 594        sg_free_table_chained(&bidi_sdb->table, false);
 595        kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 596        cmd->request->next_rq->special = NULL;
 597}
 598
 599static bool scsi_end_request(struct request *req, int error,
 600                unsigned int bytes, unsigned int bidi_bytes)
 601{
 602        struct scsi_cmnd *cmd = req->special;
 603        struct scsi_device *sdev = cmd->device;
 604        struct request_queue *q = sdev->request_queue;
 605
 606        if (blk_update_request(req, error, bytes))
 607                return true;
 608
 609        /* Bidi request must be completed as a whole */
 610        if (unlikely(bidi_bytes) &&
 611            blk_update_request(req->next_rq, error, bidi_bytes))
 612                return true;
 613
 614        if (blk_queue_add_random(q))
 615                add_disk_randomness(req->rq_disk);
 616
 617        if (req->mq_ctx) {
 618                /*
 619                 * In the MQ case the command gets freed by __blk_mq_end_request,
 620                 * so we have to do all cleanup that depends on it earlier.
 621                 *
 622                 * We also can't kick the queues from irq context, so we
 623                 * will have to defer it to a workqueue.
 624                 */
 625                scsi_mq_uninit_cmd(cmd);
 626
 627                __blk_mq_end_request(req, error);
 628
 629                if (scsi_target(sdev)->single_lun ||
 630                    !list_empty(&sdev->host->starved_list))
 631                        kblockd_schedule_work(&sdev->requeue_work);
 632                else
 633                        blk_mq_start_stopped_hw_queues(q, true);
 634        } else {
 635                unsigned long flags;
 636
 637                if (bidi_bytes)
 638                        scsi_release_bidi_buffers(cmd);
 639
 640                spin_lock_irqsave(q->queue_lock, flags);
 641                blk_finish_request(req, error);
 642                spin_unlock_irqrestore(q->queue_lock, flags);
 643
 644                scsi_release_buffers(cmd);
 645
 646                scsi_put_command(cmd);
 647                scsi_run_queue(q);
 648        }
 649
 650        put_device(&sdev->sdev_gendev);
 651        return false;
 652}
 653
 654/**
 655 * __scsi_error_from_host_byte - translate SCSI error code into errno
 656 * @cmd:        SCSI command (unused)
 657 * @result:     scsi error code
 658 *
 659 * Translate SCSI error code into standard UNIX errno.
 660 * Return values:
 661 * -ENOLINK     temporary transport failure
 662 * -EREMOTEIO   permanent target failure, do not retry
 663 * -EBADE       permanent nexus failure, retry on other path
 664 * -ENOSPC      No write space available
 665 * -ENODATA     Medium error
 666 * -EIO         unspecified I/O error
 667 */
 668static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
 669{
 670        int error = 0;
 671
 672        switch(host_byte(result)) {
 673        case DID_TRANSPORT_FAILFAST:
 674                error = -ENOLINK;
 675                break;
 676        case DID_TARGET_FAILURE:
 677                set_host_byte(cmd, DID_OK);
 678                error = -EREMOTEIO;
 679                break;
 680        case DID_NEXUS_FAILURE:
 681                set_host_byte(cmd, DID_OK);
 682                error = -EBADE;
 683                break;
 684        case DID_ALLOC_FAILURE:
 685                set_host_byte(cmd, DID_OK);
 686                error = -ENOSPC;
 687                break;
 688        case DID_MEDIUM_ERROR:
 689                set_host_byte(cmd, DID_OK);
 690                error = -ENODATA;
 691                break;
 692        default:
 693                error = -EIO;
 694                break;
 695        }
 696
 697        return error;
 698}
 699
 700/*
 701 * Function:    scsi_io_completion()
 702 *
 703 * Purpose:     Completion processing for block device I/O requests.
 704 *
 705 * Arguments:   cmd   - command that is finished.
 706 *
 707 * Lock status: Assumed that no lock is held upon entry.
 708 *
 709 * Returns:     Nothing
 710 *
 711 * Notes:       We will finish off the specified number of sectors.  If we
 712 *              are done, the command block will be released and the queue
 713 *              function will be goosed.  If we are not done then we have to
 714 *              figure out what to do next:
 715 *
 716 *              a) We can call scsi_requeue_command().  The request
 717 *                 will be unprepared and put back on the queue.  Then
 718 *                 a new command will be created for it.  This should
 719 *                 be used if we made forward progress, or if we want
 720 *                 to switch from READ(10) to READ(6) for example.
 721 *
 722 *              b) We can call __scsi_queue_insert().  The request will
 723 *                 be put back on the queue and retried using the same
 724 *                 command as before, possibly after a delay.
 725 *
 726 *              c) We can call scsi_end_request() with -EIO to fail
 727 *                 the remainder of the request.
 728 */
 729void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 730{
 731        int result = cmd->result;
 732        struct request_queue *q = cmd->device->request_queue;
 733        struct request *req = cmd->request;
 734        int error = 0;
 735        struct scsi_sense_hdr sshdr;
 736        bool sense_valid = false;
 737        int sense_deferred = 0, level = 0;
 738        enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 739              ACTION_DELAYED_RETRY} action;
 740        unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 741
 742        if (result) {
 743                sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 744                if (sense_valid)
 745                        sense_deferred = scsi_sense_is_deferred(&sshdr);
 746        }
 747
 748        if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
 749                if (result) {
 750                        if (sense_valid && req->sense) {
 751                                /*
 752                                 * SG_IO wants current and deferred errors
 753                                 */
 754                                int len = 8 + cmd->sense_buffer[7];
 755
 756                                if (len > SCSI_SENSE_BUFFERSIZE)
 757                                        len = SCSI_SENSE_BUFFERSIZE;
 758                                memcpy(req->sense, cmd->sense_buffer,  len);
 759                                req->sense_len = len;
 760                        }
 761                        if (!sense_deferred)
 762                                error = __scsi_error_from_host_byte(cmd, result);
 763                }
 764                /*
 765                 * __scsi_error_from_host_byte may have reset the host_byte
 766                 */
 767                req->errors = cmd->result;
 768
 769                req->resid_len = scsi_get_resid(cmd);
 770
 771                if (scsi_bidi_cmnd(cmd)) {
 772                        /*
 773                         * Bidi commands Must be complete as a whole,
 774                         * both sides at once.
 775                         */
 776                        req->next_rq->resid_len = scsi_in(cmd)->resid;
 777                        if (scsi_end_request(req, 0, blk_rq_bytes(req),
 778                                        blk_rq_bytes(req->next_rq)))
 779                                BUG();
 780                        return;
 781                }
 782        } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
 783                /*
 784                 * Certain non BLOCK_PC requests are commands that don't
 785                 * actually transfer anything (FLUSH), so cannot use
 786                 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 787                 * This sets the error explicitly for the problem case.
 788                 */
 789                error = __scsi_error_from_host_byte(cmd, result);
 790        }
 791
 792        /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
 793        BUG_ON(blk_bidi_rq(req));
 794
 795        /*
 796         * Next deal with any sectors which we were able to correctly
 797         * handle.
 798         */
 799        SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 800                "%u sectors total, %d bytes done.\n",
 801                blk_rq_sectors(req), good_bytes));
 802
 803        /*
 804         * Recovered errors need reporting, but they're always treated
 805         * as success, so fiddle the result code here.  For BLOCK_PC
 806         * we already took a copy of the original into rq->errors which
 807         * is what gets returned to the user
 808         */
 809        if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 810                /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 811                 * print since caller wants ATA registers. Only occurs on
 812                 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 813                 */
 814                if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 815                        ;
 816                else if (!(req->cmd_flags & REQ_QUIET))
 817                        scsi_print_sense(cmd);
 818                result = 0;
 819                /* BLOCK_PC may have set error */
 820                error = 0;
 821        }
 822
 823        /*
 824         * special case: failed zero length commands always need to
 825         * drop down into the retry code. Otherwise, if we finished
 826         * all bytes in the request we are done now.
 827         */
 828        if (!(blk_rq_bytes(req) == 0 && error) &&
 829            !scsi_end_request(req, error, good_bytes, 0))
 830                return;
 831
 832        /*
 833         * Kill remainder if no retrys.
 834         */
 835        if (error && scsi_noretry_cmd(cmd)) {
 836                if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
 837                        BUG();
 838                return;
 839        }
 840
 841        /*
 842         * If there had been no error, but we have leftover bytes in the
 843         * requeues just queue the command up again.
 844         */
 845        if (result == 0)
 846                goto requeue;
 847
 848        error = __scsi_error_from_host_byte(cmd, result);
 849
 850        if (host_byte(result) == DID_RESET) {
 851                /* Third party bus reset or reset for error recovery
 852                 * reasons.  Just retry the command and see what
 853                 * happens.
 854                 */
 855                action = ACTION_RETRY;
 856        } else if (sense_valid && !sense_deferred) {
 857                switch (sshdr.sense_key) {
 858                case UNIT_ATTENTION:
 859                        if (cmd->device->removable) {
 860                                /* Detected disc change.  Set a bit
 861                                 * and quietly refuse further access.
 862                                 */
 863                                cmd->device->changed = 1;
 864                                action = ACTION_FAIL;
 865                        } else {
 866                                /* Must have been a power glitch, or a
 867                                 * bus reset.  Could not have been a
 868                                 * media change, so we just retry the
 869                                 * command and see what happens.
 870                                 */
 871                                action = ACTION_RETRY;
 872                        }
 873                        break;
 874                case ILLEGAL_REQUEST:
 875                        /* If we had an ILLEGAL REQUEST returned, then
 876                         * we may have performed an unsupported
 877                         * command.  The only thing this should be
 878                         * would be a ten byte read where only a six
 879                         * byte read was supported.  Also, on a system
 880                         * where READ CAPACITY failed, we may have
 881                         * read past the end of the disk.
 882                         */
 883                        if ((cmd->device->use_10_for_rw &&
 884                            sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 885                            (cmd->cmnd[0] == READ_10 ||
 886                             cmd->cmnd[0] == WRITE_10)) {
 887                                /* This will issue a new 6-byte command. */
 888                                cmd->device->use_10_for_rw = 0;
 889                                action = ACTION_REPREP;
 890                        } else if (sshdr.asc == 0x10) /* DIX */ {
 891                                action = ACTION_FAIL;
 892                                error = -EILSEQ;
 893                        /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 894                        } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 895                                action = ACTION_FAIL;
 896                                error = -EREMOTEIO;
 897                        } else
 898                                action = ACTION_FAIL;
 899                        break;
 900                case ABORTED_COMMAND:
 901                        action = ACTION_FAIL;
 902                        if (sshdr.asc == 0x10) /* DIF */
 903                                error = -EILSEQ;
 904                        break;
 905                case NOT_READY:
 906                        /* If the device is in the process of becoming
 907                         * ready, or has a temporary blockage, retry.
