linux/fs/f2fs/segment.c
<<
>>
Prefs
   1/*
   2 * fs/f2fs/segment.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/bio.h>
  14#include <linux/blkdev.h>
  15#include <linux/prefetch.h>
  16#include <linux/kthread.h>
  17#include <linux/swap.h>
  18#include <linux/timer.h>
  19
  20#include "f2fs.h"
  21#include "segment.h"
  22#include "node.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26#define __reverse_ffz(x) __reverse_ffs(~(x))
  27
  28static struct kmem_cache *discard_entry_slab;
  29static struct kmem_cache *bio_entry_slab;
  30static struct kmem_cache *sit_entry_set_slab;
  31static struct kmem_cache *inmem_entry_slab;
  32
  33static unsigned long __reverse_ulong(unsigned char *str)
  34{
  35        unsigned long tmp = 0;
  36        int shift = 24, idx = 0;
  37
  38#if BITS_PER_LONG == 64
  39        shift = 56;
  40#endif
  41        while (shift >= 0) {
  42                tmp |= (unsigned long)str[idx++] << shift;
  43                shift -= BITS_PER_BYTE;
  44        }
  45        return tmp;
  46}
  47
  48/*
  49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  51 */
  52static inline unsigned long __reverse_ffs(unsigned long word)
  53{
  54        int num = 0;
  55
  56#if BITS_PER_LONG == 64
  57        if ((word & 0xffffffff00000000UL) == 0)
  58                num += 32;
  59        else
  60                word >>= 32;
  61#endif
  62        if ((word & 0xffff0000) == 0)
  63                num += 16;
  64        else
  65                word >>= 16;
  66
  67        if ((word & 0xff00) == 0)
  68                num += 8;
  69        else
  70                word >>= 8;
  71
  72        if ((word & 0xf0) == 0)
  73                num += 4;
  74        else
  75                word >>= 4;
  76
  77        if ((word & 0xc) == 0)
  78                num += 2;
  79        else
  80                word >>= 2;
  81
  82        if ((word & 0x2) == 0)
  83                num += 1;
  84        return num;
  85}
  86
  87/*
  88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  90 * @size must be integral times of unsigned long.
  91 * Example:
  92 *                             MSB <--> LSB
  93 *   f2fs_set_bit(0, bitmap) => 1000 0000
  94 *   f2fs_set_bit(7, bitmap) => 0000 0001
  95 */
  96static unsigned long __find_rev_next_bit(const unsigned long *addr,
  97                        unsigned long size, unsigned long offset)
  98{
  99        const unsigned long *p = addr + BIT_WORD(offset);
 100        unsigned long result = size;
 101        unsigned long tmp;
 102
 103        if (offset >= size)
 104                return size;
 105
 106        size -= (offset & ~(BITS_PER_LONG - 1));
 107        offset %= BITS_PER_LONG;
 108
 109        while (1) {
 110                if (*p == 0)
 111                        goto pass;
 112
 113                tmp = __reverse_ulong((unsigned char *)p);
 114
 115                tmp &= ~0UL >> offset;
 116                if (size < BITS_PER_LONG)
 117                        tmp &= (~0UL << (BITS_PER_LONG - size));
 118                if (tmp)
 119                        goto found;
 120pass:
 121                if (size <= BITS_PER_LONG)
 122                        break;
 123                size -= BITS_PER_LONG;
 124                offset = 0;
 125                p++;
 126        }
 127        return result;
 128found:
 129        return result - size + __reverse_ffs(tmp);
 130}
 131
 132static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 133                        unsigned long size, unsigned long offset)
 134{
 135        const unsigned long *p = addr + BIT_WORD(offset);
 136        unsigned long result = size;
 137        unsigned long tmp;
 138
 139        if (offset >= size)
 140                return size;
 141
 142        size -= (offset & ~(BITS_PER_LONG - 1));
 143        offset %= BITS_PER_LONG;
 144
 145        while (1) {
 146                if (*p == ~0UL)
 147                        goto pass;
 148
 149                tmp = __reverse_ulong((unsigned char *)p);
 150
 151                if (offset)
 152                        tmp |= ~0UL << (BITS_PER_LONG - offset);
 153                if (size < BITS_PER_LONG)
 154                        tmp |= ~0UL >> size;
 155                if (tmp != ~0UL)
 156                        goto found;
 157pass:
 158                if (size <= BITS_PER_LONG)
 159                        break;
 160                size -= BITS_PER_LONG;
 161                offset = 0;
 162                p++;
 163        }
 164        return result;
 165found:
 166        return result - size + __reverse_ffz(tmp);
 167}
 168
 169void register_inmem_page(struct inode *inode, struct page *page)
 170{
 171        struct f2fs_inode_info *fi = F2FS_I(inode);
 172        struct inmem_pages *new;
 173
 174        f2fs_trace_pid(page);
 175
 176        set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
 177        SetPagePrivate(page);
 178
 179        new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 180
 181        /* add atomic page indices to the list */
 182        new->page = page;
 183        INIT_LIST_HEAD(&new->list);
 184
 185        /* increase reference count with clean state */
 186        mutex_lock(&fi->inmem_lock);
 187        get_page(page);
 188        list_add_tail(&new->list, &fi->inmem_pages);
 189        inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 190        mutex_unlock(&fi->inmem_lock);
 191
 192        trace_f2fs_register_inmem_page(page, INMEM);
 193}
 194
 195static int __revoke_inmem_pages(struct inode *inode,
 196                                struct list_head *head, bool drop, bool recover)
 197{
 198        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 199        struct inmem_pages *cur, *tmp;
 200        int err = 0;
 201
 202        list_for_each_entry_safe(cur, tmp, head, list) {
 203                struct page *page = cur->page;
 204
 205                if (drop)
 206                        trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 207
 208                lock_page(page);
 209
 210                if (recover) {
 211                        struct dnode_of_data dn;
 212                        struct node_info ni;
 213
 214                        trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 215
 216                        set_new_dnode(&dn, inode, NULL, NULL, 0);
 217                        if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
 218                                err = -EAGAIN;
 219                                goto next;
 220                        }
 221                        get_node_info(sbi, dn.nid, &ni);
 222                        f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 223                                        cur->old_addr, ni.version, true, true);
 224                        f2fs_put_dnode(&dn);
 225                }
 226next:
 227                /* we don't need to invalidate this in the sccessful status */
 228                if (drop || recover)
 229                        ClearPageUptodate(page);
 230                set_page_private(page, 0);
 231                ClearPagePrivate(page);
 232                f2fs_put_page(page, 1);
 233
 234                list_del(&cur->list);
 235                kmem_cache_free(inmem_entry_slab, cur);
 236                dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 237        }
 238        return err;
 239}
 240
 241void drop_inmem_pages(struct inode *inode)
 242{
 243        struct f2fs_inode_info *fi = F2FS_I(inode);
 244
 245        clear_inode_flag(inode, FI_ATOMIC_FILE);
 246
 247        mutex_lock(&fi->inmem_lock);
 248        __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 249        mutex_unlock(&fi->inmem_lock);
 250}
 251
 252static int __commit_inmem_pages(struct inode *inode,
 253                                        struct list_head *revoke_list)
 254{
 255        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 256        struct f2fs_inode_info *fi = F2FS_I(inode);
 257        struct inmem_pages *cur, *tmp;
 258        struct f2fs_io_info fio = {
 259                .sbi = sbi,
 260                .type = DATA,
 261                .op = REQ_OP_WRITE,
 262                .op_flags = WRITE_SYNC | REQ_PRIO,
 263                .encrypted_page = NULL,
 264        };
 265        bool submit_bio = false;
 266        int err = 0;
 267
 268        list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 269                struct page *page = cur->page;
 270
 271                lock_page(page);
 272                if (page->mapping == inode->i_mapping) {
 273                        trace_f2fs_commit_inmem_page(page, INMEM);
 274
 275                        set_page_dirty(page);
 276                        f2fs_wait_on_page_writeback(page, DATA, true);
 277                        if (clear_page_dirty_for_io(page))
 278                                inode_dec_dirty_pages(inode);
 279
 280                        fio.page = page;
 281                        err = do_write_data_page(&fio);
 282                        if (err) {
 283                                unlock_page(page);
 284                                break;
 285                        }
 286
 287                        /* record old blkaddr for revoking */
 288                        cur->old_addr = fio.old_blkaddr;
 289
 290                        clear_cold_data(page);
 291                        submit_bio = true;
 292                }
 293                unlock_page(page);
 294                list_move_tail(&cur->list, revoke_list);
 295        }
 296
 297        if (submit_bio)
 298                f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
 299
 300        if (!err)
 301                __revoke_inmem_pages(inode, revoke_list, false, false);
 302
 303        return err;
 304}
 305
 306int commit_inmem_pages(struct inode *inode)
 307{
 308        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 309        struct f2fs_inode_info *fi = F2FS_I(inode);
 310        struct list_head revoke_list;
 311        int err;
 312
 313        INIT_LIST_HEAD(&revoke_list);
 314        f2fs_balance_fs(sbi, true);
 315        f2fs_lock_op(sbi);
 316
 317        mutex_lock(&fi->inmem_lock);
 318        err = __commit_inmem_pages(inode, &revoke_list);
 319        if (err) {
 320                int ret;
 321                /*
 322                 * try to revoke all committed pages, but still we could fail
 323                 * due to no memory or other reason, if that happened, EAGAIN
 324                 * will be returned, which means in such case, transaction is
 325                 * already not integrity, caller should use journal to do the
 326                 * recovery or rewrite & commit last transaction. For other
 327                 * error number, revoking was done by filesystem itself.
