linux/drivers/spi/spi.c
<<
>>
Prefs
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/cache.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dmaengine.h>
  24#include <linux/mutex.h>
  25#include <linux/of_device.h>
  26#include <linux/of_irq.h>
  27#include <linux/clk/clk-conf.h>
  28#include <linux/slab.h>
  29#include <linux/mod_devicetable.h>
  30#include <linux/spi/spi.h>
  31#include <linux/of_gpio.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/pm_domain.h>
  34#include <linux/export.h>
  35#include <linux/sched/rt.h>
  36#include <linux/delay.h>
  37#include <linux/kthread.h>
  38#include <linux/ioport.h>
  39#include <linux/acpi.h>
  40#include <linux/highmem.h>
  41
  42#define CREATE_TRACE_POINTS
  43#include <trace/events/spi.h>
  44
  45static void spidev_release(struct device *dev)
  46{
  47        struct spi_device       *spi = to_spi_device(dev);
  48
  49        /* spi masters may cleanup for released devices */
  50        if (spi->master->cleanup)
  51                spi->master->cleanup(spi);
  52
  53        spi_master_put(spi->master);
  54        kfree(spi);
  55}
  56
  57static ssize_t
  58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  59{
  60        const struct spi_device *spi = to_spi_device(dev);
  61        int len;
  62
  63        len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  64        if (len != -ENODEV)
  65                return len;
  66
  67        return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  68}
  69static DEVICE_ATTR_RO(modalias);
  70
  71#define SPI_STATISTICS_ATTRS(field, file)                               \
  72static ssize_t spi_master_##field##_show(struct device *dev,            \
  73                                         struct device_attribute *attr, \
  74                                         char *buf)                     \
  75{                                                                       \
  76        struct spi_master *master = container_of(dev,                   \
  77                                                 struct spi_master, dev); \
  78        return spi_statistics_##field##_show(&master->statistics, buf); \
  79}                                                                       \
  80static struct device_attribute dev_attr_spi_master_##field = {          \
  81        .attr = { .name = file, .mode = S_IRUGO },                      \
  82        .show = spi_master_##field##_show,                              \
  83};                                                                      \
  84static ssize_t spi_device_##field##_show(struct device *dev,            \
  85                                         struct device_attribute *attr, \
  86                                        char *buf)                      \
  87{                                                                       \
  88        struct spi_device *spi = to_spi_device(dev);                    \
  89        return spi_statistics_##field##_show(&spi->statistics, buf);    \
  90}                                                                       \
  91static struct device_attribute dev_attr_spi_device_##field = {          \
  92        .attr = { .name = file, .mode = S_IRUGO },                      \
  93        .show = spi_device_##field##_show,                              \
  94}
  95
  96#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
  97static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
  98                                            char *buf)                  \
  99{                                                                       \
 100        unsigned long flags;                                            \
 101        ssize_t len;                                                    \
 102        spin_lock_irqsave(&stat->lock, flags);                          \
 103        len = sprintf(buf, format_string, stat->field);                 \
 104        spin_unlock_irqrestore(&stat->lock, flags);                     \
 105        return len;                                                     \
 106}                                                                       \
 107SPI_STATISTICS_ATTRS(name, file)
 108
 109#define SPI_STATISTICS_SHOW(field, format_string)                       \
 110        SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
 111                                 field, format_string)
 112
 113SPI_STATISTICS_SHOW(messages, "%lu");
 114SPI_STATISTICS_SHOW(transfers, "%lu");
 115SPI_STATISTICS_SHOW(errors, "%lu");
 116SPI_STATISTICS_SHOW(timedout, "%lu");
 117
 118SPI_STATISTICS_SHOW(spi_sync, "%lu");
 119SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 120SPI_STATISTICS_SHOW(spi_async, "%lu");
 121
 122SPI_STATISTICS_SHOW(bytes, "%llu");
 123SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 124SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 125
 126#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
 127        SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
 128                                 "transfer_bytes_histo_" number,        \
 129                                 transfer_bytes_histo[index],  "%lu")
 130SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 131SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 132SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 133SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 134SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 135SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 136SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 137SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 138SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 139SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 140SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 141SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 142SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 143SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 144SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 145SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 146SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 147
 148SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 149
 150static struct attribute *spi_dev_attrs[] = {
 151        &dev_attr_modalias.attr,
 152        NULL,
 153};
 154
 155static const struct attribute_group spi_dev_group = {
 156        .attrs  = spi_dev_attrs,
 157};
 158
 159static struct attribute *spi_device_statistics_attrs[] = {
 160        &dev_attr_spi_device_messages.attr,
 161        &dev_attr_spi_device_transfers.attr,
 162        &dev_attr_spi_device_errors.attr,
 163        &dev_attr_spi_device_timedout.attr,
 164        &dev_attr_spi_device_spi_sync.attr,
 165        &dev_attr_spi_device_spi_sync_immediate.attr,
 166        &dev_attr_spi_device_spi_async.attr,
 167        &dev_attr_spi_device_bytes.attr,
 168        &dev_attr_spi_device_bytes_rx.attr,
 169        &dev_attr_spi_device_bytes_tx.attr,
 170        &dev_attr_spi_device_transfer_bytes_histo0.attr,
 171        &dev_attr_spi_device_transfer_bytes_histo1.attr,
 172        &dev_attr_spi_device_transfer_bytes_histo2.attr,
 173        &dev_attr_spi_device_transfer_bytes_histo3.attr,
 174        &dev_attr_spi_device_transfer_bytes_histo4.attr,
 175        &dev_attr_spi_device_transfer_bytes_histo5.attr,
 176        &dev_attr_spi_device_transfer_bytes_histo6.attr,
 177        &dev_attr_spi_device_transfer_bytes_histo7.attr,
 178        &dev_attr_spi_device_transfer_bytes_histo8.attr,
 179        &dev_attr_spi_device_transfer_bytes_histo9.attr,
 180        &dev_attr_spi_device_transfer_bytes_histo10.attr,
 181        &dev_attr_spi_device_transfer_bytes_histo11.attr,
 182        &dev_attr_spi_device_transfer_bytes_histo12.attr,
 183        &dev_attr_spi_device_transfer_bytes_histo13.attr,
 184        &dev_attr_spi_device_transfer_bytes_histo14.attr,
 185        &dev_attr_spi_device_transfer_bytes_histo15.attr,
 186        &dev_attr_spi_device_transfer_bytes_histo16.attr,
 187        &dev_attr_spi_device_transfers_split_maxsize.attr,
 188        NULL,
 189};
 190
 191static const struct attribute_group spi_device_statistics_group = {
 192        .name  = "statistics",
 193        .attrs  = spi_device_statistics_attrs,
 194};
 195
 196static const struct attribute_group *spi_dev_groups[] = {
 197        &spi_dev_group,
 198        &spi_device_statistics_group,
 199        NULL,
 200};
 201
 202static struct attribute *spi_master_statistics_attrs[] = {
 203        &dev_attr_spi_master_messages.attr,
 204        &dev_attr_spi_master_transfers.attr,
 205        &dev_attr_spi_master_errors.attr,
 206        &dev_attr_spi_master_timedout.attr,
 207        &dev_attr_spi_master_spi_sync.attr,
 208        &dev_attr_spi_master_spi_sync_immediate.attr,
 209        &dev_attr_spi_master_spi_async.attr,
 210        &dev_attr_spi_master_bytes.attr,
 211        &dev_attr_spi_master_bytes_rx.attr,
 212        &dev_attr_spi_master_bytes_tx.attr,
 213        &dev_attr_spi_master_transfer_bytes_histo0.attr,
 214        &dev_attr_spi_master_transfer_bytes_histo1.attr,
 215        &dev_attr_spi_master_transfer_bytes_histo2.attr,
 216        &dev_attr_spi_master_transfer_bytes_histo3.attr,
 217        &dev_attr_spi_master_transfer_bytes_histo4.attr,
 218        &dev_attr_spi_master_transfer_bytes_histo5.attr,
 219        &dev_attr_spi_master_transfer_bytes_histo6.attr,
 220        &dev_attr_spi_master_transfer_bytes_histo7.attr,
 221        &dev_attr_spi_master_transfer_bytes_histo8.attr,
 222        &dev_attr_spi_master_transfer_bytes_histo9.attr,
 223        &dev_attr_spi_master_transfer_bytes_histo10.attr,
 224        &dev_attr_spi_master_transfer_bytes_histo11.attr,
 225        &dev_attr_spi_master_transfer_bytes_histo12.attr,
 226        &dev_attr_spi_master_transfer_bytes_histo13.attr,
 227        &dev_attr_spi_master_transfer_bytes_histo14.attr,
 228        &dev_attr_spi_master_transfer_bytes_histo15.attr,
 229        &dev_attr_spi_master_transfer_bytes_histo16.attr,
 230        &dev_attr_spi_master_transfers_split_maxsize.attr,
 231        NULL,
 232};
 233
 234static const struct attribute_group spi_master_statistics_group = {
 235        .name  = "statistics",
 236        .attrs  = spi_master_statistics_attrs,
 237};
 238
 239static const struct attribute_group *spi_master_groups[] = {
 240        &spi_master_statistics_group,
 241        NULL,
 242};
 243
 244void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 245                                       struct spi_transfer *xfer,
 246                                       struct spi_master *master)
 247{
 248        unsigned long flags;
 249        int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 250
 251        if (l2len < 0)
 252                l2len = 0;
 253
 254        spin_lock_irqsave(&stats->lock, flags);
 255
 256        stats->transfers++;
 257        stats->transfer_bytes_histo[l2len]++;
 258
 259        stats->bytes += xfer->len;
 260        if ((xfer->tx_buf) &&
 261            (xfer->tx_buf != master->dummy_tx))
 262                stats->bytes_tx += xfer->len;
 263        if ((xfer->rx_buf) &&
 264            (xfer->rx_buf != master->dummy_rx))
 265                stats->bytes_rx += xfer->len;
 266
 267        spin_unlock_irqrestore(&stats->lock, flags);
 268}
 269EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 270
 271/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 272 * and the sysfs version makes coldplug work too.
 273 */
 274
 275static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 276                                                const struct spi_device *sdev)
 277{
 278        while (id->name[0]) {
 279                if (!strcmp(sdev->modalias, id->name))
 280                        return id;
 281                id++;
 282        }
 283        return NULL;
 284}
 285
 286const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 287{
 288        const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 289
 290        return spi_match_id(sdrv->id_table, sdev);
 291}
 292EXPORT_SYMBOL_GPL(spi_get_device_id);
 293
 294static int spi_match_device(struct device *dev, struct device_driver *drv)
 295{
 296        const struct spi_device *spi = to_spi_device(dev);
 297        const struct spi_driver *sdrv = to_spi_driver(drv);
 298
 299        /* Attempt an OF style match */
 300        if (of_driver_match_device(dev, drv))
 301                return 1;
 302
 303        /* Then try ACPI */
 304        if (acpi_driver_match_device(dev, drv))
 305                return 1;
 306
 307        if (sdrv->id_table)
 308                return !!spi_match_id(sdrv->id_table, spi);
 309
 310        return strcmp(spi->modalias, drv->name) == 0;
 311}
 312
 313static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 314{
 315        const struct spi_device         *spi = to_spi_device(dev);
 316        int rc;
 317
 318        rc = acpi_device_uevent_modalias(dev, env);
 319        if (rc != -ENODEV)
 320                return rc;
 321
 322        add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 323        return 0;
 324}
 325
 326struct bus_type spi_bus_type = {
 327        .name           = "spi",
 328        .dev_groups     = spi_dev_groups,
 329        .match          = spi_match_device,
 330        .uevent         = spi_uevent,
 331};
 332EXPORT_SYMBOL_GPL(spi_bus_type);
 333
 334
 335static int spi_drv_probe(struct device *dev)
 336{
 337        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 338        struct spi_device               *spi = to_spi_device(dev);
 339        int ret;
 340
 341        ret = of_clk_set_defaults(dev->of_node, false);
 342        if (ret)
 343                return ret;
 344
 345        if (dev->of_node) {
 346                spi->irq = of_irq_get(dev->of_node, 0);
 347                if (spi->irq == -EPROBE_DEFER)
 348                        return -EPROBE_DEFER;
 349                if (spi->irq < 0)
 350                        spi->irq = 0;
 351        }
 352
 353        ret = dev_pm_domain_attach(dev, true);
 354        if (ret != -EPROBE_DEFER) {
 355                ret = sdrv->probe(spi);
 356                if (ret)
 357                        dev_pm_domain_detach(dev, true);
 358        }
 359
 360        return ret;
 361}
 362
 363static int spi_drv_remove(struct device *dev)
 364{
 365        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 366        int ret;
 367
 368        ret = sdrv->remove(to_spi_device(dev));
 369        dev_pm_domain_detach(dev, true);
 370
 371        return ret;
 372}
 373
 374static void spi_drv_shutdown(struct device *dev)
 375{
 376        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 377
 378        sdrv->shutdown(to_spi_device(dev));
 379}
 380
 381/**
 382 * __spi_register_driver - register a SPI driver
 383 * @owner: owner module of the driver to register
 384 * @sdrv: the driver to register
 385 * Context: can sleep
 386 *
 387 * Return: zero on success, else a negative error code.
