linux/fs/btrfs/root-tree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/err.h>
  20#include <linux/uuid.h>
  21#include "ctree.h"
  22#include "transaction.h"
  23#include "disk-io.h"
  24#include "print-tree.h"
  25
  26/*
  27 * Read a root item from the tree. In case we detect a root item smaller then
  28 * sizeof(root_item), we know it's an old version of the root structure and
  29 * initialize all new fields to zero. The same happens if we detect mismatching
  30 * generation numbers as then we know the root was once mounted with an older
  31 * kernel that was not aware of the root item structure change.
  32 */
  33static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
  34                                struct btrfs_root_item *item)
  35{
  36        uuid_le uuid;
  37        int len;
  38        int need_reset = 0;
  39
  40        len = btrfs_item_size_nr(eb, slot);
  41        read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
  42                        min_t(int, len, (int)sizeof(*item)));
  43        if (len < sizeof(*item))
  44                need_reset = 1;
  45        if (!need_reset && btrfs_root_generation(item)
  46                != btrfs_root_generation_v2(item)) {
  47                if (btrfs_root_generation_v2(item) != 0) {
  48                        btrfs_warn(eb->fs_info,
  49                                        "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
  50                }
  51                need_reset = 1;
  52        }
  53        if (need_reset) {
  54                memset(&item->generation_v2, 0,
  55                        sizeof(*item) - offsetof(struct btrfs_root_item,
  56                                        generation_v2));
  57
  58                uuid_le_gen(&uuid);
  59                memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
  60        }
  61}
  62
  63/*
  64 * btrfs_find_root - lookup the root by the key.
  65 * root: the root of the root tree
  66 * search_key: the key to search
  67 * path: the path we search
  68 * root_item: the root item of the tree we look for
  69 * root_key: the root key of the tree we look for
  70 *
  71 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
  72 * of the search key, just lookup the root with the highest offset for a
  73 * given objectid.
  74 *
  75 * If we find something return 0, otherwise > 0, < 0 on error.
  76 */
  77int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
  78                    struct btrfs_path *path, struct btrfs_root_item *root_item,
  79                    struct btrfs_key *root_key)
  80{
  81        struct btrfs_key found_key;
  82        struct extent_buffer *l;
  83        int ret;
  84        int slot;
  85
  86        ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
  87        if (ret < 0)
  88                return ret;
  89
  90        if (search_key->offset != -1ULL) {      /* the search key is exact */
  91                if (ret > 0)
  92                        goto out;
  93        } else {
  94                BUG_ON(ret == 0);               /* Logical error */
  95                if (path->slots[0] == 0)
  96                        goto out;
  97                path->slots[0]--;
  98                ret = 0;
  99        }
 100
 101        l = path->nodes[0];
 102        slot = path->slots[0];
 103
 104        btrfs_item_key_to_cpu(l, &found_key, slot);
 105        if (found_key.objectid != search_key->objectid ||
 106            found_key.type != BTRFS_ROOT_ITEM_KEY) {
 107                ret = 1;
 108                goto out;
 109        }
 110
 111        if (root_item)
 112                btrfs_read_root_item(l, slot, root_item);
 113        if (root_key)
 114                memcpy(root_key, &found_key, sizeof(found_key));
 115out:
 116        btrfs_release_path(path);
 117        return ret;
 118}
 119
 120void btrfs_set_root_node(struct btrfs_root_item *item,
 121                         struct extent_buffer *node)
 122{
 123        btrfs_set_root_bytenr(item, node->start);
 124        btrfs_set_root_level(item, btrfs_header_level(node));
 125        btrfs_set_root_generation(item, btrfs_header_generation(node));
 126}
 127
 128/*
 129 * copy the data in 'item' into the btree
 130 */
 131int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
 132                      *root, struct btrfs_key *key, struct btrfs_root_item
 133                      *item)
 134{
 135        struct btrfs_path *path;
 136        struct extent_buffer *l;
 137        int ret;
 138        int slot;
 139        unsigned long ptr;
 140        u32 old_len;
 141
 142        path = btrfs_alloc_path();
 143        if (!path)
 144                return -ENOMEM;
 145
 146        ret = btrfs_search_slot(trans, root, key, path, 0, 1);
 147        if (ret < 0) {
 148                btrfs_abort_transaction(trans, ret);
 149                goto out;
 150        }
 151
 152        if (ret != 0) {
 153                btrfs_print_leaf(root, path->nodes[0]);
 154                btrfs_crit(root->fs_info,
 155                           "unable to update root key %llu %u %llu",
 156                           key->objectid, key->type, key->offset);
 157                BUG_ON(1);
 158        }
 159
 160        l = path->nodes[0];
 161        slot = path->slots[0];
 162        ptr = btrfs_item_ptr_offset(l, slot);
 163        old_len = btrfs_item_size_nr(l, slot);
 164
 165        /*
 166         * If this is the first time we update the root item which originated
 167         * from an older kernel, we need to enlarge the item size to make room
 168         * for the added fields.