 328                 */
 329                ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
 330                if (ret)
 331                        err = ret;
 332
 333                /* drop all uncommitted pages */
 334                __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 335        }
 336        mutex_unlock(&fi->inmem_lock);
 337
 338        f2fs_unlock_op(sbi);
 339        return err;
 340}
 341
 342/*
 343 * This function balances dirty node and dentry pages.
 344 * In addition, it controls garbage collection.
 345 */
 346void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 347{
 348#ifdef CONFIG_F2FS_FAULT_INJECTION
 349        if (time_to_inject(sbi, FAULT_CHECKPOINT))
 350                f2fs_stop_checkpoint(sbi, false);
 351#endif
 352
 353        if (!need)
 354                return;
 355
 356        /* balance_fs_bg is able to be pending */
 357        if (excess_cached_nats(sbi))
 358                f2fs_balance_fs_bg(sbi);
 359
 360        /*
 361         * We should do GC or end up with checkpoint, if there are so many dirty
 362         * dir/node pages without enough free segments.
 363         */
 364        if (has_not_enough_free_secs(sbi, 0, 0)) {
 365                mutex_lock(&sbi->gc_mutex);
 366                f2fs_gc(sbi, false);
 367        }
 368}
 369
 370void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
 371{
 372        /* try to shrink extent cache when there is no enough memory */
 373        if (!available_free_memory(sbi, EXTENT_CACHE))
 374                f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 375
 376        /* check the # of cached NAT entries */
 377        if (!available_free_memory(sbi, NAT_ENTRIES))
 378                try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 379
 380        if (!available_free_memory(sbi, FREE_NIDS))
 381                try_to_free_nids(sbi, MAX_FREE_NIDS);
 382        else
 383                build_free_nids(sbi);
 384
 385        /* checkpoint is the only way to shrink partial cached entries */
 386        if (!available_free_memory(sbi, NAT_ENTRIES) ||
 387                        !available_free_memory(sbi, INO_ENTRIES) ||
 388                        excess_prefree_segs(sbi) ||
 389                        excess_dirty_nats(sbi) ||
 390                        (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
 391                if (test_opt(sbi, DATA_FLUSH)) {
 392                        struct blk_plug plug;
 393
 394                        blk_start_plug(&plug);
 395                        sync_dirty_inodes(sbi, FILE_INODE);
 396                        blk_finish_plug(&plug);
 397                }
 398                f2fs_sync_fs(sbi->sb, true);
 399                stat_inc_bg_cp_count(sbi->stat_info);
 400        }
 401}
 402
 403static int issue_flush_thread(void *data)
 404{
 405        struct f2fs_sb_info *sbi = data;
 406        struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 407        wait_queue_head_t *q = &fcc->flush_wait_queue;
 408repeat:
 409        if (kthread_should_stop())
 410                return 0;
 411
 412        if (!llist_empty(&fcc->issue_list)) {
 413                struct bio *bio;
 414                struct flush_cmd *cmd, *next;
 415                int ret;
 416
 417                bio = f2fs_bio_alloc(0);
 418
 419                fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 420                fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 421
 422                bio->bi_bdev = sbi->sb->s_bdev;
 423                bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
 424                ret = submit_bio_wait(bio);
 425
 426                llist_for_each_entry_safe(cmd, next,
 427                                          fcc->dispatch_list, llnode) {
 428                        cmd->ret = ret;
 429                        complete(&cmd->wait);
 430                }
 431                bio_put(bio);
 432                fcc->dispatch_list = NULL;
 433        }
 434
 435        wait_event_interruptible(*q,
 436                kthread_should_stop() || !llist_empty(&fcc->issue_list));
 437        goto repeat;
 438}
 439
 440int f2fs_issue_flush(struct f2fs_sb_info *sbi)
 441{
 442        struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 443        struct flush_cmd cmd;
 444
 445        trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
 446                                        test_opt(sbi, FLUSH_MERGE));
 447
 448        if (test_opt(sbi, NOBARRIER))
 449                return 0;
 450
 451        if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) {
 452                struct bio *bio = f2fs_bio_alloc(0);
 453                int ret;
 454
 455                atomic_inc(&fcc->submit_flush);
 456                bio->bi_bdev = sbi->sb->s_bdev;
 457                bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
 458                ret = submit_bio_wait(bio);
 459                atomic_dec(&fcc->submit_flush);
 460                bio_put(bio);
 461                return ret;
 462        }
 463
 464        init_completion(&cmd.wait);
 465
 466        atomic_inc(&fcc->submit_flush);
 467        llist_add(&cmd.llnode, &fcc->issue_list);
 468
 469        if (!fcc->dispatch_list)
 470                wake_up(&fcc->flush_wait_queue);
 471
 472        wait_for_completion(&cmd.wait);
 473        atomic_dec(&fcc->submit_flush);
 474
 475        return cmd.ret;
 476}
 477
 478int create_flush_cmd_control(struct f2fs_sb_info *sbi)
 479{
 480        dev_t dev = sbi->sb->s_bdev->bd_dev;
 481        struct flush_cmd_control *fcc;
 482        int err = 0;
 483
 484        fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
 485        if (!fcc)
 486                return -ENOMEM;
 487        atomic_set(&fcc->submit_flush, 0);
 488        init_waitqueue_head(&fcc->flush_wait_queue);
 489        init_llist_head(&fcc->issue_list);
 490        SM_I(sbi)->cmd_control_info = fcc;
 491        fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 492                                "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 493        if (IS_ERR(fcc->f2fs_issue_flush)) {
 494                err = PTR_ERR(fcc->f2fs_issue_flush);
 495                kfree(fcc);
 496                SM_I(sbi)->cmd_control_info = NULL;
 497                return err;
 498        }
 499
 500        return err;
 501}
 502
 503void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
 504{
 505        struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 506
 507        if (fcc && fcc->f2fs_issue_flush)
 508                kthread_stop(fcc->f2fs_issue_flush);
 509        kfree(fcc);
 510        SM_I(sbi)->cmd_control_info = NULL;
 511}
 512
 513static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 514                enum dirty_type dirty_type)
 515{
 516        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 517
 518        /* need not be added */
 519        if (IS_CURSEG(sbi, segno))
 520                return;
 521
 522        if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 523                dirty_i->nr_dirty[dirty_type]++;
 524
 525        if (dirty_type == DIRTY) {
 526                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 527                enum dirty_type t = sentry->type;
 528
 529                if (unlikely(t >= DIRTY)) {
 530                        f2fs_bug_on(sbi, 1);
 531                        return;
 532                }
 533                if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 534                        dirty_i->nr_dirty[t]++;
 535        }
 536}
 537
 538static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 539                enum dirty_type dirty_type)
 540{
 541        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 542
 543        if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 544                dirty_i->nr_dirty[dirty_type]--;
 545
 546        if (dirty_type == DIRTY) {
 547                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 548                enum dirty_type t = sentry->type;
 549
 550                if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 551                        dirty_i->nr_dirty[t]--;
 552
 553                if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
 554                        clear_bit(GET_SECNO(sbi, segno),
 555                                                dirty_i->victim_secmap);
 556        }
 557}
 558
 559/*
 560 * Should not occur error such as -ENOMEM.
 561 * Adding dirty entry into seglist is not critical operation.
 562 * If a given segment is one of current working segments, it won't be added.
