linux/fs/btrfs/file.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/pagemap.h>
  21#include <linux/highmem.h>
  22#include <linux/time.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/backing-dev.h>
  26#include <linux/mpage.h>
  27#include <linux/falloc.h>
  28#include <linux/swap.h>
  29#include <linux/writeback.h>
  30#include <linux/statfs.h>
  31#include <linux/compat.h>
  32#include <linux/slab.h>
  33#include <linux/btrfs.h>
  34#include <linux/uio.h>
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "print-tree.h"
  40#include "tree-log.h"
  41#include "locking.h"
  42#include "volumes.h"
  43#include "qgroup.h"
  44#include "compression.h"
  45
  46static struct kmem_cache *btrfs_inode_defrag_cachep;
  47/*
  48 * when auto defrag is enabled we
  49 * queue up these defrag structs to remember which
  50 * inodes need defragging passes
  51 */
  52struct inode_defrag {
  53        struct rb_node rb_node;
  54        /* objectid */
  55        u64 ino;
  56        /*
  57         * transid where the defrag was added, we search for
  58         * extents newer than this
  59         */
  60        u64 transid;
  61
  62        /* root objectid */
  63        u64 root;
  64
  65        /* last offset we were able to defrag */
  66        u64 last_offset;
  67
  68        /* if we've wrapped around back to zero once already */
  69        int cycled;
  70};
  71
  72static int __compare_inode_defrag(struct inode_defrag *defrag1,
  73                                  struct inode_defrag *defrag2)
  74{
  75        if (defrag1->root > defrag2->root)
  76                return 1;
  77        else if (defrag1->root < defrag2->root)
  78                return -1;
  79        else if (defrag1->ino > defrag2->ino)
  80                return 1;
  81        else if (defrag1->ino < defrag2->ino)
  82                return -1;
  83        else
  84                return 0;
  85}
  86
  87/* pop a record for an inode into the defrag tree.  The lock
  88 * must be held already
  89 *
  90 * If you're inserting a record for an older transid than an
  91 * existing record, the transid already in the tree is lowered
  92 *
  93 * If an existing record is found the defrag item you
  94 * pass in is freed
  95 */
  96static int __btrfs_add_inode_defrag(struct inode *inode,
  97                                    struct inode_defrag *defrag)
  98{
  99        struct btrfs_root *root = BTRFS_I(inode)->root;
 100        struct inode_defrag *entry;
 101        struct rb_node **p;
 102        struct rb_node *parent = NULL;
 103        int ret;
 104
 105        p = &root->fs_info->defrag_inodes.rb_node;
 106        while (*p) {
 107                parent = *p;
 108                entry = rb_entry(parent, struct inode_defrag, rb_node);
 109
 110                ret = __compare_inode_defrag(defrag, entry);
 111                if (ret < 0)
 112                        p = &parent->rb_left;
 113                else if (ret > 0)
 114                        p = &parent->rb_right;
 115                else {
 116                        /* if we're reinserting an entry for
 117                         * an old defrag run, make sure to
 118                         * lower the transid of our existing record
 119                         */
 120                        if (defrag->transid < entry->transid)
 121                                entry->transid = defrag->transid;
 122                        if (defrag->last_offset > entry->last_offset)
 123                                entry->last_offset = defrag->last_offset;
 124                        return -EEXIST;
 125                }
 126        }
 127        set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 128        rb_link_node(&defrag->rb_node, parent, p);
 129        rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
 130        return 0;
 131}
 132
 133static inline int __need_auto_defrag(struct btrfs_root *root)
 134{
 135        if (!btrfs_test_opt(root->fs_info, AUTO_DEFRAG))
 136                return 0;
 137
 138        if (btrfs_fs_closing(root->fs_info))
 139                return 0;
 140
 141        return 1;
 142}
 143
 144/*
 145 * insert a defrag record for this inode if auto defrag is
 146 * enabled
 147 */
 148int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 149                           struct inode *inode)
 150{
 151        struct btrfs_root *root = BTRFS_I(inode)->root;
 152        struct inode_defrag *defrag;
 153        u64 transid;
 154        int ret;
 155
 156        if (!__need_auto_defrag(root))
 157                return 0;
 158
 159        if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
 160                return 0;
 161
 162        if (trans)
 163                transid = trans->transid;
 164        else
 165                transid = BTRFS_I(inode)->root->last_trans;
 166
 167        defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 168        if (!defrag)
 169                return -ENOMEM;
 170
 171        defrag->ino = btrfs_ino(inode);
 172        defrag->transid = transid;
 173        defrag->root = root->root_key.objectid;
 174
 175        spin_lock(&root->fs_info->defrag_inodes_lock);
 176        if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
 177                /*
 178                 * If we set IN_DEFRAG flag and evict the inode from memory,
 179                 * and then re-read this inode, this new inode doesn't have
 180                 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 181                 */
 182                ret = __btrfs_add_inode_defrag(inode, defrag);
 183                if (ret)
 184                        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 185        } else {
 186                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 187        }
 188        spin_unlock(&root->fs_info->defrag_inodes_lock);
 189        return 0;
 190}
 191
 192/*
 193 * Requeue the defrag object. If there is a defrag object that points to
 194 * the same inode in the tree, we will merge them together (by
 195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 196 */
 197static void btrfs_requeue_inode_defrag(struct inode *inode,
 198                                       struct inode_defrag *defrag)
 199{
 200        struct btrfs_root *root = BTRFS_I(inode)->root;
 201        int ret;
 202
 203        if (!__need_auto_defrag(root))
 204                goto out;
 205
 206        /*
 207         * Here we don't check the IN_DEFRAG flag, because we need merge
 208         * them together.
 209         */
 210        spin_lock(&root->fs_info->defrag_inodes_lock);
 211        ret = __btrfs_add_inode_defrag(inode, defrag);
 212        spin_unlock(&root->fs_info->defrag_inodes_lock);
 213        if (ret)
 214                goto out;
 215        return;
 216out:
 217        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 218}
 219
 220/*
 221 * pick the defragable inode that we want, if it doesn't exist, we will get
 222 * the next one.
 223 */
 224static struct inode_defrag *
 225btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 226{
 227        struct inode_defrag *entry = NULL;
 228        struct inode_defrag tmp;
 229        struct rb_node *p;
 230        struct rb_node *parent = NULL;
 231        int ret;
 232
 233        tmp.ino = ino;
 234        tmp.root = root;
 235
 236        spin_lock(&fs_info->defrag_inodes_lock);
 237        p = fs_info->defrag_inodes.rb_node;
 238        while (p) {
 239                parent = p;
 240                entry = rb_entry(parent, struct inode_defrag, rb_node);
 241
 242                ret = __compare_inode_defrag(&tmp, entry);
 243                if (ret < 0)
 244                        p = parent->rb_left;
 245                else if (ret > 0)
 246                        p = parent->rb_right;
 247                else
 248                        goto out;
 249        }
 250
 251        if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 252                parent = rb_next(parent);
 253                if (parent)
 254                        entry = rb_entry(parent, struct inode_defrag, rb_node);
 255                else
 256                        entry = NULL;
 257        }
 258out:
 259        if (entry)
 260                rb_erase(parent, &fs_info->defrag_inodes);
 261        spin_unlock(&fs_info->defrag_inodes_lock);
 262        return entry;
 263}
 264
 265void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 266{
 267        struct inode_defrag *defrag;
 268        struct rb_node *node;
 269
 270        spin_lock(&fs_info->defrag_inodes_lock);
 271        node = rb_first(&fs_info->defrag_inodes);
 272        while (node) {
 273                rb_erase(node, &fs_info->defrag_inodes);
 274                defrag = rb_entry(node, struct inode_defrag, rb_node);
 275                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 276
 277                cond_resched_lock(&fs_info->defrag_inodes_lock);
 278
 279                node = rb_first(&fs_info->defrag_inodes);
 280        }
 281        spin_unlock(&fs_info->defrag_inodes_lock);
 282}
 283
 284#define BTRFS_DEFRAG_BATCH      1024
 285
 286static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 287                                    struct inode_defrag *defrag)
 288{
 289        struct btrfs_root *inode_root;
 290        struct inode *inode;
 291        struct btrfs_key key;
 292        struct btrfs_ioctl_defrag_range_args range;
 293        int num_defrag;
 294        int index;
 295        int ret;
 296
 297        /* get the inode */
 298        key.objectid = defrag->root;
 299        key.type = BTRFS_ROOT_ITEM_KEY;
 300        key.offset = (u64)-1;
 301
 302        index = srcu_read_lock(&fs_info->subvol_srcu);
 303
 304        inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
 305        if (IS_ERR(inode_root)) {
 306                ret = PTR_ERR(inode_root);
 307                goto cleanup;
 308        }
 309
 310        key.objectid = defrag->ino;
 311        key.type = BTRFS_INODE_ITEM_KEY;
 312        key.offset = 0;
 313        inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
 314        if (IS_ERR(inode)) {
 315                ret = PTR_ERR(inode);
 316                goto cleanup;
 317        }
 318        srcu_read_unlock(&fs_info->subvol_srcu, index);
 319
 320        /* do a chunk of defrag */
 321        clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 322        memset(&range, 0, sizeof(range));
 323        range.len = (u64)-1;
 324        range.start = defrag->last_offset;
 325
 326        sb_start_write(fs_info->sb);
 327        num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 328                                       BTRFS_DEFRAG_BATCH);
 329        sb_end_write(fs_info->sb);
 330        /*
 331         * if we filled the whole defrag batch, there
 332         * must be more work to do.  Queue this defrag
 333         * again
 334         */
 335        if (num_defrag == BTRFS_DEFRAG_BATCH) {
 336                defrag->last_offset = range.start;
 337                btrfs_requeue_inode_defrag(inode, defrag);
 338        } else if (defrag->last_offset && !defrag->cycled) {
 339                /*
 340                 * we didn't fill our defrag batch, but
 341                 * we didn't start at zero.  Make sure we loop
 342                 * around to the start of the file.
 343                 */
 344                defrag->last_offset = 0;
 345                defrag->cycled = 1;
 346                btrfs_requeue_inode_defrag(inode, defrag);
 347        } else {
 348                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 349        }
 350
 351        iput(inode);
 352        return 0;
 353cleanup:
 354        srcu_read_unlock(&fs_info->subvol_srcu, index);
 355        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 356        return ret;
 357}
 358
 359/*
 360 * run through the list of inodes in the FS that need
 361 * defragging
 362 */
 363int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 364{
 365        struct inode_defrag *defrag;
 366        u64 first_ino = 0;
 367        u64 root_objectid = 0;
 368
 369        atomic_inc(&fs_info->defrag_running);
 370        while (1) {
 371                /* Pause the auto defragger. */
 372                if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 373                             &fs_info->fs_state))
 374                        break;
 375
 376                if (!__need_auto_defrag(fs_info->tree_root))
 377                        break;
 378
 379                /* find an inode to defrag */
 380                defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 381                                                 first_ino);
 382                if (!defrag) {
 383                        if (root_objectid || first_ino) {
 384                                root_objectid = 0;
 385                                first_ino = 0;
 386                                continue;
 387                        } else {
 388                                break;
 389                        }
 390                }
 391
 392                first_ino = defrag->ino + 1;
 393                root_objectid = defrag->root;
 394
 395                __btrfs_run_defrag_inode(fs_info, defrag);
 396        }
 397        atomic_dec(&fs_info->defrag_running);
 398
 399        /*
 400         * during unmount, we use the transaction_wait queue to
 401         * wait for the defragger to stop
 402         */
 403        wake_up(&fs_info->transaction_wait);
 404        return 0;
 405}
 406
 407/* simple helper to fault in pages and copy.  This should go away
 408 * and be replaced with calls into generic code.
 409 */
 410static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 411                                         struct page **prepared_pages,
 412                                         struct iov_iter *i)
 413{
 414        size_t copied = 0;
 415        size_t total_copied = 0;
 416        int pg = 0;
 417        int offset = pos & (PAGE_SIZE - 1);
 418
 419        while (write_bytes > 0) {
 420                size_t count = min_t(size_t,
 421                                     PAGE_SIZE - offset, write_bytes);
 422                struct page *page = prepared_pages[pg];
 423                /*
 424                 * Copy data from userspace to the current page
 425                 */
 426                copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 427
 428                /* Flush processor's dcache for this page */
 429                flush_dcache_page(page);
 430
 431                /*
 432                 * if we get a partial write, we can end up with
 433                 * partially up to date pages.  These add
 434                 * a lot of complexity, so make sure they don't
 435                 * happen by forcing this copy to be retried.