 908                         */
 909                        if (sshdr.asc == 0x04) {
 910                                switch (sshdr.ascq) {
 911                                case 0x01: /* becoming ready */
 912                                case 0x04: /* format in progress */
 913                                case 0x05: /* rebuild in progress */
 914                                case 0x06: /* recalculation in progress */
 915                                case 0x07: /* operation in progress */
 916                                case 0x08: /* Long write in progress */
 917                                case 0x09: /* self test in progress */
 918                                case 0x14: /* space allocation in progress */
 919                                        action = ACTION_DELAYED_RETRY;
 920                                        break;
 921                                default:
 922                                        action = ACTION_FAIL;
 923                                        break;
 924                                }
 925                        } else
 926                                action = ACTION_FAIL;
 927                        break;
 928                case VOLUME_OVERFLOW:
 929                        /* See SSC3rXX or current. */
 930                        action = ACTION_FAIL;
 931                        break;
 932                default:
 933                        action = ACTION_FAIL;
 934                        break;
 935                }
 936        } else
 937                action = ACTION_FAIL;
 938
 939        if (action != ACTION_FAIL &&
 940            time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
 941                action = ACTION_FAIL;
 942
 943        switch (action) {
 944        case ACTION_FAIL:
 945                /* Give up and fail the remainder of the request */
 946                if (!(req->cmd_flags & REQ_QUIET)) {
 947                        static DEFINE_RATELIMIT_STATE(_rs,
 948                                        DEFAULT_RATELIMIT_INTERVAL,
 949                                        DEFAULT_RATELIMIT_BURST);
 950
 951                        if (unlikely(scsi_logging_level))
 952                                level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 953                                                       SCSI_LOG_MLCOMPLETE_BITS);
 954
 955                        /*
 956                         * if logging is enabled the failure will be printed
 957                         * in scsi_log_completion(), so avoid duplicate messages
 958                         */
 959                        if (!level && __ratelimit(&_rs)) {
 960                                scsi_print_result(cmd, NULL, FAILED);
 961                                if (driver_byte(result) & DRIVER_SENSE)
 962                                        scsi_print_sense(cmd);
 963                                scsi_print_command(cmd);
 964                        }
 965                }
 966                if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
 967                        return;
 968                /*FALLTHRU*/
 969        case ACTION_REPREP:
 970        requeue:
 971                /* Unprep the request and put it back at the head of the queue.
 972                 * A new command will be prepared and issued.
 973                 */
 974                if (q->mq_ops) {
 975                        cmd->request->cmd_flags &= ~REQ_DONTPREP;
 976                        scsi_mq_uninit_cmd(cmd);
 977                        scsi_mq_requeue_cmd(cmd);
 978                } else {
 979                        scsi_release_buffers(cmd);
 980                        scsi_requeue_command(q, cmd);
 981                }
 982                break;
 983        case ACTION_RETRY:
 984                /* Retry the same command immediately */
 985                __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
 986                break;
 987        case ACTION_DELAYED_RETRY:
 988                /* Retry the same command after a delay */
 989                __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
 990                break;
 991        }
 992}
 993
 994static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
 995{
 996        int count;
 997
 998        /*
 999         * If sg table allocation fails, requeue request later.
1000         */
1001        if (unlikely(sg_alloc_table_chained(&sdb->table, req->nr_phys_segments,
1002                                        sdb->table.sgl)))
1003                return BLKPREP_DEFER;
1004
1005        /* 
1006         * Next, walk the list, and fill in the addresses and sizes of
1007         * each segment.
1008         */
1009        count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1010        BUG_ON(count > sdb->table.nents);
1011        sdb->table.nents = count;
1012        sdb->length = blk_rq_bytes(req);
1013        return BLKPREP_OK;
1014}
1015
1016/*
1017 * Function:    scsi_init_io()
1018 *
1019 * Purpose:     SCSI I/O initialize function.
1020 *
1021 * Arguments:   cmd   - Command descriptor we wish to initialize
1022 *
1023 * Returns:     0 on success
1024 *              BLKPREP_DEFER if the failure is retryable
1025 *              BLKPREP_KILL if the failure is fatal
1026 */
1027int scsi_init_io(struct scsi_cmnd *cmd)
1028{
1029        struct scsi_device *sdev = cmd->device;
1030        struct request *rq = cmd->request;
1031        bool is_mq = (rq->mq_ctx != NULL);
1032        int error;
1033
1034        BUG_ON(!rq->nr_phys_segments);
1035
1036        error = scsi_init_sgtable(rq, &cmd->sdb);
1037        if (error)
1038                goto err_exit;
1039
1040        if (blk_bidi_rq(rq)) {
1041                if (!rq->q->mq_ops) {
1042                        struct scsi_data_buffer *bidi_sdb =
1043                                kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1044                        if (!bidi_sdb) {
1045                                error = BLKPREP_DEFER;
1046                                goto err_exit;
1047                        }
1048
1049                        rq->next_rq->special = bidi_sdb;
1050                }
1051
1052                error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1053                if (error)
1054                        goto err_exit;
1055        }
1056
1057        if (blk_integrity_rq(rq)) {
1058                struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1059                int ivecs, count;
1060
1061                if (prot_sdb == NULL) {
1062                        /*
1063                         * This can happen if someone (e.g. multipath)
1064                         * queues a command to a device on an adapter
1065                         * that does not support DIX.
1066                         */
1067                        WARN_ON_ONCE(1);
1068                        error = BLKPREP_KILL;
1069                        goto err_exit;
1070                }
1071
1072                ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1073
1074                if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1075                                prot_sdb->table.sgl)) {
1076                        error = BLKPREP_DEFER;
1077                        goto err_exit;
1078                }
1079
1080                count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1081                                                prot_sdb->table.sgl);
1082                BUG_ON(unlikely(count > ivecs));
1083                BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1084
1085                cmd->prot_sdb = prot_sdb;
1086                cmd->prot_sdb->table.nents = count;
1087        }
1088
1089        return BLKPREP_OK;
1090err_exit:
1091        if (is_mq) {
1092                scsi_mq_free_sgtables(cmd);
1093        } else {
1094                scsi_release_buffers(cmd);
1095                cmd->request->special = NULL;
1096                scsi_put_command(cmd);
1097                put_device(&sdev->sdev_gendev);
1098        }
1099        return error;
1100}
1101EXPORT_SYMBOL(scsi_init_io);
1102
1103static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1104                struct request *req)
1105{
1106        struct scsi_cmnd *cmd;
1107
1108        if (!req->special) {
1109                /* Bail if we can't get a reference to the device */
1110                if (!get_device(&sdev->sdev_gendev))
1111                        return NULL;
1112
1113                cmd = scsi_get_command(sdev, GFP_ATOMIC);
1114                if (unlikely(!cmd)) {
1115                        put_device(&sdev->sdev_gendev);
1116                        return NULL;
1117                }
1118                req->special = cmd;
1119        } else {
1120                cmd = req->special;
1121        }
1122
1123        /* pull a tag out of the request if we have one */
1124        cmd->tag = req->tag;
1125        cmd->request = req;
1126
1127        cmd->cmnd = req->cmd;
1128        cmd->prot_op = SCSI_PROT_NORMAL;
1129
1130        return cmd;
1131}
1132
1133static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1134{
1135        struct scsi_cmnd *cmd = req->special;
1136
1137        /*
1138         * BLOCK_PC requests may transfer data, in which case they must
1139         * a bio attached to them.  Or they might contain a SCSI command
1140         * that does not transfer data, in which case they may optionally
1141         * submit a request without an attached bio.
1142         */
1143        if (req->bio) {
1144                int ret = scsi_init_io(cmd);
1145                if (unlikely(ret))
1146                        return ret;
1147        } else {
1148                BUG_ON(blk_rq_bytes(req));
1149
1150                memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1151        }
1152
1153        cmd->cmd_len = req->cmd_len;
1154        cmd->transfersize = blk_rq_bytes(req);
1155        cmd->allowed = req->retries;
1156        return BLKPREP_OK;
1157}
1158
1159/*
1160 * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1161 * that still need to be translated to SCSI CDBs from the ULD.
1162 */
1163static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1164{
1165        struct scsi_cmnd *cmd = req->special;
1166
1167        if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1168                int ret = sdev->handler->prep_fn(sdev, req);
1169                if (ret != BLKPREP_OK)
1170                        return ret;
1171        }
1172
1173        memset(cmd->cmnd, 0, BLK_MAX_CDB);
1174        return scsi_cmd_to_driver(cmd)->init_command(cmd);
1175}
1176
1177static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1178{
1179        struct scsi_cmnd *cmd = req->special;
1180
1181        if (!blk_rq_bytes(req))
1182                cmd->sc_data_direction = DMA_NONE;
1183        else if (rq_data_dir(req) == WRITE)
1184                cmd->sc_data_direction = DMA_TO_DEVICE;
1185        else
1186                cmd->sc_data_direction = DMA_FROM_DEVICE;
1187
1188        switch (req->cmd_type) {
1189        case REQ_TYPE_FS:
1190                return scsi_setup_fs_cmnd(sdev, req);
1191        case REQ_TYPE_BLOCK_PC:
1192                return scsi_setup_blk_pc_cmnd(sdev, req);
1193        default:
1194                return BLKPREP_KILL;
1195        }
1196}
1197
1198static int
1199scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1200{
1201        int ret = BLKPREP_OK;
1202
1203        /*
1204         * If the device is not in running state we will reject some
1205         * or all commands.
1206         */
1207        if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1208                switch (sdev->sdev_state) {
1209                case SDEV_OFFLINE:
1210                case SDEV_TRANSPORT_OFFLINE:
1211                        /*
1212                         * If the device is offline we refuse to process any
1213                         * commands.  The device must be brought online
1214                         * before trying any recovery commands.
1215                         */
1216                        sdev_printk(KERN_ERR, sdev,
1217                                    "rejecting I/O to offline device\n");
1218                        ret = BLKPREP_KILL;
1219                        break;
1220                case SDEV_DEL:
1221                        /*
1222                         * If the device is fully deleted, we refuse to
1223                         * process any commands as well.
1224                         */
1225                        sdev_printk(KERN_ERR, sdev,
1226                                    "rejecting I/O to dead device\n");
1227                        ret = BLKPREP_KILL;
1228                        break;
1229                case SDEV_BLOCK:
1230                case SDEV_CREATED_BLOCK:
1231                        ret = BLKPREP_DEFER;
1232                        break;
1233                case SDEV_QUIESCE:
1234                        /*
1235                         * If the devices is blocked we defer normal commands.