 563 */
 564static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 565{
 566        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 567        unsigned short valid_blocks;
 568
 569        if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 570                return;
 571
 572        mutex_lock(&dirty_i->seglist_lock);
 573
 574        valid_blocks = get_valid_blocks(sbi, segno, 0);
 575
 576        if (valid_blocks == 0) {
 577                __locate_dirty_segment(sbi, segno, PRE);
 578                __remove_dirty_segment(sbi, segno, DIRTY);
 579        } else if (valid_blocks < sbi->blocks_per_seg) {
 580                __locate_dirty_segment(sbi, segno, DIRTY);
 581        } else {
 582                /* Recovery routine with SSR needs this */
 583                __remove_dirty_segment(sbi, segno, DIRTY);
 584        }
 585
 586        mutex_unlock(&dirty_i->seglist_lock);
 587}
 588
 589static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi,
 590                                                        struct bio *bio)
 591{
 592        struct list_head *wait_list = &(SM_I(sbi)->wait_list);
 593        struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
 594
 595        INIT_LIST_HEAD(&be->list);
 596        be->bio = bio;
 597        init_completion(&be->event);
 598        list_add_tail(&be->list, wait_list);
 599
 600        return be;
 601}
 602
 603void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi)
 604{
 605        struct list_head *wait_list = &(SM_I(sbi)->wait_list);
 606        struct bio_entry *be, *tmp;
 607
 608        list_for_each_entry_safe(be, tmp, wait_list, list) {
 609                struct bio *bio = be->bio;
 610                int err;
 611
 612                wait_for_completion_io(&be->event);
 613                err = be->error;
 614                if (err == -EOPNOTSUPP)
 615                        err = 0;
 616
 617                if (err)
 618                        f2fs_msg(sbi->sb, KERN_INFO,
 619                                "Issue discard failed, ret: %d", err);
 620
 621                bio_put(bio);
 622                list_del(&be->list);
 623                kmem_cache_free(bio_entry_slab, be);
 624        }
 625}
 626
 627static void f2fs_submit_bio_wait_endio(struct bio *bio)
 628{
 629        struct bio_entry *be = (struct bio_entry *)bio->bi_private;
 630
 631        be->error = bio->bi_error;
 632        complete(&be->event);
 633}
 634
 635/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
 636int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi, sector_t sector,
 637                sector_t nr_sects, gfp_t gfp_mask, unsigned long flags)
 638{
 639        struct block_device *bdev = sbi->sb->s_bdev;
 640        struct bio *bio = NULL;
 641        int err;
 642
 643        err = __blkdev_issue_discard(bdev, sector, nr_sects, gfp_mask, flags,
 644                        &bio);
 645        if (!err && bio) {
 646                struct bio_entry *be = __add_bio_entry(sbi, bio);
 647
 648                bio->bi_private = be;
 649                bio->bi_end_io = f2fs_submit_bio_wait_endio;
 650                bio->bi_opf |= REQ_SYNC;
 651                submit_bio(bio);
 652        }
 653
 654        return err;
 655}
 656
 657static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
 658                                block_t blkstart, block_t blklen)
 659{
 660        sector_t start = SECTOR_FROM_BLOCK(blkstart);
 661        sector_t len = SECTOR_FROM_BLOCK(blklen);
 662        struct seg_entry *se;
 663        unsigned int offset;
 664        block_t i;
 665
 666        for (i = blkstart; i < blkstart + blklen; i++) {
 667                se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
 668                offset = GET_BLKOFF_FROM_SEG0(sbi, i);
 669
 670                if (!f2fs_test_and_set_bit(offset, se->discard_map))
 671                        sbi->discard_blks--;
 672        }
 673        trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
 674        return __f2fs_issue_discard_async(sbi, start, len, GFP_NOFS, 0);
 675}
 676
 677static void __add_discard_entry(struct f2fs_sb_info *sbi,
 678                struct cp_control *cpc, struct seg_entry *se,
 679                unsigned int start, unsigned int end)
 680{
 681        struct list_head *head = &SM_I(sbi)->discard_list;
 682        struct discard_entry *new, *last;
 683
 684        if (!list_empty(head)) {
 685                last = list_last_entry(head, struct discard_entry, list);
 686                if (START_BLOCK(sbi, cpc->trim_start) + start ==
 687                                                last->blkaddr + last->len) {
 688                        last->len += end - start;
 689                        goto done;
 690                }
 691        }
 692
 693        new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
 694        INIT_LIST_HEAD(&new->list);
 695        new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
 696        new->len = end - start;
 697        list_add_tail(&new->list, head);
 698done:
 699        SM_I(sbi)->nr_discards += end - start;
 700}
 701
 702static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 703{
 704        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
 705        int max_blocks = sbi->blocks_per_seg;
 706        struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
 707        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
 708        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
 709        unsigned long *discard_map = (unsigned long *)se->discard_map;
 710        unsigned long *dmap = SIT_I(sbi)->tmp_map;
 711        unsigned int start = 0, end = -1;
 712        bool force = (cpc->reason == CP_DISCARD);
 713        int i;
 714
 715        if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
 716                return;
 717
 718        if (!force) {
 719                if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
 720                    SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
 721                        return;
 722        }
 723
 724        /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
 725        for (i = 0; i < entries; i++)
 726                dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
 727                                (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
 728
 729        while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
 730                start = __find_rev_next_bit(dmap, max_blocks, end + 1);
 731                if (start >= max_blocks)
 732                        break;
 733
 734                end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
 735                if (force && start && end != max_blocks
 736                                        && (end - start) < cpc->trim_minlen)
 737                        continue;
 738
 739                __add_discard_entry(sbi, cpc, se, start, end);
 740        }
 741}
 742
 743void release_discard_addrs(struct f2fs_sb_info *sbi)
 744{
 745        struct list_head *head = &(SM_I(sbi)->discard_list);
 746        struct discard_entry *entry, *this;
 747
 748        /* drop caches */
 749        list_for_each_entry_safe(entry, this, head, list) {
 750                list_del(&entry->list);
 751                kmem_cache_free(discard_entry_slab, entry);
 752        }
 753}
 754
 755/*
 756 * Should call clear_prefree_segments after checkpoint is done.
 757 */
 758static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
 759{
 760        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 761        unsigned int segno;
 762
 763        mutex_lock(&dirty_i->seglist_lock);
 764        for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
 765                __set_test_and_free(sbi, segno);
 766        mutex_unlock(&dirty_i->seglist_lock);
 767}
 768
 769void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 770{
 771        struct list_head *head = &(SM_I(sbi)->discard_list);
 772        struct discard_entry *entry, *this;
 773        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 774        struct blk_plug plug;
 775        unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
 776        unsigned int start = 0, end = -1;
 777        unsigned int secno, start_segno;
 778        bool force = (cpc->reason == CP_DISCARD);
 779
 780        blk_start_plug(&plug);
 781
 782        mutex_lock(&dirty_i->seglist_lock);
 783
 784        while (1) {
 785                int i;
 786                start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
 787                if (start >= MAIN_SEGS(sbi))
 788                        break;
 789                end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
 790                                                                start + 1);
 791
 792                for (i = start; i < end; i++)
 793                        clear_bit(i, prefree_map);
 794
 795                dirty_i->nr_dirty[PRE] -= end - start;
 796
 797                if (force || !test_opt(sbi, DISCARD))
 798                        continue;
 799
 800                if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
 801                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
 802                                (end - start) << sbi->log_blocks_per_seg);
 803                        continue;
 804                }
 805next:
 806                secno = GET_SECNO(sbi, start);
 807                start_segno = secno * sbi->segs_per_sec;
 808                if (!IS_CURSEC(sbi, secno) &&
 809                        !get_valid_blocks(sbi, start, sbi->segs_per_sec))
 810                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
 811                                sbi->segs_per_sec << sbi->log_blocks_per_seg);
 812
 813                start = start_segno + sbi->segs_per_sec;
 814                if (start < end)
 815                        goto next;
 816        }
 817        mutex_unlock(&dirty_i->seglist_lock);
 818
 819        /* send small discards */
 820        list_for_each_entry_safe(entry, this, head, list) {
 821                if (force && entry->len < cpc->trim_minlen)
 822                        goto skip;
 823                f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
 824                cpc->trimmed += entry->len;
 825skip:
 826                list_del(&entry->list);
 827                SM_I(sbi)->nr_discards -= entry->len;
 828                kmem_cache_free(discard_entry_slab, entry);
 829        }
 830
 831        blk_finish_plug(&plug);
 832}
 833
 834static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
 835{
 836        struct sit_info *sit_i = SIT_I(sbi);
 837
 838        if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
 839                sit_i->dirty_sentries++;
 840                return false;
 841        }
 842
 843        return true;
 844}
 845
 846static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
 847                                        unsigned int segno, int modified)
 848{
 849        struct seg_entry *se = get_seg_entry(sbi, segno);
 850        se->type = type;
 851        if (modified)
 852                __mark_sit_entry_dirty(sbi, segno);
 853}
 854
 855static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
 856{
 857        struct seg_entry *se;
 858        unsigned int segno, offset;
 859        long int new_vblocks;
 860
 861        segno = GET_SEGNO(sbi, blkaddr);
 862
 863        se = get_seg_entry(sbi, segno);
 864        new_vblocks = se->valid_blocks + del;