 436                 *
 437                 * The rest of the btrfs_file_write code will fall
 438                 * back to page at a time copies after we return 0.
 439                 */
 440                if (!PageUptodate(page) && copied < count)
 441                        copied = 0;
 442
 443                iov_iter_advance(i, copied);
 444                write_bytes -= copied;
 445                total_copied += copied;
 446
 447                /* Return to btrfs_file_write_iter to fault page */
 448                if (unlikely(copied == 0))
 449                        break;
 450
 451                if (copied < PAGE_SIZE - offset) {
 452                        offset += copied;
 453                } else {
 454                        pg++;
 455                        offset = 0;
 456                }
 457        }
 458        return total_copied;
 459}
 460
 461/*
 462 * unlocks pages after btrfs_file_write is done with them
 463 */
 464static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 465{
 466        size_t i;
 467        for (i = 0; i < num_pages; i++) {
 468                /* page checked is some magic around finding pages that
 469                 * have been modified without going through btrfs_set_page_dirty
 470                 * clear it here. There should be no need to mark the pages
 471                 * accessed as prepare_pages should have marked them accessed
 472                 * in prepare_pages via find_or_create_page()
 473                 */
 474                ClearPageChecked(pages[i]);
 475                unlock_page(pages[i]);
 476                put_page(pages[i]);
 477        }
 478}
 479
 480/*
 481 * after copy_from_user, pages need to be dirtied and we need to make
 482 * sure holes are created between the current EOF and the start of
 483 * any next extents (if required).
 484 *
 485 * this also makes the decision about creating an inline extent vs
 486 * doing real data extents, marking pages dirty and delalloc as required.
 487 */
 488int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
 489                             struct page **pages, size_t num_pages,
 490                             loff_t pos, size_t write_bytes,
 491                             struct extent_state **cached)
 492{
 493        int err = 0;
 494        int i;
 495        u64 num_bytes;
 496        u64 start_pos;
 497        u64 end_of_last_block;
 498        u64 end_pos = pos + write_bytes;
 499        loff_t isize = i_size_read(inode);
 500
 501        start_pos = pos & ~((u64)root->sectorsize - 1);
 502        num_bytes = round_up(write_bytes + pos - start_pos, root->sectorsize);
 503
 504        end_of_last_block = start_pos + num_bytes - 1;
 505        err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 506                                        cached, 0);
 507        if (err)
 508                return err;
 509
 510        for (i = 0; i < num_pages; i++) {
 511                struct page *p = pages[i];
 512                SetPageUptodate(p);
 513                ClearPageChecked(p);
 514                set_page_dirty(p);
 515        }
 516
 517        /*
 518         * we've only changed i_size in ram, and we haven't updated
 519         * the disk i_size.  There is no need to log the inode
 520         * at this time.
 521         */
 522        if (end_pos > isize)
 523                i_size_write(inode, end_pos);
 524        return 0;
 525}
 526
 527/*
 528 * this drops all the extents in the cache that intersect the range
 529 * [start, end].  Existing extents are split as required.
 530 */
 531void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
 532                             int skip_pinned)
 533{
 534        struct extent_map *em;
 535        struct extent_map *split = NULL;
 536        struct extent_map *split2 = NULL;
 537        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 538        u64 len = end - start + 1;
 539        u64 gen;
 540        int ret;
 541        int testend = 1;
 542        unsigned long flags;
 543        int compressed = 0;
 544        bool modified;
 545
 546        WARN_ON(end < start);
 547        if (end == (u64)-1) {
 548                len = (u64)-1;
 549                testend = 0;
 550        }
 551        while (1) {
 552                int no_splits = 0;
 553
 554                modified = false;
 555                if (!split)
 556                        split = alloc_extent_map();
 557                if (!split2)
 558                        split2 = alloc_extent_map();
 559                if (!split || !split2)
 560                        no_splits = 1;
 561
 562                write_lock(&em_tree->lock);
 563                em = lookup_extent_mapping(em_tree, start, len);
 564                if (!em) {
 565                        write_unlock(&em_tree->lock);
 566                        break;
 567                }
 568                flags = em->flags;
 569                gen = em->generation;
 570                if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 571                        if (testend && em->start + em->len >= start + len) {
 572                                free_extent_map(em);
 573                                write_unlock(&em_tree->lock);
 574                                break;
 575                        }
 576                        start = em->start + em->len;
 577                        if (testend)
 578                                len = start + len - (em->start + em->len);
 579                        free_extent_map(em);
 580                        write_unlock(&em_tree->lock);
 581                        continue;
 582                }
 583                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 584                clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 585                clear_bit(EXTENT_FLAG_LOGGING, &flags);
 586                modified = !list_empty(&em->list);
 587                if (no_splits)
 588                        goto next;
 589
 590                if (em->start < start) {
 591                        split->start = em->start;
 592                        split->len = start - em->start;
 593
 594                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 595                                split->orig_start = em->orig_start;
 596                                split->block_start = em->block_start;
 597
 598                                if (compressed)
 599                                        split->block_len = em->block_len;
 600                                else
 601                                        split->block_len = split->len;
 602                                split->orig_block_len = max(split->block_len,
 603                                                em->orig_block_len);
 604                                split->ram_bytes = em->ram_bytes;
 605                        } else {
 606                                split->orig_start = split->start;
 607                                split->block_len = 0;
 608                                split->block_start = em->block_start;
 609                                split->orig_block_len = 0;
 610                                split->ram_bytes = split->len;
 611                        }
 612
 613                        split->generation = gen;
 614                        split->bdev = em->bdev;
 615                        split->flags = flags;
 616                        split->compress_type = em->compress_type;
 617                        replace_extent_mapping(em_tree, em, split, modified);
 618                        free_extent_map(split);
 619                        split = split2;
 620                        split2 = NULL;
 621                }
 622                if (testend && em->start + em->len > start + len) {
 623                        u64 diff = start + len - em->start;
 624
 625                        split->start = start + len;
 626                        split->len = em->start + em->len - (start + len);
 627                        split->bdev = em->bdev;
 628                        split->flags = flags;
 629                        split->compress_type = em->compress_type;
 630                        split->generation = gen;
 631
 632                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 633                                split->orig_block_len = max(em->block_len,
 634                                                    em->orig_block_len);
 635
 636                                split->ram_bytes = em->ram_bytes;
 637                                if (compressed) {
 638                                        split->block_len = em->block_len;
 639                                        split->block_start = em->block_start;
 640                                        split->orig_start = em->orig_start;
 641                                } else {
 642                                        split->block_len = split->len;
 643                                        split->block_start = em->block_start
 644                                                + diff;
 645                                        split->orig_start = em->orig_start;
 646                                }
 647                        } else {
 648                                split->ram_bytes = split->len;
 649                                split->orig_start = split->start;
 650                                split->block_len = 0;
 651                                split->block_start = em->block_start;
 652                                split->orig_block_len = 0;
 653                        }
 654
 655                        if (extent_map_in_tree(em)) {
 656                                replace_extent_mapping(em_tree, em, split,
 657                                                       modified);
 658                        } else {
 659                                ret = add_extent_mapping(em_tree, split,
 660                                                         modified);
 661                                ASSERT(ret == 0); /* Logic error */
 662                        }
 663                        free_extent_map(split);
 664                        split = NULL;
 665                }
 666next:
 667                if (extent_map_in_tree(em))
 668                        remove_extent_mapping(em_tree, em);
 669                write_unlock(&em_tree->lock);
 670
 671                /* once for us */
 672                free_extent_map(em);
 673                /* once for the tree*/
 674                free_extent_map(em);
 675        }
 676        if (split)
 677                free_extent_map(split);
 678        if (split2)
 679                free_extent_map(split2);
 680}
 681
 682/*
 683 * this is very complex, but the basic idea is to drop all extents
 684 * in the range start - end.  hint_block is filled in with a block number
 685 * that would be a good hint to the block allocator for this file.
 686 *
 687 * If an extent intersects the range but is not entirely inside the range
 688 * it is either truncated or split.  Anything entirely inside the range
 689 * is deleted from the tree.
 690 */
 691int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 692                         struct btrfs_root *root, struct inode *inode,
 693                         struct btrfs_path *path, u64 start, u64 end,
 694                         u64 *drop_end, int drop_cache,
 695                         int replace_extent,
 696                         u32 extent_item_size,
 697                         int *key_inserted)
 698{
 699        struct extent_buffer *leaf;
 700        struct btrfs_file_extent_item *fi;
 701        struct btrfs_key key;
 702        struct btrfs_key new_key;
 703        u64 ino = btrfs_ino(inode);
 704        u64 search_start = start;
 705        u64 disk_bytenr = 0;
 706        u64 num_bytes = 0;
 707        u64 extent_offset = 0;
 708        u64 extent_end = 0;
 709        int del_nr = 0;
 710        int del_slot = 0;
 711        int extent_type;
 712        int recow;
 713        int ret;
 714        int modify_tree = -1;
 715        int update_refs;
 716        int found = 0;
 717        int leafs_visited = 0;
 718
 719        if (drop_cache)
 720                btrfs_drop_extent_cache(inode, start, end - 1, 0);
 721
 722        if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
 723                modify_tree = 0;
 724
 725        update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 726                       root == root->fs_info->tree_root);
 727        while (1) {
 728                recow = 0;
 729                ret = btrfs_lookup_file_extent(trans, root, path, ino,
 730                                               search_start, modify_tree);
 731                if (ret < 0)
 732                        break;
 733                if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 734                        leaf = path->nodes[0];
 735                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 736                        if (key.objectid == ino &&
 737                            key.type == BTRFS_EXTENT_DATA_KEY)
 738                                path->slots[0]--;
 739                }
 740                ret = 0;
 741                leafs_visited++;
 742next_slot:
 743                leaf = path->nodes[0];
 744                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 745                        BUG_ON(del_nr > 0);
 746                        ret = btrfs_next_leaf(root, path);
 747                        if (ret < 0)
 748                                break;
 749                        if (ret > 0) {
 750                                ret = 0;
 751                                break;
 752                        }
 753                        leafs_visited++;
 754                        leaf = path->nodes[0];
 755                        recow = 1;
 756                }
 757
 758                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 759
 760                if (key.objectid > ino)
 761                        break;
 762                if (WARN_ON_ONCE(key.objectid < ino) ||
 763                    key.type < BTRFS_EXTENT_DATA_KEY) {
 764                        ASSERT(del_nr == 0);
 765                        path->slots[0]++;
 766                        goto next_slot;
 767                }
 768                if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 769                        break;
 770
 771                fi = btrfs_item_ptr(leaf, path->slots[0],
 772                                    struct btrfs_file_extent_item);
 773                extent_type = btrfs_file_extent_type(leaf, fi);
 774
 775                if (extent_type == BTRFS_FILE_EXTENT_REG ||
 776                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 777                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 778                        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 779                        extent_offset = btrfs_file_extent_offset(leaf, fi);
 780                        extent_end = key.offset +
 781                                btrfs_file_extent_num_bytes(leaf, fi);
 782                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 783                        extent_end = key.offset +
 784                                btrfs_file_extent_inline_len(leaf,
 785                                                     path->slots[0], fi);
 786                } else {
 787                        /* can't happen */
 788                        BUG();
 789                }
 790
 791                /*
 792                 * Don't skip extent items representing 0 byte lengths. They
 793                 * used to be created (bug) if while punching holes we hit
 794                 * -ENOSPC condition. So if we find one here, just ensure we
 795                 * delete it, otherwise we would insert a new file extent item
 796                 * with the same key (offset) as that 0 bytes length file
 797                 * extent item in the call to setup_items_for_insert() later
 798                 * in this function.