1236                         */
1237                        if (!(req->cmd_flags & REQ_PREEMPT))
1238                                ret = BLKPREP_DEFER;
1239                        break;
1240                default:
1241                        /*
1242                         * For any other not fully online state we only allow
1243                         * special commands.  In particular any user initiated
1244                         * command is not allowed.
1245                         */
1246                        if (!(req->cmd_flags & REQ_PREEMPT))
1247                                ret = BLKPREP_KILL;
1248                        break;
1249                }
1250        }
1251        return ret;
1252}
1253
1254static int
1255scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1256{
1257        struct scsi_device *sdev = q->queuedata;
1258
1259        switch (ret) {
1260        case BLKPREP_KILL:
1261        case BLKPREP_INVALID:
1262                req->errors = DID_NO_CONNECT << 16;
1263                /* release the command and kill it */
1264                if (req->special) {
1265                        struct scsi_cmnd *cmd = req->special;
1266                        scsi_release_buffers(cmd);
1267                        scsi_put_command(cmd);
1268                        put_device(&sdev->sdev_gendev);
1269                        req->special = NULL;
1270                }
1271                break;
1272        case BLKPREP_DEFER:
1273                /*
1274                 * If we defer, the blk_peek_request() returns NULL, but the
1275                 * queue must be restarted, so we schedule a callback to happen
1276                 * shortly.
1277                 */
1278                if (atomic_read(&sdev->device_busy) == 0)
1279                        blk_delay_queue(q, SCSI_QUEUE_DELAY);
1280                break;
1281        default:
1282                req->cmd_flags |= REQ_DONTPREP;
1283        }
1284
1285        return ret;
1286}
1287
1288static int scsi_prep_fn(struct request_queue *q, struct request *req)
1289{
1290        struct scsi_device *sdev = q->queuedata;
1291        struct scsi_cmnd *cmd;
1292        int ret;
1293
1294        ret = scsi_prep_state_check(sdev, req);
1295        if (ret != BLKPREP_OK)
1296                goto out;
1297
1298        cmd = scsi_get_cmd_from_req(sdev, req);
1299        if (unlikely(!cmd)) {
1300                ret = BLKPREP_DEFER;
1301                goto out;
1302        }
1303
1304        ret = scsi_setup_cmnd(sdev, req);
1305out:
1306        return scsi_prep_return(q, req, ret);
1307}
1308
1309static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1310{
1311        scsi_uninit_cmd(req->special);
1312}
1313
1314/*
1315 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1316 * return 0.
1317 *
1318 * Called with the queue_lock held.
1319 */
1320static inline int scsi_dev_queue_ready(struct request_queue *q,
1321                                  struct scsi_device *sdev)
1322{
1323        unsigned int busy;
1324
1325        busy = atomic_inc_return(&sdev->device_busy) - 1;
1326        if (atomic_read(&sdev->device_blocked)) {
1327                if (busy)
1328                        goto out_dec;
1329
1330                /*
1331                 * unblock after device_blocked iterates to zero
1332                 */
1333                if (atomic_dec_return(&sdev->device_blocked) > 0) {
1334                        /*
1335                         * For the MQ case we take care of this in the caller.
1336                         */
1337                        if (!q->mq_ops)
1338                                blk_delay_queue(q, SCSI_QUEUE_DELAY);
1339                        goto out_dec;
1340                }
1341                SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1342                                   "unblocking device at zero depth\n"));
1343        }
1344
1345        if (busy >= sdev->queue_depth)
1346                goto out_dec;
1347
1348        return 1;
1349out_dec:
1350        atomic_dec(&sdev->device_busy);
1351        return 0;
1352}
1353
1354/*
1355 * scsi_target_queue_ready: checks if there we can send commands to target
1356 * @sdev: scsi device on starget to check.
1357 */
1358static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1359                                           struct scsi_device *sdev)
1360{
1361        struct scsi_target *starget = scsi_target(sdev);
1362        unsigned int busy;
1363
1364        if (starget->single_lun) {
1365                spin_lock_irq(shost->host_lock);
1366                if (starget->starget_sdev_user &&
1367                    starget->starget_sdev_user != sdev) {
1368                        spin_unlock_irq(shost->host_lock);
1369                        return 0;
1370                }
1371                starget->starget_sdev_user = sdev;
1372                spin_unlock_irq(shost->host_lock);
1373        }
1374
1375        if (starget->can_queue <= 0)
1376                return 1;
1377
1378        busy = atomic_inc_return(&starget->target_busy) - 1;
1379        if (atomic_read(&starget->target_blocked) > 0) {
1380                if (busy)
1381                        goto starved;
1382
1383                /*
1384                 * unblock after target_blocked iterates to zero
1385                 */
1386                if (atomic_dec_return(&starget->target_blocked) > 0)
1387                        goto out_dec;
1388
1389                SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1390                                 "unblocking target at zero depth\n"));
1391        }
1392
1393        if (busy >= starget->can_queue)
1394                goto starved;
1395
1396        return 1;
1397
1398starved:
1399        spin_lock_irq(shost->host_lock);
1400        list_move_tail(&sdev->starved_entry, &shost->starved_list);
1401        spin_unlock_irq(shost->host_lock);
1402out_dec:
1403        if (starget->can_queue > 0)
1404                atomic_dec(&starget->target_busy);
1405        return 0;
1406}
1407
1408/*
1409 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1410 * return 0. We must end up running the queue again whenever 0 is
1411 * returned, else IO can hang.
1412 */
1413static inline int scsi_host_queue_ready(struct request_queue *q,
1414                                   struct Scsi_Host *shost,
1415                                   struct scsi_device *sdev)
1416{
1417        unsigned int busy;
1418
1419        if (scsi_host_in_recovery(shost))
1420                return 0;
1421
1422        busy = atomic_inc_return(&shost->host_busy) - 1;
1423        if (atomic_read(&shost->host_blocked) > 0) {
1424                if (busy)
1425                        goto starved;
1426
1427                /*
1428                 * unblock after host_blocked iterates to zero
1429                 */
1430                if (atomic_dec_return(&shost->host_blocked) > 0)
1431                        goto out_dec;
1432
1433                SCSI_LOG_MLQUEUE(3,
1434                        shost_printk(KERN_INFO, shost,
1435                                     "unblocking host at zero depth\n"));
1436        }
1437
1438        if (shost->can_queue > 0 && busy >= shost->can_queue)
1439                goto starved;
1440        if (shost->host_self_blocked)
1441                goto starved;
1442
1443        /* We're OK to process the command, so we can't be starved */
1444        if (!list_empty(&sdev->starved_entry)) {
1445                spin_lock_irq(shost->host_lock);
1446                if (!list_empty(&sdev->starved_entry))
1447                        list_del_init(&sdev->starved_entry);
1448                spin_unlock_irq(shost->host_lock);
1449        }
1450
1451        return 1;
1452
1453starved:
1454        spin_lock_irq(shost->host_lock);
1455        if (list_empty(&sdev->starved_entry))
1456                list_add_tail(&sdev->starved_entry, &shost->starved_list);
1457        spin_unlock_irq(shost->host_lock);
1458out_dec:
1459        atomic_dec(&shost->host_busy);
1460        return 0;
1461}
1462
1463/*
1464 * Busy state exporting function for request stacking drivers.
1465 *
1466 * For efficiency, no lock is taken to check the busy state of
1467 * shost/starget/sdev, since the returned value is not guaranteed and
1468 * may be changed after request stacking drivers call the function,
1469 * regardless of taking lock or not.
1470 *
1471 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1472 * needs to return 'not busy'. Otherwise, request stacking drivers
1473 * may hold requests forever.
1474 */
1475static int scsi_lld_busy(struct request_queue *q)
1476{
1477        struct scsi_device *sdev = q->queuedata;
1478        struct Scsi_Host *shost;
1479
1480        if (blk_queue_dying(q))
1481                return 0;
1482
1483        shost = sdev->host;
1484
1485        /*
1486         * Ignore host/starget busy state.
1487         * Since block layer does not have a concept of fairness across
1488         * multiple queues, congestion of host/starget needs to be handled
1489         * in SCSI layer.
1490         */
1491        if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1492                return 1;
1493
1494        return 0;
1495}
1496
1497/*
1498 * Kill a request for a dead device
1499 */
1500static void scsi_kill_request(struct request *req, struct request_queue *q)
1501{
1502        struct scsi_cmnd *cmd = req->special;
1503        struct scsi_device *sdev;
1504        struct scsi_target *starget;
1505        struct Scsi_Host *shost;
1506
1507        blk_start_request(req);
1508
1509        scmd_printk(KERN_INFO, cmd, "killing request\n");
1510
1511        sdev = cmd->device;
1512        starget = scsi_target(sdev);
1513        shost = sdev->host;
1514        scsi_init_cmd_errh(cmd);
1515        cmd->result = DID_NO_CONNECT << 16;
1516        atomic_inc(&cmd->device->iorequest_cnt);
1517
1518        /*
1519         * SCSI request completion path will do scsi_device_unbusy(),
1520         * bump busy counts.  To bump the counters, we need to dance
1521         * with the locks as normal issue path does.
1522         */
1523        atomic_inc(&sdev->device_busy);
1524        atomic_inc(&shost->host_busy);
1525        if (starget->can_queue > 0)
1526                atomic_inc(&starget->target_busy);
1527
1528        blk_complete_request(req);
1529}
1530
1531static void scsi_softirq_done(struct request *rq)
1532{
1533        struct scsi_cmnd *cmd = rq->special;
1534        unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1535        int disposition;
1536
1537        INIT_LIST_HEAD(&cmd->eh_entry);
1538
1539        atomic_inc(&cmd->device->iodone_cnt);
1540        if (cmd->result)
1541                atomic_inc(&cmd->device->ioerr_cnt);
1542
1543        disposition = scsi_decide_disposition(cmd);
1544        if (disposition != SUCCESS &&
1545            time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1546                sdev_printk(KERN_ERR, cmd->device,
1547                            "timing out command, waited %lus\n",
1548                            wait_for/HZ);
1549                disposition = SUCCESS;
1550        }
1551
1552        scsi_log_completion(cmd, disposition);
1553
1554        switch (disposition) {
1555                case SUCCESS:
1556                        scsi_finish_command(cmd);
1557                        break;
1558                case NEEDS_RETRY:
1559                        scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1560                        break;
1561                case ADD_TO_MLQUEUE:
1562                        scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1563                        break;
1564                default:
1565                        if (!scsi_eh_scmd_add(cmd, 0))
1566                                scsi_finish_command(cmd);
1567        }
1568}
1569
1570/**
1571 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1572 * @cmd: command block we are dispatching.