 169         */
 170        if (old_len < sizeof(*item)) {
 171                btrfs_release_path(path);
 172                ret = btrfs_search_slot(trans, root, key, path,
 173                                -1, 1);
 174                if (ret < 0) {
 175                        btrfs_abort_transaction(trans, ret);
 176                        goto out;
 177                }
 178
 179                ret = btrfs_del_item(trans, root, path);
 180                if (ret < 0) {
 181                        btrfs_abort_transaction(trans, ret);
 182                        goto out;
 183                }
 184                btrfs_release_path(path);
 185                ret = btrfs_insert_empty_item(trans, root, path,
 186                                key, sizeof(*item));
 187                if (ret < 0) {
 188                        btrfs_abort_transaction(trans, ret);
 189                        goto out;
 190                }
 191                l = path->nodes[0];
 192                slot = path->slots[0];
 193                ptr = btrfs_item_ptr_offset(l, slot);
 194        }
 195
 196        /*
 197         * Update generation_v2 so at the next mount we know the new root
 198         * fields are valid.
 199         */
 200        btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
 201
 202        write_extent_buffer(l, item, ptr, sizeof(*item));
 203        btrfs_mark_buffer_dirty(path->nodes[0]);
 204out:
 205        btrfs_free_path(path);
 206        return ret;
 207}
 208
 209int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 210                      struct btrfs_key *key, struct btrfs_root_item *item)
 211{
 212        /*
 213         * Make sure generation v1 and v2 match. See update_root for details.
 214         */
 215        btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
 216        return btrfs_insert_item(trans, root, key, item, sizeof(*item));
 217}
 218
 219int btrfs_find_orphan_roots(struct btrfs_root *tree_root)
 220{
 221        struct extent_buffer *leaf;
 222        struct btrfs_path *path;
 223        struct btrfs_key key;
 224        struct btrfs_key root_key;
 225        struct btrfs_root *root;
 226        int err = 0;
 227        int ret;
 228        bool can_recover = true;
 229
 230        if (tree_root->fs_info->sb->s_flags & MS_RDONLY)
 231                can_recover = false;
 232
 233        path = btrfs_alloc_path();
 234        if (!path)
 235                return -ENOMEM;
 236
 237        key.objectid = BTRFS_ORPHAN_OBJECTID;
 238        key.type = BTRFS_ORPHAN_ITEM_KEY;
 239        key.offset = 0;
 240
 241        root_key.type = BTRFS_ROOT_ITEM_KEY;
 242        root_key.offset = (u64)-1;
 243
 244        while (1) {
 245                ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
 246                if (ret < 0) {
 247                        err = ret;
 248                        break;
 249                }
 250
 251                leaf = path->nodes[0];
 252                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 253                        ret = btrfs_next_leaf(tree_root, path);
 254                        if (ret < 0)
 255                                err = ret;
 256                        if (ret != 0)
 257                                break;
 258                        leaf = path->nodes[0];
 259                }
 260
 261                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 262                btrfs_release_path(path);
 263
 264                if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
 265                    key.type != BTRFS_ORPHAN_ITEM_KEY)
 266                        break;
 267
 268                root_key.objectid = key.offset;
 269                key.offset++;
 270
 271                /*
 272                 * The root might have been inserted already, as before we look
 273                 * for orphan roots, log replay might have happened, which
 274                 * triggers a transaction commit and qgroup accounting, which
 275                 * in turn reads and inserts fs roots while doing backref
 276                 * walking.