 799                 */
 800                if (extent_end == key.offset && extent_end >= search_start)
 801                        goto delete_extent_item;
 802
 803                if (extent_end <= search_start) {
 804                        path->slots[0]++;
 805                        goto next_slot;
 806                }
 807
 808                found = 1;
 809                search_start = max(key.offset, start);
 810                if (recow || !modify_tree) {
 811                        modify_tree = -1;
 812                        btrfs_release_path(path);
 813                        continue;
 814                }
 815
 816                /*
 817                 *     | - range to drop - |
 818                 *  | -------- extent -------- |
 819                 */
 820                if (start > key.offset && end < extent_end) {
 821                        BUG_ON(del_nr > 0);
 822                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 823                                ret = -EOPNOTSUPP;
 824                                break;
 825                        }
 826
 827                        memcpy(&new_key, &key, sizeof(new_key));
 828                        new_key.offset = start;
 829                        ret = btrfs_duplicate_item(trans, root, path,
 830                                                   &new_key);
 831                        if (ret == -EAGAIN) {
 832                                btrfs_release_path(path);
 833                                continue;
 834                        }
 835                        if (ret < 0)
 836                                break;
 837
 838                        leaf = path->nodes[0];
 839                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 840                                            struct btrfs_file_extent_item);
 841                        btrfs_set_file_extent_num_bytes(leaf, fi,
 842                                                        start - key.offset);
 843
 844                        fi = btrfs_item_ptr(leaf, path->slots[0],
 845                                            struct btrfs_file_extent_item);
 846
 847                        extent_offset += start - key.offset;
 848                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 849                        btrfs_set_file_extent_num_bytes(leaf, fi,
 850                                                        extent_end - start);
 851                        btrfs_mark_buffer_dirty(leaf);
 852
 853                        if (update_refs && disk_bytenr > 0) {
 854                                ret = btrfs_inc_extent_ref(trans, root,
 855                                                disk_bytenr, num_bytes, 0,
 856                                                root->root_key.objectid,
 857                                                new_key.objectid,
 858                                                start - extent_offset);
 859                                BUG_ON(ret); /* -ENOMEM */
 860                        }
 861                        key.offset = start;
 862                }
 863                /*
 864                 *  | ---- range to drop ----- |
 865                 *      | -------- extent -------- |
 866                 */
 867                if (start <= key.offset && end < extent_end) {
 868                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 869                                ret = -EOPNOTSUPP;
 870                                break;
 871                        }
 872
 873                        memcpy(&new_key, &key, sizeof(new_key));
 874                        new_key.offset = end;
 875                        btrfs_set_item_key_safe(root->fs_info, path, &new_key);
 876
 877                        extent_offset += end - key.offset;
 878                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 879                        btrfs_set_file_extent_num_bytes(leaf, fi,
 880                                                        extent_end - end);
 881                        btrfs_mark_buffer_dirty(leaf);
 882                        if (update_refs && disk_bytenr > 0)
 883                                inode_sub_bytes(inode, end - key.offset);
 884                        break;
 885                }
 886
 887                search_start = extent_end;
 888                /*
 889                 *       | ---- range to drop ----- |
 890                 *  | -------- extent -------- |
 891                 */
 892                if (start > key.offset && end >= extent_end) {
 893                        BUG_ON(del_nr > 0);
 894                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 895                                ret = -EOPNOTSUPP;
 896                                break;
 897                        }
 898
 899                        btrfs_set_file_extent_num_bytes(leaf, fi,
 900                                                        start - key.offset);
 901                        btrfs_mark_buffer_dirty(leaf);
 902                        if (update_refs && disk_bytenr > 0)
 903                                inode_sub_bytes(inode, extent_end - start);
 904                        if (end == extent_end)
 905                                break;
 906
 907                        path->slots[0]++;
 908                        goto next_slot;
 909                }
 910
 911                /*
 912                 *  | ---- range to drop ----- |
 913                 *    | ------ extent ------ |
 914                 */
 915                if (start <= key.offset && end >= extent_end) {
 916delete_extent_item:
 917                        if (del_nr == 0) {
 918                                del_slot = path->slots[0];
 919                                del_nr = 1;
 920                        } else {
 921                                BUG_ON(del_slot + del_nr != path->slots[0]);
 922                                del_nr++;
 923                        }
 924
 925                        if (update_refs &&
 926                            extent_type == BTRFS_FILE_EXTENT_INLINE) {
 927                                inode_sub_bytes(inode,
 928                                                extent_end - key.offset);
 929                                extent_end = ALIGN(extent_end,
 930                                                   root->sectorsize);
 931                        } else if (update_refs && disk_bytenr > 0) {
 932                                ret = btrfs_free_extent(trans, root,
 933                                                disk_bytenr, num_bytes, 0,
 934                                                root->root_key.objectid,
 935                                                key.objectid, key.offset -
 936                                                extent_offset);
 937                                BUG_ON(ret); /* -ENOMEM */
 938                                inode_sub_bytes(inode,
 939                                                extent_end - key.offset);
 940                        }
 941
 942                        if (end == extent_end)
 943                                break;
 944
 945                        if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 946                                path->slots[0]++;
 947                                goto next_slot;
 948                        }
 949
 950                        ret = btrfs_del_items(trans, root, path, del_slot,
 951                                              del_nr);
 952                        if (ret) {
 953                                btrfs_abort_transaction(trans, ret);
 954                                break;
 955                        }
 956
 957                        del_nr = 0;
 958                        del_slot = 0;
 959
 960                        btrfs_release_path(path);
 961                        continue;
 962                }
 963
 964                BUG_ON(1);
 965        }
 966
 967        if (!ret && del_nr > 0) {
 968                /*
 969                 * Set path->slots[0] to first slot, so that after the delete
 970                 * if items are move off from our leaf to its immediate left or
 971                 * right neighbor leafs, we end up with a correct and adjusted
 972                 * path->slots[0] for our insertion (if replace_extent != 0).
 973                 */
 974                path->slots[0] = del_slot;
 975                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 976                if (ret)
 977                        btrfs_abort_transaction(trans, ret);
 978        }
 979
 980        leaf = path->nodes[0];
 981        /*
 982         * If btrfs_del_items() was called, it might have deleted a leaf, in
 983         * which case it unlocked our path, so check path->locks[0] matches a
 984         * write lock.
 985         */
 986        if (!ret && replace_extent && leafs_visited == 1 &&
 987            (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
 988             path->locks[0] == BTRFS_WRITE_LOCK) &&
 989            btrfs_leaf_free_space(root, leaf) >=
 990            sizeof(struct btrfs_item) + extent_item_size) {
 991
 992                key.objectid = ino;
 993                key.type = BTRFS_EXTENT_DATA_KEY;
 994                key.offset = start;
 995                if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 996                        struct btrfs_key slot_key;
 997
 998                        btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
 999                        if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000                                path->slots[0]++;
1001                }
1002                setup_items_for_insert(root, path, &key,
1003                                       &extent_item_size,
1004                                       extent_item_size,
1005                                       sizeof(struct btrfs_item) +
1006                                       extent_item_size, 1);
1007                *key_inserted = 1;
1008        }
1009
1010        if (!replace_extent || !(*key_inserted))
1011                btrfs_release_path(path);
1012        if (drop_end)
1013                *drop_end = found ? min(end, extent_end) : end;
1014        return ret;
1015}
1016
1017int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1018                       struct btrfs_root *root, struct inode *inode, u64 start,
1019                       u64 end, int drop_cache)
1020{
1021        struct btrfs_path *path;
1022        int ret;
1023
1024        path = btrfs_alloc_path();
1025        if (!path)
1026                return -ENOMEM;
1027        ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1028                                   drop_cache, 0, 0, NULL);
1029        btrfs_free_path(path);
1030        return ret;
1031}
1032
1033static int extent_mergeable(struct extent_buffer *leaf, int slot,
1034                            u64 objectid, u64 bytenr, u64 orig_offset,
1035                            u64 *start, u64 *end)
1036{
1037        struct btrfs_file_extent_item *fi;
1038        struct btrfs_key key;
1039        u64 extent_end;
1040
1041        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1042                return 0;
1043
1044        btrfs_item_key_to_cpu(leaf, &key, slot);
1045        if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1046                return 0;
1047
1048        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1049        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1050            btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1051            btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1052            btrfs_file_extent_compression(leaf, fi) ||
1053            btrfs_file_extent_encryption(leaf, fi) ||
1054            btrfs_file_extent_other_encoding(leaf, fi))
1055                return 0;
1056
1057        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1058        if ((*start && *start != key.offset) || (*end && *end != extent_end))
1059                return 0;
1060
1061        *start = key.offset;
1062        *end = extent_end;
1063        return 1;
1064}
1065
1066/*
1067 * Mark extent in the range start - end as written.
1068 *
1069 * This changes extent type from 'pre-allocated' to 'regular'. If only
1070 * part of extent is marked as written, the extent will be split into
1071 * two or three.
1072 */
1073int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1074                              struct inode *inode, u64 start, u64 end)
1075{
1076        struct btrfs_root *root = BTRFS_I(inode)->root;
1077        struct extent_buffer *leaf;
1078        struct btrfs_path *path;
1079        struct btrfs_file_extent_item *fi;
1080        struct btrfs_key key;
1081        struct btrfs_key new_key;
1082        u64 bytenr;
1083        u64 num_bytes;
1084        u64 extent_end;
1085        u64 orig_offset;
1086        u64 other_start;
1087        u64 other_end;
1088        u64 split;
1089        int del_nr = 0;
1090        int del_slot = 0;
1091        int recow;
1092        int ret;
1093        u64 ino = btrfs_ino(inode);
1094
1095        path = btrfs_alloc_path();
1096        if (!path)
1097                return -ENOMEM;
1098again:
1099        recow = 0;
1100        split = start;
1101        key.objectid = ino;
1102        key.type = BTRFS_EXTENT_DATA_KEY;
1103        key.offset = split;
1104
1105        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1106        if (ret < 0)
1107                goto out;
1108        if (ret > 0 && path->slots[0] > 0)
1109                path->slots[0]--;
1110
1111        leaf = path->nodes[0];
1112        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1113        if (key.objectid != ino ||
1114            key.type != BTRFS_EXTENT_DATA_KEY) {
1115                ret = -EINVAL;
1116                btrfs_abort_transaction(trans, ret);
1117                goto out;
1118        }
1119        fi = btrfs_item_ptr(leaf, path->slots[0],
1120                            struct btrfs_file_extent_item);
1121        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1122                ret = -EINVAL;
1123                btrfs_abort_transaction(trans, ret);
1124                goto out;
1125        }
1126        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1127        if (key.offset > start || extent_end < end) {
1128                ret = -EINVAL;
1129                btrfs_abort_transaction(trans, ret);
1130                goto out;
1131        }
1132
1133        bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1134        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1135        orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1136        memcpy(&new_key, &key, sizeof(new_key));
1137
1138        if (start == key.offset && end < extent_end) {
1139                other_start = 0;
1140                other_end = start;
1141                if (extent_mergeable(leaf, path->slots[0] - 1,
1142                                     ino, bytenr, orig_offset,
1143                                     &other_start, &other_end)) {
1144                        new_key.offset = end;
1145                        btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1146                        fi = btrfs_item_ptr(leaf, path->slots[0],
1147                                            struct btrfs_file_extent_item);
1148                        btrfs_set_file_extent_generation(leaf, fi,
1149                                                         trans->transid);
1150                        btrfs_set_file_extent_num_bytes(leaf, fi,
1151                                                        extent_end - end);
1152                        btrfs_set_file_extent_offset(leaf, fi,
1153                                                     end - orig_offset);
1154                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1155                                            struct btrfs_file_extent_item);
1156                        btrfs_set_file_extent_generation(leaf, fi,
1157                                                         trans->transid);
1158                        btrfs_set_file_extent_num_bytes(leaf, fi,
1159                                                        end - other_start);
1160                        btrfs_mark_buffer_dirty(leaf);
1161                        goto out;
1162                }
1163        }
1164
1165        if (start > key.offset && end == extent_end) {
1166                other_start = end;
1167                other_end = 0;
1168                if (extent_mergeable(leaf, path->slots[0] + 1,
1169                                     ino, bytenr, orig_offset,
1170                                     &other_start, &other_end)) {
1171                        fi = btrfs_item_ptr(leaf, path->slots[0],
1172                                            struct btrfs_file_extent_item);
1173                        btrfs_set_file_extent_num_bytes(leaf, fi,
1174                                                        start - key.offset);