 388 */
 389int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 390{
 391        sdrv->driver.owner = owner;
 392        sdrv->driver.bus = &spi_bus_type;
 393        if (sdrv->probe)
 394                sdrv->driver.probe = spi_drv_probe;
 395        if (sdrv->remove)
 396                sdrv->driver.remove = spi_drv_remove;
 397        if (sdrv->shutdown)
 398                sdrv->driver.shutdown = spi_drv_shutdown;
 399        return driver_register(&sdrv->driver);
 400}
 401EXPORT_SYMBOL_GPL(__spi_register_driver);
 402
 403/*-------------------------------------------------------------------------*/
 404
 405/* SPI devices should normally not be created by SPI device drivers; that
 406 * would make them board-specific.  Similarly with SPI master drivers.
 407 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 408 * with other readonly (flashable) information about mainboard devices.
 409 */
 410
 411struct boardinfo {
 412        struct list_head        list;
 413        struct spi_board_info   board_info;
 414};
 415
 416static LIST_HEAD(board_list);
 417static LIST_HEAD(spi_master_list);
 418
 419/*
 420 * Used to protect add/del opertion for board_info list and
 421 * spi_master list, and their matching process
 422 */
 423static DEFINE_MUTEX(board_lock);
 424
 425/**
 426 * spi_alloc_device - Allocate a new SPI device
 427 * @master: Controller to which device is connected
 428 * Context: can sleep
 429 *
 430 * Allows a driver to allocate and initialize a spi_device without
 431 * registering it immediately.  This allows a driver to directly
 432 * fill the spi_device with device parameters before calling
 433 * spi_add_device() on it.
 434 *
 435 * Caller is responsible to call spi_add_device() on the returned
 436 * spi_device structure to add it to the SPI master.  If the caller
 437 * needs to discard the spi_device without adding it, then it should
 438 * call spi_dev_put() on it.
 439 *
 440 * Return: a pointer to the new device, or NULL.
 441 */
 442struct spi_device *spi_alloc_device(struct spi_master *master)
 443{
 444        struct spi_device       *spi;
 445
 446        if (!spi_master_get(master))
 447                return NULL;
 448
 449        spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 450        if (!spi) {
 451                spi_master_put(master);
 452                return NULL;
 453        }
 454
 455        spi->master = master;
 456        spi->dev.parent = &master->dev;
 457        spi->dev.bus = &spi_bus_type;
 458        spi->dev.release = spidev_release;
 459        spi->cs_gpio = -ENOENT;
 460
 461        spin_lock_init(&spi->statistics.lock);
 462
 463        device_initialize(&spi->dev);
 464        return spi;
 465}
 466EXPORT_SYMBOL_GPL(spi_alloc_device);
 467
 468static void spi_dev_set_name(struct spi_device *spi)
 469{
 470        struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 471
 472        if (adev) {
 473                dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 474                return;
 475        }
 476
 477        dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 478                     spi->chip_select);
 479}
 480
 481static int spi_dev_check(struct device *dev, void *data)
 482{
 483        struct spi_device *spi = to_spi_device(dev);
 484        struct spi_device *new_spi = data;
 485
 486        if (spi->master == new_spi->master &&
 487            spi->chip_select == new_spi->chip_select)
 488                return -EBUSY;
 489        return 0;
 490}
 491
 492/**
 493 * spi_add_device - Add spi_device allocated with spi_alloc_device
 494 * @spi: spi_device to register
 495 *
 496 * Companion function to spi_alloc_device.  Devices allocated with
 497 * spi_alloc_device can be added onto the spi bus with this function.
 498 *
 499 * Return: 0 on success; negative errno on failure
 500 */
 501int spi_add_device(struct spi_device *spi)
 502{
 503        static DEFINE_MUTEX(spi_add_lock);
 504        struct spi_master *master = spi->master;
 505        struct device *dev = master->dev.parent;
 506        int status;
 507
 508        /* Chipselects are numbered 0..max; validate. */
 509        if (spi->chip_select >= master->num_chipselect) {
 510                dev_err(dev, "cs%d >= max %d\n",
 511                        spi->chip_select,
 512                        master->num_chipselect);
 513                return -EINVAL;
 514        }
 515
 516        /* Set the bus ID string */
 517        spi_dev_set_name(spi);
 518
 519        /* We need to make sure there's no other device with this
 520         * chipselect **BEFORE** we call setup(), else we'll trash
 521         * its configuration.  Lock against concurrent add() calls.
 522         */
 523        mutex_lock(&spi_add_lock);
 524
 525        status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 526        if (status) {
 527                dev_err(dev, "chipselect %d already in use\n",
 528                                spi->chip_select);
 529                goto done;
 530        }
 531
 532        if (master->cs_gpios)
 533                spi->cs_gpio = master->cs_gpios[spi->chip_select];
 534
 535        /* Drivers may modify this initial i/o setup, but will
 536         * normally rely on the device being setup.  Devices
 537         * using SPI_CS_HIGH can't coexist well otherwise...
 538         */
 539        status = spi_setup(spi);
 540        if (status < 0) {
 541                dev_err(dev, "can't setup %s, status %d\n",
 542                                dev_name(&spi->dev), status);
 543                goto done;
 544        }
 545
 546        /* Device may be bound to an active driver when this returns */
 547        status = device_add(&spi->dev);
 548        if (status < 0)
 549                dev_err(dev, "can't add %s, status %d\n",
 550                                dev_name(&spi->dev), status);
 551        else
 552                dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 553
 554done:
 555        mutex_unlock(&spi_add_lock);
 556        return status;
 557}
 558EXPORT_SYMBOL_GPL(spi_add_device);
 559
 560/**
 561 * spi_new_device - instantiate one new SPI device
 562 * @master: Controller to which device is connected
 563 * @chip: Describes the SPI device
 564 * Context: can sleep
 565 *
 566 * On typical mainboards, this is purely internal; and it's not needed
 567 * after board init creates the hard-wired devices.  Some development
 568 * platforms may not be able to use spi_register_board_info though, and
 569 * this is exported so that for example a USB or parport based adapter
 570 * driver could add devices (which it would learn about out-of-band).
 571 *
 572 * Return: the new device, or NULL.
 573 */
 574struct spi_device *spi_new_device(struct spi_master *master,
 575                                  struct spi_board_info *chip)
 576{
 577        struct spi_device       *proxy;
 578        int                     status;
 579
 580        /* NOTE:  caller did any chip->bus_num checks necessary.
 581         *
 582         * Also, unless we change the return value convention to use
 583         * error-or-pointer (not NULL-or-pointer), troubleshootability
 584         * suggests syslogged diagnostics are best here (ugh).
 585         */
 586
 587        proxy = spi_alloc_device(master);
 588        if (!proxy)
 589                return NULL;
 590
 591        WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 592
 593        proxy->chip_select = chip->chip_select;
 594        proxy->max_speed_hz = chip->max_speed_hz;
 595        proxy->mode = chip->mode;
 596        proxy->irq = chip->irq;
 597        strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 598        proxy->dev.platform_data = (void *) chip->platform_data;
 599        proxy->controller_data = chip->controller_data;
 600        proxy->controller_state = NULL;
 601
 602        status = spi_add_device(proxy);
 603        if (status < 0) {
 604                spi_dev_put(proxy);
 605                return NULL;
 606        }
 607
 608        return proxy;
 609}
 610EXPORT_SYMBOL_GPL(spi_new_device);
 611
 612/**
 613 * spi_unregister_device - unregister a single SPI device
 614 * @spi: spi_device to unregister
 615 *
 616 * Start making the passed SPI device vanish. Normally this would be handled
 617 * by spi_unregister_master().
 618 */
 619void spi_unregister_device(struct spi_device *spi)
 620{
 621        if (!spi)
 622                return;
 623
 624        if (spi->dev.of_node)
 625                of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 626        if (ACPI_COMPANION(&spi->dev))
 627                acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 628        device_unregister(&spi->dev);
 629}
 630EXPORT_SYMBOL_GPL(spi_unregister_device);
 631
 632static void spi_match_master_to_boardinfo(struct spi_master *master,
 633                                struct spi_board_info *bi)
 634{
 635        struct spi_device *dev;
 636
 637        if (master->bus_num != bi->bus_num)
 638                return;
 639
 640        dev = spi_new_device(master, bi);
 641        if (!dev)
 642                dev_err(master->dev.parent, "can't create new device for %s\n",
 643                        bi->modalias);
 644}
 645
 646/**
 647 * spi_register_board_info - register SPI devices for a given board
 648 * @info: array of chip descriptors
 649 * @n: how many descriptors are provided
 650 * Context: can sleep
 651 *
 652 * Board-specific early init code calls this (probably during arch_initcall)
 653 * with segments of the SPI device table.  Any device nodes are created later,
 654 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 655 * this table of devices forever, so that reloading a controller driver will
 656 * not make Linux forget about these hard-wired devices.
 657 *
 658 * Other code can also call this, e.g. a particular add-on board might provide
 659 * SPI devices through its expansion connector, so code initializing that board
 660 * would naturally declare its SPI devices.
 661 *
 662 * The board info passed can safely be __initdata ... but be careful of
 663 * any embedded pointers (platform_data, etc), they're copied as-is.
 664 *
 665 * Return: zero on success, else a negative error code.
 666 */
 667int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 668{
 669        struct boardinfo *bi;
 670        int i;
 671
 672        if (!n)
 673                return -EINVAL;
 674
 675        bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
 676        if (!bi)
 677                return -ENOMEM;
 678
 679        for (i = 0; i < n; i++, bi++, info++) {
 680                struct spi_master *master;
 681
 682                memcpy(&bi->board_info, info, sizeof(*info));
 683                mutex_lock(&board_lock);
 684                list_add_tail(&bi->list, &board_list);
 685                list_for_each_entry(master, &spi_master_list, list)
 686                        spi_match_master_to_boardinfo(master, &bi->board_info);
 687                mutex_unlock(&board_lock);
 688        }
 689
 690        return 0;
 691}
 692
 693/*-------------------------------------------------------------------------*/
 694
 695static void spi_set_cs(struct spi_device *spi, bool enable)
 696{
 697        if (spi->mode & SPI_CS_HIGH)
 698                enable = !enable;
 699
 700        if (gpio_is_valid(spi->cs_gpio))
 701                gpio_set_value(spi->cs_gpio, !enable);
 702        else if (spi->master->set_cs)
 703                spi->master->set_cs(spi, !enable);
 704}
 705
 706#ifdef CONFIG_HAS_DMA
 707static int spi_map_buf(struct spi_master *master, struct device *dev,
 708                       struct sg_table *sgt, void *buf, size_t len,
 709                       enum dma_data_direction dir)
 710{
 711        const bool vmalloced_buf = is_vmalloc_addr(buf);
 712        unsigned int max_seg_size = dma_get_max_seg_size(dev);
 713#ifdef CONFIG_HIGHMEM
 714        const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 715                                (unsigned long)buf < (PKMAP_BASE +
 716                                        (LAST_PKMAP * PAGE_SIZE)));
 717#else
 718        const bool kmap_buf = false;
 719#endif
 720        int desc_len;
 721        int sgs;
 722        struct page *vm_page;
 723        void *sg_buf;
 724        size_t min;
 725        int i, ret;
 726
 727        if (vmalloced_buf || kmap_buf) {
 728                desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 729                sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 730        } else if (virt_addr_valid(buf)) {
 731                desc_len = min_t(int, max_seg_size, master->max_dma_len);
 732                sgs = DIV_ROUND_UP(len, desc_len);
 733        } else {
 734                return -EINVAL;
 735        }
 736
 737        ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 738        if (ret != 0)
 739                return ret;
 740
 741        for (i = 0; i < sgs; i++) {
 742
 743                if (vmalloced_buf || kmap_buf) {
 744                        min = min_t(size_t,
 745                                    len, desc_len - offset_in_page(buf));
 746                        if (vmalloced_buf)
 747                                vm_page = vmalloc_to_page(buf);
 748                        else
 749                                vm_page = kmap_to_page(buf);
 750                        if (!vm_page) {
 751                                sg_free_table(sgt);
 752                                return -ENOMEM;
 753                        }
 754                        sg_set_page(&sgt->sgl[i], vm_page,
 755                                    min, offset_in_page(buf));
 756                } else {
 757                        min = min_t(size_t, len, desc_len);
 758                        sg_buf = buf;
 759                        sg_set_buf(&sgt->sgl[i], sg_buf, min);
 760                }
 761
 762                buf += min;
 763                len -= min;
 764        }
 765
 766        ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 767        if (!ret)
 768                ret = -ENOMEM;
 769        if (ret < 0) {
 770                sg_free_table(sgt);
 771                return ret;
 772        }
 773
 774        sgt->nents = ret;
 775
 776        return 0;
 777}
 778
 779static void spi_unmap_buf(struct spi_master *master, struct device *dev,
 780                          struct sg_table *sgt, enum dma_data_direction dir)
 781{
 782        if (sgt->orig_nents) {
 783                dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 784                sg_free_table(sgt);
 785        }
 786}
 787
 788static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
 789{
 790        struct device *tx_dev, *rx_dev;
 791        struct spi_transfer *xfer;
 792        int ret;
 793
 794        if (!master->can_dma)
 795                return 0;
 796
 797        if (master->dma_tx)
 798                tx_dev = master->dma_tx->device->dev;
 799        else
 800                tx_dev = &master->dev;
 801
 802        if (master->dma_rx)
 803                rx_dev = master->dma_rx->device->dev;
 804        else
 805                rx_dev = &master->dev;
 806
 807        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 808                if (!master->can_dma(master, msg->spi, xfer))
 809                        continue;
 810
 811                if (xfer->tx_buf != NULL) {
 812                        ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
 813                                          (void *)xfer->tx_buf, xfer->len,
 814                                          DMA_TO_DEVICE);
 815                        if (ret != 0)
 816                                return ret;
 817                }
 818
 819                if (xfer->rx_buf != NULL) {
 820                        ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
 821                                          xfer->rx_buf, xfer->len,
 822                                          DMA_FROM_DEVICE);
 823                        if (ret != 0) {
 824                                spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
 825                                              DMA_TO_DEVICE);
 826                                return ret;
 827                        }
 828                }
 829        }
 830
 831        master->cur_msg_mapped = true;
 832
 833        return 0;
 834}
 835
 836static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
 837{
 838        struct spi_transfer *xfer;
 839        struct device *tx_dev, *rx_dev;
 840
 841        if (!master->cur_msg_mapped || !master->can_dma)
 842                return 0;
 843
 844        if (master->dma_tx)
 845                tx_dev = master->dma_tx->device->dev;
 846        else
 847                tx_dev = &master->dev;
 848
 849        if (master->dma_rx)
 850                rx_dev = master->dma_rx->device->dev;
 851        else
 852                rx_dev = &master->dev;
 853
 854        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 855                if (!master->can_dma(master, msg->spi, xfer))
 856                        continue;
 857
 858                spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 859                spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 860        }
 861
 862        return 0;
 863}
 864#else /* !CONFIG_HAS_DMA */
 865static inline int spi_map_buf(struct spi_master *master,
 866                              struct device *dev, struct sg_table *sgt,
 867                              void *buf, size_t len,
 868                              enum dma_data_direction dir)
 869{
 870        return -EINVAL;
 871}
 872
 873static inline void spi_unmap_buf(struct spi_master *master,
 874                                 struct device *dev, struct sg_table *sgt,
 875                                 enum dma_data_direction dir)
 876{
 877}
 878
 879static inline int __spi_map_msg(struct spi_master *master,
 880                                struct spi_message *msg)
 881{
 882        return 0;
 883}
 884
 885static inline int __spi_unmap_msg(struct spi_master *master,
 886                                  struct spi_message *msg)
 887{
 888        return 0;
 889}
 890#endif /* !CONFIG_HAS_DMA */
 891
 892static inline int spi_unmap_msg(struct spi_master *master,
 893                                struct spi_message *msg)
 894{
 895        struct spi_transfer *xfer;
 896
 897        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 898                /*
 899                 * Restore the original value of tx_buf or rx_buf if they are
 900                 * NULL.