1573 *
1574 * Return: nonzero return request was rejected and device's queue needs to be
1575 * plugged.
1576 */
1577static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1578{
1579        struct Scsi_Host *host = cmd->device->host;
1580        int rtn = 0;
1581
1582        atomic_inc(&cmd->device->iorequest_cnt);
1583
1584        /* check if the device is still usable */
1585        if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1586                /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1587                 * returns an immediate error upwards, and signals
1588                 * that the device is no longer present */
1589                cmd->result = DID_NO_CONNECT << 16;
1590                goto done;
1591        }
1592
1593        /* Check to see if the scsi lld made this device blocked. */
1594        if (unlikely(scsi_device_blocked(cmd->device))) {
1595                /*
1596                 * in blocked state, the command is just put back on
1597                 * the device queue.  The suspend state has already
1598                 * blocked the queue so future requests should not
1599                 * occur until the device transitions out of the
1600                 * suspend state.
1601                 */
1602                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1603                        "queuecommand : device blocked\n"));
1604                return SCSI_MLQUEUE_DEVICE_BUSY;
1605        }
1606
1607        /* Store the LUN value in cmnd, if needed. */
1608        if (cmd->device->lun_in_cdb)
1609                cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1610                               (cmd->device->lun << 5 & 0xe0);
1611
1612        scsi_log_send(cmd);
1613
1614        /*
1615         * Before we queue this command, check if the command
1616         * length exceeds what the host adapter can handle.
1617         */
1618        if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1619                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1620                               "queuecommand : command too long. "
1621                               "cdb_size=%d host->max_cmd_len=%d\n",
1622                               cmd->cmd_len, cmd->device->host->max_cmd_len));
1623                cmd->result = (DID_ABORT << 16);
1624                goto done;
1625        }
1626
1627        if (unlikely(host->shost_state == SHOST_DEL)) {
1628                cmd->result = (DID_NO_CONNECT << 16);
1629                goto done;
1630
1631        }
1632
1633        trace_scsi_dispatch_cmd_start(cmd);
1634        rtn = host->hostt->queuecommand(host, cmd);
1635        if (rtn) {
1636                trace_scsi_dispatch_cmd_error(cmd, rtn);
1637                if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1638                    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1639                        rtn = SCSI_MLQUEUE_HOST_BUSY;
1640
1641                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1642                        "queuecommand : request rejected\n"));
1643        }
1644
1645        return rtn;
1646 done:
1647        cmd->scsi_done(cmd);
1648        return 0;
1649}
1650
1651/**
1652 * scsi_done - Invoke completion on finished SCSI command.
1653 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1654 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1655 *
1656 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1657 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1658 * calls blk_complete_request() for further processing.
1659 *
1660 * This function is interrupt context safe.
1661 */
1662static void scsi_done(struct scsi_cmnd *cmd)
1663{
1664        trace_scsi_dispatch_cmd_done(cmd);
1665        blk_complete_request(cmd->request);
1666}
1667
1668/*
1669 * Function:    scsi_request_fn()
1670 *
1671 * Purpose:     Main strategy routine for SCSI.
1672 *
1673 * Arguments:   q       - Pointer to actual queue.
1674 *
1675 * Returns:     Nothing
1676 *
1677 * Lock status: IO request lock assumed to be held when called.
1678 */
1679static void scsi_request_fn(struct request_queue *q)
1680        __releases(q->queue_lock)
1681        __acquires(q->queue_lock)
1682{
1683        struct scsi_device *sdev = q->queuedata;
1684        struct Scsi_Host *shost;
1685        struct scsi_cmnd *cmd;
1686        struct request *req;
1687
1688        /*
1689         * To start with, we keep looping until the queue is empty, or until
1690         * the host is no longer able to accept any more requests.
1691         */
1692        shost = sdev->host;
1693        for (;;) {
1694                int rtn;
1695                /*
1696                 * get next queueable request.  We do this early to make sure
1697                 * that the request is fully prepared even if we cannot
1698                 * accept it.
1699                 */
1700                req = blk_peek_request(q);
1701                if (!req)
1702                        break;
1703
1704                if (unlikely(!scsi_device_online(sdev))) {
1705                        sdev_printk(KERN_ERR, sdev,
1706                                    "rejecting I/O to offline device\n");
1707                        scsi_kill_request(req, q);
1708                        continue;
1709                }
1710
1711                if (!scsi_dev_queue_ready(q, sdev))
1712                        break;
1713
1714                /*
1715                 * Remove the request from the request list.
1716                 */
1717                if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1718                        blk_start_request(req);
1719
1720                spin_unlock_irq(q->queue_lock);
1721                cmd = req->special;
1722                if (unlikely(cmd == NULL)) {
1723                        printk(KERN_CRIT "impossible request in %s.\n"
1724                                         "please mail a stack trace to "
1725                                         "linux-scsi@vger.kernel.org\n",
1726                                         __func__);
1727                        blk_dump_rq_flags(req, "foo");
1728                        BUG();
1729                }
1730
1731                /*
1732                 * We hit this when the driver is using a host wide
1733                 * tag map. For device level tag maps the queue_depth check
1734                 * in the device ready fn would prevent us from trying
1735                 * to allocate a tag. Since the map is a shared host resource
1736                 * we add the dev to the starved list so it eventually gets
1737                 * a run when a tag is freed.
1738                 */
1739                if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1740                        spin_lock_irq(shost->host_lock);
1741                        if (list_empty(&sdev->starved_entry))
1742                                list_add_tail(&sdev->starved_entry,
1743                                              &shost->starved_list);
1744                        spin_unlock_irq(shost->host_lock);
1745                        goto not_ready;
1746                }
1747
1748                if (!scsi_target_queue_ready(shost, sdev))
1749                        goto not_ready;
1750
1751                if (!scsi_host_queue_ready(q, shost, sdev))
1752                        goto host_not_ready;
1753        
1754                if (sdev->simple_tags)
1755                        cmd->flags |= SCMD_TAGGED;
1756                else
1757                        cmd->flags &= ~SCMD_TAGGED;
1758
1759                /*
1760                 * Finally, initialize any error handling parameters, and set up
1761                 * the timers for timeouts.
1762                 */
1763                scsi_init_cmd_errh(cmd);
1764
1765                /*
1766                 * Dispatch the command to the low-level driver.
1767                 */
1768                cmd->scsi_done = scsi_done;
1769                rtn = scsi_dispatch_cmd(cmd);
1770                if (rtn) {
1771                        scsi_queue_insert(cmd, rtn);
1772                        spin_lock_irq(q->queue_lock);
1773                        goto out_delay;
1774                }
1775                spin_lock_irq(q->queue_lock);
1776        }
1777
1778        return;
1779
1780 host_not_ready:
1781        if (scsi_target(sdev)->can_queue > 0)
1782                atomic_dec(&scsi_target(sdev)->target_busy);
1783 not_ready:
1784        /*
1785         * lock q, handle tag, requeue req, and decrement device_busy. We
1786         * must return with queue_lock held.
1787         *
1788         * Decrementing device_busy without checking it is OK, as all such
1789         * cases (host limits or settings) should run the queue at some
1790         * later time.
1791         */
1792        spin_lock_irq(q->queue_lock);
1793        blk_requeue_request(q, req);
1794        atomic_dec(&sdev->device_busy);
1795out_delay:
1796        if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1797                blk_delay_queue(q, SCSI_QUEUE_DELAY);
1798}
1799
1800static inline int prep_to_mq(int ret)
1801{
1802        switch (ret) {
1803        case BLKPREP_OK:
1804                return 0;
1805        case BLKPREP_DEFER:
1806                return BLK_MQ_RQ_QUEUE_BUSY;
1807        default:
1808                return BLK_MQ_RQ_QUEUE_ERROR;
1809        }
1810}
1811
1812static int scsi_mq_prep_fn(struct request *req)
1813{
1814        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1815        struct scsi_device *sdev = req->q->queuedata;
1816        struct Scsi_Host *shost = sdev->host;
1817        unsigned char *sense_buf = cmd->sense_buffer;
1818        struct scatterlist *sg;
1819
1820        memset(cmd, 0, sizeof(struct scsi_cmnd));
1821
1822        req->special = cmd;
1823
1824        cmd->request = req;
1825        cmd->device = sdev;
1826        cmd->sense_buffer = sense_buf;
1827
1828        cmd->tag = req->tag;
1829
1830        cmd->cmnd = req->cmd;
1831        cmd->prot_op = SCSI_PROT_NORMAL;
1832
1833        INIT_LIST_HEAD(&cmd->list);
1834        INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1835        cmd->jiffies_at_alloc = jiffies;
1836
1837        if (shost->use_cmd_list) {
1838                spin_lock_irq(&sdev->list_lock);
1839                list_add_tail(&cmd->list, &sdev->cmd_list);
1840                spin_unlock_irq(&sdev->list_lock);
1841        }
1842
1843        sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1844        cmd->sdb.table.sgl = sg;
1845
1846        if (scsi_host_get_prot(shost)) {
1847                cmd->prot_sdb = (void *)sg +
1848                        min_t(unsigned int,
1849                              shost->sg_tablesize, SG_CHUNK_SIZE) *
1850                        sizeof(struct scatterlist);
1851                memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1852
1853                cmd->prot_sdb->table.sgl =
1854                        (struct scatterlist *)(cmd->prot_sdb + 1);
1855        }
1856
1857        if (blk_bidi_rq(req)) {
1858                struct request *next_rq = req->next_rq;
1859                struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1860
1861                memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1862                bidi_sdb->table.sgl =
1863                        (struct scatterlist *)(bidi_sdb + 1);
1864
1865                next_rq->special = bidi_sdb;
1866        }
1867
1868        blk_mq_start_request(req);
1869
1870        return scsi_setup_cmnd(sdev, req);
1871}
1872
1873static void scsi_mq_done(struct scsi_cmnd *cmd)
1874{
1875        trace_scsi_dispatch_cmd_done(cmd);
1876        blk_mq_complete_request(cmd->request, cmd->request->errors);
1877}
1878
1879static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1880                         const struct blk_mq_queue_data *bd)
1881{
1882        struct request *req = bd->rq;
1883        struct request_queue *q = req->q;
1884        struct scsi_device *sdev = q->queuedata;
1885        struct Scsi_Host *shost = sdev->host;
1886        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1887        int ret;
1888        int reason;
1889
1890        ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1891        if (ret)
1892                goto out;
1893
1894        ret = BLK_MQ_RQ_QUEUE_BUSY;
1895        if (!get_device(&sdev->sdev_gendev))
1896                goto out;
1897
1898        if (!scsi_dev_queue_ready(q, sdev))
1899                goto out_put_device;
1900        if (!scsi_target_queue_ready(shost, sdev))
1901                goto out_dec_device_busy;
1902        if (!scsi_host_queue_ready(q, shost, sdev))
1903                goto out_dec_target_busy;
1904
1905
1906        if (!(req->cmd_flags & REQ_DONTPREP)) {
1907                ret = prep_to_mq(scsi_mq_prep_fn(req));
1908                if (ret)
1909                        goto out_dec_host_busy;
1910                req->cmd_flags |= REQ_DONTPREP;
1911        } else {
1912                blk_mq_start_request(req);
1913        }
1914
1915        if (sdev->simple_tags)
1916                cmd->flags |= SCMD_TAGGED;
1917        else
1918                cmd->flags &= ~SCMD_TAGGED;
1919
1920        scsi_init_cmd_errh(cmd);
1921        cmd->scsi_done = scsi_mq_done;
1922
1923        reason = scsi_dispatch_cmd(cmd);
1924        if (reason) {
1925                scsi_set_blocked(cmd, reason);
1926                ret = BLK_MQ_RQ_QUEUE_BUSY;
1927                goto out_dec_host_busy;
1928        }
1929
1930        return BLK_MQ_RQ_QUEUE_OK;
1931
1932out_dec_host_busy:
1933        atomic_dec(&shost->host_busy);
1934out_dec_target_busy:
1935        if (scsi_target(sdev)->can_queue > 0)
1936                atomic_dec(&scsi_target(sdev)->target_busy);
1937out_dec_device_busy:
1938        atomic_dec(&sdev->device_busy);
1939out_put_device:
1940        put_device(&sdev->sdev_gendev);
1941out:
1942        switch (ret) {
1943        case BLK_MQ_RQ_QUEUE_BUSY:
1944                blk_mq_stop_hw_queue(hctx);
1945                if (atomic_read(&sdev->device_busy) == 0 &&
1946                    !scsi_device_blocked(sdev))
1947                        blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1948                break;
1949        case BLK_MQ_RQ_QUEUE_ERROR:
1950                /*
1951                 * Make sure to release all allocated ressources when
1952                 * we hit an error, as we will never see this command
1953                 * again.