1175                        btrfs_set_file_extent_generation(leaf, fi,
1176                                                         trans->transid);
1177                        path->slots[0]++;
1178                        new_key.offset = start;
1179                        btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1180
1181                        fi = btrfs_item_ptr(leaf, path->slots[0],
1182                                            struct btrfs_file_extent_item);
1183                        btrfs_set_file_extent_generation(leaf, fi,
1184                                                         trans->transid);
1185                        btrfs_set_file_extent_num_bytes(leaf, fi,
1186                                                        other_end - start);
1187                        btrfs_set_file_extent_offset(leaf, fi,
1188                                                     start - orig_offset);
1189                        btrfs_mark_buffer_dirty(leaf);
1190                        goto out;
1191                }
1192        }
1193
1194        while (start > key.offset || end < extent_end) {
1195                if (key.offset == start)
1196                        split = end;
1197
1198                new_key.offset = split;
1199                ret = btrfs_duplicate_item(trans, root, path, &new_key);
1200                if (ret == -EAGAIN) {
1201                        btrfs_release_path(path);
1202                        goto again;
1203                }
1204                if (ret < 0) {
1205                        btrfs_abort_transaction(trans, ret);
1206                        goto out;
1207                }
1208
1209                leaf = path->nodes[0];
1210                fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1211                                    struct btrfs_file_extent_item);
1212                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1213                btrfs_set_file_extent_num_bytes(leaf, fi,
1214                                                split - key.offset);
1215
1216                fi = btrfs_item_ptr(leaf, path->slots[0],
1217                                    struct btrfs_file_extent_item);
1218
1219                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1220                btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1221                btrfs_set_file_extent_num_bytes(leaf, fi,
1222                                                extent_end - split);
1223                btrfs_mark_buffer_dirty(leaf);
1224
1225                ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1226                                           root->root_key.objectid,
1227                                           ino, orig_offset);
1228                if (ret) {
1229                        btrfs_abort_transaction(trans, ret);
1230                        goto out;
1231                }
1232
1233                if (split == start) {
1234                        key.offset = start;
1235                } else {
1236                        if (start != key.offset) {
1237                                ret = -EINVAL;
1238                                btrfs_abort_transaction(trans, ret);
1239                                goto out;
1240                        }
1241                        path->slots[0]--;
1242                        extent_end = end;
1243                }
1244                recow = 1;
1245        }
1246
1247        other_start = end;
1248        other_end = 0;
1249        if (extent_mergeable(leaf, path->slots[0] + 1,
1250                             ino, bytenr, orig_offset,
1251                             &other_start, &other_end)) {
1252                if (recow) {
1253                        btrfs_release_path(path);
1254                        goto again;
1255                }
1256                extent_end = other_end;
1257                del_slot = path->slots[0] + 1;
1258                del_nr++;
1259                ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1260                                        0, root->root_key.objectid,
1261                                        ino, orig_offset);
1262                if (ret) {
1263                        btrfs_abort_transaction(trans, ret);
1264                        goto out;
1265                }
1266        }
1267        other_start = 0;
1268        other_end = start;
1269        if (extent_mergeable(leaf, path->slots[0] - 1,
1270                             ino, bytenr, orig_offset,
1271                             &other_start, &other_end)) {
1272                if (recow) {
1273                        btrfs_release_path(path);
1274                        goto again;
1275                }
1276                key.offset = other_start;
1277                del_slot = path->slots[0];
1278                del_nr++;
1279                ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1280                                        0, root->root_key.objectid,
1281                                        ino, orig_offset);
1282                if (ret) {
1283                        btrfs_abort_transaction(trans, ret);
1284                        goto out;
1285                }
1286        }
1287        if (del_nr == 0) {
1288                fi = btrfs_item_ptr(leaf, path->slots[0],
1289                           struct btrfs_file_extent_item);
1290                btrfs_set_file_extent_type(leaf, fi,
1291                                           BTRFS_FILE_EXTENT_REG);
1292                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1293                btrfs_mark_buffer_dirty(leaf);
1294        } else {
1295                fi = btrfs_item_ptr(leaf, del_slot - 1,
1296                           struct btrfs_file_extent_item);
1297                btrfs_set_file_extent_type(leaf, fi,
1298                                           BTRFS_FILE_EXTENT_REG);
1299                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1300                btrfs_set_file_extent_num_bytes(leaf, fi,
1301                                                extent_end - key.offset);
1302                btrfs_mark_buffer_dirty(leaf);
1303
1304                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1305                if (ret < 0) {
1306                        btrfs_abort_transaction(trans, ret);
1307                        goto out;
1308                }
1309        }
1310out:
1311        btrfs_free_path(path);
1312        return 0;
1313}
1314
1315/*
1316 * on error we return an unlocked page and the error value
1317 * on success we return a locked page and 0
1318 */
1319static int prepare_uptodate_page(struct inode *inode,
1320                                 struct page *page, u64 pos,
1321                                 bool force_uptodate)
1322{
1323        int ret = 0;
1324
1325        if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1326            !PageUptodate(page)) {
1327                ret = btrfs_readpage(NULL, page);
1328                if (ret)
1329                        return ret;
1330                lock_page(page);
1331                if (!PageUptodate(page)) {
1332                        unlock_page(page);
1333                        return -EIO;
1334                }
1335                if (page->mapping != inode->i_mapping) {
1336                        unlock_page(page);
1337                        return -EAGAIN;
1338                }
1339        }
1340        return 0;
1341}
1342
1343/*
1344 * this just gets pages into the page cache and locks them down.
1345 */
1346static noinline int prepare_pages(struct inode *inode, struct page **pages,
1347                                  size_t num_pages, loff_t pos,
1348                                  size_t write_bytes, bool force_uptodate)
1349{
1350        int i;
1351        unsigned long index = pos >> PAGE_SHIFT;
1352        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1353        int err = 0;
1354        int faili;
1355
1356        for (i = 0; i < num_pages; i++) {
1357again:
1358                pages[i] = find_or_create_page(inode->i_mapping, index + i,
1359                                               mask | __GFP_WRITE);
1360                if (!pages[i]) {
1361                        faili = i - 1;
1362                        err = -ENOMEM;
1363                        goto fail;
1364                }
1365
1366                if (i == 0)
1367                        err = prepare_uptodate_page(inode, pages[i], pos,
1368                                                    force_uptodate);
1369                if (!err && i == num_pages - 1)
1370                        err = prepare_uptodate_page(inode, pages[i],
1371                                                    pos + write_bytes, false);
1372                if (err) {
1373                        put_page(pages[i]);
1374                        if (err == -EAGAIN) {
1375                                err = 0;
1376                                goto again;
1377                        }
1378                        faili = i - 1;
1379                        goto fail;
1380                }
1381                wait_on_page_writeback(pages[i]);
1382        }
1383
1384        return 0;
1385fail:
1386        while (faili >= 0) {
1387                unlock_page(pages[faili]);
1388                put_page(pages[faili]);
1389                faili--;
1390        }
1391        return err;
1392
1393}
1394
1395/*
1396 * This function locks the extent and properly waits for data=ordered extents
1397 * to finish before allowing the pages to be modified if need.
1398 *
1399 * The return value:
1400 * 1 - the extent is locked
1401 * 0 - the extent is not locked, and everything is OK
1402 * -EAGAIN - need re-prepare the pages
1403 * the other < 0 number - Something wrong happens
1404 */
1405static noinline int
1406lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1407                                size_t num_pages, loff_t pos,
1408                                size_t write_bytes,
1409                                u64 *lockstart, u64 *lockend,
1410                                struct extent_state **cached_state)
1411{
1412        struct btrfs_root *root = BTRFS_I(inode)->root;
1413        u64 start_pos;
1414        u64 last_pos;
1415        int i;
1416        int ret = 0;
1417
1418        start_pos = round_down(pos, root->sectorsize);
1419        last_pos = start_pos
1420                + round_up(pos + write_bytes - start_pos, root->sectorsize) - 1;
1421
1422        if (start_pos < inode->i_size) {
1423                struct btrfs_ordered_extent *ordered;
1424                lock_extent_bits(&BTRFS_I(inode)->io_tree,
1425                                 start_pos, last_pos, cached_state);
1426                ordered = btrfs_lookup_ordered_range(inode, start_pos,
1427                                                     last_pos - start_pos + 1);
1428                if (ordered &&
1429                    ordered->file_offset + ordered->len > start_pos &&
1430                    ordered->file_offset <= last_pos) {
1431                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1432                                             start_pos, last_pos,
1433                                             cached_state, GFP_NOFS);
1434                        for (i = 0; i < num_pages; i++) {
1435                                unlock_page(pages[i]);
1436                                put_page(pages[i]);
1437                        }
1438                        btrfs_start_ordered_extent(inode, ordered, 1);
1439                        btrfs_put_ordered_extent(ordered);
1440                        return -EAGAIN;
1441                }
1442                if (ordered)
1443                        btrfs_put_ordered_extent(ordered);
1444
1445                clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1446                                  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1447                                  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1448                                  0, 0, cached_state, GFP_NOFS);
1449                *lockstart = start_pos;
1450                *lockend = last_pos;
1451                ret = 1;
1452        }
1453
1454        for (i = 0; i < num_pages; i++) {
1455                if (clear_page_dirty_for_io(pages[i]))
1456                        account_page_redirty(pages[i]);
1457                set_page_extent_mapped(pages[i]);
1458                WARN_ON(!PageLocked(pages[i]));
1459        }
1460
1461        return ret;
1462}
1463
1464static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1465                                    size_t *write_bytes)
1466{
1467        struct btrfs_root *root = BTRFS_I(inode)->root;
1468        struct btrfs_ordered_extent *ordered;
1469        u64 lockstart, lockend;
1470        u64 num_bytes;
1471        int ret;
1472
1473        ret = btrfs_start_write_no_snapshoting(root);
1474        if (!ret)
1475                return -ENOSPC;
1476
1477        lockstart = round_down(pos, root->sectorsize);
1478        lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1479
1480        while (1) {
1481                lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1482                ordered = btrfs_lookup_ordered_range(inode, lockstart,
1483                                                     lockend - lockstart + 1);
1484                if (!ordered) {
1485                        break;
1486                }
1487                unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1488                btrfs_start_ordered_extent(inode, ordered, 1);
1489                btrfs_put_ordered_extent(ordered);
1490        }
1491
1492        num_bytes = lockend - lockstart + 1;
1493        ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1494        if (ret <= 0) {
1495                ret = 0;
1496                btrfs_end_write_no_snapshoting(root);
1497        } else {
1498                *write_bytes = min_t(size_t, *write_bytes ,
1499                                     num_bytes - pos + lockstart);
1500        }
1501
1502        unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1503
1504        return ret;
1505}
1506
1507static noinline ssize_t __btrfs_buffered_write(struct file *file,
1508                                               struct iov_iter *i,
1509                                               loff_t pos)
1510{
1511        struct inode *inode = file_inode(file);
1512        struct btrfs_root *root = BTRFS_I(inode)->root;
1513        struct page **pages = NULL;
1514        struct extent_state *cached_state = NULL;
1515        u64 release_bytes = 0;
1516        u64 lockstart;
1517        u64 lockend;
1518        size_t num_written = 0;
1519        int nrptrs;
1520        int ret = 0;
1521        bool only_release_metadata = false;
1522        bool force_page_uptodate = false;
1523        bool need_unlock;
1524
1525        nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1526                        PAGE_SIZE / (sizeof(struct page *)));
1527        nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1528        nrptrs = max(nrptrs, 8);
1529        pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1530        if (!pages)
1531                return -ENOMEM;
1532
1533        while (iov_iter_count(i) > 0) {
1534                size_t offset = pos & (PAGE_SIZE - 1);
1535                size_t sector_offset;
1536                size_t write_bytes = min(iov_iter_count(i),
1537                                         nrptrs * (size_t)PAGE_SIZE -
1538                                         offset);
1539                size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1540                                                PAGE_SIZE);
1541                size_t reserve_bytes;
1542                size_t dirty_pages;
1543                size_t copied;
1544                size_t dirty_sectors;
1545                size_t num_sectors;
1546
1547                WARN_ON(num_pages > nrptrs);
1548
1549                /*
1550                 * Fault pages before locking them in prepare_pages
1551                 * to avoid recursive lock
1552                 */
1553                if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1554                        ret = -EFAULT;
1555                        break;
1556                }
1557
1558                sector_offset = pos & (root->sectorsize - 1);
1559                reserve_bytes = round_up(write_bytes + sector_offset,
1560                                root->sectorsize);
1561
1562                ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1563                if (ret < 0) {
1564                        if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1565                                                      BTRFS_INODE_PREALLOC)) &&
1566                            check_can_nocow(inode, pos, &write_bytes) > 0) {
1567                                /*
1568                                 * For nodata cow case, no need to reserve
1569                                 * data space.