 901                 */
 902                if (xfer->tx_buf == master->dummy_tx)
 903                        xfer->tx_buf = NULL;
 904                if (xfer->rx_buf == master->dummy_rx)
 905                        xfer->rx_buf = NULL;
 906        }
 907
 908        return __spi_unmap_msg(master, msg);
 909}
 910
 911static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
 912{
 913        struct spi_transfer *xfer;
 914        void *tmp;
 915        unsigned int max_tx, max_rx;
 916
 917        if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
 918                max_tx = 0;
 919                max_rx = 0;
 920
 921                list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 922                        if ((master->flags & SPI_MASTER_MUST_TX) &&
 923                            !xfer->tx_buf)
 924                                max_tx = max(xfer->len, max_tx);
 925                        if ((master->flags & SPI_MASTER_MUST_RX) &&
 926                            !xfer->rx_buf)
 927                                max_rx = max(xfer->len, max_rx);
 928                }
 929
 930                if (max_tx) {
 931                        tmp = krealloc(master->dummy_tx, max_tx,
 932                                       GFP_KERNEL | GFP_DMA);
 933                        if (!tmp)
 934                                return -ENOMEM;
 935                        master->dummy_tx = tmp;
 936                        memset(tmp, 0, max_tx);
 937                }
 938
 939                if (max_rx) {
 940                        tmp = krealloc(master->dummy_rx, max_rx,
 941                                       GFP_KERNEL | GFP_DMA);
 942                        if (!tmp)
 943                                return -ENOMEM;
 944                        master->dummy_rx = tmp;
 945                }
 946
 947                if (max_tx || max_rx) {
 948                        list_for_each_entry(xfer, &msg->transfers,
 949                                            transfer_list) {
 950                                if (!xfer->tx_buf)
 951                                        xfer->tx_buf = master->dummy_tx;
 952                                if (!xfer->rx_buf)
 953                                        xfer->rx_buf = master->dummy_rx;
 954                        }
 955                }
 956        }
 957
 958        return __spi_map_msg(master, msg);
 959}
 960
 961/*
 962 * spi_transfer_one_message - Default implementation of transfer_one_message()
 963 *
 964 * This is a standard implementation of transfer_one_message() for
 965 * drivers which implement a transfer_one() operation.  It provides
 966 * standard handling of delays and chip select management.
 967 */
 968static int spi_transfer_one_message(struct spi_master *master,
 969                                    struct spi_message *msg)
 970{
 971        struct spi_transfer *xfer;
 972        bool keep_cs = false;
 973        int ret = 0;
 974        unsigned long long ms = 1;
 975        struct spi_statistics *statm = &master->statistics;
 976        struct spi_statistics *stats = &msg->spi->statistics;
 977
 978        spi_set_cs(msg->spi, true);
 979
 980        SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
 981        SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
 982
 983        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 984                trace_spi_transfer_start(msg, xfer);
 985
 986                spi_statistics_add_transfer_stats(statm, xfer, master);
 987                spi_statistics_add_transfer_stats(stats, xfer, master);
 988
 989                if (xfer->tx_buf || xfer->rx_buf) {
 990                        reinit_completion(&master->xfer_completion);
 991
 992                        ret = master->transfer_one(master, msg->spi, xfer);
 993                        if (ret < 0) {
 994                                SPI_STATISTICS_INCREMENT_FIELD(statm,
 995                                                               errors);
 996                                SPI_STATISTICS_INCREMENT_FIELD(stats,
 997                                                               errors);
 998                                dev_err(&msg->spi->dev,
 999                                        "SPI transfer failed: %d\n", ret);
1000                                goto out;
1001                        }
1002
1003                        if (ret > 0) {
1004                                ret = 0;
1005                                ms = 8LL * 1000LL * xfer->len;
1006                                do_div(ms, xfer->speed_hz);
1007                                ms += ms + 100; /* some tolerance */
1008
1009                                if (ms > UINT_MAX)
1010                                        ms = UINT_MAX;
1011
1012                                ms = wait_for_completion_timeout(&master->xfer_completion,
1013                                                                 msecs_to_jiffies(ms));
1014                        }
1015
1016                        if (ms == 0) {
1017                                SPI_STATISTICS_INCREMENT_FIELD(statm,
1018                                                               timedout);
1019                                SPI_STATISTICS_INCREMENT_FIELD(stats,
1020                                                               timedout);
1021                                dev_err(&msg->spi->dev,
1022                                        "SPI transfer timed out\n");
1023                                msg->status = -ETIMEDOUT;
1024                        }
1025                } else {
1026                        if (xfer->len)
1027                                dev_err(&msg->spi->dev,
1028                                        "Bufferless transfer has length %u\n",
1029                                        xfer->len);
1030                }
1031
1032                trace_spi_transfer_stop(msg, xfer);
1033
1034                if (msg->status != -EINPROGRESS)
1035                        goto out;
1036
1037                if (xfer->delay_usecs)
1038                        udelay(xfer->delay_usecs);
1039
1040                if (xfer->cs_change) {
1041                        if (list_is_last(&xfer->transfer_list,
1042                                         &msg->transfers)) {
1043                                keep_cs = true;
1044                        } else {
1045                                spi_set_cs(msg->spi, false);
1046                                udelay(10);
1047                                spi_set_cs(msg->spi, true);
1048                        }
1049                }
1050
1051                msg->actual_length += xfer->len;
1052        }
1053
1054out:
1055        if (ret != 0 || !keep_cs)
1056                spi_set_cs(msg->spi, false);
1057
1058        if (msg->status == -EINPROGRESS)
1059                msg->status = ret;
1060
1061        if (msg->status && master->handle_err)
1062                master->handle_err(master, msg);
1063
1064        spi_res_release(master, msg);
1065
1066        spi_finalize_current_message(master);
1067
1068        return ret;
1069}
1070
1071/**
1072 * spi_finalize_current_transfer - report completion of a transfer
1073 * @master: the master reporting completion
1074 *
1075 * Called by SPI drivers using the core transfer_one_message()
1076 * implementation to notify it that the current interrupt driven
1077 * transfer has finished and the next one may be scheduled.
1078 */
1079void spi_finalize_current_transfer(struct spi_master *master)
1080{
1081        complete(&master->xfer_completion);
1082}
1083EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1084
1085/**
1086 * __spi_pump_messages - function which processes spi message queue
1087 * @master: master to process queue for
1088 * @in_kthread: true if we are in the context of the message pump thread
1089 *
1090 * This function checks if there is any spi message in the queue that
1091 * needs processing and if so call out to the driver to initialize hardware
1092 * and transfer each message.
1093 *
1094 * Note that it is called both from the kthread itself and also from
1095 * inside spi_sync(); the queue extraction handling at the top of the
1096 * function should deal with this safely.
1097 */
1098static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1099{
1100        unsigned long flags;
1101        bool was_busy = false;
1102        int ret;
1103
1104        /* Lock queue */
1105        spin_lock_irqsave(&master->queue_lock, flags);
1106
1107        /* Make sure we are not already running a message */
1108        if (master->cur_msg) {
1109                spin_unlock_irqrestore(&master->queue_lock, flags);
1110                return;
1111        }
1112
1113        /* If another context is idling the device then defer */
1114        if (master->idling) {
1115                kthread_queue_work(&master->kworker, &master->pump_messages);
1116                spin_unlock_irqrestore(&master->queue_lock, flags);
1117                return;
1118        }
1119
1120        /* Check if the queue is idle */
1121        if (list_empty(&master->queue) || !master->running) {
1122                if (!master->busy) {
1123                        spin_unlock_irqrestore(&master->queue_lock, flags);
1124                        return;
1125                }
1126
1127                /* Only do teardown in the thread */
1128                if (!in_kthread) {
1129                        kthread_queue_work(&master->kworker,
1130                                           &master->pump_messages);
1131                        spin_unlock_irqrestore(&master->queue_lock, flags);
1132                        return;
1133                }
1134
1135                master->busy = false;
1136                master->idling = true;
1137                spin_unlock_irqrestore(&master->queue_lock, flags);
1138
1139                kfree(master->dummy_rx);
1140                master->dummy_rx = NULL;
1141                kfree(master->dummy_tx);
1142                master->dummy_tx = NULL;
1143                if (master->unprepare_transfer_hardware &&
1144                    master->unprepare_transfer_hardware(master))
1145                        dev_err(&master->dev,
1146                                "failed to unprepare transfer hardware\n");
1147                if (master->auto_runtime_pm) {
1148                        pm_runtime_mark_last_busy(master->dev.parent);
1149                        pm_runtime_put_autosuspend(master->dev.parent);
1150                }
1151                trace_spi_master_idle(master);
1152
1153                spin_lock_irqsave(&master->queue_lock, flags);
1154                master->idling = false;
1155                spin_unlock_irqrestore(&master->queue_lock, flags);
1156                return;
1157        }
1158
1159        /* Extract head of queue */
1160        master->cur_msg =
1161                list_first_entry(&master->queue, struct spi_message, queue);
1162
1163        list_del_init(&master->cur_msg->queue);
1164        if (master->busy)
1165                was_busy = true;
1166        else
1167                master->busy = true;
1168        spin_unlock_irqrestore(&master->queue_lock, flags);
1169
1170        mutex_lock(&master->io_mutex);
1171
1172        if (!was_busy && master->auto_runtime_pm) {
1173                ret = pm_runtime_get_sync(master->dev.parent);
1174                if (ret < 0) {
1175                        dev_err(&master->dev, "Failed to power device: %d\n",
1176                                ret);
1177                        mutex_unlock(&master->io_mutex);
1178                        return;
1179                }
1180        }
1181
1182        if (!was_busy)
1183                trace_spi_master_busy(master);
1184
1185        if (!was_busy && master->prepare_transfer_hardware) {
1186                ret = master->prepare_transfer_hardware(master);
1187                if (ret) {
1188                        dev_err(&master->dev,
1189                                "failed to prepare transfer hardware\n");
1190
1191                        if (master->auto_runtime_pm)
1192                                pm_runtime_put(master->dev.parent);
1193                        mutex_unlock(&master->io_mutex);
1194                        return;
1195                }
1196        }
1197
1198        trace_spi_message_start(master->cur_msg);
1199
1200        if (master->prepare_message) {
1201                ret = master->prepare_message(master, master->cur_msg);
1202                if (ret) {
1203                        dev_err(&master->dev,
1204                                "failed to prepare message: %d\n", ret);
1205                        master->cur_msg->status = ret;
1206                        spi_finalize_current_message(master);
1207                        goto out;
1208                }
1209                master->cur_msg_prepared = true;
1210        }
1211
1212        ret = spi_map_msg(master, master->cur_msg);
1213        if (ret) {
1214                master->cur_msg->status = ret;
1215                spi_finalize_current_message(master);
1216                goto out;
1217        }
1218
1219        ret = master->transfer_one_message(master, master->cur_msg);
1220        if (ret) {
1221                dev_err(&master->dev,
1222                        "failed to transfer one message from queue\n");
1223                goto out;
1224        }
1225
1226out:
1227        mutex_unlock(&master->io_mutex);
1228
1229        /* Prod the scheduler in case transfer_one() was busy waiting */
1230        if (!ret)
1231                cond_resched();
1232}
1233
1234/**
1235 * spi_pump_messages - kthread work function which processes spi message queue
1236 * @work: pointer to kthread work struct contained in the master struct
1237 */
1238static void spi_pump_messages(struct kthread_work *work)
1239{
1240        struct spi_master *master =
1241                container_of(work, struct spi_master, pump_messages);
1242
1243        __spi_pump_messages(master, true);
1244}
1245
1246static int spi_init_queue(struct spi_master *master)
1247{
1248        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1249
1250        master->running = false;
1251        master->busy = false;
1252
1253        kthread_init_worker(&master->kworker);
1254        master->kworker_task = kthread_run(kthread_worker_fn,
1255                                           &master->kworker, "%s",
1256                                           dev_name(&master->dev));
1257        if (IS_ERR(master->kworker_task)) {
1258                dev_err(&master->dev, "failed to create message pump task\n");
1259                return PTR_ERR(master->kworker_task);
1260        }
1261        kthread_init_work(&master->pump_messages, spi_pump_messages);
1262
1263        /*
1264         * Master config will indicate if this controller should run the
1265         * message pump with high (realtime) priority to reduce the transfer
1266         * latency on the bus by minimising the delay between a transfer
1267         * request and the scheduling of the message pump thread. Without this
1268         * setting the message pump thread will remain at default priority.