 277                 */
 278                root = btrfs_lookup_fs_root(tree_root->fs_info,
 279                                            root_key.objectid);
 280                if (root) {
 281                        WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
 282                                          &root->state));
 283                        if (btrfs_root_refs(&root->root_item) == 0)
 284                                btrfs_add_dead_root(root);
 285                        continue;
 286                }
 287
 288                root = btrfs_read_fs_root(tree_root, &root_key);
 289                err = PTR_ERR_OR_ZERO(root);
 290                if (err && err != -ENOENT) {
 291                        break;
 292                } else if (err == -ENOENT) {
 293                        struct btrfs_trans_handle *trans;
 294
 295                        btrfs_release_path(path);
 296
 297                        trans = btrfs_join_transaction(tree_root);
 298                        if (IS_ERR(trans)) {
 299                                err = PTR_ERR(trans);
 300                                btrfs_handle_fs_error(tree_root->fs_info, err,
 301                                            "Failed to start trans to delete orphan item");
 302                                break;
 303                        }
 304                        err = btrfs_del_orphan_item(trans, tree_root,
 305                                                    root_key.objectid);
 306                        btrfs_end_transaction(trans, tree_root);
 307                        if (err) {
 308                                btrfs_handle_fs_error(tree_root->fs_info, err,
 309                                            "Failed to delete root orphan item");
 310                                break;
 311                        }
 312                        continue;
 313                }
 314
 315                err = btrfs_init_fs_root(root);
 316                if (err) {
 317                        btrfs_free_fs_root(root);
 318                        break;
 319                }
 320
 321                set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
 322
 323                err = btrfs_insert_fs_root(root->fs_info, root);
 324                if (err) {
 325                        BUG_ON(err == -EEXIST);
 326                        btrfs_free_fs_root(root);
 327                        break;
 328                }
 329
 330                if (btrfs_root_refs(&root->root_item) == 0)
 331                        btrfs_add_dead_root(root);
 332        }
 333
 334        btrfs_free_path(path);
 335        return err;
 336}
 337
 338/* drop the root item for 'key' from 'root' */
 339int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 340                   struct btrfs_key *key)
 341{
 342        struct btrfs_path *path;
 343        int ret;
 344
 345        path = btrfs_alloc_path();
 346        if (!path)
 347                return -ENOMEM;
 348        ret = btrfs_search_slot(trans, root, key, path, -1, 1);
 349        if (ret < 0)
 350                goto out;
 351
 352        BUG_ON(ret != 0);
 353
 354        ret = btrfs_del_item(trans, root, path);
 355out:
 356        btrfs_free_path(path);
 357        return ret;
 358}
 359
 360int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
 361                       struct btrfs_root *tree_root,
 362                       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
 363                       const char *name, int name_len)
 364
 365{
 366        struct btrfs_path *path;
 367        struct btrfs_root_ref *ref;
 368        struct extent_buffer *leaf;
 369        struct btrfs_key key;
 370        unsigned long ptr;
 371        int err = 0;
 372        int ret;
 373
 374        path = btrfs_alloc_path();
 375        if (!path)
 376                return -ENOMEM;
 377
 378        key.objectid = root_id;
 379        key.type = BTRFS_ROOT_BACKREF_KEY;
 380        key.offset = ref_id;
 381again:
 382        ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
 383        BUG_ON(ret < 0);
 384        if (ret == 0) {
 385                leaf = path->nodes[0];
 386                ref = btrfs_item_ptr(leaf, path->slots[0],
 387                                     struct btrfs_root_ref);
 388
 389                WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
 390                WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
 391                ptr = (unsigned long)(ref + 1);
 392                WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
 393                *sequence = btrfs_root_ref_sequence(leaf, ref);
 394
 395                ret = btrfs_del_item(trans, tree_root, path);
 396                if (ret) {
 397                        err = ret;
 398                        goto out;
 399                }
 400        } else
 401                err = -ENOENT;
 402
 403        if (key.type == BTRFS_ROOT_BACKREF_KEY) {
 404                btrfs_release_path(path);
 405                key.objectid = ref_id;
 406                key.type = BTRFS_ROOT_REF_KEY;
 407                key.offset = root_id;
 408                goto again;
 409        }
 410
 411out:
 412        btrfs_free_path(path);
 413        return err;
 414}
 415
 416/*
 417 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
 418 * or BTRFS_ROOT_BACKREF_KEY.