1570                                 */
1571                                only_release_metadata = true;
1572                                /*
1573                                 * our prealloc extent may be smaller than
1574                                 * write_bytes, so scale down.
1575                                 */
1576                                num_pages = DIV_ROUND_UP(write_bytes + offset,
1577                                                         PAGE_SIZE);
1578                                reserve_bytes = round_up(write_bytes +
1579                                                         sector_offset,
1580                                                         root->sectorsize);
1581                        } else {
1582                                break;
1583                        }
1584                }
1585
1586                ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1587                if (ret) {
1588                        if (!only_release_metadata)
1589                                btrfs_free_reserved_data_space(inode, pos,
1590                                                               write_bytes);
1591                        else
1592                                btrfs_end_write_no_snapshoting(root);
1593                        break;
1594                }
1595
1596                release_bytes = reserve_bytes;
1597                need_unlock = false;
1598again:
1599                /*
1600                 * This is going to setup the pages array with the number of
1601                 * pages we want, so we don't really need to worry about the
1602                 * contents of pages from loop to loop
1603                 */
1604                ret = prepare_pages(inode, pages, num_pages,
1605                                    pos, write_bytes,
1606                                    force_page_uptodate);
1607                if (ret)
1608                        break;
1609
1610                ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1611                                                pos, write_bytes, &lockstart,
1612                                                &lockend, &cached_state);
1613                if (ret < 0) {
1614                        if (ret == -EAGAIN)
1615                                goto again;
1616                        break;
1617                } else if (ret > 0) {
1618                        need_unlock = true;
1619                        ret = 0;
1620                }
1621
1622                copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1623
1624                num_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1625                                                reserve_bytes);
1626                dirty_sectors = round_up(copied + sector_offset,
1627                                        root->sectorsize);
1628                dirty_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1629                                                dirty_sectors);
1630
1631                /*
1632                 * if we have trouble faulting in the pages, fall
1633                 * back to one page at a time
1634                 */
1635                if (copied < write_bytes)
1636                        nrptrs = 1;
1637
1638                if (copied == 0) {
1639                        force_page_uptodate = true;
1640                        dirty_sectors = 0;
1641                        dirty_pages = 0;
1642                } else {
1643                        force_page_uptodate = false;
1644                        dirty_pages = DIV_ROUND_UP(copied + offset,
1645                                                   PAGE_SIZE);
1646                }
1647
1648                /*
1649                 * If we had a short copy we need to release the excess delaloc
1650                 * bytes we reserved.  We need to increment outstanding_extents
1651                 * because btrfs_delalloc_release_space and
1652                 * btrfs_delalloc_release_metadata will decrement it, but
1653                 * we still have an outstanding extent for the chunk we actually
1654                 * managed to copy.
1655                 */
1656                if (num_sectors > dirty_sectors) {
1657
1658                        /* release everything except the sectors we dirtied */
1659                        release_bytes -= dirty_sectors <<
1660                                root->fs_info->sb->s_blocksize_bits;
1661
1662                        if (copied > 0) {
1663                                spin_lock(&BTRFS_I(inode)->lock);
1664                                BTRFS_I(inode)->outstanding_extents++;
1665                                spin_unlock(&BTRFS_I(inode)->lock);
1666                        }
1667                        if (only_release_metadata) {
1668                                btrfs_delalloc_release_metadata(inode,
1669                                                                release_bytes);
1670                        } else {
1671                                u64 __pos;
1672
1673                                __pos = round_down(pos, root->sectorsize) +
1674                                        (dirty_pages << PAGE_SHIFT);
1675                                btrfs_delalloc_release_space(inode, __pos,
1676                                                             release_bytes);
1677                        }
1678                }
1679
1680                release_bytes = round_up(copied + sector_offset,
1681                                        root->sectorsize);
1682
1683                if (copied > 0)
1684                        ret = btrfs_dirty_pages(root, inode, pages,
1685                                                dirty_pages, pos, copied,
1686                                                NULL);
1687                if (need_unlock)
1688                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1689                                             lockstart, lockend, &cached_state,
1690                                             GFP_NOFS);
1691                if (ret) {
1692                        btrfs_drop_pages(pages, num_pages);
1693                        break;
1694                }
1695
1696                release_bytes = 0;
1697                if (only_release_metadata)
1698                        btrfs_end_write_no_snapshoting(root);
1699
1700                if (only_release_metadata && copied > 0) {
1701                        lockstart = round_down(pos, root->sectorsize);
1702                        lockend = round_up(pos + copied, root->sectorsize) - 1;
1703
1704                        set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1705                                       lockend, EXTENT_NORESERVE, NULL,
1706                                       NULL, GFP_NOFS);
1707                        only_release_metadata = false;
1708                }
1709
1710                btrfs_drop_pages(pages, num_pages);
1711
1712                cond_resched();
1713
1714                balance_dirty_pages_ratelimited(inode->i_mapping);
1715                if (dirty_pages < (root->nodesize >> PAGE_SHIFT) + 1)
1716                        btrfs_btree_balance_dirty(root);
1717
1718                pos += copied;
1719                num_written += copied;
1720        }
1721
1722        kfree(pages);
1723
1724        if (release_bytes) {
1725                if (only_release_metadata) {
1726                        btrfs_end_write_no_snapshoting(root);
1727                        btrfs_delalloc_release_metadata(inode, release_bytes);
1728                } else {
1729                        btrfs_delalloc_release_space(inode,
1730                                                round_down(pos, root->sectorsize),
1731                                                release_bytes);
1732                }
1733        }
1734
1735        return num_written ? num_written : ret;
1736}
1737
1738static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1739{
1740        struct file *file = iocb->ki_filp;
1741        struct inode *inode = file_inode(file);
1742        loff_t pos = iocb->ki_pos;
1743        ssize_t written;
1744        ssize_t written_buffered;
1745        loff_t endbyte;
1746        int err;
1747
1748        written = generic_file_direct_write(iocb, from);
1749
1750        if (written < 0 || !iov_iter_count(from))
1751                return written;
1752
1753        pos += written;
1754        written_buffered = __btrfs_buffered_write(file, from, pos);
1755        if (written_buffered < 0) {
1756                err = written_buffered;
1757                goto out;
1758        }
1759        /*
1760         * Ensure all data is persisted. We want the next direct IO read to be
1761         * able to read what was just written.
1762         */
1763        endbyte = pos + written_buffered - 1;
1764        err = btrfs_fdatawrite_range(inode, pos, endbyte);
1765        if (err)
1766                goto out;
1767        err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1768        if (err)
1769                goto out;
1770        written += written_buffered;
1771        iocb->ki_pos = pos + written_buffered;
1772        invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1773                                 endbyte >> PAGE_SHIFT);
1774out:
1775        return written ? written : err;
1776}
1777
1778static void update_time_for_write(struct inode *inode)
1779{
1780        struct timespec now;
1781
1782        if (IS_NOCMTIME(inode))
1783                return;
1784
1785        now = current_time(inode);
1786        if (!timespec_equal(&inode->i_mtime, &now))
1787                inode->i_mtime = now;
1788
1789        if (!timespec_equal(&inode->i_ctime, &now))
1790                inode->i_ctime = now;
1791
1792        if (IS_I_VERSION(inode))
1793                inode_inc_iversion(inode);
1794}
1795
1796static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1797                                    struct iov_iter *from)
1798{
1799        struct file *file = iocb->ki_filp;
1800        struct inode *inode = file_inode(file);
1801        struct btrfs_root *root = BTRFS_I(inode)->root;
1802        u64 start_pos;
1803        u64 end_pos;
1804        ssize_t num_written = 0;
1805        bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1806        ssize_t err;
1807        loff_t pos;
1808        size_t count;
1809        loff_t oldsize;
1810        int clean_page = 0;
1811
1812        inode_lock(inode);
1813        err = generic_write_checks(iocb, from);
1814        if (err <= 0) {
1815                inode_unlock(inode);
1816                return err;
1817        }
1818
1819        current->backing_dev_info = inode_to_bdi(inode);
1820        err = file_remove_privs(file);
1821        if (err) {
1822                inode_unlock(inode);
1823                goto out;
1824        }
1825
1826        /*
1827         * If BTRFS flips readonly due to some impossible error
1828         * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1829         * although we have opened a file as writable, we have
1830         * to stop this write operation to ensure FS consistency.
1831         */
1832        if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1833                inode_unlock(inode);
1834                err = -EROFS;
1835                goto out;
1836        }
1837
1838        /*
1839         * We reserve space for updating the inode when we reserve space for the
1840         * extent we are going to write, so we will enospc out there.  We don't
1841         * need to start yet another transaction to update the inode as we will
1842         * update the inode when we finish writing whatever data we write.
1843         */
1844        update_time_for_write(inode);
1845
1846        pos = iocb->ki_pos;
1847        count = iov_iter_count(from);
1848        start_pos = round_down(pos, root->sectorsize);
1849        oldsize = i_size_read(inode);
1850        if (start_pos > oldsize) {
1851                /* Expand hole size to cover write data, preventing empty gap */
1852                end_pos = round_up(pos + count, root->sectorsize);
1853                err = btrfs_cont_expand(inode, oldsize, end_pos);
1854                if (err) {
1855                        inode_unlock(inode);
1856                        goto out;
1857                }
1858                if (start_pos > round_up(oldsize, root->sectorsize))
1859                        clean_page = 1;
1860        }
1861
1862        if (sync)
1863                atomic_inc(&BTRFS_I(inode)->sync_writers);
1864
1865        if (iocb->ki_flags & IOCB_DIRECT) {
1866                num_written = __btrfs_direct_write(iocb, from);
1867        } else {
1868                num_written = __btrfs_buffered_write(file, from, pos);
1869                if (num_written > 0)
1870                        iocb->ki_pos = pos + num_written;
1871                if (clean_page)
1872                        pagecache_isize_extended(inode, oldsize,
1873                                                i_size_read(inode));
1874        }
1875
1876        inode_unlock(inode);
1877
1878        /*
1879         * We also have to set last_sub_trans to the current log transid,
1880         * otherwise subsequent syncs to a file that's been synced in this
1881         * transaction will appear to have already occurred.
1882         */
1883        spin_lock(&BTRFS_I(inode)->lock);
1884        BTRFS_I(inode)->last_sub_trans = root->log_transid;
1885        spin_unlock(&BTRFS_I(inode)->lock);
1886        if (num_written > 0)
1887                num_written = generic_write_sync(iocb, num_written);
1888
1889        if (sync)
1890                atomic_dec(&BTRFS_I(inode)->sync_writers);
1891out:
1892        current->backing_dev_info = NULL;
1893        return num_written ? num_written : err;
1894}
1895
1896int btrfs_release_file(struct inode *inode, struct file *filp)
1897{
1898        if (filp->private_data)
1899                btrfs_ioctl_trans_end(filp);
1900        /*
1901         * ordered_data_close is set by settattr when we are about to truncate
1902         * a file from a non-zero size to a zero size.  This tries to
1903         * flush down new bytes that may have been written if the
1904         * application were using truncate to replace a file in place.
1905         */
1906        if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1907                               &BTRFS_I(inode)->runtime_flags))
1908                        filemap_flush(inode->i_mapping);
1909        return 0;
1910}
1911
1912static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1913{
1914        int ret;
1915
1916        atomic_inc(&BTRFS_I(inode)->sync_writers);
1917        ret = btrfs_fdatawrite_range(inode, start, end);
1918        atomic_dec(&BTRFS_I(inode)->sync_writers);
1919
1920        return ret;
1921}
1922
1923/*
1924 * fsync call for both files and directories.  This logs the inode into
1925 * the tree log instead of forcing full commits whenever possible.
1926 *
1927 * It needs to call filemap_fdatawait so that all ordered extent updates are
1928 * in the metadata btree are up to date for copying to the log.
1929 *
1930 * It drops the inode mutex before doing the tree log commit.  This is an
1931 * important optimization for directories because holding the mutex prevents
1932 * new operations on the dir while we write to disk.