1954                 */
1955                if (req->cmd_flags & REQ_DONTPREP)
1956                        scsi_mq_uninit_cmd(cmd);
1957                break;
1958        default:
1959                break;
1960        }
1961        return ret;
1962}
1963
1964static enum blk_eh_timer_return scsi_timeout(struct request *req,
1965                bool reserved)
1966{
1967        if (reserved)
1968                return BLK_EH_RESET_TIMER;
1969        return scsi_times_out(req);
1970}
1971
1972static int scsi_init_request(void *data, struct request *rq,
1973                unsigned int hctx_idx, unsigned int request_idx,
1974                unsigned int numa_node)
1975{
1976        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1977
1978        cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1979                        numa_node);
1980        if (!cmd->sense_buffer)
1981                return -ENOMEM;
1982        return 0;
1983}
1984
1985static void scsi_exit_request(void *data, struct request *rq,
1986                unsigned int hctx_idx, unsigned int request_idx)
1987{
1988        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1989
1990        kfree(cmd->sense_buffer);
1991}
1992
1993static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1994{
1995        struct device *host_dev;
1996        u64 bounce_limit = 0xffffffff;
1997
1998        if (shost->unchecked_isa_dma)
1999                return BLK_BOUNCE_ISA;
2000        /*
2001         * Platforms with virtual-DMA translation
2002         * hardware have no practical limit.
2003         */
2004        if (!PCI_DMA_BUS_IS_PHYS)
2005                return BLK_BOUNCE_ANY;
2006
2007        host_dev = scsi_get_device(shost);
2008        if (host_dev && host_dev->dma_mask)
2009                bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2010
2011        return bounce_limit;
2012}
2013
2014static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2015{
2016        struct device *dev = shost->dma_dev;
2017
2018        /*
2019         * this limit is imposed by hardware restrictions
2020         */
2021        blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2022                                        SG_MAX_SEGMENTS));
2023
2024        if (scsi_host_prot_dma(shost)) {
2025                shost->sg_prot_tablesize =
2026                        min_not_zero(shost->sg_prot_tablesize,
2027                                     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2028                BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2029                blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2030        }
2031
2032        blk_queue_max_hw_sectors(q, shost->max_sectors);
2033        blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2034        blk_queue_segment_boundary(q, shost->dma_boundary);
2035        dma_set_seg_boundary(dev, shost->dma_boundary);
2036
2037        blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2038
2039        if (!shost->use_clustering)
2040                q->limits.cluster = 0;
2041
2042        /*
2043         * set a reasonable default alignment on word boundaries: the
2044         * host and device may alter it using
2045         * blk_queue_update_dma_alignment() later.
2046         */
2047        blk_queue_dma_alignment(q, 0x03);
2048}
2049
2050struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2051                                         request_fn_proc *request_fn)
2052{
2053        struct request_queue *q;
2054
2055        q = blk_init_queue(request_fn, NULL);
2056        if (!q)
2057                return NULL;
2058        __scsi_init_queue(shost, q);
2059        return q;
2060}
2061EXPORT_SYMBOL(__scsi_alloc_queue);
2062
2063struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2064{
2065        struct request_queue *q;
2066
2067        q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2068        if (!q)
2069                return NULL;
2070
2071        blk_queue_prep_rq(q, scsi_prep_fn);
2072        blk_queue_unprep_rq(q, scsi_unprep_fn);
2073        blk_queue_softirq_done(q, scsi_softirq_done);
2074        blk_queue_rq_timed_out(q, scsi_times_out);
2075        blk_queue_lld_busy(q, scsi_lld_busy);
2076        return q;
2077}
2078
2079static struct blk_mq_ops scsi_mq_ops = {
2080        .queue_rq       = scsi_queue_rq,
2081        .complete       = scsi_softirq_done,
2082        .timeout        = scsi_timeout,
2083        .init_request   = scsi_init_request,
2084        .exit_request   = scsi_exit_request,
2085};
2086
2087struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2088{
2089        sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2090        if (IS_ERR(sdev->request_queue))
2091                return NULL;
2092
2093        sdev->request_queue->queuedata = sdev;
2094        __scsi_init_queue(sdev->host, sdev->request_queue);
2095        return sdev->request_queue;
2096}
2097
2098int scsi_mq_setup_tags(struct Scsi_Host *shost)
2099{
2100        unsigned int cmd_size, sgl_size, tbl_size;
2101
2102        tbl_size = shost->sg_tablesize;
2103        if (tbl_size > SG_CHUNK_SIZE)
2104                tbl_size = SG_CHUNK_SIZE;
2105        sgl_size = tbl_size * sizeof(struct scatterlist);
2106        cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2107        if (scsi_host_get_prot(shost))
2108                cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2109
2110        memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2111        shost->tag_set.ops = &scsi_mq_ops;
2112        shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2113        shost->tag_set.queue_depth = shost->can_queue;
2114        shost->tag_set.cmd_size = cmd_size;
2115        shost->tag_set.numa_node = NUMA_NO_NODE;
2116        shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2117        shost->tag_set.flags |=
2118                BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2119        shost->tag_set.driver_data = shost;
2120
2121        return blk_mq_alloc_tag_set(&shost->tag_set);
2122}
2123
2124void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2125{
2126        blk_mq_free_tag_set(&shost->tag_set);
2127}
2128
2129/*
2130 * Function:    scsi_block_requests()
2131 *
2132 * Purpose:     Utility function used by low-level drivers to prevent further
2133 *              commands from being queued to the device.
2134 *
2135 * Arguments:   shost       - Host in question
2136 *
2137 * Returns:     Nothing
2138 *
2139 * Lock status: No locks are assumed held.
2140 *
2141 * Notes:       There is no timer nor any other means by which the requests
2142 *              get unblocked other than the low-level driver calling
2143 *              scsi_unblock_requests().
2144 */
2145void scsi_block_requests(struct Scsi_Host *shost)
2146{
2147        shost->host_self_blocked = 1;
2148}
2149EXPORT_SYMBOL(scsi_block_requests);
2150
2151/*
2152 * Function:    scsi_unblock_requests()
2153 *
2154 * Purpose:     Utility function used by low-level drivers to allow further
2155 *              commands from being queued to the device.
2156 *
2157 * Arguments:   shost       - Host in question
2158 *
2159 * Returns:     Nothing
2160 *
2161 * Lock status: No locks are assumed held.
2162 *
2163 * Notes:       There is no timer nor any other means by which the requests
2164 *              get unblocked other than the low-level driver calling
2165 *              scsi_unblock_requests().
2166 *
2167 *              This is done as an API function so that changes to the
2168 *              internals of the scsi mid-layer won't require wholesale
2169 *              changes to drivers that use this feature.
2170 */
2171void scsi_unblock_requests(struct Scsi_Host *shost)
2172{
2173        shost->host_self_blocked = 0;
2174        scsi_run_host_queues(shost);
2175}
2176EXPORT_SYMBOL(scsi_unblock_requests);
2177
2178int __init scsi_init_queue(void)
2179{
2180        scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2181                                           sizeof(struct scsi_data_buffer),
2182                                           0, 0, NULL);
2183        if (!scsi_sdb_cache) {
2184                printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2185                return -ENOMEM;
2186        }
2187
2188        return 0;
2189}
2190
2191void scsi_exit_queue(void)
2192{
2193        kmem_cache_destroy(scsi_sdb_cache);
2194}
2195
2196/**
2197 *      scsi_mode_select - issue a mode select
2198 *      @sdev:  SCSI device to be queried
2199 *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2200 *      @sp:    Save page bit (0 == don't save, 1 == save)
2201 *      @modepage: mode page being requested
2202 *      @buffer: request buffer (may not be smaller than eight bytes)
2203 *      @len:   length of request buffer.
2204 *      @timeout: command timeout
2205 *      @retries: number of retries before failing
2206 *      @data: returns a structure abstracting the mode header data
2207 *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2208 *              must be SCSI_SENSE_BUFFERSIZE big.