 865        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 866
 867        f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
 868                                (new_vblocks > sbi->blocks_per_seg)));
 869
 870        se->valid_blocks = new_vblocks;
 871        se->mtime = get_mtime(sbi);
 872        SIT_I(sbi)->max_mtime = se->mtime;
 873
 874        /* Update valid block bitmap */
 875        if (del > 0) {
 876                if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
 877                        f2fs_bug_on(sbi, 1);
 878                if (f2fs_discard_en(sbi) &&
 879                        !f2fs_test_and_set_bit(offset, se->discard_map))
 880                        sbi->discard_blks--;
 881        } else {
 882                if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
 883                        f2fs_bug_on(sbi, 1);
 884                if (f2fs_discard_en(sbi) &&
 885                        f2fs_test_and_clear_bit(offset, se->discard_map))
 886                        sbi->discard_blks++;
 887        }
 888        if (!f2fs_test_bit(offset, se->ckpt_valid_map))
 889                se->ckpt_valid_blocks += del;
 890
 891        __mark_sit_entry_dirty(sbi, segno);
 892
 893        /* update total number of valid blocks to be written in ckpt area */
 894        SIT_I(sbi)->written_valid_blocks += del;
 895
 896        if (sbi->segs_per_sec > 1)
 897                get_sec_entry(sbi, segno)->valid_blocks += del;
 898}
 899
 900void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
 901{
 902        update_sit_entry(sbi, new, 1);
 903        if (GET_SEGNO(sbi, old) != NULL_SEGNO)
 904                update_sit_entry(sbi, old, -1);
 905
 906        locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
 907        locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
 908}
 909
 910void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
 911{
 912        unsigned int segno = GET_SEGNO(sbi, addr);
 913        struct sit_info *sit_i = SIT_I(sbi);
 914
 915        f2fs_bug_on(sbi, addr == NULL_ADDR);
 916        if (addr == NEW_ADDR)
 917                return;
 918
 919        /* add it into sit main buffer */
 920        mutex_lock(&sit_i->sentry_lock);
 921
 922        update_sit_entry(sbi, addr, -1);
 923
 924        /* add it into dirty seglist */
 925        locate_dirty_segment(sbi, segno);
 926
 927        mutex_unlock(&sit_i->sentry_lock);
 928}
 929
 930bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
 931{
 932        struct sit_info *sit_i = SIT_I(sbi);
 933        unsigned int segno, offset;
 934        struct seg_entry *se;
 935        bool is_cp = false;
 936
 937        if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
 938                return true;
 939
 940        mutex_lock(&sit_i->sentry_lock);
 941
 942        segno = GET_SEGNO(sbi, blkaddr);
 943        se = get_seg_entry(sbi, segno);
 944        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 945
 946        if (f2fs_test_bit(offset, se->ckpt_valid_map))
 947                is_cp = true;
 948
 949        mutex_unlock(&sit_i->sentry_lock);
 950
 951        return is_cp;
 952}
 953
 954/*
 955 * This function should be resided under the curseg_mutex lock
 956 */
 957static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
 958                                        struct f2fs_summary *sum)
 959{
 960        struct curseg_info *curseg = CURSEG_I(sbi, type);
 961        void *addr = curseg->sum_blk;
 962        addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
 963        memcpy(addr, sum, sizeof(struct f2fs_summary));
 964}
 965
 966/*
 967 * Calculate the number of current summary pages for writing
 968 */
 969int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
 970{
 971        int valid_sum_count = 0;
 972        int i, sum_in_page;
 973
 974        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 975                if (sbi->ckpt->alloc_type[i] == SSR)
 976                        valid_sum_count += sbi->blocks_per_seg;
 977                else {
 978                        if (for_ra)
 979                                valid_sum_count += le16_to_cpu(
 980                                        F2FS_CKPT(sbi)->cur_data_blkoff[i]);
 981                        else
 982                                valid_sum_count += curseg_blkoff(sbi, i);
 983                }
 984        }
 985
 986        sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
 987                        SUM_FOOTER_SIZE) / SUMMARY_SIZE;
 988        if (valid_sum_count <= sum_in_page)
 989                return 1;
 990        else if ((valid_sum_count - sum_in_page) <=
 991                (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
 992                return 2;
 993        return 3;
 994}
 995
 996/*
 997 * Caller should put this summary page
 998 */
 999struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1000{
1001        return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1002}
1003
1004void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1005{
1006        struct page *page = grab_meta_page(sbi, blk_addr);
1007        void *dst = page_address(page);
1008
1009        if (src)
1010                memcpy(dst, src, PAGE_SIZE);
1011        else
1012                memset(dst, 0, PAGE_SIZE);
1013        set_page_dirty(page);
1014        f2fs_put_page(page, 1);
1015}
1016
1017static void write_sum_page(struct f2fs_sb_info *sbi,
1018                        struct f2fs_summary_block *sum_blk, block_t blk_addr)
1019{
1020        update_meta_page(sbi, (void *)sum_blk, blk_addr);
1021}
1022
1023static void write_current_sum_page(struct f2fs_sb_info *sbi,
1024                                                int type, block_t blk_addr)
1025{
1026        struct curseg_info *curseg = CURSEG_I(sbi, type);
1027        struct page *page = grab_meta_page(sbi, blk_addr);
1028        struct f2fs_summary_block *src = curseg->sum_blk;
1029        struct f2fs_summary_block *dst;
1030
1031        dst = (struct f2fs_summary_block *)page_address(page);
1032
1033        mutex_lock(&curseg->curseg_mutex);
1034
1035        down_read(&curseg->journal_rwsem);
1036        memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1037        up_read(&curseg->journal_rwsem);
1038
1039        memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1040        memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1041
1042        mutex_unlock(&curseg->curseg_mutex);
1043
1044        set_page_dirty(page);
1045        f2fs_put_page(page, 1);
1046}
1047
1048static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
1049{
1050        struct curseg_info *curseg = CURSEG_I(sbi, type);
1051        unsigned int segno = curseg->segno + 1;
1052        struct free_segmap_info *free_i = FREE_I(sbi);
1053
1054        if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
1055                return !test_bit(segno, free_i->free_segmap);
1056        return 0;
1057}
1058
1059/*
1060 * Find a new segment from the free segments bitmap to right order
1061 * This function should be returned with success, otherwise BUG
1062 */
1063static void get_new_segment(struct f2fs_sb_info *sbi,
1064                        unsigned int *newseg, bool new_sec, int dir)
1065{
1066        struct free_segmap_info *free_i = FREE_I(sbi);
1067        unsigned int segno, secno, zoneno;
1068        unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1069        unsigned int hint = *newseg / sbi->segs_per_sec;
1070        unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
1071        unsigned int left_start = hint;
1072        bool init = true;
1073        int go_left = 0;
1074        int i;
1075
1076        spin_lock(&free_i->segmap_lock);
1077
1078        if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1079                segno = find_next_zero_bit(free_i->free_segmap,
1080                                (hint + 1) * sbi->segs_per_sec, *newseg + 1);
1081                if (segno < (hint + 1) * sbi->segs_per_sec)
1082                        goto got_it;
1083        }
1084find_other_zone:
1085        secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1086        if (secno >= MAIN_SECS(sbi)) {
1087                if (dir == ALLOC_RIGHT) {
1088                        secno = find_next_zero_bit(free_i->free_secmap,
1089                                                        MAIN_SECS(sbi), 0);
1090                        f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1091                } else {
1092                        go_left = 1;
1093                        left_start = hint - 1;
1094                }
1095        }
1096        if (go_left == 0)
1097                goto skip_left;
1098
1099        while (test_bit(left_start, free_i->free_secmap)) {
1100                if (left_start > 0) {
1101                        left_start--;
1102                        continue;
1103                }
1104                left_start = find_next_zero_bit(free_i->free_secmap,
1105                                                        MAIN_SECS(sbi), 0);
1106                f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1107                break;
1108        }
1109        secno = left_start;
1110skip_left:
1111        hint = secno;
1112        segno = secno * sbi->segs_per_sec;
1113        zoneno = secno / sbi->secs_per_zone;
1114
1115        /* give up on finding another zone */
1116        if (!init)
1117                goto got_it;
1118        if (sbi->secs_per_zone == 1)
1119                goto got_it;
1120        if (zoneno == old_zoneno)
1121                goto got_it;
1122        if (dir == ALLOC_LEFT) {
1123                if (!go_left && zoneno + 1 >= total_zones)
1124                        goto got_it;
1125                if (go_left && zoneno == 0)
1126                        goto got_it;
1127        }
1128        for (i = 0; i < NR_CURSEG_TYPE; i++)
1129                if (CURSEG_I(sbi, i)->zone == zoneno)
1130                        break;
1131
1132        if (i < NR_CURSEG_TYPE) {
1133                /* zone is in user, try another */
1134                if (go_left)
1135                        hint = zoneno * sbi->secs_per_zone - 1;
1136                else if (zoneno + 1 >= total_zones)
1137                        hint = 0;
1138                else
1139                        hint = (zoneno + 1) * sbi->secs_per_zone;
1140                init = false;
1141                goto find_other_zone;
1142        }
1143got_it:
1144        /* set it as dirty segment in free segmap */
1145        f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1146        __set_inuse(sbi, segno);
1147        *newseg = segno;
1148        spin_unlock(&free_i->segmap_lock);
1149}
1150
1151static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1152{
1153        struct curseg_info *curseg = CURSEG_I(sbi, type);
1154        struct summary_footer *sum_footer;
1155
1156        curseg->segno = curseg->next_segno;
1157        curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1158        curseg->next_blkoff = 0;
1159        curseg->next_segno = NULL_SEGNO;
1160
1161        sum_footer = &(curseg->sum_blk->footer);
1162        memset(sum_footer, 0, sizeof(struct summary_footer));
1163        if (IS_DATASEG(type))
1164                SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1165        if (IS_NODESEG(type))
1166                SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1167        __set_sit_entry_type(sbi, type, curseg->segno, modified);
1168}
1169
1170/*
1171 * Allocate a current working segment.