1933 */
1934int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1935{
1936        struct dentry *dentry = file_dentry(file);
1937        struct inode *inode = d_inode(dentry);
1938        struct btrfs_root *root = BTRFS_I(inode)->root;
1939        struct btrfs_trans_handle *trans;
1940        struct btrfs_log_ctx ctx;
1941        int ret = 0;
1942        bool full_sync = 0;
1943        u64 len;
1944
1945        /*
1946         * The range length can be represented by u64, we have to do the typecasts
1947         * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1948         */
1949        len = (u64)end - (u64)start + 1;
1950        trace_btrfs_sync_file(file, datasync);
1951
1952        /*
1953         * We write the dirty pages in the range and wait until they complete
1954         * out of the ->i_mutex. If so, we can flush the dirty pages by
1955         * multi-task, and make the performance up.  See
1956         * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1957         */
1958        ret = start_ordered_ops(inode, start, end);
1959        if (ret)
1960                return ret;
1961
1962        inode_lock(inode);
1963        atomic_inc(&root->log_batch);
1964        full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1965                             &BTRFS_I(inode)->runtime_flags);
1966        /*
1967         * We might have have had more pages made dirty after calling
1968         * start_ordered_ops and before acquiring the inode's i_mutex.
1969         */
1970        if (full_sync) {
1971                /*
1972                 * For a full sync, we need to make sure any ordered operations
1973                 * start and finish before we start logging the inode, so that
1974                 * all extents are persisted and the respective file extent
1975                 * items are in the fs/subvol btree.
1976                 */
1977                ret = btrfs_wait_ordered_range(inode, start, len);
1978        } else {
1979                /*
1980                 * Start any new ordered operations before starting to log the
1981                 * inode. We will wait for them to finish in btrfs_sync_log().
1982                 *
1983                 * Right before acquiring the inode's mutex, we might have new
1984                 * writes dirtying pages, which won't immediately start the
1985                 * respective ordered operations - that is done through the
1986                 * fill_delalloc callbacks invoked from the writepage and
1987                 * writepages address space operations. So make sure we start
1988                 * all ordered operations before starting to log our inode. Not
1989                 * doing this means that while logging the inode, writeback
1990                 * could start and invoke writepage/writepages, which would call
1991                 * the fill_delalloc callbacks (cow_file_range,
1992                 * submit_compressed_extents). These callbacks add first an
1993                 * extent map to the modified list of extents and then create
1994                 * the respective ordered operation, which means in
1995                 * tree-log.c:btrfs_log_inode() we might capture all existing
1996                 * ordered operations (with btrfs_get_logged_extents()) before
1997                 * the fill_delalloc callback adds its ordered operation, and by
1998                 * the time we visit the modified list of extent maps (with
1999                 * btrfs_log_changed_extents()), we see and process the extent
2000                 * map they created. We then use the extent map to construct a
2001                 * file extent item for logging without waiting for the
2002                 * respective ordered operation to finish - this file extent
2003                 * item points to a disk location that might not have yet been
2004                 * written to, containing random data - so after a crash a log
2005                 * replay will make our inode have file extent items that point
2006                 * to disk locations containing invalid data, as we returned
2007                 * success to userspace without waiting for the respective
2008                 * ordered operation to finish, because it wasn't captured by
2009                 * btrfs_get_logged_extents().
2010                 */
2011                ret = start_ordered_ops(inode, start, end);
2012        }
2013        if (ret) {
2014                inode_unlock(inode);
2015                goto out;
2016        }
2017        atomic_inc(&root->log_batch);
2018
2019        /*
2020         * If the last transaction that changed this file was before the current
2021         * transaction and we have the full sync flag set in our inode, we can
2022         * bail out now without any syncing.
2023         *
2024         * Note that we can't bail out if the full sync flag isn't set. This is
2025         * because when the full sync flag is set we start all ordered extents
2026         * and wait for them to fully complete - when they complete they update
2027         * the inode's last_trans field through:
2028         *
2029         *     btrfs_finish_ordered_io() ->
2030         *         btrfs_update_inode_fallback() ->
2031         *             btrfs_update_inode() ->
2032         *                 btrfs_set_inode_last_trans()
2033         *
2034         * So we are sure that last_trans is up to date and can do this check to
2035         * bail out safely. For the fast path, when the full sync flag is not
2036         * set in our inode, we can not do it because we start only our ordered
2037         * extents and don't wait for them to complete (that is when
2038         * btrfs_finish_ordered_io runs), so here at this point their last_trans
2039         * value might be less than or equals to fs_info->last_trans_committed,
2040         * and setting a speculative last_trans for an inode when a buffered
2041         * write is made (such as fs_info->generation + 1 for example) would not
2042         * be reliable since after setting the value and before fsync is called
2043         * any number of transactions can start and commit (transaction kthread
2044         * commits the current transaction periodically), and a transaction
2045         * commit does not start nor waits for ordered extents to complete.
2046         */
2047        smp_mb();
2048        if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
2049            (full_sync && BTRFS_I(inode)->last_trans <=
2050             root->fs_info->last_trans_committed) ||
2051            (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2052             BTRFS_I(inode)->last_trans
2053             <= root->fs_info->last_trans_committed)) {
2054                /*
2055                 * We've had everything committed since the last time we were
2056                 * modified so clear this flag in case it was set for whatever
2057                 * reason, it's no longer relevant.
2058                 */
2059                clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2060                          &BTRFS_I(inode)->runtime_flags);
2061                /*
2062                 * An ordered extent might have started before and completed
2063                 * already with io errors, in which case the inode was not
2064                 * updated and we end up here. So check the inode's mapping
2065                 * flags for any errors that might have happened while doing
2066                 * writeback of file data.
2067                 */
2068                ret = filemap_check_errors(inode->i_mapping);
2069                inode_unlock(inode);
2070                goto out;
2071        }
2072
2073        /*
2074         * ok we haven't committed the transaction yet, lets do a commit
2075         */
2076        if (file->private_data)
2077                btrfs_ioctl_trans_end(file);
2078
2079        /*
2080         * We use start here because we will need to wait on the IO to complete
2081         * in btrfs_sync_log, which could require joining a transaction (for
2082         * example checking cross references in the nocow path).  If we use join
2083         * here we could get into a situation where we're waiting on IO to
2084         * happen that is blocked on a transaction trying to commit.  With start
2085         * we inc the extwriter counter, so we wait for all extwriters to exit
2086         * before we start blocking join'ers.  This comment is to keep somebody
2087         * from thinking they are super smart and changing this to
2088         * btrfs_join_transaction *cough*Josef*cough*.
2089         */
2090        trans = btrfs_start_transaction(root, 0);
2091        if (IS_ERR(trans)) {
2092                ret = PTR_ERR(trans);
2093                inode_unlock(inode);
2094                goto out;
2095        }
2096        trans->sync = true;
2097
2098        btrfs_init_log_ctx(&ctx, inode);
2099
2100        ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2101        if (ret < 0) {
2102                /* Fallthrough and commit/free transaction. */
2103                ret = 1;
2104        }
2105
2106        /* we've logged all the items and now have a consistent
2107         * version of the file in the log.  It is possible that
2108         * someone will come in and modify the file, but that's
2109         * fine because the log is consistent on disk, and we
2110         * have references to all of the file's extents
2111         *
2112         * It is possible that someone will come in and log the
2113         * file again, but that will end up using the synchronization
2114         * inside btrfs_sync_log to keep things safe.
2115         */
2116        inode_unlock(inode);
2117
2118        /*
2119         * If any of the ordered extents had an error, just return it to user
2120         * space, so that the application knows some writes didn't succeed and
2121         * can take proper action (retry for e.g.). Blindly committing the
2122         * transaction in this case, would fool userspace that everything was
2123         * successful. And we also want to make sure our log doesn't contain
2124         * file extent items pointing to extents that weren't fully written to -
2125         * just like in the non fast fsync path, where we check for the ordered
2126         * operation's error flag before writing to the log tree and return -EIO
2127         * if any of them had this flag set (btrfs_wait_ordered_range) -
2128         * therefore we need to check for errors in the ordered operations,
2129         * which are indicated by ctx.io_err.
2130         */
2131        if (ctx.io_err) {
2132                btrfs_end_transaction(trans, root);
2133                ret = ctx.io_err;
2134                goto out;
2135        }
2136
2137        if (ret != BTRFS_NO_LOG_SYNC) {
2138                if (!ret) {
2139                        ret = btrfs_sync_log(trans, root, &ctx);
2140                        if (!ret) {
2141                                ret = btrfs_end_transaction(trans, root);
2142                                goto out;
2143                        }
2144                }
2145                if (!full_sync) {
2146                        ret = btrfs_wait_ordered_range(inode, start, len);
2147                        if (ret) {
2148                                btrfs_end_transaction(trans, root);
2149                                goto out;
2150                        }
2151                }
2152                ret = btrfs_commit_transaction(trans, root);
2153        } else {
2154                ret = btrfs_end_transaction(trans, root);
2155        }
2156out:
2157        return ret > 0 ? -EIO : ret;
2158}
2159
2160static const struct vm_operations_struct btrfs_file_vm_ops = {
2161        .fault          = filemap_fault,
2162        .map_pages      = filemap_map_pages,
2163        .page_mkwrite   = btrfs_page_mkwrite,
2164};
2165
2166static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2167{
2168        struct address_space *mapping = filp->f_mapping;
2169
2170        if (!mapping->a_ops->readpage)
2171                return -ENOEXEC;
2172
2173        file_accessed(filp);
2174        vma->vm_ops = &btrfs_file_vm_ops;
2175
2176        return 0;
2177}
2178
2179static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2180                          int slot, u64 start, u64 end)
2181{
2182        struct btrfs_file_extent_item *fi;
2183        struct btrfs_key key;
2184
2185        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2186                return 0;
2187
2188        btrfs_item_key_to_cpu(leaf, &key, slot);
2189        if (key.objectid != btrfs_ino(inode) ||
2190            key.type != BTRFS_EXTENT_DATA_KEY)
2191                return 0;
2192
2193        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2194
2195        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2196                return 0;
2197
2198        if (btrfs_file_extent_disk_bytenr(leaf, fi))
2199                return 0;
2200
2201        if (key.offset == end)
2202                return 1;
2203        if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2204                return 1;
2205        return 0;
2206}
2207
2208static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2209                      struct btrfs_path *path, u64 offset, u64 end)
2210{
2211        struct btrfs_root *root = BTRFS_I(inode)->root;
2212        struct extent_buffer *leaf;
2213        struct btrfs_file_extent_item *fi;
2214        struct extent_map *hole_em;
2215        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2216        struct btrfs_key key;
2217        int ret;
2218
2219        if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2220                goto out;
2221
2222        key.objectid = btrfs_ino(inode);
2223        key.type = BTRFS_EXTENT_DATA_KEY;
2224        key.offset = offset;
2225
2226        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2227        if (ret < 0)
2228                return ret;
2229        BUG_ON(!ret);
2230
2231        leaf = path->nodes[0];
2232        if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2233                u64 num_bytes;
2234
2235                path->slots[0]--;
2236                fi = btrfs_item_ptr(leaf, path->slots[0],
2237                                    struct btrfs_file_extent_item);
2238                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2239                        end - offset;
2240                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2241                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2242                btrfs_set_file_extent_offset(leaf, fi, 0);
2243                btrfs_mark_buffer_dirty(leaf);
2244                goto out;
2245        }
2246
2247        if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2248                u64 num_bytes;
2249
2250                key.offset = offset;
2251                btrfs_set_item_key_safe(root->fs_info, path, &key);
2252                fi = btrfs_item_ptr(leaf, path->slots[0],
2253                                    struct btrfs_file_extent_item);
2254                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2255                        offset;
2256                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2257                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2258                btrfs_set_file_extent_offset(leaf, fi, 0);
2259                btrfs_mark_buffer_dirty(leaf);
2260                goto out;
2261        }
2262        btrfs_release_path(path);
2263
2264        ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2265                                       0, 0, end - offset, 0, end - offset,
2266                                       0, 0, 0);
2267        if (ret)
2268                return ret;
2269
2270out:
2271        btrfs_release_path(path);
2272
2273        hole_em = alloc_extent_map();
2274        if (!hole_em) {
2275                btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2276                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2277                        &BTRFS_I(inode)->runtime_flags);
2278        } else {
2279                hole_em->start = offset;
2280                hole_em->len = end - offset;
2281                hole_em->ram_bytes = hole_em->len;
2282                hole_em->orig_start = offset;
2283
2284                hole_em->block_start = EXTENT_MAP_HOLE;
2285                hole_em->block_len = 0;
2286                hole_em->orig_block_len = 0;
2287                hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2288                hole_em->compress_type = BTRFS_COMPRESS_NONE;
2289                hole_em->generation = trans->transid;
2290
2291                do {
2292                        btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2293                        write_lock(&em_tree->lock);
2294                        ret = add_extent_mapping(em_tree, hole_em, 1);
2295                        write_unlock(&em_tree->lock);
2296                } while (ret == -EEXIST);
2297                free_extent_map(hole_em);
2298                if (ret)
2299                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2300                                &BTRFS_I(inode)->runtime_flags);
2301        }
2302
2303        return 0;
2304}
2305
2306/*
2307 * Find a hole extent on given inode and change start/len to the end of hole
2308 * extent.(hole/vacuum extent whose em->start <= start &&
2309 *         em->start + em->len > start)
2310 * When a hole extent is found, return 1 and modify start/len.