2209 *
2210 *      Returns zero if successful; negative error number or scsi
2211 *      status on error
2212 *
2213 */
2214int
2215scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2216                 unsigned char *buffer, int len, int timeout, int retries,
2217                 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2218{
2219        unsigned char cmd[10];
2220        unsigned char *real_buffer;
2221        int ret;
2222
2223        memset(cmd, 0, sizeof(cmd));
2224        cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2225
2226        if (sdev->use_10_for_ms) {
2227                if (len > 65535)
2228                        return -EINVAL;
2229                real_buffer = kmalloc(8 + len, GFP_KERNEL);
2230                if (!real_buffer)
2231                        return -ENOMEM;
2232                memcpy(real_buffer + 8, buffer, len);
2233                len += 8;
2234                real_buffer[0] = 0;
2235                real_buffer[1] = 0;
2236                real_buffer[2] = data->medium_type;
2237                real_buffer[3] = data->device_specific;
2238                real_buffer[4] = data->longlba ? 0x01 : 0;
2239                real_buffer[5] = 0;
2240                real_buffer[6] = data->block_descriptor_length >> 8;
2241                real_buffer[7] = data->block_descriptor_length;
2242
2243                cmd[0] = MODE_SELECT_10;
2244                cmd[7] = len >> 8;
2245                cmd[8] = len;
2246        } else {
2247                if (len > 255 || data->block_descriptor_length > 255 ||
2248                    data->longlba)
2249                        return -EINVAL;
2250
2251                real_buffer = kmalloc(4 + len, GFP_KERNEL);
2252                if (!real_buffer)
2253                        return -ENOMEM;
2254                memcpy(real_buffer + 4, buffer, len);
2255                len += 4;
2256                real_buffer[0] = 0;
2257                real_buffer[1] = data->medium_type;
2258                real_buffer[2] = data->device_specific;
2259                real_buffer[3] = data->block_descriptor_length;
2260                
2261
2262                cmd[0] = MODE_SELECT;
2263                cmd[4] = len;
2264        }
2265
2266        ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2267                               sshdr, timeout, retries, NULL);
2268        kfree(real_buffer);
2269        return ret;
2270}
2271EXPORT_SYMBOL_GPL(scsi_mode_select);
2272
2273/**
2274 *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2275 *      @sdev:  SCSI device to be queried
2276 *      @dbd:   set if mode sense will allow block descriptors to be returned
2277 *      @modepage: mode page being requested
2278 *      @buffer: request buffer (may not be smaller than eight bytes)
2279 *      @len:   length of request buffer.
2280 *      @timeout: command timeout
2281 *      @retries: number of retries before failing
2282 *      @data: returns a structure abstracting the mode header data
2283 *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2284 *              must be SCSI_SENSE_BUFFERSIZE big.
2285 *
2286 *      Returns zero if unsuccessful, or the header offset (either 4
2287 *      or 8 depending on whether a six or ten byte command was
2288 *      issued) if successful.
2289 */
2290int
2291scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2292                  unsigned char *buffer, int len, int timeout, int retries,
2293                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2294{
2295        unsigned char cmd[12];
2296        int use_10_for_ms;
2297        int header_length;
2298        int result, retry_count = retries;
2299        struct scsi_sense_hdr my_sshdr;
2300
2301        memset(data, 0, sizeof(*data));
2302        memset(&cmd[0], 0, 12);
2303        cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2304        cmd[2] = modepage;
2305
2306        /* caller might not be interested in sense, but we need it */
2307        if (!sshdr)
2308                sshdr = &my_sshdr;
2309
2310 retry:
2311        use_10_for_ms = sdev->use_10_for_ms;
2312
2313        if (use_10_for_ms) {
2314                if (len < 8)
2315                        len = 8;
2316
2317                cmd[0] = MODE_SENSE_10;
2318                cmd[8] = len;
2319                header_length = 8;
2320        } else {
2321                if (len < 4)
2322                        len = 4;
2323
2324                cmd[0] = MODE_SENSE;
2325                cmd[4] = len;
2326                header_length = 4;
2327        }
2328
2329        memset(buffer, 0, len);
2330
2331        result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2332                                  sshdr, timeout, retries, NULL);
2333
2334        /* This code looks awful: what it's doing is making sure an
2335         * ILLEGAL REQUEST sense return identifies the actual command
2336         * byte as the problem.  MODE_SENSE commands can return
2337         * ILLEGAL REQUEST if the code page isn't supported */
2338
2339        if (use_10_for_ms && !scsi_status_is_good(result) &&
2340            (driver_byte(result) & DRIVER_SENSE)) {
2341                if (scsi_sense_valid(sshdr)) {
2342                        if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2343                            (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2344                                /* 
2345                                 * Invalid command operation code
2346                                 */
2347                                sdev->use_10_for_ms = 0;
2348                                goto retry;
2349                        }
2350                }
2351        }
2352
2353        if(scsi_status_is_good(result)) {
2354                if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2355                             (modepage == 6 || modepage == 8))) {
2356                        /* Initio breakage? */
2357                        header_length = 0;
2358                        data->length = 13;
2359                        data->medium_type = 0;
2360                        data->device_specific = 0;
2361                        data->longlba = 0;
2362                        data->block_descriptor_length = 0;
2363                } else if(use_10_for_ms) {
2364                        data->length = buffer[0]*256 + buffer[1] + 2;
2365                        data->medium_type = buffer[2];
2366                        data->device_specific = buffer[3];
2367                        data->longlba = buffer[4] & 0x01;
2368                        data->block_descriptor_length = buffer[6]*256
2369                                + buffer[7];
2370                } else {
2371                        data->length = buffer[0] + 1;
2372                        data->medium_type = buffer[1];
2373                        data->device_specific = buffer[2];
2374                        data->block_descriptor_length = buffer[3];
2375                }
2376                data->header_length = header_length;
2377        } else if ((status_byte(result) == CHECK_CONDITION) &&
2378                   scsi_sense_valid(sshdr) &&
2379                   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2380                retry_count--;
2381                goto retry;
2382        }
2383
2384        return result;
2385}
2386EXPORT_SYMBOL(scsi_mode_sense);
2387
2388/**
2389 *      scsi_test_unit_ready - test if unit is ready
2390 *      @sdev:  scsi device to change the state of.
2391 *      @timeout: command timeout
2392 *      @retries: number of retries before failing
2393 *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2394 *              returning sense. Make sure that this is cleared before passing
2395 *              in.
2396 *
2397 *      Returns zero if unsuccessful or an error if TUR failed.  For
2398 *      removable media, UNIT_ATTENTION sets ->changed flag.
2399 **/
2400int
2401scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2402                     struct scsi_sense_hdr *sshdr_external)
2403{
2404        char cmd[] = {
2405                TEST_UNIT_READY, 0, 0, 0, 0, 0,
2406        };
2407        struct scsi_sense_hdr *sshdr;
2408        int result;
2409
2410        if (!sshdr_external)
2411                sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2412        else
2413                sshdr = sshdr_external;
2414
2415        /* try to eat the UNIT_ATTENTION if there are enough retries */
2416        do {
2417                result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2418                                          timeout, retries, NULL);
2419                if (sdev->removable && scsi_sense_valid(sshdr) &&
2420                    sshdr->sense_key == UNIT_ATTENTION)
2421                        sdev->changed = 1;
2422        } while (scsi_sense_valid(sshdr) &&
2423                 sshdr->sense_key == UNIT_ATTENTION && --retries);
2424
2425        if (!sshdr_external)
2426                kfree(sshdr);
2427        return result;
2428}
2429EXPORT_SYMBOL(scsi_test_unit_ready);
2430
2431/**
2432 *      scsi_device_set_state - Take the given device through the device state model.
2433 *      @sdev:  scsi device to change the state of.
2434 *      @state: state to change to.
2435 *
2436 *      Returns zero if unsuccessful or an error if the requested 
2437 *      transition is illegal.
2438 */
2439int
2440scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2441{
2442        enum scsi_device_state oldstate = sdev->sdev_state;
2443
2444        if (state == oldstate)
2445                return 0;
2446
2447        switch (state) {
2448        case SDEV_CREATED:
2449                switch (oldstate) {
2450                case SDEV_CREATED_BLOCK:
2451                        break;
2452                default:
2453                        goto illegal;
2454                }
2455                break;
2456                        
2457        case SDEV_RUNNING:
2458                switch (oldstate) {
2459                case SDEV_CREATED:
2460                case SDEV_OFFLINE:
2461                case SDEV_TRANSPORT_OFFLINE:
2462                case SDEV_QUIESCE:
2463                case SDEV_BLOCK:
2464                        break;
2465                default:
2466                        goto illegal;
2467                }
2468                break;
2469
2470        case SDEV_QUIESCE:
2471                switch (oldstate) {
2472                case SDEV_RUNNING:
2473                case SDEV_OFFLINE:
2474                case SDEV_TRANSPORT_OFFLINE:
2475                        break;
2476                default:
2477                        goto illegal;
2478                }
2479                break;
2480
2481        case SDEV_OFFLINE:
2482        case SDEV_TRANSPORT_OFFLINE:
2483                switch (oldstate) {
2484                case SDEV_CREATED:
2485                case SDEV_RUNNING:
2486                case SDEV_QUIESCE:
2487                case SDEV_BLOCK:
2488                        break;
2489                default:
2490                        goto illegal;
2491                }
2492                break;
2493
2494        case SDEV_BLOCK:
2495                switch (oldstate) {
2496                case SDEV_RUNNING:
2497                case SDEV_CREATED_BLOCK:
2498                        break;
2499                default:
2500                        goto illegal;
2501                }
2502                break;
2503
2504        case SDEV_CREATED_BLOCK:
2505                switch (oldstate) {
2506                case SDEV_CREATED:
2507                        break;
2508                default:
2509                        goto illegal;
2510                }
2511                break;
2512
2513        case SDEV_CANCEL:
2514                switch (oldstate) {
2515                case SDEV_CREATED:
2516                case SDEV_RUNNING:
2517                case SDEV_QUIESCE:
2518                case SDEV_OFFLINE:
2519                case SDEV_TRANSPORT_OFFLINE:
2520                case SDEV_BLOCK:
2521                        break;
2522                default:
2523                        goto illegal;
2524                }
2525                break;
2526
2527        case SDEV_DEL:
2528                switch (oldstate) {
2529                case SDEV_CREATED:
2530                case SDEV_RUNNING:
2531                case SDEV_OFFLINE:
2532                case SDEV_TRANSPORT_OFFLINE:
2533                case SDEV_CANCEL:
2534                case SDEV_CREATED_BLOCK:
2535                        break;
2536                default:
2537                        goto illegal;
2538                }
2539                break;
2540
2541        }
2542        sdev->sdev_state = state;
2543        return 0;
2544
2545 illegal:
2546        SCSI_LOG_ERROR_RECOVERY(1,
2547                                sdev_printk(KERN_ERR, sdev,
2548                                            "Illegal state transition %s->%s",
2549                                            scsi_device_state_name(oldstate),
2550                                            scsi_device_state_name(state))
2551                                );
2552        return -EINVAL;
2553}
2554EXPORT_SYMBOL(scsi_device_set_state);
2555
2556/**
2557 *      sdev_evt_emit - emit a single SCSI device uevent
2558 *      @sdev: associated SCSI device
2559 *      @evt: event to emit
2560 *
2561 *      Send a single uevent (scsi_event) to the associated scsi_device.