1269         */
1270        if (master->rt) {
1271                dev_info(&master->dev,
1272                        "will run message pump with realtime priority\n");
1273                sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1274        }
1275
1276        return 0;
1277}
1278
1279/**
1280 * spi_get_next_queued_message() - called by driver to check for queued
1281 * messages
1282 * @master: the master to check for queued messages
1283 *
1284 * If there are more messages in the queue, the next message is returned from
1285 * this call.
1286 *
1287 * Return: the next message in the queue, else NULL if the queue is empty.
1288 */
1289struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1290{
1291        struct spi_message *next;
1292        unsigned long flags;
1293
1294        /* get a pointer to the next message, if any */
1295        spin_lock_irqsave(&master->queue_lock, flags);
1296        next = list_first_entry_or_null(&master->queue, struct spi_message,
1297                                        queue);
1298        spin_unlock_irqrestore(&master->queue_lock, flags);
1299
1300        return next;
1301}
1302EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1303
1304/**
1305 * spi_finalize_current_message() - the current message is complete
1306 * @master: the master to return the message to
1307 *
1308 * Called by the driver to notify the core that the message in the front of the
1309 * queue is complete and can be removed from the queue.
1310 */
1311void spi_finalize_current_message(struct spi_master *master)
1312{
1313        struct spi_message *mesg;
1314        unsigned long flags;
1315        int ret;
1316
1317        spin_lock_irqsave(&master->queue_lock, flags);
1318        mesg = master->cur_msg;
1319        spin_unlock_irqrestore(&master->queue_lock, flags);
1320
1321        spi_unmap_msg(master, mesg);
1322
1323        if (master->cur_msg_prepared && master->unprepare_message) {
1324                ret = master->unprepare_message(master, mesg);
1325                if (ret) {
1326                        dev_err(&master->dev,
1327                                "failed to unprepare message: %d\n", ret);
1328                }
1329        }
1330
1331        spin_lock_irqsave(&master->queue_lock, flags);
1332        master->cur_msg = NULL;
1333        master->cur_msg_prepared = false;
1334        kthread_queue_work(&master->kworker, &master->pump_messages);
1335        spin_unlock_irqrestore(&master->queue_lock, flags);
1336
1337        trace_spi_message_done(mesg);
1338
1339        mesg->state = NULL;
1340        if (mesg->complete)
1341                mesg->complete(mesg->context);
1342}
1343EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1344
1345static int spi_start_queue(struct spi_master *master)
1346{
1347        unsigned long flags;
1348
1349        spin_lock_irqsave(&master->queue_lock, flags);
1350
1351        if (master->running || master->busy) {
1352                spin_unlock_irqrestore(&master->queue_lock, flags);
1353                return -EBUSY;
1354        }
1355
1356        master->running = true;
1357        master->cur_msg = NULL;
1358        spin_unlock_irqrestore(&master->queue_lock, flags);
1359
1360        kthread_queue_work(&master->kworker, &master->pump_messages);
1361
1362        return 0;
1363}
1364
1365static int spi_stop_queue(struct spi_master *master)
1366{
1367        unsigned long flags;
1368        unsigned limit = 500;
1369        int ret = 0;
1370
1371        spin_lock_irqsave(&master->queue_lock, flags);
1372
1373        /*
1374         * This is a bit lame, but is optimized for the common execution path.
1375         * A wait_queue on the master->busy could be used, but then the common
1376         * execution path (pump_messages) would be required to call wake_up or
1377         * friends on every SPI message. Do this instead.
1378         */
1379        while ((!list_empty(&master->queue) || master->busy) && limit--) {
1380                spin_unlock_irqrestore(&master->queue_lock, flags);
1381                usleep_range(10000, 11000);
1382                spin_lock_irqsave(&master->queue_lock, flags);
1383        }
1384
1385        if (!list_empty(&master->queue) || master->busy)
1386                ret = -EBUSY;
1387        else
1388                master->running = false;
1389
1390        spin_unlock_irqrestore(&master->queue_lock, flags);
1391
1392        if (ret) {
1393                dev_warn(&master->dev,
1394                         "could not stop message queue\n");
1395                return ret;
1396        }
1397        return ret;
1398}
1399
1400static int spi_destroy_queue(struct spi_master *master)
1401{
1402        int ret;
1403
1404        ret = spi_stop_queue(master);
1405
1406        /*
1407         * kthread_flush_worker will block until all work is done.
1408         * If the reason that stop_queue timed out is that the work will never
1409         * finish, then it does no good to call flush/stop thread, so
1410         * return anyway.
1411         */
1412        if (ret) {
1413                dev_err(&master->dev, "problem destroying queue\n");
1414                return ret;
1415        }
1416
1417        kthread_flush_worker(&master->kworker);
1418        kthread_stop(master->kworker_task);
1419
1420        return 0;
1421}
1422
1423static int __spi_queued_transfer(struct spi_device *spi,
1424                                 struct spi_message *msg,
1425                                 bool need_pump)
1426{
1427        struct spi_master *master = spi->master;
1428        unsigned long flags;
1429
1430        spin_lock_irqsave(&master->queue_lock, flags);
1431
1432        if (!master->running) {
1433                spin_unlock_irqrestore(&master->queue_lock, flags);
1434                return -ESHUTDOWN;
1435        }
1436        msg->actual_length = 0;
1437        msg->status = -EINPROGRESS;
1438
1439        list_add_tail(&msg->queue, &master->queue);
1440        if (!master->busy && need_pump)
1441                kthread_queue_work(&master->kworker, &master->pump_messages);
1442
1443        spin_unlock_irqrestore(&master->queue_lock, flags);
1444        return 0;
1445}
1446
1447/**
1448 * spi_queued_transfer - transfer function for queued transfers
1449 * @spi: spi device which is requesting transfer
1450 * @msg: spi message which is to handled is queued to driver queue
1451 *
1452 * Return: zero on success, else a negative error code.
1453 */
1454static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1455{
1456        return __spi_queued_transfer(spi, msg, true);
1457}
1458
1459static int spi_master_initialize_queue(struct spi_master *master)
1460{
1461        int ret;
1462
1463        master->transfer = spi_queued_transfer;
1464        if (!master->transfer_one_message)
1465                master->transfer_one_message = spi_transfer_one_message;
1466
1467        /* Initialize and start queue */
1468        ret = spi_init_queue(master);
1469        if (ret) {
1470                dev_err(&master->dev, "problem initializing queue\n");
1471                goto err_init_queue;
1472        }
1473        master->queued = true;
1474        ret = spi_start_queue(master);
1475        if (ret) {
1476                dev_err(&master->dev, "problem starting queue\n");
1477                goto err_start_queue;
1478        }
1479
1480        return 0;
1481
1482err_start_queue:
1483        spi_destroy_queue(master);
1484err_init_queue:
1485        return ret;
1486}
1487
1488/*-------------------------------------------------------------------------*/
1489
1490#if defined(CONFIG_OF)
1491static struct spi_device *
1492of_register_spi_device(struct spi_master *master, struct device_node *nc)
1493{
1494        struct spi_device *spi;
1495        int rc;
1496        u32 value;
1497
1498        /* Alloc an spi_device */
1499        spi = spi_alloc_device(master);
1500        if (!spi) {
1501                dev_err(&master->dev, "spi_device alloc error for %s\n",
1502                        nc->full_name);
1503                rc = -ENOMEM;
1504                goto err_out;
1505        }
1506
1507        /* Select device driver */
1508        rc = of_modalias_node(nc, spi->modalias,
1509                                sizeof(spi->modalias));
1510        if (rc < 0) {
1511                dev_err(&master->dev, "cannot find modalias for %s\n",
1512                        nc->full_name);
1513                goto err_out;
1514        }
1515
1516        /* Device address */
1517        rc = of_property_read_u32(nc, "reg", &value);
1518        if (rc) {
1519                dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1520                        nc->full_name, rc);
1521                goto err_out;
1522        }
1523        spi->chip_select = value;
1524
1525        /* Mode (clock phase/polarity/etc.) */
1526        if (of_find_property(nc, "spi-cpha", NULL))
1527                spi->mode |= SPI_CPHA;
1528        if (of_find_property(nc, "spi-cpol", NULL))
1529                spi->mode |= SPI_CPOL;
1530        if (of_find_property(nc, "spi-cs-high", NULL))
1531                spi->mode |= SPI_CS_HIGH;
1532        if (of_find_property(nc, "spi-3wire", NULL))
1533                spi->mode |= SPI_3WIRE;
1534        if (of_find_property(nc, "spi-lsb-first", NULL))
1535                spi->mode |= SPI_LSB_FIRST;
1536
1537        /* Device DUAL/QUAD mode */
1538        if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1539                switch (value) {
1540                case 1:
1541                        break;
1542                case 2:
1543                        spi->mode |= SPI_TX_DUAL;
1544                        break;
1545                case 4:
1546                        spi->mode |= SPI_TX_QUAD;
1547                        break;
1548                default:
1549                        dev_warn(&master->dev,
1550                                "spi-tx-bus-width %d not supported\n",
1551                                value);
1552                        break;
1553                }
1554        }
1555
1556        if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1557                switch (value) {
1558                case 1:
1559                        break;
1560                case 2:
1561                        spi->mode |= SPI_RX_DUAL;
1562                        break;
1563                case 4:
1564                        spi->mode |= SPI_RX_QUAD;
1565                        break;
1566                default:
1567                        dev_warn(&master->dev,
1568                                "spi-rx-bus-width %d not supported\n",
1569                                value);
1570                        break;
1571                }
1572        }
1573
1574        /* Device speed */
1575        rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1576        if (rc) {
1577                dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1578                        nc->full_name, rc);
1579                goto err_out;
1580        }
1581        spi->max_speed_hz = value;
1582
1583        /* Store a pointer to the node in the device structure */
1584        of_node_get(nc);
1585        spi->dev.of_node = nc;
1586
1587        /* Register the new device */
1588        rc = spi_add_device(spi);
1589        if (rc) {
1590                dev_err(&master->dev, "spi_device register error %s\n",
1591                        nc->full_name);
1592                goto err_out;
1593        }
1594
1595        return spi;
1596
1597err_out:
1598        spi_dev_put(spi);
1599        return ERR_PTR(rc);
1600}
1601
1602/**
1603 * of_register_spi_devices() - Register child devices onto the SPI bus
1604 * @master:     Pointer to spi_master device
1605 *
1606 * Registers an spi_device for each child node of master node which has a 'reg'
1607 * property.
1608 */
1609static void of_register_spi_devices(struct spi_master *master)
1610{
1611        struct spi_device *spi;
1612        struct device_node *nc;
1613
1614        if (!master->dev.of_node)
1615                return;
1616
1617        for_each_available_child_of_node(master->dev.of_node, nc) {
1618                if (of_node_test_and_set_flag(nc, OF_POPULATED))
1619                        continue;
1620                spi = of_register_spi_device(master, nc);
1621                if (IS_ERR(spi)) {
1622                        dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1623                                nc->full_name);
1624                        of_node_clear_flag(nc, OF_POPULATED);
1625                }
1626        }
1627}
1628#else
1629static void of_register_spi_devices(struct spi_master *master) { }
1630#endif
1631
1632#ifdef CONFIG_ACPI
1633static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1634{
1635        struct spi_device *spi = data;
1636        struct spi_master *master = spi->master;
1637
1638        if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1639                struct acpi_resource_spi_serialbus *sb;
1640
1641                sb = &ares->data.spi_serial_bus;
1642                if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1643                        /*
1644                         * ACPI DeviceSelection numbering is handled by the
1645                         * host controller driver in Windows and can vary
1646                         * from driver to driver. In Linux we always expect
1647                         * 0 .. max - 1 so we need to ask the driver to
1648                         * translate between the two schemes.