1172 * This function always allocates a free segment in LFS manner.
1173 */
1174static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1175{
1176        struct curseg_info *curseg = CURSEG_I(sbi, type);
1177        unsigned int segno = curseg->segno;
1178        int dir = ALLOC_LEFT;
1179
1180        write_sum_page(sbi, curseg->sum_blk,
1181                                GET_SUM_BLOCK(sbi, segno));
1182        if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1183                dir = ALLOC_RIGHT;
1184
1185        if (test_opt(sbi, NOHEAP))
1186                dir = ALLOC_RIGHT;
1187
1188        get_new_segment(sbi, &segno, new_sec, dir);
1189        curseg->next_segno = segno;
1190        reset_curseg(sbi, type, 1);
1191        curseg->alloc_type = LFS;
1192}
1193
1194static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1195                        struct curseg_info *seg, block_t start)
1196{
1197        struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1198        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1199        unsigned long *target_map = SIT_I(sbi)->tmp_map;
1200        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1201        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1202        int i, pos;
1203
1204        for (i = 0; i < entries; i++)
1205                target_map[i] = ckpt_map[i] | cur_map[i];
1206
1207        pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1208
1209        seg->next_blkoff = pos;
1210}
1211
1212/*
1213 * If a segment is written by LFS manner, next block offset is just obtained
1214 * by increasing the current block offset. However, if a segment is written by
1215 * SSR manner, next block offset obtained by calling __next_free_blkoff
1216 */
1217static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1218                                struct curseg_info *seg)
1219{
1220        if (seg->alloc_type == SSR)
1221                __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1222        else
1223                seg->next_blkoff++;
1224}
1225
1226/*
1227 * This function always allocates a used segment(from dirty seglist) by SSR
1228 * manner, so it should recover the existing segment information of valid blocks
1229 */
1230static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1231{
1232        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1233        struct curseg_info *curseg = CURSEG_I(sbi, type);
1234        unsigned int new_segno = curseg->next_segno;
1235        struct f2fs_summary_block *sum_node;
1236        struct page *sum_page;
1237
1238        write_sum_page(sbi, curseg->sum_blk,
1239                                GET_SUM_BLOCK(sbi, curseg->segno));
1240        __set_test_and_inuse(sbi, new_segno);
1241
1242        mutex_lock(&dirty_i->seglist_lock);
1243        __remove_dirty_segment(sbi, new_segno, PRE);
1244        __remove_dirty_segment(sbi, new_segno, DIRTY);
1245        mutex_unlock(&dirty_i->seglist_lock);
1246
1247        reset_curseg(sbi, type, 1);
1248        curseg->alloc_type = SSR;
1249        __next_free_blkoff(sbi, curseg, 0);
1250
1251        if (reuse) {
1252                sum_page = get_sum_page(sbi, new_segno);
1253                sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1254                memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1255                f2fs_put_page(sum_page, 1);
1256        }
1257}
1258
1259static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1260{
1261        struct curseg_info *curseg = CURSEG_I(sbi, type);
1262        const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1263
1264        if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0))
1265                return v_ops->get_victim(sbi,
1266                                &(curseg)->next_segno, BG_GC, type, SSR);
1267
1268        /* For data segments, let's do SSR more intensively */
1269        for (; type >= CURSEG_HOT_DATA; type--)
1270                if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1271                                                BG_GC, type, SSR))
1272                        return 1;
1273        return 0;
1274}
1275
1276/*
1277 * flush out current segment and replace it with new segment
1278 * This function should be returned with success, otherwise BUG
1279 */
1280static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1281                                                int type, bool force)
1282{
1283        struct curseg_info *curseg = CURSEG_I(sbi, type);
1284
1285        if (force)
1286                new_curseg(sbi, type, true);
1287        else if (type == CURSEG_WARM_NODE)
1288                new_curseg(sbi, type, false);
1289        else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1290                new_curseg(sbi, type, false);
1291        else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1292                change_curseg(sbi, type, true);
1293        else
1294                new_curseg(sbi, type, false);
1295
1296        stat_inc_seg_type(sbi, curseg);
1297}
1298
1299static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1300{
1301        struct curseg_info *curseg = CURSEG_I(sbi, type);
1302        unsigned int old_segno;
1303
1304        old_segno = curseg->segno;
1305        SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1306        locate_dirty_segment(sbi, old_segno);
1307}
1308
1309void allocate_new_segments(struct f2fs_sb_info *sbi)
1310{
1311        int i;
1312
1313        if (test_opt(sbi, LFS))
1314                return;
1315
1316        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1317                __allocate_new_segments(sbi, i);
1318}
1319
1320static const struct segment_allocation default_salloc_ops = {
1321        .allocate_segment = allocate_segment_by_default,
1322};
1323
1324int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1325{
1326        __u64 start = F2FS_BYTES_TO_BLK(range->start);
1327        __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1328        unsigned int start_segno, end_segno;
1329        struct cp_control cpc;
1330        int err = 0;
1331
1332        if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1333                return -EINVAL;
1334
1335        cpc.trimmed = 0;
1336        if (end <= MAIN_BLKADDR(sbi))
1337                goto out;
1338
1339        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1340                f2fs_msg(sbi->sb, KERN_WARNING,
1341                        "Found FS corruption, run fsck to fix.");
1342                goto out;
1343        }
1344
1345        /* start/end segment number in main_area */
1346        start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1347        end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1348                                                GET_SEGNO(sbi, end);
1349        cpc.reason = CP_DISCARD;
1350        cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1351
1352        /* do checkpoint to issue discard commands safely */
1353        for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1354                cpc.trim_start = start_segno;
1355
1356                if (sbi->discard_blks == 0)
1357                        break;
1358                else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1359                        cpc.trim_end = end_segno;
1360                else
1361                        cpc.trim_end = min_t(unsigned int,
1362                                rounddown(start_segno +
1363                                BATCHED_TRIM_SEGMENTS(sbi),
1364                                sbi->segs_per_sec) - 1, end_segno);
1365
1366                mutex_lock(&sbi->gc_mutex);
1367                err = write_checkpoint(sbi, &cpc);
1368                mutex_unlock(&sbi->gc_mutex);
1369                if (err)
1370                        break;
1371
1372                schedule();
1373        }
1374out:
1375        range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1376        return err;
1377}
1378
1379static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1380{
1381        struct curseg_info *curseg = CURSEG_I(sbi, type);
1382        if (curseg->next_blkoff < sbi->blocks_per_seg)
1383                return true;
1384        return false;
1385}
1386
1387static int __get_segment_type_2(struct page *page, enum page_type p_type)
1388{
1389        if (p_type == DATA)
1390                return CURSEG_HOT_DATA;
1391        else
1392                return CURSEG_HOT_NODE;
1393}
1394
1395static int __get_segment_type_4(struct page *page, enum page_type p_type)
1396{
1397        if (p_type == DATA) {
1398                struct inode *inode = page->mapping->host;
1399
1400                if (S_ISDIR(inode->i_mode))
1401                        return CURSEG_HOT_DATA;
1402                else
1403                        return CURSEG_COLD_DATA;
1404        } else {
1405                if (IS_DNODE(page) && is_cold_node(page))
1406                        return CURSEG_WARM_NODE;
1407                else
1408                        return CURSEG_COLD_NODE;
1409        }
1410}
1411
1412static int __get_segment_type_6(struct page *page, enum page_type p_type)
1413{
1414        if (p_type == DATA) {
1415                struct inode *inode = page->mapping->host;
1416
1417                if (S_ISDIR(inode->i_mode))
1418                        return CURSEG_HOT_DATA;
1419                else if (is_cold_data(page) || file_is_cold(inode))
1420                        return CURSEG_COLD_DATA;
1421                else
1422                        return CURSEG_WARM_DATA;
1423        } else {
1424                if (IS_DNODE(page))
1425                        return is_cold_node(page) ? CURSEG_WARM_NODE :
1426                                                CURSEG_HOT_NODE;
1427                else
1428                        return CURSEG_COLD_NODE;
1429        }
1430}
1431
1432static int __get_segment_type(struct page *page, enum page_type p_type)
1433{
1434        switch (F2FS_P_SB(page)->active_logs) {
1435        case 2:
1436                return __get_segment_type_2(page, p_type);
1437        case 4:
1438                return __get_segment_type_4(page, p_type);
1439        }
1440        /* NR_CURSEG_TYPE(6) logs by default */
1441        f2fs_bug_on(F2FS_P_SB(page),
1442                F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1443        return __get_segment_type_6(page, p_type);
1444}
1445
1446void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1447                block_t old_blkaddr, block_t *new_blkaddr,
1448                struct f2fs_summary *sum, int type)
1449{
1450        struct sit_info *sit_i = SIT_I(sbi);
1451        struct curseg_info *curseg;
1452        bool direct_io = (type == CURSEG_DIRECT_IO);
1453
1454        type = direct_io ? CURSEG_WARM_DATA : type;
1455
1456        curseg = CURSEG_I(sbi, type);
1457
1458        mutex_lock(&curseg->curseg_mutex);
1459        mutex_lock(&sit_i->sentry_lock);
1460
1461        /* direct_io'ed data is aligned to the segment for better performance */
1462        if (direct_io && curseg->next_blkoff &&
1463                                !has_not_enough_free_secs(sbi, 0, 0))
1464                __allocate_new_segments(sbi, type);
1465
1466        *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1467
1468        /*
1469         * __add_sum_entry should be resided under the curseg_mutex
1470         * because, this function updates a summary entry in the
1471         * current summary block.