2562 */
2563static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2564{
2565        int idx = 0;
2566        char *envp[3];
2567
2568        switch (evt->evt_type) {
2569        case SDEV_EVT_MEDIA_CHANGE:
2570                envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2571                break;
2572        case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2573                scsi_rescan_device(&sdev->sdev_gendev);
2574                envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2575                break;
2576        case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2577                envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2578                break;
2579        case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2580               envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2581                break;
2582        case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2583                envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2584                break;
2585        case SDEV_EVT_LUN_CHANGE_REPORTED:
2586                envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2587                break;
2588        case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2589                envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2590                break;
2591        default:
2592                /* do nothing */
2593                break;
2594        }
2595
2596        envp[idx++] = NULL;
2597
2598        kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2599}
2600
2601/**
2602 *      sdev_evt_thread - send a uevent for each scsi event
2603 *      @work: work struct for scsi_device
2604 *
2605 *      Dispatch queued events to their associated scsi_device kobjects
2606 *      as uevents.
2607 */
2608void scsi_evt_thread(struct work_struct *work)
2609{
2610        struct scsi_device *sdev;
2611        enum scsi_device_event evt_type;
2612        LIST_HEAD(event_list);
2613
2614        sdev = container_of(work, struct scsi_device, event_work);
2615
2616        for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2617                if (test_and_clear_bit(evt_type, sdev->pending_events))
2618                        sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2619
2620        while (1) {
2621                struct scsi_event *evt;
2622                struct list_head *this, *tmp;
2623                unsigned long flags;
2624
2625                spin_lock_irqsave(&sdev->list_lock, flags);
2626                list_splice_init(&sdev->event_list, &event_list);
2627                spin_unlock_irqrestore(&sdev->list_lock, flags);
2628
2629                if (list_empty(&event_list))
2630                        break;
2631
2632                list_for_each_safe(this, tmp, &event_list) {
2633                        evt = list_entry(this, struct scsi_event, node);
2634                        list_del(&evt->node);
2635                        scsi_evt_emit(sdev, evt);
2636                        kfree(evt);
2637                }
2638        }
2639}
2640
2641/**
2642 *      sdev_evt_send - send asserted event to uevent thread
2643 *      @sdev: scsi_device event occurred on
2644 *      @evt: event to send
2645 *
2646 *      Assert scsi device event asynchronously.
2647 */
2648void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2649{
2650        unsigned long flags;
2651
2652#if 0
2653        /* FIXME: currently this check eliminates all media change events
2654         * for polled devices.  Need to update to discriminate between AN
2655         * and polled events */
2656        if (!test_bit(evt->evt_type, sdev->supported_events)) {
2657                kfree(evt);
2658                return;
2659        }
2660#endif
2661
2662        spin_lock_irqsave(&sdev->list_lock, flags);
2663        list_add_tail(&evt->node, &sdev->event_list);
2664        schedule_work(&sdev->event_work);
2665        spin_unlock_irqrestore(&sdev->list_lock, flags);
2666}
2667EXPORT_SYMBOL_GPL(sdev_evt_send);
2668
2669/**
2670 *      sdev_evt_alloc - allocate a new scsi event
2671 *      @evt_type: type of event to allocate
2672 *      @gfpflags: GFP flags for allocation
2673 *
2674 *      Allocates and returns a new scsi_event.
2675 */
2676struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2677                                  gfp_t gfpflags)
2678{
2679        struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2680        if (!evt)
2681                return NULL;
2682
2683        evt->evt_type = evt_type;
2684        INIT_LIST_HEAD(&evt->node);
2685
2686        /* evt_type-specific initialization, if any */
2687        switch (evt_type) {
2688        case SDEV_EVT_MEDIA_CHANGE:
2689        case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2690        case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2691        case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2692        case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2693        case SDEV_EVT_LUN_CHANGE_REPORTED:
2694        case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2695        default:
2696                /* do nothing */
2697                break;
2698        }
2699
2700        return evt;
2701}
2702EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2703
2704/**
2705 *      sdev_evt_send_simple - send asserted event to uevent thread
2706 *      @sdev: scsi_device event occurred on
2707 *      @evt_type: type of event to send
2708 *      @gfpflags: GFP flags for allocation
2709 *
2710 *      Assert scsi device event asynchronously, given an event type.
2711 */
2712void sdev_evt_send_simple(struct scsi_device *sdev,
2713                          enum scsi_device_event evt_type, gfp_t gfpflags)
2714{
2715        struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2716        if (!evt) {
2717                sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2718                            evt_type);
2719                return;
2720        }
2721
2722        sdev_evt_send(sdev, evt);
2723}
2724EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2725
2726/**
2727 *      scsi_device_quiesce - Block user issued commands.
2728 *      @sdev:  scsi device to quiesce.
2729 *
2730 *      This works by trying to transition to the SDEV_QUIESCE state
2731 *      (which must be a legal transition).  When the device is in this
2732 *      state, only special requests will be accepted, all others will
2733 *      be deferred.  Since special requests may also be requeued requests,
2734 *      a successful return doesn't guarantee the device will be 
2735 *      totally quiescent.
2736 *
2737 *      Must be called with user context, may sleep.
2738 *
2739 *      Returns zero if unsuccessful or an error if not.
2740 */
2741int
2742scsi_device_quiesce(struct scsi_device *sdev)
2743{
2744        int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2745        if (err)
2746                return err;
2747
2748        scsi_run_queue(sdev->request_queue);
2749        while (atomic_read(&sdev->device_busy)) {
2750                msleep_interruptible(200);
2751                scsi_run_queue(sdev->request_queue);
2752        }
2753        return 0;
2754}
2755EXPORT_SYMBOL(scsi_device_quiesce);
2756
2757/**
2758 *      scsi_device_resume - Restart user issued commands to a quiesced device.
2759 *      @sdev:  scsi device to resume.
2760 *
2761 *      Moves the device from quiesced back to running and restarts the
2762 *      queues.
2763 *
2764 *      Must be called with user context, may sleep.
2765 */
2766void scsi_device_resume(struct scsi_device *sdev)
2767{
2768        /* check if the device state was mutated prior to resume, and if
2769         * so assume the state is being managed elsewhere (for example
2770         * device deleted during suspend)
2771         */
2772        if (sdev->sdev_state != SDEV_QUIESCE ||
2773            scsi_device_set_state(sdev, SDEV_RUNNING))
2774                return;
2775        scsi_run_queue(sdev->request_queue);
2776}
2777EXPORT_SYMBOL(scsi_device_resume);
2778
2779static void
2780device_quiesce_fn(struct scsi_device *sdev, void *data)
2781{
2782        scsi_device_quiesce(sdev);
2783}
2784
2785void
2786scsi_target_quiesce(struct scsi_target *starget)
2787{
2788        starget_for_each_device(starget, NULL, device_quiesce_fn);
2789}
2790EXPORT_SYMBOL(scsi_target_quiesce);
2791
2792static void
2793device_resume_fn(struct scsi_device *sdev, void *data)
2794{
2795        scsi_device_resume(sdev);
2796}
2797
2798void
2799scsi_target_resume(struct scsi_target *starget)
2800{
2801        starget_for_each_device(starget, NULL, device_resume_fn);
2802}
2803EXPORT_SYMBOL(scsi_target_resume);
2804
2805/**
2806 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2807 * @sdev:       device to block
2808 *
2809 * Block request made by scsi lld's to temporarily stop all
2810 * scsi commands on the specified device.  Called from interrupt
2811 * or normal process context.
2812 *
2813 * Returns zero if successful or error if not
2814 *
2815 * Notes:       
2816 *      This routine transitions the device to the SDEV_BLOCK state
2817 *      (which must be a legal transition).  When the device is in this
2818 *      state, all commands are deferred until the scsi lld reenables
2819 *      the device with scsi_device_unblock or device_block_tmo fires.
2820 */
2821int
2822scsi_internal_device_block(struct scsi_device *sdev)
2823{
2824        struct request_queue *q = sdev->request_queue;
2825        unsigned long flags;
2826        int err = 0;
2827
2828        err = scsi_device_set_state(sdev, SDEV_BLOCK);
2829        if (err) {
2830                err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2831
2832                if (err)
2833                        return err;
2834        }
2835
2836        /* 
2837         * The device has transitioned to SDEV_BLOCK.  Stop the
2838         * block layer from calling the midlayer with this device's
2839         * request queue. 
2840         */
2841        if (q->mq_ops) {
2842                blk_mq_stop_hw_queues(q);
2843        } else {
2844                spin_lock_irqsave(q->queue_lock, flags);
2845                blk_stop_queue(q);
2846                spin_unlock_irqrestore(q->queue_lock, flags);
2847        }
2848
2849        return 0;
2850}
2851EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2852 
2853/**
2854 * scsi_internal_device_unblock - resume a device after a block request
2855 * @sdev:       device to resume
2856 * @new_state:  state to set devices to after unblocking
2857 *
2858 * Called by scsi lld's or the midlayer to restart the device queue
2859 * for the previously suspended scsi device.  Called from interrupt or
2860 * normal process context.
2861 *
2862 * Returns zero if successful or error if not.
2863 *
2864 * Notes:       
2865 *      This routine transitions the device to the SDEV_RUNNING state
2866 *      or to one of the offline states (which must be a legal transition)
2867 *      allowing the midlayer to goose the queue for this device.
2868 */
2869int
2870scsi_internal_device_unblock(struct scsi_device *sdev,
2871                             enum scsi_device_state new_state)
2872{
2873        struct request_queue *q = sdev->request_queue; 
2874        unsigned long flags;
2875
2876        /*
2877         * Try to transition the scsi device to SDEV_RUNNING or one of the
2878         * offlined states and goose the device queue if successful.