1649                         */
1650                        if (master->fw_translate_cs) {
1651                                int cs = master->fw_translate_cs(master,
1652                                                sb->device_selection);
1653                                if (cs < 0)
1654                                        return cs;
1655                                spi->chip_select = cs;
1656                        } else {
1657                                spi->chip_select = sb->device_selection;
1658                        }
1659
1660                        spi->max_speed_hz = sb->connection_speed;
1661
1662                        if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1663                                spi->mode |= SPI_CPHA;
1664                        if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1665                                spi->mode |= SPI_CPOL;
1666                        if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1667                                spi->mode |= SPI_CS_HIGH;
1668                }
1669        } else if (spi->irq < 0) {
1670                struct resource r;
1671
1672                if (acpi_dev_resource_interrupt(ares, 0, &r))
1673                        spi->irq = r.start;
1674        }
1675
1676        /* Always tell the ACPI core to skip this resource */
1677        return 1;
1678}
1679
1680static acpi_status acpi_register_spi_device(struct spi_master *master,
1681                                            struct acpi_device *adev)
1682{
1683        struct list_head resource_list;
1684        struct spi_device *spi;
1685        int ret;
1686
1687        if (acpi_bus_get_status(adev) || !adev->status.present ||
1688            acpi_device_enumerated(adev))
1689                return AE_OK;
1690
1691        spi = spi_alloc_device(master);
1692        if (!spi) {
1693                dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1694                        dev_name(&adev->dev));
1695                return AE_NO_MEMORY;
1696        }
1697
1698        ACPI_COMPANION_SET(&spi->dev, adev);
1699        spi->irq = -1;
1700
1701        INIT_LIST_HEAD(&resource_list);
1702        ret = acpi_dev_get_resources(adev, &resource_list,
1703                                     acpi_spi_add_resource, spi);
1704        acpi_dev_free_resource_list(&resource_list);
1705
1706        if (ret < 0 || !spi->max_speed_hz) {
1707                spi_dev_put(spi);
1708                return AE_OK;
1709        }
1710
1711        if (spi->irq < 0)
1712                spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1713
1714        acpi_device_set_enumerated(adev);
1715
1716        adev->power.flags.ignore_parent = true;
1717        strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1718        if (spi_add_device(spi)) {
1719                adev->power.flags.ignore_parent = false;
1720                dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1721                        dev_name(&adev->dev));
1722                spi_dev_put(spi);
1723        }
1724
1725        return AE_OK;
1726}
1727
1728static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1729                                       void *data, void **return_value)
1730{
1731        struct spi_master *master = data;
1732        struct acpi_device *adev;
1733
1734        if (acpi_bus_get_device(handle, &adev))
1735                return AE_OK;
1736
1737        return acpi_register_spi_device(master, adev);
1738}
1739
1740static void acpi_register_spi_devices(struct spi_master *master)
1741{
1742        acpi_status status;
1743        acpi_handle handle;
1744
1745        handle = ACPI_HANDLE(master->dev.parent);
1746        if (!handle)
1747                return;
1748
1749        status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1750                                     acpi_spi_add_device, NULL,
1751                                     master, NULL);
1752        if (ACPI_FAILURE(status))
1753                dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1754}
1755#else
1756static inline void acpi_register_spi_devices(struct spi_master *master) {}
1757#endif /* CONFIG_ACPI */
1758
1759static void spi_master_release(struct device *dev)
1760{
1761        struct spi_master *master;
1762
1763        master = container_of(dev, struct spi_master, dev);
1764        kfree(master);
1765}
1766
1767static struct class spi_master_class = {
1768        .name           = "spi_master",
1769        .owner          = THIS_MODULE,
1770        .dev_release    = spi_master_release,
1771        .dev_groups     = spi_master_groups,
1772};
1773
1774
1775/**
1776 * spi_alloc_master - allocate SPI master controller
1777 * @dev: the controller, possibly using the platform_bus
1778 * @size: how much zeroed driver-private data to allocate; the pointer to this
1779 *      memory is in the driver_data field of the returned device,
1780 *      accessible with spi_master_get_devdata().
1781 * Context: can sleep
1782 *
1783 * This call is used only by SPI master controller drivers, which are the
1784 * only ones directly touching chip registers.  It's how they allocate
1785 * an spi_master structure, prior to calling spi_register_master().
1786 *
1787 * This must be called from context that can sleep.
1788 *
1789 * The caller is responsible for assigning the bus number and initializing
1790 * the master's methods before calling spi_register_master(); and (after errors
1791 * adding the device) calling spi_master_put() to prevent a memory leak.
1792 *
1793 * Return: the SPI master structure on success, else NULL.
1794 */
1795struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1796{
1797        struct spi_master       *master;
1798
1799        if (!dev)
1800                return NULL;
1801
1802        master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1803        if (!master)
1804                return NULL;
1805
1806        device_initialize(&master->dev);
1807        master->bus_num = -1;
1808        master->num_chipselect = 1;
1809        master->dev.class = &spi_master_class;
1810        master->dev.parent = dev;
1811        pm_suspend_ignore_children(&master->dev, true);
1812        spi_master_set_devdata(master, &master[1]);
1813
1814        return master;
1815}
1816EXPORT_SYMBOL_GPL(spi_alloc_master);
1817
1818#ifdef CONFIG_OF
1819static int of_spi_register_master(struct spi_master *master)
1820{
1821        int nb, i, *cs;
1822        struct device_node *np = master->dev.of_node;
1823
1824        if (!np)
1825                return 0;
1826
1827        nb = of_gpio_named_count(np, "cs-gpios");
1828        master->num_chipselect = max_t(int, nb, master->num_chipselect);
1829
1830        /* Return error only for an incorrectly formed cs-gpios property */
1831        if (nb == 0 || nb == -ENOENT)
1832                return 0;
1833        else if (nb < 0)
1834                return nb;
1835
1836        cs = devm_kzalloc(&master->dev,
1837                          sizeof(int) * master->num_chipselect,
1838                          GFP_KERNEL);
1839        master->cs_gpios = cs;
1840
1841        if (!master->cs_gpios)
1842                return -ENOMEM;
1843
1844        for (i = 0; i < master->num_chipselect; i++)
1845                cs[i] = -ENOENT;
1846
1847        for (i = 0; i < nb; i++)
1848                cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1849
1850        return 0;
1851}
1852#else
1853static int of_spi_register_master(struct spi_master *master)
1854{
1855        return 0;
1856}
1857#endif
1858
1859/**
1860 * spi_register_master - register SPI master controller
1861 * @master: initialized master, originally from spi_alloc_master()
1862 * Context: can sleep
1863 *
1864 * SPI master controllers connect to their drivers using some non-SPI bus,
1865 * such as the platform bus.  The final stage of probe() in that code
1866 * includes calling spi_register_master() to hook up to this SPI bus glue.
1867 *
1868 * SPI controllers use board specific (often SOC specific) bus numbers,
1869 * and board-specific addressing for SPI devices combines those numbers
1870 * with chip select numbers.  Since SPI does not directly support dynamic
1871 * device identification, boards need configuration tables telling which
1872 * chip is at which address.
1873 *
1874 * This must be called from context that can sleep.  It returns zero on
1875 * success, else a negative error code (dropping the master's refcount).
1876 * After a successful return, the caller is responsible for calling
1877 * spi_unregister_master().
1878 *
1879 * Return: zero on success, else a negative error code.
1880 */
1881int spi_register_master(struct spi_master *master)
1882{
1883        static atomic_t         dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1884        struct device           *dev = master->dev.parent;
1885        struct boardinfo        *bi;
1886        int                     status = -ENODEV;
1887        int                     dynamic = 0;
1888
1889        if (!dev)
1890                return -ENODEV;
1891
1892        status = of_spi_register_master(master);
1893        if (status)
1894                return status;
1895
1896        /* even if it's just one always-selected device, there must
1897         * be at least one chipselect
1898         */
1899        if (master->num_chipselect == 0)
1900                return -EINVAL;
1901
1902        if ((master->bus_num < 0) && master->dev.of_node)
1903                master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1904
1905        /* convention:  dynamically assigned bus IDs count down from the max */
1906        if (master->bus_num < 0) {
1907                /* FIXME switch to an IDR based scheme, something like
1908                 * I2C now uses, so we can't run out of "dynamic" IDs
1909                 */
1910                master->bus_num = atomic_dec_return(&dyn_bus_id);
1911                dynamic = 1;
1912        }
1913
1914        INIT_LIST_HEAD(&master->queue);
1915        spin_lock_init(&master->queue_lock);
1916        spin_lock_init(&master->bus_lock_spinlock);
1917        mutex_init(&master->bus_lock_mutex);
1918        mutex_init(&master->io_mutex);
1919        master->bus_lock_flag = 0;
1920        init_completion(&master->xfer_completion);
1921        if (!master->max_dma_len)
1922                master->max_dma_len = INT_MAX;
1923
1924        /* register the device, then userspace will see it.
1925         * registration fails if the bus ID is in use.
1926         */
1927        dev_set_name(&master->dev, "spi%u", master->bus_num);
1928        status = device_add(&master->dev);
1929        if (status < 0)
1930                goto done;
1931        dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1932                        dynamic ? " (dynamic)" : "");
1933
1934        /* If we're using a queued driver, start the queue */
1935        if (master->transfer)
1936                dev_info(dev, "master is unqueued, this is deprecated\n");
1937        else {
1938                status = spi_master_initialize_queue(master);
1939                if (status) {
1940                        device_del(&master->dev);
1941                        goto done;
1942                }
1943        }
1944        /* add statistics */
1945        spin_lock_init(&master->statistics.lock);
1946
1947        mutex_lock(&board_lock);
1948        list_add_tail(&master->list, &spi_master_list);
1949        list_for_each_entry(bi, &board_list, list)
1950                spi_match_master_to_boardinfo(master, &bi->board_info);
1951        mutex_unlock(&board_lock);
1952
1953        /* Register devices from the device tree and ACPI */
1954        of_register_spi_devices(master);
1955        acpi_register_spi_devices(master);
1956done:
1957        return status;
1958}
1959EXPORT_SYMBOL_GPL(spi_register_master);
1960
1961static void devm_spi_unregister(struct device *dev, void *res)
1962{
1963        spi_unregister_master(*(struct spi_master **)res);
1964}
1965
1966/**
1967 * dev_spi_register_master - register managed SPI master controller
1968 * @dev:    device managing SPI master
1969 * @master: initialized master, originally from spi_alloc_master()
1970 * Context: can sleep
1971 *
1972 * Register a SPI device as with spi_register_master() which will
1973 * automatically be unregister
1974 *
1975 * Return: zero on success, else a negative error code.
1976 */
1977int devm_spi_register_master(struct device *dev, struct spi_master *master)
1978{
1979        struct spi_master **ptr;
1980        int ret;
1981
1982        ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1983        if (!ptr)
1984                return -ENOMEM;
1985
1986        ret = spi_register_master(master);
1987        if (!ret) {
1988                *ptr = master;
1989                devres_add(dev, ptr);
1990        } else {
1991                devres_free(ptr);
1992        }
1993
1994        return ret;
1995}
1996EXPORT_SYMBOL_GPL(devm_spi_register_master);
1997
1998static int __unregister(struct device *dev, void *null)
1999{
2000        spi_unregister_device(to_spi_device(dev));
2001        return 0;
2002}
2003
2004/**
2005 * spi_unregister_master - unregister SPI master controller
2006 * @master: the master being unregistered
2007 * Context: can sleep
2008 *
2009 * This call is used only by SPI master controller drivers, which are the
2010 * only ones directly touching chip registers.
2011 *
2012 * This must be called from context that can sleep.