 419 *
 420 * The dirid, sequence, name and name_len refer to the directory entry
 421 * that is referencing the root.
 422 *
 423 * For a forward ref, the root_id is the id of the tree referencing
 424 * the root and ref_id is the id of the subvol  or snapshot.
 425 *
 426 * For a back ref the root_id is the id of the subvol or snapshot and
 427 * ref_id is the id of the tree referencing it.
 428 *
 429 * Will return 0, -ENOMEM, or anything from the CoW path
 430 */
 431int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
 432                       struct btrfs_root *tree_root,
 433                       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
 434                       const char *name, int name_len)
 435{
 436        struct btrfs_key key;
 437        int ret;
 438        struct btrfs_path *path;
 439        struct btrfs_root_ref *ref;
 440        struct extent_buffer *leaf;
 441        unsigned long ptr;
 442
 443        path = btrfs_alloc_path();
 444        if (!path)
 445                return -ENOMEM;
 446
 447        key.objectid = root_id;
 448        key.type = BTRFS_ROOT_BACKREF_KEY;
 449        key.offset = ref_id;
 450again:
 451        ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
 452                                      sizeof(*ref) + name_len);
 453        if (ret) {
 454                btrfs_abort_transaction(trans, ret);
 455                btrfs_free_path(path);
 456                return ret;
 457        }
 458
 459        leaf = path->nodes[0];
 460        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
 461        btrfs_set_root_ref_dirid(leaf, ref, dirid);
 462        btrfs_set_root_ref_sequence(leaf, ref, sequence);
 463        btrfs_set_root_ref_name_len(leaf, ref, name_len);
 464        ptr = (unsigned long)(ref + 1);
 465        write_extent_buffer(leaf, name, ptr, name_len);
 466        btrfs_mark_buffer_dirty(leaf);
 467
 468        if (key.type == BTRFS_ROOT_BACKREF_KEY) {
 469                btrfs_release_path(path);
 470                key.objectid = ref_id;
 471                key.type = BTRFS_ROOT_REF_KEY;
 472                key.offset = root_id;
 473                goto again;
 474        }
 475
 476        btrfs_free_path(path);
 477        return 0;
 478}
 479
 480/*
 481 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
 482 * for subvolumes. To work around this problem, we steal a bit from
 483 * root_item->inode_item->flags, and use it to indicate if those fields
 484 * have been properly initialized.
 485 */
 486void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
 487{
 488        u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
 489
 490        if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
 491                inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
 492                btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
 493                btrfs_set_root_flags(root_item, 0);
 494                btrfs_set_root_limit(root_item, 0);
 495        }
 496}
 497
 498void btrfs_update_root_times(struct btrfs_trans_handle *trans,
 499                             struct btrfs_root *root)
 500{
 501        struct btrfs_root_item *item = &root->root_item;
 502        struct timespec ct = current_fs_time(root->fs_info->sb);
 503
 504        spin_lock(&root->root_item_lock);
 505        btrfs_set_root_ctransid(item, trans->transid);
 506        btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
 507        btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
 508        spin_unlock(&root->root_item_lock);
 509}
 510