1472         */
1473        __add_sum_entry(sbi, type, sum);
1474
1475        __refresh_next_blkoff(sbi, curseg);
1476
1477        stat_inc_block_count(sbi, curseg);
1478
1479        if (!__has_curseg_space(sbi, type))
1480                sit_i->s_ops->allocate_segment(sbi, type, false);
1481        /*
1482         * SIT information should be updated before segment allocation,
1483         * since SSR needs latest valid block information.
1484         */
1485        refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1486
1487        mutex_unlock(&sit_i->sentry_lock);
1488
1489        if (page && IS_NODESEG(type))
1490                fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1491
1492        mutex_unlock(&curseg->curseg_mutex);
1493}
1494
1495static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1496{
1497        int type = __get_segment_type(fio->page, fio->type);
1498
1499        if (fio->type == NODE || fio->type == DATA)
1500                mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1501
1502        allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1503                                        &fio->new_blkaddr, sum, type);
1504
1505        /* writeout dirty page into bdev */
1506        f2fs_submit_page_mbio(fio);
1507
1508        if (fio->type == NODE || fio->type == DATA)
1509                mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1510}
1511
1512void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1513{
1514        struct f2fs_io_info fio = {
1515                .sbi = sbi,
1516                .type = META,
1517                .op = REQ_OP_WRITE,
1518                .op_flags = WRITE_SYNC | REQ_META | REQ_PRIO,
1519                .old_blkaddr = page->index,
1520                .new_blkaddr = page->index,
1521                .page = page,
1522                .encrypted_page = NULL,
1523        };
1524
1525        if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1526                fio.op_flags &= ~REQ_META;
1527
1528        set_page_writeback(page);
1529        f2fs_submit_page_mbio(&fio);
1530}
1531
1532void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1533{
1534        struct f2fs_summary sum;
1535
1536        set_summary(&sum, nid, 0, 0);
1537        do_write_page(&sum, fio);
1538}
1539
1540void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1541{
1542        struct f2fs_sb_info *sbi = fio->sbi;
1543        struct f2fs_summary sum;
1544        struct node_info ni;
1545
1546        f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1547        get_node_info(sbi, dn->nid, &ni);
1548        set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1549        do_write_page(&sum, fio);
1550        f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1551}
1552
1553void rewrite_data_page(struct f2fs_io_info *fio)
1554{
1555        fio->new_blkaddr = fio->old_blkaddr;
1556        stat_inc_inplace_blocks(fio->sbi);
1557        f2fs_submit_page_mbio(fio);
1558}
1559
1560void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1561                                block_t old_blkaddr, block_t new_blkaddr,
1562                                bool recover_curseg, bool recover_newaddr)
1563{
1564        struct sit_info *sit_i = SIT_I(sbi);
1565        struct curseg_info *curseg;
1566        unsigned int segno, old_cursegno;
1567        struct seg_entry *se;
1568        int type;
1569        unsigned short old_blkoff;
1570
1571        segno = GET_SEGNO(sbi, new_blkaddr);
1572        se = get_seg_entry(sbi, segno);
1573        type = se->type;
1574
1575        if (!recover_curseg) {
1576                /* for recovery flow */
1577                if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1578                        if (old_blkaddr == NULL_ADDR)
1579                                type = CURSEG_COLD_DATA;
1580                        else
1581                                type = CURSEG_WARM_DATA;
1582                }
1583        } else {
1584                if (!IS_CURSEG(sbi, segno))
1585                        type = CURSEG_WARM_DATA;
1586        }
1587
1588        curseg = CURSEG_I(sbi, type);
1589
1590        mutex_lock(&curseg->curseg_mutex);
1591        mutex_lock(&sit_i->sentry_lock);
1592
1593        old_cursegno = curseg->segno;
1594        old_blkoff = curseg->next_blkoff;
1595
1596        /* change the current segment */
1597        if (segno != curseg->segno) {
1598                curseg->next_segno = segno;
1599                change_curseg(sbi, type, true);
1600        }
1601
1602        curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1603        __add_sum_entry(sbi, type, sum);
1604
1605        if (!recover_curseg || recover_newaddr)
1606                update_sit_entry(sbi, new_blkaddr, 1);
1607        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1608                update_sit_entry(sbi, old_blkaddr, -1);
1609
1610        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1611        locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1612
1613        locate_dirty_segment(sbi, old_cursegno);
1614
1615        if (recover_curseg) {
1616                if (old_cursegno != curseg->segno) {
1617                        curseg->next_segno = old_cursegno;
1618                        change_curseg(sbi, type, true);
1619                }
1620                curseg->next_blkoff = old_blkoff;
1621        }
1622
1623        mutex_unlock(&sit_i->sentry_lock);
1624        mutex_unlock(&curseg->curseg_mutex);
1625}
1626
1627void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1628                                block_t old_addr, block_t new_addr,
1629                                unsigned char version, bool recover_curseg,
1630                                bool recover_newaddr)
1631{
1632        struct f2fs_summary sum;
1633
1634        set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1635
1636        __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1637                                        recover_curseg, recover_newaddr);
1638
1639        f2fs_update_data_blkaddr(dn, new_addr);
1640}
1641
1642void f2fs_wait_on_page_writeback(struct page *page,
1643                                enum page_type type, bool ordered)
1644{
1645        if (PageWriteback(page)) {
1646                struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1647
1648                f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1649                if (ordered)
1650                        wait_on_page_writeback(page);
1651                else
1652                        wait_for_stable_page(page);
1653        }
1654}
1655
1656void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1657                                                        block_t blkaddr)
1658{
1659        struct page *cpage;
1660
1661        if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1662                return;
1663
1664        cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1665        if (cpage) {
1666                f2fs_wait_on_page_writeback(cpage, DATA, true);
1667                f2fs_put_page(cpage, 1);
1668        }
1669}
1670
1671static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1672{
1673        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1674        struct curseg_info *seg_i;
1675        unsigned char *kaddr;
1676        struct page *page;
1677        block_t start;
1678        int i, j, offset;
1679
1680        start = start_sum_block(sbi);
1681
1682        page = get_meta_page(sbi, start++);
1683        kaddr = (unsigned char *)page_address(page);
1684
1685        /* Step 1: restore nat cache */
1686        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1687        memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1688
1689        /* Step 2: restore sit cache */
1690        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1691        memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1692        offset = 2 * SUM_JOURNAL_SIZE;
1693
1694        /* Step 3: restore summary entries */
1695        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1696                unsigned short blk_off;
1697                unsigned int segno;
1698
1699                seg_i = CURSEG_I(sbi, i);
1700                segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1701                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1702                seg_i->next_segno = segno;
1703                reset_curseg(sbi, i, 0);
1704                seg_i->alloc_type = ckpt->alloc_type[i];
1705                seg_i->next_blkoff = blk_off;
1706
1707                if (seg_i->alloc_type == SSR)
1708                        blk_off = sbi->blocks_per_seg;
1709
1710                for (j = 0; j < blk_off; j++) {
1711                        struct f2fs_summary *s;
1712                        s = (struct f2fs_summary *)(kaddr + offset);
1713                        seg_i->sum_blk->entries[j] = *s;
1714                        offset += SUMMARY_SIZE;
1715                        if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1716                                                SUM_FOOTER_SIZE)
1717                                continue;
1718
1719                        f2fs_put_page(page, 1);
1720                        page = NULL;
1721
1722                        page = get_meta_page(sbi, start++);
1723                        kaddr = (unsigned char *)page_address(page);
1724                        offset = 0;
1725                }
1726        }
1727        f2fs_put_page(page, 1);
1728        return 0;
1729}
1730
1731static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1732{
1733        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1734        struct f2fs_summary_block *sum;
1735        struct curseg_info *curseg;
1736        struct page *new;
1737        unsigned short blk_off;
1738        unsigned int segno = 0;
1739        block_t blk_addr = 0;
1740
1741        /* get segment number and block addr */
1742        if (IS_DATASEG(type)) {
1743                segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1744                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1745                                                        CURSEG_HOT_DATA]);
1746                if (__exist_node_summaries(sbi))
1747                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1748                else
1749                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1750        } else {
1751                segno = le32_to_cpu(ckpt->cur_node_segno[type -
1752                                                        CURSEG_HOT_NODE]);
1753                blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1754                                                        CURSEG_HOT_NODE]);
1755                if (__exist_node_summaries(sbi))
1756                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1757                                                        type - CURSEG_HOT_NODE);
1758                else
1759                        blk_addr = GET_SUM_BLOCK(sbi, segno);
1760        }
1761