2013 */
2014void spi_unregister_master(struct spi_master *master)
2015{
2016        int dummy;
2017
2018        if (master->queued) {
2019                if (spi_destroy_queue(master))
2020                        dev_err(&master->dev, "queue remove failed\n");
2021        }
2022
2023        mutex_lock(&board_lock);
2024        list_del(&master->list);
2025        mutex_unlock(&board_lock);
2026
2027        dummy = device_for_each_child(&master->dev, NULL, __unregister);
2028        device_unregister(&master->dev);
2029}
2030EXPORT_SYMBOL_GPL(spi_unregister_master);
2031
2032int spi_master_suspend(struct spi_master *master)
2033{
2034        int ret;
2035
2036        /* Basically no-ops for non-queued masters */
2037        if (!master->queued)
2038                return 0;
2039
2040        ret = spi_stop_queue(master);
2041        if (ret)
2042                dev_err(&master->dev, "queue stop failed\n");
2043
2044        return ret;
2045}
2046EXPORT_SYMBOL_GPL(spi_master_suspend);
2047
2048int spi_master_resume(struct spi_master *master)
2049{
2050        int ret;
2051
2052        if (!master->queued)
2053                return 0;
2054
2055        ret = spi_start_queue(master);
2056        if (ret)
2057                dev_err(&master->dev, "queue restart failed\n");
2058
2059        return ret;
2060}
2061EXPORT_SYMBOL_GPL(spi_master_resume);
2062
2063static int __spi_master_match(struct device *dev, const void *data)
2064{
2065        struct spi_master *m;
2066        const u16 *bus_num = data;
2067
2068        m = container_of(dev, struct spi_master, dev);
2069        return m->bus_num == *bus_num;
2070}
2071
2072/**
2073 * spi_busnum_to_master - look up master associated with bus_num
2074 * @bus_num: the master's bus number
2075 * Context: can sleep
2076 *
2077 * This call may be used with devices that are registered after
2078 * arch init time.  It returns a refcounted pointer to the relevant
2079 * spi_master (which the caller must release), or NULL if there is
2080 * no such master registered.
2081 *
2082 * Return: the SPI master structure on success, else NULL.
2083 */
2084struct spi_master *spi_busnum_to_master(u16 bus_num)
2085{
2086        struct device           *dev;
2087        struct spi_master       *master = NULL;
2088
2089        dev = class_find_device(&spi_master_class, NULL, &bus_num,
2090                                __spi_master_match);
2091        if (dev)
2092                master = container_of(dev, struct spi_master, dev);
2093        /* reference got in class_find_device */
2094        return master;
2095}
2096EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2097
2098/*-------------------------------------------------------------------------*/
2099
2100/* Core methods for SPI resource management */
2101
2102/**
2103 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2104 *                 during the processing of a spi_message while using
2105 *                 spi_transfer_one
2106 * @spi:     the spi device for which we allocate memory
2107 * @release: the release code to execute for this resource
2108 * @size:    size to alloc and return
2109 * @gfp:     GFP allocation flags
2110 *
2111 * Return: the pointer to the allocated data
2112 *
2113 * This may get enhanced in the future to allocate from a memory pool
2114 * of the @spi_device or @spi_master to avoid repeated allocations.
2115 */
2116void *spi_res_alloc(struct spi_device *spi,
2117                    spi_res_release_t release,
2118                    size_t size, gfp_t gfp)
2119{
2120        struct spi_res *sres;
2121
2122        sres = kzalloc(sizeof(*sres) + size, gfp);
2123        if (!sres)
2124                return NULL;
2125
2126        INIT_LIST_HEAD(&sres->entry);
2127        sres->release = release;
2128
2129        return sres->data;
2130}
2131EXPORT_SYMBOL_GPL(spi_res_alloc);
2132
2133/**
2134 * spi_res_free - free an spi resource
2135 * @res: pointer to the custom data of a resource
2136 *
2137 */
2138void spi_res_free(void *res)
2139{
2140        struct spi_res *sres = container_of(res, struct spi_res, data);
2141
2142        if (!res)
2143                return;
2144
2145        WARN_ON(!list_empty(&sres->entry));
2146        kfree(sres);
2147}
2148EXPORT_SYMBOL_GPL(spi_res_free);
2149
2150/**
2151 * spi_res_add - add a spi_res to the spi_message
2152 * @message: the spi message
2153 * @res:     the spi_resource
2154 */
2155void spi_res_add(struct spi_message *message, void *res)
2156{
2157        struct spi_res *sres = container_of(res, struct spi_res, data);
2158
2159        WARN_ON(!list_empty(&sres->entry));
2160        list_add_tail(&sres->entry, &message->resources);
2161}
2162EXPORT_SYMBOL_GPL(spi_res_add);
2163
2164/**
2165 * spi_res_release - release all spi resources for this message
2166 * @master:  the @spi_master
2167 * @message: the @spi_message
2168 */
2169void spi_res_release(struct spi_master *master,
2170                     struct spi_message *message)
2171{
2172        struct spi_res *res;
2173
2174        while (!list_empty(&message->resources)) {
2175                res = list_last_entry(&message->resources,
2176                                      struct spi_res, entry);
2177
2178                if (res->release)
2179                        res->release(master, message, res->data);
2180
2181                list_del(&res->entry);
2182
2183                kfree(res);
2184        }
2185}
2186EXPORT_SYMBOL_GPL(spi_res_release);
2187
2188/*-------------------------------------------------------------------------*/
2189
2190/* Core methods for spi_message alterations */
2191
2192static void __spi_replace_transfers_release(struct spi_master *master,
2193                                            struct spi_message *msg,
2194                                            void *res)
2195{
2196        struct spi_replaced_transfers *rxfer = res;
2197        size_t i;
2198
2199        /* call extra callback if requested */
2200        if (rxfer->release)
2201                rxfer->release(master, msg, res);
2202
2203        /* insert replaced transfers back into the message */
2204        list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2205
2206        /* remove the formerly inserted entries */
2207        for (i = 0; i < rxfer->inserted; i++)
2208                list_del(&rxfer->inserted_transfers[i].transfer_list);
2209}
2210
2211/**
2212 * spi_replace_transfers - replace transfers with several transfers
2213 *                         and register change with spi_message.resources
2214 * @msg:           the spi_message we work upon
2215 * @xfer_first:    the first spi_transfer we want to replace
2216 * @remove:        number of transfers to remove
2217 * @insert:        the number of transfers we want to insert instead
2218 * @release:       extra release code necessary in some circumstances
2219 * @extradatasize: extra data to allocate (with alignment guarantees
2220 *                 of struct @spi_transfer)
2221 * @gfp:           gfp flags
2222 *
2223 * Returns: pointer to @spi_replaced_transfers,
2224 *          PTR_ERR(...) in case of errors.
2225 */
2226struct spi_replaced_transfers *spi_replace_transfers(
2227        struct spi_message *msg,
2228        struct spi_transfer *xfer_first,
2229        size_t remove,
2230        size_t insert,
2231        spi_replaced_release_t release,
2232        size_t extradatasize,
2233        gfp_t gfp)
2234{
2235        struct spi_replaced_transfers *rxfer;
2236        struct spi_transfer *xfer;
2237        size_t i;
2238
2239        /* allocate the structure using spi_res */
2240        rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2241                              insert * sizeof(struct spi_transfer)
2242                              + sizeof(struct spi_replaced_transfers)
2243                              + extradatasize,
2244                              gfp);
2245        if (!rxfer)
2246                return ERR_PTR(-ENOMEM);
2247
2248        /* the release code to invoke before running the generic release */
2249        rxfer->release = release;
2250
2251        /* assign extradata */
2252        if (extradatasize)
2253                rxfer->extradata =
2254                        &rxfer->inserted_transfers[insert];
2255
2256        /* init the replaced_transfers list */
2257        INIT_LIST_HEAD(&rxfer->replaced_transfers);
2258
2259        /* assign the list_entry after which we should reinsert
2260         * the @replaced_transfers - it may be spi_message.messages!
2261         */
2262        rxfer->replaced_after = xfer_first->transfer_list.prev;
2263
2264        /* remove the requested number of transfers */
2265        for (i = 0; i < remove; i++) {
2266                /* if the entry after replaced_after it is msg->transfers
2267                 * then we have been requested to remove more transfers
2268                 * than are in the list
2269                 */
2270                if (rxfer->replaced_after->next == &msg->transfers) {
2271                        dev_err(&msg->spi->dev,
2272                                "requested to remove more spi_transfers than are available\n");
2273                        /* insert replaced transfers back into the message */
2274                        list_splice(&rxfer->replaced_transfers,
2275                                    rxfer->replaced_after);
2276
2277                        /* free the spi_replace_transfer structure */
2278                        spi_res_free(rxfer);
2279
2280                        /* and return with an error */
2281                        return ERR_PTR(-EINVAL);
2282                }
2283
2284                /* remove the entry after replaced_after from list of
2285                 * transfers and add it to list of replaced_transfers
2286                 */
2287                list_move_tail(rxfer->replaced_after->next,
2288                               &rxfer->replaced_transfers);
2289        }
2290
2291        /* create copy of the given xfer with identical settings
2292         * based on the first transfer to get removed
2293         */
2294        for (i = 0; i < insert; i++) {
2295                /* we need to run in reverse order */
2296                xfer = &rxfer->inserted_transfers[insert - 1 - i];
2297
2298                /* copy all spi_transfer data */
2299                memcpy(xfer, xfer_first, sizeof(*xfer));
2300
2301                /* add to list */
2302                list_add(&xfer->transfer_list, rxfer->replaced_after);
2303
2304                /* clear cs_change and delay_usecs for all but the last */
2305                if (i) {
2306                        xfer->cs_change = false;
2307                        xfer->delay_usecs = 0;
2308                }
2309        }
2310
2311        /* set up inserted */
2312        rxfer->inserted = insert;
2313
2314        /* and register it with spi_res/spi_message */
2315        spi_res_add(msg, rxfer);
2316
2317        return rxfer;
2318}
2319EXPORT_SYMBOL_GPL(spi_replace_transfers);
2320
2321static int __spi_split_transfer_maxsize(struct spi_master *master,
2322                                        struct spi_message *msg,
2323                                        struct spi_transfer **xferp,
2324                                        size_t maxsize,
2325                                        gfp_t gfp)
2326{
2327        struct spi_transfer *xfer = *xferp, *xfers;
2328        struct spi_replaced_transfers *srt;
2329        size_t offset;
2330        size_t count, i;
2331
2332        /* warn once about this fact that we are splitting a transfer */
2333        dev_warn_once(&msg->spi->dev,
2334                      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2335                      xfer->len, maxsize);
2336
2337        /* calculate how many we have to replace */
2338        count = DIV_ROUND_UP(xfer->len, maxsize);
2339
2340        /* create replacement */
2341        srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2342        if (IS_ERR(srt))
2343                return PTR_ERR(srt);
2344        xfers = srt->inserted_transfers;
2345
2346        /* now handle each of those newly inserted spi_transfers
2347         * note that the replacements spi_transfers all are preset
2348         * to the same values as *xferp, so tx_buf, rx_buf and len
2349         * are all identical (as well as most others)
2350         * so we just have to fix up len and the pointers.
2351         *
2352         * this also includes support for the depreciated
2353         * spi_message.is_dma_mapped interface
2354         */
2355
2356        /* the first transfer just needs the length modified, so we
2357         * run it outside the loop
2358         */
2359        xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2360
2361        /* all the others need rx_buf/tx_buf also set */
2362        for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2363                /* update rx_buf, tx_buf and dma */
2364                if (xfers[i].rx_buf)
2365                        xfers[i].rx_buf += offset;
2366                if (xfers[i].rx_dma)
2367                        xfers[i].rx_dma += offset;
2368                if (xfers[i].tx_buf)
2369                        xfers[i].tx_buf += offset;
2370                if (xfers[i].tx_dma)
2371                        xfers[i].tx_dma += offset;
2372
2373                /* update length */
2374                xfers[i].len = min(maxsize, xfers[i].len - offset);
2375        }
2376
2377        /* we set up xferp to the last entry we have inserted,
2378         * so that we skip those already split transfers
2379         */
2380        *xferp = &xfers[count - 1];
2381
2382        /* increment statistics counters */
2383        SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2384                                       transfers_split_maxsize);
2385        SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2386                                       transfers_split_maxsize);
2387
2388        return 0;
2389}
2390
2391/**
2392 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2393 *                              when an individual transfer exceeds a
2394 *                              certain size
2395 * @master:    the @spi_master for this transfer
2396 * @msg:   the @spi_message to transform
2397 * @maxsize:  the maximum when to apply this
2398 * @gfp: GFP allocation flags
2399 *
2400 * Return: status of transformation
2401 */
2402int spi_split_transfers_maxsize(struct spi_master *master,
2403                                struct spi_message *msg,
2404                                size_t maxsize,
2405                                gfp_t gfp)
2406{
2407        struct spi_transfer *xfer;
2408        int ret;
2409
2410        /* iterate over the transfer_list,
2411         * but note that xfer is advanced to the last transfer inserted
2412         * to avoid checking sizes again unnecessarily (also xfer does
2413         * potentiall belong to a different list by the time the
2414         * replacement has happened
2415         */
2416        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2417                if (xfer->len > maxsize) {
2418                        ret = __spi_split_transfer_maxsize(
2419                                master, msg, &xfer, maxsize, gfp);
2420                        if (ret)
2421                                return ret;
2422                }
2423        }
2424
2425        return 0;
2426}
2427EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2428
2429/*-------------------------------------------------------------------------*/
2430
2431/* Core methods for SPI master protocol drivers.  Some of the
2432 * other core methods are currently defined as inline functions.
2433 */
2434
2435static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2436{
2437        if (master->bits_per_word_mask) {
2438                /* Only 32 bits fit in the mask */
2439                if (bits_per_word > 32)
2440                        return -EINVAL;
2441                if (!(master->bits_per_word_mask &
2442                                SPI_BPW_MASK(bits_per_word)))
2443                        return -EINVAL;
2444        }
2445
2446        return 0;
2447}
2448
2449/**
2450 * spi_setup - setup SPI mode and clock rate
2451 * @spi: the device whose settings are being modified
2452 * Context: can sleep, and no requests are queued to the device
2453 *
2454 * SPI protocol drivers may need to update the transfer mode if the
2455 * device doesn't work with its default.  They may likewise need
2456 * to update clock rates or word sizes from initial values.  This function
2457 * changes those settings, and must be called from a context that can sleep.