2311 */
2312static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2313{
2314        struct extent_map *em;
2315        int ret = 0;
2316
2317        em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2318        if (IS_ERR_OR_NULL(em)) {
2319                if (!em)
2320                        ret = -ENOMEM;
2321                else
2322                        ret = PTR_ERR(em);
2323                return ret;
2324        }
2325
2326        /* Hole or vacuum extent(only exists in no-hole mode) */
2327        if (em->block_start == EXTENT_MAP_HOLE) {
2328                ret = 1;
2329                *len = em->start + em->len > *start + *len ?
2330                       0 : *start + *len - em->start - em->len;
2331                *start = em->start + em->len;
2332        }
2333        free_extent_map(em);
2334        return ret;
2335}
2336
2337static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2338{
2339        struct btrfs_root *root = BTRFS_I(inode)->root;
2340        struct extent_state *cached_state = NULL;
2341        struct btrfs_path *path;
2342        struct btrfs_block_rsv *rsv;
2343        struct btrfs_trans_handle *trans;
2344        u64 lockstart;
2345        u64 lockend;
2346        u64 tail_start;
2347        u64 tail_len;
2348        u64 orig_start = offset;
2349        u64 cur_offset;
2350        u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2351        u64 drop_end;
2352        int ret = 0;
2353        int err = 0;
2354        unsigned int rsv_count;
2355        bool same_block;
2356        bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2357        u64 ino_size;
2358        bool truncated_block = false;
2359        bool updated_inode = false;
2360
2361        ret = btrfs_wait_ordered_range(inode, offset, len);
2362        if (ret)
2363                return ret;
2364
2365        inode_lock(inode);
2366        ino_size = round_up(inode->i_size, root->sectorsize);
2367        ret = find_first_non_hole(inode, &offset, &len);
2368        if (ret < 0)
2369                goto out_only_mutex;
2370        if (ret && !len) {
2371                /* Already in a large hole */
2372                ret = 0;
2373                goto out_only_mutex;
2374        }
2375
2376        lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2377        lockend = round_down(offset + len,
2378                             BTRFS_I(inode)->root->sectorsize) - 1;
2379        same_block = (BTRFS_BYTES_TO_BLKS(root->fs_info, offset))
2380                == (BTRFS_BYTES_TO_BLKS(root->fs_info, offset + len - 1));
2381        /*
2382         * We needn't truncate any block which is beyond the end of the file
2383         * because we are sure there is no data there.
2384         */
2385        /*
2386         * Only do this if we are in the same block and we aren't doing the
2387         * entire block.
2388         */
2389        if (same_block && len < root->sectorsize) {
2390                if (offset < ino_size) {
2391                        truncated_block = true;
2392                        ret = btrfs_truncate_block(inode, offset, len, 0);
2393                } else {
2394                        ret = 0;
2395                }
2396                goto out_only_mutex;
2397        }
2398
2399        /* zero back part of the first block */
2400        if (offset < ino_size) {
2401                truncated_block = true;
2402                ret = btrfs_truncate_block(inode, offset, 0, 0);
2403                if (ret) {
2404                        inode_unlock(inode);
2405                        return ret;
2406                }
2407        }
2408
2409        /* Check the aligned pages after the first unaligned page,
2410         * if offset != orig_start, which means the first unaligned page
2411         * including several following pages are already in holes,
2412         * the extra check can be skipped */
2413        if (offset == orig_start) {
2414                /* after truncate page, check hole again */
2415                len = offset + len - lockstart;
2416                offset = lockstart;
2417                ret = find_first_non_hole(inode, &offset, &len);
2418                if (ret < 0)
2419                        goto out_only_mutex;
2420                if (ret && !len) {
2421                        ret = 0;
2422                        goto out_only_mutex;
2423                }
2424                lockstart = offset;
2425        }
2426
2427        /* Check the tail unaligned part is in a hole */
2428        tail_start = lockend + 1;
2429        tail_len = offset + len - tail_start;
2430        if (tail_len) {
2431                ret = find_first_non_hole(inode, &tail_start, &tail_len);
2432                if (unlikely(ret < 0))
2433                        goto out_only_mutex;
2434                if (!ret) {
2435                        /* zero the front end of the last page */
2436                        if (tail_start + tail_len < ino_size) {
2437                                truncated_block = true;
2438                                ret = btrfs_truncate_block(inode,
2439                                                        tail_start + tail_len,
2440                                                        0, 1);
2441                                if (ret)
2442                                        goto out_only_mutex;
2443                        }
2444                }
2445        }
2446
2447        if (lockend < lockstart) {
2448                ret = 0;
2449                goto out_only_mutex;
2450        }
2451
2452        while (1) {
2453                struct btrfs_ordered_extent *ordered;
2454
2455                truncate_pagecache_range(inode, lockstart, lockend);
2456
2457                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2458                                 &cached_state);
2459                ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2460
2461                /*
2462                 * We need to make sure we have no ordered extents in this range
2463                 * and nobody raced in and read a page in this range, if we did
2464                 * we need to try again.
2465                 */
2466                if ((!ordered ||
2467                    (ordered->file_offset + ordered->len <= lockstart ||
2468                     ordered->file_offset > lockend)) &&
2469                     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2470                        if (ordered)
2471                                btrfs_put_ordered_extent(ordered);
2472                        break;
2473                }
2474                if (ordered)
2475                        btrfs_put_ordered_extent(ordered);
2476                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2477                                     lockend, &cached_state, GFP_NOFS);
2478                ret = btrfs_wait_ordered_range(inode, lockstart,
2479                                               lockend - lockstart + 1);
2480                if (ret) {
2481                        inode_unlock(inode);
2482                        return ret;
2483                }
2484        }
2485
2486        path = btrfs_alloc_path();
2487        if (!path) {
2488                ret = -ENOMEM;
2489                goto out;
2490        }
2491
2492        rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2493        if (!rsv) {
2494                ret = -ENOMEM;
2495                goto out_free;
2496        }
2497        rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2498        rsv->failfast = 1;
2499
2500        /*
2501         * 1 - update the inode
2502         * 1 - removing the extents in the range
2503         * 1 - adding the hole extent if no_holes isn't set
2504         */
2505        rsv_count = no_holes ? 2 : 3;
2506        trans = btrfs_start_transaction(root, rsv_count);
2507        if (IS_ERR(trans)) {
2508                err = PTR_ERR(trans);
2509                goto out_free;
2510        }
2511
2512        ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2513                                      min_size, 0);
2514        BUG_ON(ret);
2515        trans->block_rsv = rsv;
2516
2517        cur_offset = lockstart;
2518        len = lockend - cur_offset;
2519        while (cur_offset < lockend) {
2520                ret = __btrfs_drop_extents(trans, root, inode, path,
2521                                           cur_offset, lockend + 1,
2522                                           &drop_end, 1, 0, 0, NULL);
2523                if (ret != -ENOSPC)
2524                        break;
2525
2526                trans->block_rsv = &root->fs_info->trans_block_rsv;
2527
2528                if (cur_offset < ino_size) {
2529                        ret = fill_holes(trans, inode, path, cur_offset,
2530                                         drop_end);
2531                        if (ret) {
2532                                err = ret;
2533                                break;
2534                        }
2535                }
2536
2537                cur_offset = drop_end;
2538
2539                ret = btrfs_update_inode(trans, root, inode);
2540                if (ret) {
2541                        err = ret;
2542                        break;
2543                }
2544
2545                btrfs_end_transaction(trans, root);
2546                btrfs_btree_balance_dirty(root);
2547
2548                trans = btrfs_start_transaction(root, rsv_count);
2549                if (IS_ERR(trans)) {
2550                        ret = PTR_ERR(trans);
2551                        trans = NULL;
2552                        break;
2553                }
2554
2555                ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2556                                              rsv, min_size, 0);
2557                BUG_ON(ret);    /* shouldn't happen */
2558                trans->block_rsv = rsv;
2559
2560                ret = find_first_non_hole(inode, &cur_offset, &len);
2561                if (unlikely(ret < 0))
2562                        break;
2563                if (ret && !len) {
2564                        ret = 0;
2565                        break;
2566                }
2567        }
2568
2569        if (ret) {
2570                err = ret;
2571                goto out_trans;
2572        }
2573
2574        trans->block_rsv = &root->fs_info->trans_block_rsv;
2575        /*
2576         * If we are using the NO_HOLES feature we might have had already an
2577         * hole that overlaps a part of the region [lockstart, lockend] and
2578         * ends at (or beyond) lockend. Since we have no file extent items to
2579         * represent holes, drop_end can be less than lockend and so we must
2580         * make sure we have an extent map representing the existing hole (the
2581         * call to __btrfs_drop_extents() might have dropped the existing extent
2582         * map representing the existing hole), otherwise the fast fsync path
2583         * will not record the existence of the hole region
2584         * [existing_hole_start, lockend].
2585         */
2586        if (drop_end <= lockend)
2587                drop_end = lockend + 1;
2588        /*
2589         * Don't insert file hole extent item if it's for a range beyond eof
2590         * (because it's useless) or if it represents a 0 bytes range (when
2591         * cur_offset == drop_end).
2592         */
2593        if (cur_offset < ino_size && cur_offset < drop_end) {
2594                ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2595                if (ret) {
2596                        err = ret;
2597                        goto out_trans;
2598                }
2599        }
2600
2601out_trans:
2602        if (!trans)
2603                goto out_free;
2604
2605        inode_inc_iversion(inode);
2606        inode->i_mtime = inode->i_ctime = current_time(inode);
2607
2608        trans->block_rsv = &root->fs_info->trans_block_rsv;
2609        ret = btrfs_update_inode(trans, root, inode);
2610        updated_inode = true;
2611        btrfs_end_transaction(trans, root);
2612        btrfs_btree_balance_dirty(root);
2613out_free:
2614        btrfs_free_path(path);
2615        btrfs_free_block_rsv(root, rsv);
2616out:
2617        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2618                             &cached_state, GFP_NOFS);
2619out_only_mutex:
2620        if (!updated_inode && truncated_block && !ret && !err) {
2621                /*
2622                 * If we only end up zeroing part of a page, we still need to
2623                 * update the inode item, so that all the time fields are
2624                 * updated as well as the necessary btrfs inode in memory fields
2625                 * for detecting, at fsync time, if the inode isn't yet in the
2626                 * log tree or it's there but not up to date.
2627                 */
2628                trans = btrfs_start_transaction(root, 1);
2629                if (IS_ERR(trans)) {
2630                        err = PTR_ERR(trans);
2631                } else {
2632                        err = btrfs_update_inode(trans, root, inode);
2633                        ret = btrfs_end_transaction(trans, root);
2634                }
2635        }
2636        inode_unlock(inode);
2637        if (ret && !err)
2638                err = ret;
2639        return err;
2640}
2641
2642/* Helper structure to record which range is already reserved */
2643struct falloc_range {
2644        struct list_head list;
2645        u64 start;
2646        u64 len;
2647};
2648
2649/*
2650 * Helper function to add falloc range
2651 *
2652 * Caller should have locked the larger range of extent containing
2653 * [start, len)
2654 */
2655static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2656{
2657        struct falloc_range *prev = NULL;
2658        struct falloc_range *range = NULL;
2659
2660        if (list_empty(head))
2661                goto insert;
2662
2663        /*
2664         * As fallocate iterate by bytenr order, we only need to check
2665         * the last range.