1762        new = get_meta_page(sbi, blk_addr);
1763        sum = (struct f2fs_summary_block *)page_address(new);
1764
1765        if (IS_NODESEG(type)) {
1766                if (__exist_node_summaries(sbi)) {
1767                        struct f2fs_summary *ns = &sum->entries[0];
1768                        int i;
1769                        for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1770                                ns->version = 0;
1771                                ns->ofs_in_node = 0;
1772                        }
1773                } else {
1774                        int err;
1775
1776                        err = restore_node_summary(sbi, segno, sum);
1777                        if (err) {
1778                                f2fs_put_page(new, 1);
1779                                return err;
1780                        }
1781                }
1782        }
1783
1784        /* set uncompleted segment to curseg */
1785        curseg = CURSEG_I(sbi, type);
1786        mutex_lock(&curseg->curseg_mutex);
1787
1788        /* update journal info */
1789        down_write(&curseg->journal_rwsem);
1790        memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1791        up_write(&curseg->journal_rwsem);
1792
1793        memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1794        memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1795        curseg->next_segno = segno;
1796        reset_curseg(sbi, type, 0);
1797        curseg->alloc_type = ckpt->alloc_type[type];
1798        curseg->next_blkoff = blk_off;
1799        mutex_unlock(&curseg->curseg_mutex);
1800        f2fs_put_page(new, 1);
1801        return 0;
1802}
1803
1804static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1805{
1806        int type = CURSEG_HOT_DATA;
1807        int err;
1808
1809        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
1810                int npages = npages_for_summary_flush(sbi, true);
1811
1812                if (npages >= 2)
1813                        ra_meta_pages(sbi, start_sum_block(sbi), npages,
1814                                                        META_CP, true);
1815
1816                /* restore for compacted data summary */
1817                if (read_compacted_summaries(sbi))
1818                        return -EINVAL;
1819                type = CURSEG_HOT_NODE;
1820        }
1821
1822        if (__exist_node_summaries(sbi))
1823                ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1824                                        NR_CURSEG_TYPE - type, META_CP, true);
1825
1826        for (; type <= CURSEG_COLD_NODE; type++) {
1827                err = read_normal_summaries(sbi, type);
1828                if (err)
1829                        return err;
1830        }
1831
1832        return 0;
1833}
1834
1835static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1836{
1837        struct page *page;
1838        unsigned char *kaddr;
1839        struct f2fs_summary *summary;
1840        struct curseg_info *seg_i;
1841        int written_size = 0;
1842        int i, j;
1843
1844        page = grab_meta_page(sbi, blkaddr++);
1845        kaddr = (unsigned char *)page_address(page);
1846
1847        /* Step 1: write nat cache */
1848        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1849        memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1850        written_size += SUM_JOURNAL_SIZE;
1851
1852        /* Step 2: write sit cache */
1853        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1854        memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1855        written_size += SUM_JOURNAL_SIZE;
1856
1857        /* Step 3: write summary entries */
1858        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1859                unsigned short blkoff;
1860                seg_i = CURSEG_I(sbi, i);
1861                if (sbi->ckpt->alloc_type[i] == SSR)
1862                        blkoff = sbi->blocks_per_seg;
1863                else
1864                        blkoff = curseg_blkoff(sbi, i);
1865
1866                for (j = 0; j < blkoff; j++) {
1867                        if (!page) {
1868                                page = grab_meta_page(sbi, blkaddr++);
1869                                kaddr = (unsigned char *)page_address(page);
1870                                written_size = 0;
1871                        }
1872                        summary = (struct f2fs_summary *)(kaddr + written_size);
1873                        *summary = seg_i->sum_blk->entries[j];
1874                        written_size += SUMMARY_SIZE;
1875
1876                        if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1877                                                        SUM_FOOTER_SIZE)
1878                                continue;
1879
1880                        set_page_dirty(page);
1881                        f2fs_put_page(page, 1);
1882                        page = NULL;
1883                }
1884        }
1885        if (page) {
1886                set_page_dirty(page);
1887                f2fs_put_page(page, 1);
1888        }
1889}
1890
1891static void write_normal_summaries(struct f2fs_sb_info *sbi,
1892                                        block_t blkaddr, int type)
1893{
1894        int i, end;
1895        if (IS_DATASEG(type))
1896                end = type + NR_CURSEG_DATA_TYPE;
1897        else
1898                end = type + NR_CURSEG_NODE_TYPE;
1899
1900        for (i = type; i < end; i++)
1901                write_current_sum_page(sbi, i, blkaddr + (i - type));
1902}
1903
1904void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1905{
1906        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
1907                write_compacted_summaries(sbi, start_blk);
1908        else
1909                write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1910}
1911
1912void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1913{
1914        write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1915}
1916
1917int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1918                                        unsigned int val, int alloc)
1919{
1920        int i;
1921
1922        if (type == NAT_JOURNAL) {
1923                for (i = 0; i < nats_in_cursum(journal); i++) {
1924                        if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1925                                return i;
1926                }
1927                if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1928                        return update_nats_in_cursum(journal, 1);
1929        } else if (type == SIT_JOURNAL) {
1930                for (i = 0; i < sits_in_cursum(journal); i++)
1931                        if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1932                                return i;
1933                if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1934                        return update_sits_in_cursum(journal, 1);
1935        }
1936        return -1;
1937}
1938
1939static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1940                                        unsigned int segno)
1941{
1942        return get_meta_page(sbi, current_sit_addr(sbi, segno));
1943}
1944
1945static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1946                                        unsigned int start)
1947{
1948        struct sit_info *sit_i = SIT_I(sbi);
1949        struct page *src_page, *dst_page;
1950        pgoff_t src_off, dst_off;
1951        void *src_addr, *dst_addr;
1952
1953        src_off = current_sit_addr(sbi, start);
1954        dst_off = next_sit_addr(sbi, src_off);
1955
1956        /* get current sit block page without lock */
1957        src_page = get_meta_page(sbi, src_off);
1958        dst_page = grab_meta_page(sbi, dst_off);
1959        f2fs_bug_on(sbi, PageDirty(src_page));
1960
1961        src_addr = page_address(src_page);
1962        dst_addr = page_address(dst_page);
1963        memcpy(dst_addr, src_addr, PAGE_SIZE);
1964
1965        set_page_dirty(dst_page);
1966        f2fs_put_page(src_page, 1);
1967
1968        set_to_next_sit(sit_i, start);
1969
1970        return dst_page;
1971}
1972
1973static struct sit_entry_set *grab_sit_entry_set(void)
1974{
1975        struct sit_entry_set *ses =
1976                        f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1977
1978        ses->entry_cnt = 0;
1979        INIT_LIST_HEAD(&ses->set_list);
1980        return ses;
1981}
1982
1983static void release_sit_entry_set(struct sit_entry_set *ses)
1984{
1985        list_del(&ses->set_list);
1986        kmem_cache_free(sit_entry_set_slab, ses);
1987}
1988
1989static void adjust_sit_entry_set(struct sit_entry_set *ses,
1990                                                struct list_head *head)
1991{
1992        struct sit_entry_set *next = ses;
1993
1994        if (list_is_last(&ses->set_list, head))
1995                return;
1996
1997        list_for_each_entry_continue(next, head, set_list)
1998                if (ses->entry_cnt <= next->entry_cnt)
1999                        break;
2000
2001        list_move_tail(&ses->set_list, &next->set_list);
2002}
2003
2004static void add_sit_entry(unsigned int segno, struct list_head *head)
2005{
2006        struct sit_entry_set *ses;
2007        unsigned int start_segno = START_SEGNO(segno);
2008
2009        list_for_each_entry(ses, head, set_list) {
2010                if (ses->start_segno == start_segno) {
2011                        ses->entry_cnt++;
2012                        adjust_sit_entry_set(ses, head);
2013                        return;
2014                }
2015        }
2016
2017        ses = grab_sit_entry_set();
2018
2019        ses->start_segno = start_segno;
2020        ses->entry_cnt++;
2021        list_add(&ses->set_list, head);
2022}
2023
2024static void add_sits_in_set(struct f2fs_sb_info *sbi)
2025{
2026        struct f2fs_sm_info *sm_info = SM_I(sbi);
2027        struct list_head *set_list = &sm_info->sit_entry_set;
2028        unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2029        unsigned int segno;
2030
2031        for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2032                add_sit_entry(segno, set_list);
2033}
2034
2035static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2036{
2037        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2038        struct f2fs_journal *journal = curseg->journal;
2039        int i;
2040
2041        down_write(&curseg->journal_rwsem);
2042        for (i = 0; i < sits_in_cursum(journal); i++) {
2043                unsigned int segno;
2044                bool dirtied;
2045
2046                segno = le32_to_cpu(segno_in_journal(journal, i));
2047                dirtied = __mark_sit_entry_dirty(sbi, segno);
2048
2049                if (!dirtied)
2050                        add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2051        }
2052        update_sits_in_cursum(journal, -i);
2053        up_write(&curseg->journal_rwsem);
2054}
2055
2056/*
2057 * CP calls this function, which flushes SIT entries including sit_journal,
2058 * and moves prefree segs to free segs.