2458 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2459 * effect the next time the device is selected and data is transferred to
2460 * or from it.  When this function returns, the spi device is deselected.
2461 *
2462 * Note that this call will fail if the protocol driver specifies an option
2463 * that the underlying controller or its driver does not support.  For
2464 * example, not all hardware supports wire transfers using nine bit words,
2465 * LSB-first wire encoding, or active-high chipselects.
2466 *
2467 * Return: zero on success, else a negative error code.
2468 */
2469int spi_setup(struct spi_device *spi)
2470{
2471        unsigned        bad_bits, ugly_bits;
2472        int             status;
2473
2474        /* check mode to prevent that DUAL and QUAD set at the same time
2475         */
2476        if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2477                ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2478                dev_err(&spi->dev,
2479                "setup: can not select dual and quad at the same time\n");
2480                return -EINVAL;
2481        }
2482        /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2483         */
2484        if ((spi->mode & SPI_3WIRE) && (spi->mode &
2485                (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2486                return -EINVAL;
2487        /* help drivers fail *cleanly* when they need options
2488         * that aren't supported with their current master
2489         */
2490        bad_bits = spi->mode & ~spi->master->mode_bits;
2491        ugly_bits = bad_bits &
2492                    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2493        if (ugly_bits) {
2494                dev_warn(&spi->dev,
2495                         "setup: ignoring unsupported mode bits %x\n",
2496                         ugly_bits);
2497                spi->mode &= ~ugly_bits;
2498                bad_bits &= ~ugly_bits;
2499        }
2500        if (bad_bits) {
2501                dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2502                        bad_bits);
2503                return -EINVAL;
2504        }
2505
2506        if (!spi->bits_per_word)
2507                spi->bits_per_word = 8;
2508
2509        status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2510        if (status)
2511                return status;
2512
2513        if (!spi->max_speed_hz)
2514                spi->max_speed_hz = spi->master->max_speed_hz;
2515
2516        if (spi->master->setup)
2517                status = spi->master->setup(spi);
2518
2519        spi_set_cs(spi, false);
2520
2521        dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2522                        (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2523                        (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2524                        (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2525                        (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2526                        (spi->mode & SPI_LOOP) ? "loopback, " : "",
2527                        spi->bits_per_word, spi->max_speed_hz,
2528                        status);
2529
2530        return status;
2531}
2532EXPORT_SYMBOL_GPL(spi_setup);
2533
2534static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2535{
2536        struct spi_master *master = spi->master;
2537        struct spi_transfer *xfer;
2538        int w_size;
2539
2540        if (list_empty(&message->transfers))
2541                return -EINVAL;
2542
2543        /* Half-duplex links include original MicroWire, and ones with
2544         * only one data pin like SPI_3WIRE (switches direction) or where
2545         * either MOSI or MISO is missing.  They can also be caused by
2546         * software limitations.
2547         */
2548        if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2549                        || (spi->mode & SPI_3WIRE)) {
2550                unsigned flags = master->flags;
2551
2552                list_for_each_entry(xfer, &message->transfers, transfer_list) {
2553                        if (xfer->rx_buf && xfer->tx_buf)
2554                                return -EINVAL;
2555                        if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2556                                return -EINVAL;
2557                        if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2558                                return -EINVAL;
2559                }
2560        }
2561
2562        /**
2563         * Set transfer bits_per_word and max speed as spi device default if
2564         * it is not set for this transfer.
2565         * Set transfer tx_nbits and rx_nbits as single transfer default
2566         * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2567         */
2568        message->frame_length = 0;
2569        list_for_each_entry(xfer, &message->transfers, transfer_list) {
2570                message->frame_length += xfer->len;
2571                if (!xfer->bits_per_word)
2572                        xfer->bits_per_word = spi->bits_per_word;
2573
2574                if (!xfer->speed_hz)
2575                        xfer->speed_hz = spi->max_speed_hz;
2576                if (!xfer->speed_hz)
2577                        xfer->speed_hz = master->max_speed_hz;
2578
2579                if (master->max_speed_hz &&
2580                    xfer->speed_hz > master->max_speed_hz)
2581                        xfer->speed_hz = master->max_speed_hz;
2582
2583                if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2584                        return -EINVAL;
2585
2586                /*
2587                 * SPI transfer length should be multiple of SPI word size
2588                 * where SPI word size should be power-of-two multiple
2589                 */
2590                if (xfer->bits_per_word <= 8)
2591                        w_size = 1;
2592                else if (xfer->bits_per_word <= 16)
2593                        w_size = 2;
2594                else
2595                        w_size = 4;
2596
2597                /* No partial transfers accepted */
2598                if (xfer->len % w_size)
2599                        return -EINVAL;
2600
2601                if (xfer->speed_hz && master->min_speed_hz &&
2602                    xfer->speed_hz < master->min_speed_hz)
2603                        return -EINVAL;
2604
2605                if (xfer->tx_buf && !xfer->tx_nbits)
2606                        xfer->tx_nbits = SPI_NBITS_SINGLE;
2607                if (xfer->rx_buf && !xfer->rx_nbits)
2608                        xfer->rx_nbits = SPI_NBITS_SINGLE;
2609                /* check transfer tx/rx_nbits:
2610                 * 1. check the value matches one of single, dual and quad
2611                 * 2. check tx/rx_nbits match the mode in spi_device
2612                 */
2613                if (xfer->tx_buf) {
2614                        if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2615                                xfer->tx_nbits != SPI_NBITS_DUAL &&
2616                                xfer->tx_nbits != SPI_NBITS_QUAD)
2617                                return -EINVAL;
2618                        if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2619                                !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2620                                return -EINVAL;
2621                        if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2622                                !(spi->mode & SPI_TX_QUAD))
2623                                return -EINVAL;
2624                }
2625                /* check transfer rx_nbits */
2626                if (xfer->rx_buf) {
2627                        if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2628                                xfer->rx_nbits != SPI_NBITS_DUAL &&
2629                                xfer->rx_nbits != SPI_NBITS_QUAD)
2630                                return -EINVAL;
2631                        if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2632                                !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2633                                return -EINVAL;
2634                        if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2635                                !(spi->mode & SPI_RX_QUAD))
2636                                return -EINVAL;
2637                }
2638        }
2639
2640        message->status = -EINPROGRESS;
2641
2642        return 0;
2643}
2644
2645static int __spi_async(struct spi_device *spi, struct spi_message *message)
2646{
2647        struct spi_master *master = spi->master;
2648
2649        message->spi = spi;
2650
2651        SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2652        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2653
2654        trace_spi_message_submit(message);
2655
2656        return master->transfer(spi, message);
2657}
2658
2659/**
2660 * spi_async - asynchronous SPI transfer
2661 * @spi: device with which data will be exchanged
2662 * @message: describes the data transfers, including completion callback
2663 * Context: any (irqs may be blocked, etc)
2664 *
2665 * This call may be used in_irq and other contexts which can't sleep,
2666 * as well as from task contexts which can sleep.
2667 *
2668 * The completion callback is invoked in a context which can't sleep.
2669 * Before that invocation, the value of message->status is undefined.
2670 * When the callback is issued, message->status holds either zero (to
2671 * indicate complete success) or a negative error code.  After that
2672 * callback returns, the driver which issued the transfer request may
2673 * deallocate the associated memory; it's no longer in use by any SPI
2674 * core or controller driver code.
2675 *
2676 * Note that although all messages to a spi_device are handled in
2677 * FIFO order, messages may go to different devices in other orders.
2678 * Some device might be higher priority, or have various "hard" access
2679 * time requirements, for example.
2680 *
2681 * On detection of any fault during the transfer, processing of
2682 * the entire message is aborted, and the device is deselected.
2683 * Until returning from the associated message completion callback,
2684 * no other spi_message queued to that device will be processed.
2685 * (This rule applies equally to all the synchronous transfer calls,
2686 * which are wrappers around this core asynchronous primitive.)
2687 *
2688 * Return: zero on success, else a negative error code.
2689 */
2690int spi_async(struct spi_device *spi, struct spi_message *message)
2691{
2692        struct spi_master *master = spi->master;
2693        int ret;
2694        unsigned long flags;
2695
2696        ret = __spi_validate(spi, message);
2697        if (ret != 0)
2698                return ret;
2699
2700        spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2701
2702        if (master->bus_lock_flag)
2703                ret = -EBUSY;
2704        else
2705                ret = __spi_async(spi, message);
2706
2707        spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2708
2709        return ret;
2710}
2711EXPORT_SYMBOL_GPL(spi_async);
2712
2713/**
2714 * spi_async_locked - version of spi_async with exclusive bus usage
2715 * @spi: device with which data will be exchanged
2716 * @message: describes the data transfers, including completion callback
2717 * Context: any (irqs may be blocked, etc)
2718 *
2719 * This call may be used in_irq and other contexts which can't sleep,
2720 * as well as from task contexts which can sleep.
2721 *
2722 * The completion callback is invoked in a context which can't sleep.
2723 * Before that invocation, the value of message->status is undefined.
2724 * When the callback is issued, message->status holds either zero (to
2725 * indicate complete success) or a negative error code.  After that
2726 * callback returns, the driver which issued the transfer request may
2727 * deallocate the associated memory; it's no longer in use by any SPI
2728 * core or controller driver code.
2729 *
2730 * Note that although all messages to a spi_device are handled in
2731 * FIFO order, messages may go to different devices in other orders.
2732 * Some device might be higher priority, or have various "hard" access
2733 * time requirements, for example.
2734 *
2735 * On detection of any fault during the transfer, processing of
2736 * the entire message is aborted, and the device is deselected.
2737 * Until returning from the associated message completion callback,
2738 * no other spi_message queued to that device will be processed.
2739 * (This rule applies equally to all the synchronous transfer calls,
2740 * which are wrappers around this core asynchronous primitive.)
2741 *
2742 * Return: zero on success, else a negative error code.
2743 */
2744int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2745{
2746        struct spi_master *master = spi->master;
2747        int ret;
2748        unsigned long flags;
2749
2750        ret = __spi_validate(spi, message);
2751        if (ret != 0)
2752                return ret;
2753
2754        spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2755
2756        ret = __spi_async(spi, message);
2757
2758        spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2759
2760        return ret;
2761
2762}
2763EXPORT_SYMBOL_GPL(spi_async_locked);
2764
2765
2766int spi_flash_read(struct spi_device *spi,
2767                   struct spi_flash_read_message *msg)
2768
2769{
2770        struct spi_master *master = spi->master;
2771        struct device *rx_dev = NULL;
2772        int ret;
2773
2774        if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2775             msg->addr_nbits == SPI_NBITS_DUAL) &&
2776            !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2777                return -EINVAL;
2778        if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2779             msg->addr_nbits == SPI_NBITS_QUAD) &&
2780            !(spi->mode & SPI_TX_QUAD))
2781                return -EINVAL;
2782        if (msg->data_nbits == SPI_NBITS_DUAL &&
2783            !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2784                return -EINVAL;
2785        if (msg->data_nbits == SPI_NBITS_QUAD &&
2786            !(spi->mode &  SPI_RX_QUAD))
2787                return -EINVAL;
2788
2789        if (master->auto_runtime_pm) {
2790                ret = pm_runtime_get_sync(master->dev.parent);
2791                if (ret < 0) {
2792                        dev_err(&master->dev, "Failed to power device: %d\n",
2793                                ret);
2794                        return ret;
2795                }
2796        }
2797
2798        mutex_lock(&master->bus_lock_mutex);
2799        mutex_lock(&master->io_mutex);
2800        if (master->dma_rx) {
2801                rx_dev = master->dma_rx->device->dev;
2802                ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2803                                  msg->buf, msg->len,
2804                                  DMA_FROM_DEVICE);
2805                if (!ret)
2806                        msg->cur_msg_mapped = true;
2807        }
2808        ret = master->spi_flash_read(spi, msg);
2809        if (msg->cur_msg_mapped)
2810                spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2811                              DMA_FROM_DEVICE);
2812        mutex_unlock(&master->io_mutex);
2813        mutex_unlock(&master->bus_lock_mutex);
2814
2815        if (master->auto_runtime_pm)
2816                pm_runtime_put(master->dev.parent);
2817
2818        return ret;
2819}
2820EXPORT_SYMBOL_GPL(spi_flash_read);
2821
2822/*-------------------------------------------------------------------------*/
2823
2824/* Utility methods for SPI master protocol drivers, layered on
2825 * top of the core.  Some other utility methods are defined as
2826 * inline functions.
2827 */
2828
2829static void spi_complete(void *arg)
2830{
2831        complete(arg);
2832}
2833
2834static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2835{
2836        DECLARE_COMPLETION_ONSTACK(done);
2837        int status;
2838        struct spi_master *master = spi->master;
2839        unsigned long flags;
2840
2841        status = __spi_validate(spi, message);
2842        if (status != 0)
2843                return status;
2844
2845        message->complete = spi_complete;
2846        message->context = &done;
2847        message->spi = spi;
2848
2849        SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2850        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2851
2852        /* If we're not using the legacy transfer method then we will
2853         * try to transfer in the calling context so special case.