2879         */
2880        if ((sdev->sdev_state == SDEV_BLOCK) ||
2881            (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2882                sdev->sdev_state = new_state;
2883        else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2884                if (new_state == SDEV_TRANSPORT_OFFLINE ||
2885                    new_state == SDEV_OFFLINE)
2886                        sdev->sdev_state = new_state;
2887                else
2888                        sdev->sdev_state = SDEV_CREATED;
2889        } else if (sdev->sdev_state != SDEV_CANCEL &&
2890                 sdev->sdev_state != SDEV_OFFLINE)
2891                return -EINVAL;
2892
2893        if (q->mq_ops) {
2894                blk_mq_start_stopped_hw_queues(q, false);
2895        } else {
2896                spin_lock_irqsave(q->queue_lock, flags);
2897                blk_start_queue(q);
2898                spin_unlock_irqrestore(q->queue_lock, flags);
2899        }
2900
2901        return 0;
2902}
2903EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2904
2905static void
2906device_block(struct scsi_device *sdev, void *data)
2907{
2908        scsi_internal_device_block(sdev);
2909}
2910
2911static int
2912target_block(struct device *dev, void *data)
2913{
2914        if (scsi_is_target_device(dev))
2915                starget_for_each_device(to_scsi_target(dev), NULL,
2916                                        device_block);
2917        return 0;
2918}
2919
2920void
2921scsi_target_block(struct device *dev)
2922{
2923        if (scsi_is_target_device(dev))
2924                starget_for_each_device(to_scsi_target(dev), NULL,
2925                                        device_block);
2926        else
2927                device_for_each_child(dev, NULL, target_block);
2928}
2929EXPORT_SYMBOL_GPL(scsi_target_block);
2930
2931static void
2932device_unblock(struct scsi_device *sdev, void *data)
2933{
2934        scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2935}
2936
2937static int
2938target_unblock(struct device *dev, void *data)
2939{
2940        if (scsi_is_target_device(dev))
2941                starget_for_each_device(to_scsi_target(dev), data,
2942                                        device_unblock);
2943        return 0;
2944}
2945
2946void
2947scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2948{
2949        if (scsi_is_target_device(dev))
2950                starget_for_each_device(to_scsi_target(dev), &new_state,
2951                                        device_unblock);
2952        else
2953                device_for_each_child(dev, &new_state, target_unblock);
2954}
2955EXPORT_SYMBOL_GPL(scsi_target_unblock);
2956
2957/**
2958 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2959 * @sgl:        scatter-gather list
2960 * @sg_count:   number of segments in sg
2961 * @offset:     offset in bytes into sg, on return offset into the mapped area
2962 * @len:        bytes to map, on return number of bytes mapped
2963 *
2964 * Returns virtual address of the start of the mapped page
2965 */
2966void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2967                          size_t *offset, size_t *len)
2968{
2969        int i;
2970        size_t sg_len = 0, len_complete = 0;
2971        struct scatterlist *sg;
2972        struct page *page;
2973
2974        WARN_ON(!irqs_disabled());
2975
2976        for_each_sg(sgl, sg, sg_count, i) {
2977                len_complete = sg_len; /* Complete sg-entries */
2978                sg_len += sg->length;
2979                if (sg_len > *offset)
2980                        break;
2981        }
2982
2983        if (unlikely(i == sg_count)) {
2984                printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2985                        "elements %d\n",
2986                       __func__, sg_len, *offset, sg_count);
2987                WARN_ON(1);
2988                return NULL;
2989        }
2990
2991        /* Offset starting from the beginning of first page in this sg-entry */
2992        *offset = *offset - len_complete + sg->offset;
2993
2994        /* Assumption: contiguous pages can be accessed as "page + i" */
2995        page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2996        *offset &= ~PAGE_MASK;
2997
2998        /* Bytes in this sg-entry from *offset to the end of the page */
2999        sg_len = PAGE_SIZE - *offset;
3000        if (*len > sg_len)
3001                *len = sg_len;
3002
3003        return kmap_atomic(page);
3004}
3005EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3006
3007/**
3008 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3009 * @virt:       virtual address to be unmapped
3010 */
3011void scsi_kunmap_atomic_sg(void *virt)
3012{
3013        kunmap_atomic(virt);
3014}
3015EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3016
3017void sdev_disable_disk_events(struct scsi_device *sdev)
3018{
3019        atomic_inc(&sdev->disk_events_disable_depth);
3020}
3021EXPORT_SYMBOL(sdev_disable_disk_events);
3022
3023void sdev_enable_disk_events(struct scsi_device *sdev)
3024{
3025        if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3026                return;
3027        atomic_dec(&sdev->disk_events_disable_depth);
3028}
3029EXPORT_SYMBOL(sdev_enable_disk_events);
3030
3031/**
3032 * scsi_vpd_lun_id - return a unique device identification
3033 * @sdev: SCSI device
3034 * @id:   buffer for the identification
3035 * @id_len:  length of the buffer
3036 *
3037 * Copies a unique device identification into @id based
3038 * on the information in the VPD page 0x83 of the device.
3039 * The string will be formatted as a SCSI name string.
3040 *
3041 * Returns the length of the identification or error on failure.
3042 * If the identifier is longer than the supplied buffer the actual
3043 * identifier length is returned and the buffer is not zero-padded.
3044 */
3045int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3046{
3047        u8 cur_id_type = 0xff;
3048        u8 cur_id_size = 0;
3049        unsigned char *d, *cur_id_str;
3050        unsigned char __rcu *vpd_pg83;
3051        int id_size = -EINVAL;
3052
3053        rcu_read_lock();
3054        vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3055        if (!vpd_pg83) {
3056                rcu_read_unlock();
3057                return -ENXIO;
3058        }
3059
3060        /*
3061         * Look for the correct descriptor.
3062         * Order of preference for lun descriptor:
3063         * - SCSI name string
3064         * - NAA IEEE Registered Extended
3065         * - EUI-64 based 16-byte
3066         * - EUI-64 based 12-byte
3067         * - NAA IEEE Registered
3068         * - NAA IEEE Extended
3069         * - T10 Vendor ID
3070         * as longer descriptors reduce the likelyhood
3071         * of identification clashes.
3072         */
3073
3074        /* The id string must be at least 20 bytes + terminating NULL byte */
3075        if (id_len < 21) {
3076                rcu_read_unlock();
3077                return -EINVAL;
3078        }
3079
3080        memset(id, 0, id_len);
3081        d = vpd_pg83 + 4;
3082        while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3083                /* Skip designators not referring to the LUN */
3084                if ((d[1] & 0x30) != 0x00)
3085                        goto next_desig;
3086
3087                switch (d[1] & 0xf) {
3088                case 0x1:
3089                        /* T10 Vendor ID */
3090                        if (cur_id_size > d[3])
3091                                break;
3092                        /* Prefer anything */
3093                        if (cur_id_type > 0x01 && cur_id_type != 0xff)
3094                                break;
3095                        cur_id_size = d[3];
3096                        if (cur_id_size + 4 > id_len)
3097                                cur_id_size = id_len - 4;
3098                        cur_id_str = d + 4;
3099                        cur_id_type = d[1] & 0xf;
3100                        id_size = snprintf(id, id_len, "t10.%*pE",
3101                                           cur_id_size, cur_id_str);
3102                        break;
3103                case 0x2:
3104                        /* EUI-64 */
3105                        if (cur_id_size > d[3])
3106                                break;
3107                        /* Prefer NAA IEEE Registered Extended */
3108                        if (cur_id_type == 0x3 &&
3109                            cur_id_size == d[3])
3110                                break;
3111                        cur_id_size = d[3];
3112                        cur_id_str = d + 4;
3113                        cur_id_type = d[1] & 0xf;
3114                        switch (cur_id_size) {
3115                        case 8:
3116                                id_size = snprintf(id, id_len,
3117                                                   "eui.%8phN",
3118                                                   cur_id_str);
3119                                break;
3120                        case 12:
3121                                id_size = snprintf(id, id_len,
3122                                                   "eui.%12phN",
3123                                                   cur_id_str);
3124                                break;
3125                        case 16:
3126                                id_size = snprintf(id, id_len,
3127                                                   "eui.%16phN",
3128                                                   cur_id_str);
3129                                break;
3130                        default:
3131                                cur_id_size = 0;
3132                                break;
3133                        }
3134                        break;
3135                case 0x3:
3136                        /* NAA */
3137                        if (cur_id_size > d[3])
3138                                break;
3139                        cur_id_size = d[3];
3140                        cur_id_str = d + 4;
3141                        cur_id_type = d[1] & 0xf;
3142                        switch (cur_id_size) {
3143                        case 8:
3144                                id_size = snprintf(id, id_len,
3145                                                   "naa.%8phN",
3146                                                   cur_id_str);
3147                                break;
3148                        case 16:
3149                                id_size = snprintf(id, id_len,
3150                                                   "naa.%16phN",
3151                                                   cur_id_str);
3152                                break;
3153                        default:
3154                                cur_id_size = 0;
3155                                break;
3156                        }
3157                        break;
3158                case 0x8:
3159                        /* SCSI name string */
3160                        if (cur_id_size + 4 > d[3])
3161                                break;
3162                        /* Prefer others for truncated descriptor */
3163                        if (cur_id_size && d[3] > id_len)
3164                                break;
3165                        cur_id_size = id_size = d[3];
3166                        cur_id_str = d + 4;
3167                        cur_id_type = d[1] & 0xf;
3168                        if (cur_id_size >= id_len)
3169                                cur_id_size = id_len - 1;
3170                        memcpy(id, cur_id_str, cur_id_size);
3171                        /* Decrease priority for truncated descriptor */
3172                        if (cur_id_size != id_size)
3173                                cur_id_size = 6;
3174                        break;
3175                default:
3176                        break;
3177                }
3178next_desig:
3179                d += d[3] + 4;
3180        }
3181        rcu_read_unlock();
3182
3183        return id_size;
3184}
3185EXPORT_SYMBOL(scsi_vpd_lun_id);
3186
3187/*
3188 * scsi_vpd_tpg_id - return a target port group identifier
3189 * @sdev: SCSI device
3190 *
3191 * Returns the Target Port Group identifier from the information
3192 * froom VPD page 0x83 of the device.
3193 *
3194 * Returns the identifier or error on failure.
3195 */
3196int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3197{
3198        unsigned char *d;
3199        unsigned char __rcu *vpd_pg83;
3200        int group_id = -EAGAIN, rel_port = -1;
3201
3202        rcu_read_lock();
3203        vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3204        if (!vpd_pg83) {
3205                rcu_read_unlock();
3206                return -ENXIO;
3207        }
3208
3209        d = sdev->vpd_pg83 + 4;
3210        while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3211                switch (d[1] & 0xf) {
3212                case 0x4:
3213                        /* Relative target port */
3214                        rel_port = get_unaligned_be16(&d[6]);
3215                        break;
3216                case 0x5:
3217                        /* Target port group */
3218                        group_id = get_unaligned_be16(&d[6]);
3219                        break;
3220                default:
3221                        break;
3222                }
3223                d += d[3] + 4;
3224        }
3225        rcu_read_unlock();
3226
3227        if (group_id >= 0 && rel_id && rel_port != -1)
3228                *rel_id = rel_port;
3229
3230        return group_id;
3231}
3232EXPORT_SYMBOL(scsi_vpd_tpg_id);
3233