2666         */
2667        prev = list_entry(head->prev, struct falloc_range, list);
2668        if (prev->start + prev->len == start) {
2669                prev->len += len;
2670                return 0;
2671        }
2672insert:
2673        range = kmalloc(sizeof(*range), GFP_KERNEL);
2674        if (!range)
2675                return -ENOMEM;
2676        range->start = start;
2677        range->len = len;
2678        list_add_tail(&range->list, head);
2679        return 0;
2680}
2681
2682static long btrfs_fallocate(struct file *file, int mode,
2683                            loff_t offset, loff_t len)
2684{
2685        struct inode *inode = file_inode(file);
2686        struct extent_state *cached_state = NULL;
2687        struct falloc_range *range;
2688        struct falloc_range *tmp;
2689        struct list_head reserve_list;
2690        u64 cur_offset;
2691        u64 last_byte;
2692        u64 alloc_start;
2693        u64 alloc_end;
2694        u64 alloc_hint = 0;
2695        u64 locked_end;
2696        u64 actual_end = 0;
2697        struct extent_map *em;
2698        int blocksize = BTRFS_I(inode)->root->sectorsize;
2699        int ret;
2700
2701        alloc_start = round_down(offset, blocksize);
2702        alloc_end = round_up(offset + len, blocksize);
2703        cur_offset = alloc_start;
2704
2705        /* Make sure we aren't being give some crap mode */
2706        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2707                return -EOPNOTSUPP;
2708
2709        if (mode & FALLOC_FL_PUNCH_HOLE)
2710                return btrfs_punch_hole(inode, offset, len);
2711
2712        /*
2713         * Only trigger disk allocation, don't trigger qgroup reserve
2714         *
2715         * For qgroup space, it will be checked later.
2716         */
2717        ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2718        if (ret < 0)
2719                return ret;
2720
2721        inode_lock(inode);
2722
2723        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2724                ret = inode_newsize_ok(inode, offset + len);
2725                if (ret)
2726                        goto out;
2727        }
2728
2729        /*
2730         * TODO: Move these two operations after we have checked
2731         * accurate reserved space, or fallocate can still fail but
2732         * with page truncated or size expanded.
2733         *
2734         * But that's a minor problem and won't do much harm BTW.
2735         */
2736        if (alloc_start > inode->i_size) {
2737                ret = btrfs_cont_expand(inode, i_size_read(inode),
2738                                        alloc_start);
2739                if (ret)
2740                        goto out;
2741        } else if (offset + len > inode->i_size) {
2742                /*
2743                 * If we are fallocating from the end of the file onward we
2744                 * need to zero out the end of the block if i_size lands in the
2745                 * middle of a block.
2746                 */
2747                ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2748                if (ret)
2749                        goto out;
2750        }
2751
2752        /*
2753         * wait for ordered IO before we have any locks.  We'll loop again
2754         * below with the locks held.
2755         */
2756        ret = btrfs_wait_ordered_range(inode, alloc_start,
2757                                       alloc_end - alloc_start);
2758        if (ret)
2759                goto out;
2760
2761        locked_end = alloc_end - 1;
2762        while (1) {
2763                struct btrfs_ordered_extent *ordered;
2764
2765                /* the extent lock is ordered inside the running
2766                 * transaction
2767                 */
2768                lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2769                                 locked_end, &cached_state);
2770                ordered = btrfs_lookup_first_ordered_extent(inode,
2771                                                            alloc_end - 1);
2772                if (ordered &&
2773                    ordered->file_offset + ordered->len > alloc_start &&
2774                    ordered->file_offset < alloc_end) {
2775                        btrfs_put_ordered_extent(ordered);
2776                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2777                                             alloc_start, locked_end,
2778                                             &cached_state, GFP_KERNEL);
2779                        /*
2780                         * we can't wait on the range with the transaction
2781                         * running or with the extent lock held
2782                         */
2783                        ret = btrfs_wait_ordered_range(inode, alloc_start,
2784                                                       alloc_end - alloc_start);
2785                        if (ret)
2786                                goto out;
2787                } else {
2788                        if (ordered)
2789                                btrfs_put_ordered_extent(ordered);
2790                        break;
2791                }
2792        }
2793
2794        /* First, check if we exceed the qgroup limit */
2795        INIT_LIST_HEAD(&reserve_list);
2796        while (1) {
2797                em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2798                                      alloc_end - cur_offset, 0);
2799                if (IS_ERR_OR_NULL(em)) {
2800                        if (!em)
2801                                ret = -ENOMEM;
2802                        else
2803                                ret = PTR_ERR(em);
2804                        break;
2805                }
2806                last_byte = min(extent_map_end(em), alloc_end);
2807                actual_end = min_t(u64, extent_map_end(em), offset + len);
2808                last_byte = ALIGN(last_byte, blocksize);
2809                if (em->block_start == EXTENT_MAP_HOLE ||
2810                    (cur_offset >= inode->i_size &&
2811                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2812                        ret = add_falloc_range(&reserve_list, cur_offset,
2813                                               last_byte - cur_offset);
2814                        if (ret < 0) {
2815                                free_extent_map(em);
2816                                break;
2817                        }
2818                        ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2819                                        last_byte - cur_offset);
2820                        if (ret < 0)
2821                                break;
2822                } else {
2823                        /*
2824                         * Do not need to reserve unwritten extent for this
2825                         * range, free reserved data space first, otherwise
2826                         * it'll result in false ENOSPC error.
2827                         */
2828                        btrfs_free_reserved_data_space(inode, cur_offset,
2829                                last_byte - cur_offset);
2830                }
2831                free_extent_map(em);
2832                cur_offset = last_byte;
2833                if (cur_offset >= alloc_end)
2834                        break;
2835        }
2836
2837        /*
2838         * If ret is still 0, means we're OK to fallocate.
2839         * Or just cleanup the list and exit.
2840         */
2841        list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2842                if (!ret)
2843                        ret = btrfs_prealloc_file_range(inode, mode,
2844                                        range->start,
2845                                        range->len, 1 << inode->i_blkbits,
2846                                        offset + len, &alloc_hint);
2847                else
2848                        btrfs_free_reserved_data_space(inode, range->start,
2849                                                       range->len);
2850                list_del(&range->list);
2851                kfree(range);
2852        }
2853        if (ret < 0)
2854                goto out_unlock;
2855
2856        if (actual_end > inode->i_size &&
2857            !(mode & FALLOC_FL_KEEP_SIZE)) {
2858                struct btrfs_trans_handle *trans;
2859                struct btrfs_root *root = BTRFS_I(inode)->root;
2860
2861                /*
2862                 * We didn't need to allocate any more space, but we
2863                 * still extended the size of the file so we need to
2864                 * update i_size and the inode item.
2865                 */
2866                trans = btrfs_start_transaction(root, 1);
2867                if (IS_ERR(trans)) {
2868                        ret = PTR_ERR(trans);
2869                } else {
2870                        inode->i_ctime = current_time(inode);
2871                        i_size_write(inode, actual_end);
2872                        btrfs_ordered_update_i_size(inode, actual_end, NULL);
2873                        ret = btrfs_update_inode(trans, root, inode);
2874                        if (ret)
2875                                btrfs_end_transaction(trans, root);
2876                        else
2877                                ret = btrfs_end_transaction(trans, root);
2878                }
2879        }
2880out_unlock:
2881        unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2882                             &cached_state, GFP_KERNEL);
2883out:
2884        inode_unlock(inode);
2885        /* Let go of our reservation. */
2886        if (ret != 0)
2887                btrfs_free_reserved_data_space(inode, alloc_start,
2888                                       alloc_end - cur_offset);
2889        return ret;
2890}
2891
2892static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2893{
2894        struct btrfs_root *root = BTRFS_I(inode)->root;
2895        struct extent_map *em = NULL;
2896        struct extent_state *cached_state = NULL;
2897        u64 lockstart;
2898        u64 lockend;
2899        u64 start;
2900        u64 len;
2901        int ret = 0;
2902
2903        if (inode->i_size == 0)
2904                return -ENXIO;
2905
2906        /*
2907         * *offset can be negative, in this case we start finding DATA/HOLE from
2908         * the very start of the file.
2909         */
2910        start = max_t(loff_t, 0, *offset);
2911
2912        lockstart = round_down(start, root->sectorsize);
2913        lockend = round_up(i_size_read(inode), root->sectorsize);
2914        if (lockend <= lockstart)
2915                lockend = lockstart + root->sectorsize;
2916        lockend--;
2917        len = lockend - lockstart + 1;
2918
2919        lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2920                         &cached_state);
2921
2922        while (start < inode->i_size) {
2923                em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2924                if (IS_ERR(em)) {
2925                        ret = PTR_ERR(em);
2926                        em = NULL;
2927                        break;
2928                }
2929
2930                if (whence == SEEK_HOLE &&
2931                    (em->block_start == EXTENT_MAP_HOLE ||
2932                     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2933                        break;
2934                else if (whence == SEEK_DATA &&
2935                           (em->block_start != EXTENT_MAP_HOLE &&
2936                            !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2937                        break;
2938
2939                start = em->start + em->len;
2940                free_extent_map(em);
2941                em = NULL;
2942                cond_resched();
2943        }
2944        free_extent_map(em);
2945        if (!ret) {
2946                if (whence == SEEK_DATA && start >= inode->i_size)
2947                        ret = -ENXIO;
2948                else
2949                        *offset = min_t(loff_t, start, inode->i_size);
2950        }
2951        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2952                             &cached_state, GFP_NOFS);
2953        return ret;
2954}
2955
2956static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2957{
2958        struct inode *inode = file->f_mapping->host;
2959        int ret;
2960
2961        inode_lock(inode);
2962        switch (whence) {
2963        case SEEK_END:
2964        case SEEK_CUR:
2965                offset = generic_file_llseek(file, offset, whence);
2966                goto out;
2967        case SEEK_DATA:
2968        case SEEK_HOLE:
2969                if (offset >= i_size_read(inode)) {
2970                        inode_unlock(inode);
2971                        return -ENXIO;
2972                }
2973
2974                ret = find_desired_extent(inode, &offset, whence);
2975                if (ret) {
2976                        inode_unlock(inode);
2977                        return ret;
2978                }
2979        }
2980
2981        offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2982out:
2983        inode_unlock(inode);
2984        return offset;
2985}
2986
2987const struct file_operations btrfs_file_operations = {
2988        .llseek         = btrfs_file_llseek,
2989        .read_iter      = generic_file_read_iter,
2990        .splice_read    = generic_file_splice_read,
2991        .write_iter     = btrfs_file_write_iter,
2992        .mmap           = btrfs_file_mmap,
2993        .open           = generic_file_open,
2994        .release        = btrfs_release_file,
2995        .fsync          = btrfs_sync_file,
2996        .fallocate      = btrfs_fallocate,
2997        .unlocked_ioctl = btrfs_ioctl,
2998#ifdef CONFIG_COMPAT
2999        .compat_ioctl   = btrfs_compat_ioctl,
3000#endif
3001        .copy_file_range = btrfs_copy_file_range,
3002        .clone_file_range = btrfs_clone_file_range,
3003        .dedupe_file_range = btrfs_dedupe_file_range,
3004};
3005
3006void btrfs_auto_defrag_exit(void)
3007{
3008        kmem_cache_destroy(btrfs_inode_defrag_cachep);
3009}
3010
3011int btrfs_auto_defrag_init(void)
3012{
3013        btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3014                                        sizeof(struct inode_defrag), 0,
3015                                        SLAB_MEM_SPREAD,
3016                                        NULL);
3017        if (!btrfs_inode_defrag_cachep)
3018                return -ENOMEM;
3019
3020        return 0;
3021}
3022
3023int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3024{
3025        int ret;
3026
3027        /*
3028         * So with compression we will find and lock a dirty page and clear the
3029         * first one as dirty, setup an async extent, and immediately return
3030         * with the entire range locked but with nobody actually marked with
3031         * writeback.  So we can't just filemap_write_and_wait_range() and
3032         * expect it to work since it will just kick off a thread to do the
3033         * actual work.  So we need to call filemap_fdatawrite_range _again_
3034         * since it will wait on the page lock, which won't be unlocked until
3035         * after the pages have been marked as writeback and so we're good to go
3036         * from there.  We have to do this otherwise we'll miss the ordered
3037         * extents and that results in badness.  Please Josef, do not think you
3038         * know better and pull this out at some point in the future, it is
3039         * right and you are wrong.
3040         */
3041        ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3042        if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3043                             &BTRFS_I(inode)->runtime_flags))
3044                ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3045
3046        return ret;
3047}
3048