2854         * This code would be less tricky if we could remove the
2855         * support for driver implemented message queues.
2856         */
2857        if (master->transfer == spi_queued_transfer) {
2858                spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2859
2860                trace_spi_message_submit(message);
2861
2862                status = __spi_queued_transfer(spi, message, false);
2863
2864                spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2865        } else {
2866                status = spi_async_locked(spi, message);
2867        }
2868
2869        if (status == 0) {
2870                /* Push out the messages in the calling context if we
2871                 * can.
2872                 */
2873                if (master->transfer == spi_queued_transfer) {
2874                        SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2875                                                       spi_sync_immediate);
2876                        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2877                                                       spi_sync_immediate);
2878                        __spi_pump_messages(master, false);
2879                }
2880
2881                wait_for_completion(&done);
2882                status = message->status;
2883        }
2884        message->context = NULL;
2885        return status;
2886}
2887
2888/**
2889 * spi_sync - blocking/synchronous SPI data transfers
2890 * @spi: device with which data will be exchanged
2891 * @message: describes the data transfers
2892 * Context: can sleep
2893 *
2894 * This call may only be used from a context that may sleep.  The sleep
2895 * is non-interruptible, and has no timeout.  Low-overhead controller
2896 * drivers may DMA directly into and out of the message buffers.
2897 *
2898 * Note that the SPI device's chip select is active during the message,
2899 * and then is normally disabled between messages.  Drivers for some
2900 * frequently-used devices may want to minimize costs of selecting a chip,
2901 * by leaving it selected in anticipation that the next message will go
2902 * to the same chip.  (That may increase power usage.)
2903 *
2904 * Also, the caller is guaranteeing that the memory associated with the
2905 * message will not be freed before this call returns.
2906 *
2907 * Return: zero on success, else a negative error code.
2908 */
2909int spi_sync(struct spi_device *spi, struct spi_message *message)
2910{
2911        int ret;
2912
2913        mutex_lock(&spi->master->bus_lock_mutex);
2914        ret = __spi_sync(spi, message);
2915        mutex_unlock(&spi->master->bus_lock_mutex);
2916
2917        return ret;
2918}
2919EXPORT_SYMBOL_GPL(spi_sync);
2920
2921/**
2922 * spi_sync_locked - version of spi_sync with exclusive bus usage
2923 * @spi: device with which data will be exchanged
2924 * @message: describes the data transfers
2925 * Context: can sleep
2926 *
2927 * This call may only be used from a context that may sleep.  The sleep
2928 * is non-interruptible, and has no timeout.  Low-overhead controller
2929 * drivers may DMA directly into and out of the message buffers.
2930 *
2931 * This call should be used by drivers that require exclusive access to the
2932 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2933 * be released by a spi_bus_unlock call when the exclusive access is over.
2934 *
2935 * Return: zero on success, else a negative error code.
2936 */
2937int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2938{
2939        return __spi_sync(spi, message);
2940}
2941EXPORT_SYMBOL_GPL(spi_sync_locked);
2942
2943/**
2944 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2945 * @master: SPI bus master that should be locked for exclusive bus access
2946 * Context: can sleep
2947 *
2948 * This call may only be used from a context that may sleep.  The sleep
2949 * is non-interruptible, and has no timeout.
2950 *
2951 * This call should be used by drivers that require exclusive access to the
2952 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2953 * exclusive access is over. Data transfer must be done by spi_sync_locked
2954 * and spi_async_locked calls when the SPI bus lock is held.
2955 *
2956 * Return: always zero.
2957 */
2958int spi_bus_lock(struct spi_master *master)
2959{
2960        unsigned long flags;
2961
2962        mutex_lock(&master->bus_lock_mutex);
2963
2964        spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2965        master->bus_lock_flag = 1;
2966        spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2967
2968        /* mutex remains locked until spi_bus_unlock is called */
2969
2970        return 0;
2971}
2972EXPORT_SYMBOL_GPL(spi_bus_lock);
2973
2974/**
2975 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2976 * @master: SPI bus master that was locked for exclusive bus access
2977 * Context: can sleep
2978 *
2979 * This call may only be used from a context that may sleep.  The sleep
2980 * is non-interruptible, and has no timeout.
2981 *
2982 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2983 * call.
2984 *
2985 * Return: always zero.
2986 */
2987int spi_bus_unlock(struct spi_master *master)
2988{
2989        master->bus_lock_flag = 0;
2990
2991        mutex_unlock(&master->bus_lock_mutex);
2992
2993        return 0;
2994}
2995EXPORT_SYMBOL_GPL(spi_bus_unlock);
2996
2997/* portable code must never pass more than 32 bytes */
2998#define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
2999
3000static u8       *buf;
3001
3002/**
3003 * spi_write_then_read - SPI synchronous write followed by read
3004 * @spi: device with which data will be exchanged
3005 * @txbuf: data to be written (need not be dma-safe)
3006 * @n_tx: size of txbuf, in bytes
3007 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3008 * @n_rx: size of rxbuf, in bytes
3009 * Context: can sleep
3010 *
3011 * This performs a half duplex MicroWire style transaction with the
3012 * device, sending txbuf and then reading rxbuf.  The return value
3013 * is zero for success, else a negative errno status code.
3014 * This call may only be used from a context that may sleep.
3015 *
3016 * Parameters to this routine are always copied using a small buffer;
3017 * portable code should never use this for more than 32 bytes.
3018 * Performance-sensitive or bulk transfer code should instead use
3019 * spi_{async,sync}() calls with dma-safe buffers.
3020 *
3021 * Return: zero on success, else a negative error code.
3022 */
3023int spi_write_then_read(struct spi_device *spi,
3024                const void *txbuf, unsigned n_tx,
3025                void *rxbuf, unsigned n_rx)
3026{
3027        static DEFINE_MUTEX(lock);
3028
3029        int                     status;
3030        struct spi_message      message;
3031        struct spi_transfer     x[2];
3032        u8                      *local_buf;
3033
3034        /* Use preallocated DMA-safe buffer if we can.  We can't avoid
3035         * copying here, (as a pure convenience thing), but we can
3036         * keep heap costs out of the hot path unless someone else is
3037         * using the pre-allocated buffer or the transfer is too large.
3038         */
3039        if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3040                local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3041                                    GFP_KERNEL | GFP_DMA);
3042                if (!local_buf)
3043                        return -ENOMEM;
3044        } else {
3045                local_buf = buf;
3046        }
3047
3048        spi_message_init(&message);
3049        memset(x, 0, sizeof(x));
3050        if (n_tx) {
3051                x[0].len = n_tx;
3052                spi_message_add_tail(&x[0], &message);
3053        }
3054        if (n_rx) {
3055                x[1].len = n_rx;
3056                spi_message_add_tail(&x[1], &message);
3057        }
3058
3059        memcpy(local_buf, txbuf, n_tx);
3060        x[0].tx_buf = local_buf;
3061        x[1].rx_buf = local_buf + n_tx;
3062
3063        /* do the i/o */
3064        status = spi_sync(spi, &message);
3065        if (status == 0)
3066                memcpy(rxbuf, x[1].rx_buf, n_rx);
3067
3068        if (x[0].tx_buf == buf)
3069                mutex_unlock(&lock);
3070        else
3071                kfree(local_buf);
3072
3073        return status;
3074}
3075EXPORT_SYMBOL_GPL(spi_write_then_read);
3076
3077/*-------------------------------------------------------------------------*/
3078
3079#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3080static int __spi_of_device_match(struct device *dev, void *data)
3081{
3082        return dev->of_node == data;
3083}
3084
3085/* must call put_device() when done with returned spi_device device */
3086static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3087{
3088        struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3089                                                __spi_of_device_match);
3090        return dev ? to_spi_device(dev) : NULL;
3091}
3092
3093static int __spi_of_master_match(struct device *dev, const void *data)
3094{
3095        return dev->of_node == data;
3096}
3097
3098/* the spi masters are not using spi_bus, so we find it with another way */
3099static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3100{
3101        struct device *dev;
3102
3103        dev = class_find_device(&spi_master_class, NULL, node,
3104                                __spi_of_master_match);
3105        if (!dev)
3106                return NULL;
3107
3108        /* reference got in class_find_device */
3109        return container_of(dev, struct spi_master, dev);
3110}
3111
3112static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3113                         void *arg)
3114{
3115        struct of_reconfig_data *rd = arg;
3116        struct spi_master *master;
3117        struct spi_device *spi;
3118
3119        switch (of_reconfig_get_state_change(action, arg)) {
3120        case OF_RECONFIG_CHANGE_ADD:
3121                master = of_find_spi_master_by_node(rd->dn->parent);
3122                if (master == NULL)
3123                        return NOTIFY_OK;       /* not for us */
3124
3125                if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3126                        put_device(&master->dev);
3127                        return NOTIFY_OK;
3128                }
3129
3130                spi = of_register_spi_device(master, rd->dn);
3131                put_device(&master->dev);
3132
3133                if (IS_ERR(spi)) {
3134                        pr_err("%s: failed to create for '%s'\n",
3135                                        __func__, rd->dn->full_name);
3136                        of_node_clear_flag(rd->dn, OF_POPULATED);
3137                        return notifier_from_errno(PTR_ERR(spi));
3138                }
3139                break;
3140
3141        case OF_RECONFIG_CHANGE_REMOVE:
3142                /* already depopulated? */
3143                if (!of_node_check_flag(rd->dn, OF_POPULATED))
3144                        return NOTIFY_OK;
3145
3146                /* find our device by node */
3147                spi = of_find_spi_device_by_node(rd->dn);
3148                if (spi == NULL)
3149                        return NOTIFY_OK;       /* no? not meant for us */
3150
3151                /* unregister takes one ref away */
3152                spi_unregister_device(spi);
3153
3154                /* and put the reference of the find */
3155                put_device(&spi->dev);
3156                break;
3157        }
3158
3159        return NOTIFY_OK;
3160}
3161
3162static struct notifier_block spi_of_notifier = {
3163        .notifier_call = of_spi_notify,
3164};
3165#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3166extern struct notifier_block spi_of_notifier;
3167#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3168
3169#if IS_ENABLED(CONFIG_ACPI)
3170static int spi_acpi_master_match(struct device *dev, const void *data)
3171{
3172        return ACPI_COMPANION(dev->parent) == data;
3173}
3174
3175static int spi_acpi_device_match(struct device *dev, void *data)
3176{
3177        return ACPI_COMPANION(dev) == data;
3178}
3179
3180static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3181{
3182        struct device *dev;
3183
3184        dev = class_find_device(&spi_master_class, NULL, adev,
3185                                spi_acpi_master_match);
3186        if (!dev)
3187                return NULL;
3188
3189        return container_of(dev, struct spi_master, dev);
3190}
3191
3192static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3193{
3194        struct device *dev;
3195
3196        dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3197
3198        return dev ? to_spi_device(dev) : NULL;
3199}
3200
3201static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3202                           void *arg)
3203{
3204        struct acpi_device *adev = arg;
3205        struct spi_master *master;
3206        struct spi_device *spi;
3207
3208        switch (value) {
3209        case ACPI_RECONFIG_DEVICE_ADD:
3210                master = acpi_spi_find_master_by_adev(adev->parent);
3211                if (!master)
3212                        break;
3213
3214                acpi_register_spi_device(master, adev);
3215                put_device(&master->dev);
3216                break;
3217        case ACPI_RECONFIG_DEVICE_REMOVE:
3218                if (!acpi_device_enumerated(adev))
3219                        break;
3220
3221                spi = acpi_spi_find_device_by_adev(adev);
3222                if (!spi)
3223                        break;
3224
3225                spi_unregister_device(spi);
3226                put_device(&spi->dev);
3227                break;
3228        }
3229
3230        return NOTIFY_OK;
3231}
3232
3233static struct notifier_block spi_acpi_notifier = {
3234        .notifier_call = acpi_spi_notify,
3235};
3236#else
3237extern struct notifier_block spi_acpi_notifier;
3238#endif
3239
3240static int __init spi_init(void)
3241{
3242        int     status;
3243
3244        buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3245        if (!buf) {
3246                status = -ENOMEM;
3247                goto err0;
3248        }
3249
3250        status = bus_register(&spi_bus_type);
3251        if (status < 0)
3252                goto err1;
3253
3254        status = class_register(&spi_master_class);
3255        if (status < 0)
3256                goto err2;
3257
3258        if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3259                WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3260        if (IS_ENABLED(CONFIG_ACPI))
3261                WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3262
3263        return 0;
3264
3265err2:
3266        bus_unregister(&spi_bus_type);
3267err1:
3268        kfree(buf);
3269        buf = NULL;
3270err0:
3271        return status;
3272}
3273
3274/* board_info is normally registered in arch_initcall(),
3275 * but even essential drivers wait till later
3276 *
3277 * REVISIT only boardinfo really needs static linking. the rest (device and
3278 * driver registration) _could_ be dynamically linked (modular) ... costs
3279 * include needing to have boardinfo data structures be much more public.
3280 */
3281postcore_initcall(spi_init);
3282
3283