2059 */
2060void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2061{
2062        struct sit_info *sit_i = SIT_I(sbi);
2063        unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2064        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2065        struct f2fs_journal *journal = curseg->journal;
2066        struct sit_entry_set *ses, *tmp;
2067        struct list_head *head = &SM_I(sbi)->sit_entry_set;
2068        bool to_journal = true;
2069        struct seg_entry *se;
2070
2071        mutex_lock(&sit_i->sentry_lock);
2072
2073        if (!sit_i->dirty_sentries)
2074                goto out;
2075
2076        /*
2077         * add and account sit entries of dirty bitmap in sit entry
2078         * set temporarily
2079         */
2080        add_sits_in_set(sbi);
2081
2082        /*
2083         * if there are no enough space in journal to store dirty sit
2084         * entries, remove all entries from journal and add and account
2085         * them in sit entry set.
2086         */
2087        if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2088                remove_sits_in_journal(sbi);
2089
2090        /*
2091         * there are two steps to flush sit entries:
2092         * #1, flush sit entries to journal in current cold data summary block.
2093         * #2, flush sit entries to sit page.
2094         */
2095        list_for_each_entry_safe(ses, tmp, head, set_list) {
2096                struct page *page = NULL;
2097                struct f2fs_sit_block *raw_sit = NULL;
2098                unsigned int start_segno = ses->start_segno;
2099                unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2100                                                (unsigned long)MAIN_SEGS(sbi));
2101                unsigned int segno = start_segno;
2102
2103                if (to_journal &&
2104                        !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2105                        to_journal = false;
2106
2107                if (to_journal) {
2108                        down_write(&curseg->journal_rwsem);
2109                } else {
2110                        page = get_next_sit_page(sbi, start_segno);
2111                        raw_sit = page_address(page);
2112                }
2113
2114                /* flush dirty sit entries in region of current sit set */
2115                for_each_set_bit_from(segno, bitmap, end) {
2116                        int offset, sit_offset;
2117
2118                        se = get_seg_entry(sbi, segno);
2119
2120                        /* add discard candidates */
2121                        if (cpc->reason != CP_DISCARD) {
2122                                cpc->trim_start = segno;
2123                                add_discard_addrs(sbi, cpc);
2124                        }
2125
2126                        if (to_journal) {
2127                                offset = lookup_journal_in_cursum(journal,
2128                                                        SIT_JOURNAL, segno, 1);
2129                                f2fs_bug_on(sbi, offset < 0);
2130                                segno_in_journal(journal, offset) =
2131                                                        cpu_to_le32(segno);
2132                                seg_info_to_raw_sit(se,
2133                                        &sit_in_journal(journal, offset));
2134                        } else {
2135                                sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2136                                seg_info_to_raw_sit(se,
2137                                                &raw_sit->entries[sit_offset]);
2138                        }
2139
2140                        __clear_bit(segno, bitmap);
2141                        sit_i->dirty_sentries--;
2142                        ses->entry_cnt--;
2143                }
2144
2145                if (to_journal)
2146                        up_write(&curseg->journal_rwsem);
2147                else
2148                        f2fs_put_page(page, 1);
2149
2150                f2fs_bug_on(sbi, ses->entry_cnt);
2151                release_sit_entry_set(ses);
2152        }
2153
2154        f2fs_bug_on(sbi, !list_empty(head));
2155        f2fs_bug_on(sbi, sit_i->dirty_sentries);
2156out:
2157        if (cpc->reason == CP_DISCARD) {
2158                for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2159                        add_discard_addrs(sbi, cpc);
2160        }
2161        mutex_unlock(&sit_i->sentry_lock);
2162
2163        set_prefree_as_free_segments(sbi);
2164}
2165
2166static int build_sit_info(struct f2fs_sb_info *sbi)
2167{
2168        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2169        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2170        struct sit_info *sit_i;
2171        unsigned int sit_segs, start;
2172        char *src_bitmap, *dst_bitmap;
2173        unsigned int bitmap_size;
2174
2175        /* allocate memory for SIT information */
2176        sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2177        if (!sit_i)
2178                return -ENOMEM;
2179
2180        SM_I(sbi)->sit_info = sit_i;
2181
2182        sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2183                                        sizeof(struct seg_entry), GFP_KERNEL);
2184        if (!sit_i->sentries)
2185                return -ENOMEM;
2186
2187        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2188        sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2189        if (!sit_i->dirty_sentries_bitmap)
2190                return -ENOMEM;
2191
2192        for (start = 0; start < MAIN_SEGS(sbi); start++) {
2193                sit_i->sentries[start].cur_valid_map
2194                        = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2195                sit_i->sentries[start].ckpt_valid_map
2196                        = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2197                if (!sit_i->sentries[start].cur_valid_map ||
2198                                !sit_i->sentries[start].ckpt_valid_map)
2199                        return -ENOMEM;
2200
2201                if (f2fs_discard_en(sbi)) {
2202                        sit_i->sentries[start].discard_map
2203                                = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2204                        if (!sit_i->sentries[start].discard_map)
2205                                return -ENOMEM;
2206                }
2207        }
2208
2209        sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2210        if (!sit_i->tmp_map)
2211                return -ENOMEM;
2212
2213        if (sbi->segs_per_sec > 1) {
2214                sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2215                                        sizeof(struct sec_entry), GFP_KERNEL);
2216                if (!sit_i->sec_entries)
2217                        return -ENOMEM;
2218        }
2219
2220        /* get information related with SIT */
2221        sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2222
2223        /* setup SIT bitmap from ckeckpoint pack */
2224        bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2225        src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2226
2227        dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2228        if (!dst_bitmap)
2229                return -ENOMEM;
2230
2231        /* init SIT information */
2232        sit_i->s_ops = &default_salloc_ops;
2233
2234        sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2235        sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2236        sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2237        sit_i->sit_bitmap = dst_bitmap;
2238        sit_i->bitmap_size = bitmap_size;
2239        sit_i->dirty_sentries = 0;
2240        sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2241        sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2242        sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2243        mutex_init(&sit_i->sentry_lock);
2244        return 0;
2245}
2246
2247static int build_free_segmap(struct f2fs_sb_info *sbi)
2248{
2249        struct free_segmap_info *free_i;
2250        unsigned int bitmap_size, sec_bitmap_size;
2251
2252        /* allocate memory for free segmap information */
2253        free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2254        if (!free_i)
2255                return -ENOMEM;
2256
2257        SM_I(sbi)->free_info = free_i;
2258
2259        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2260        free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2261        if (!free_i->free_segmap)
2262                return -ENOMEM;
2263
2264        sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2265        free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2266        if (!free_i->free_secmap)
2267                return -ENOMEM;
2268
2269        /* set all segments as dirty temporarily */
2270        memset(free_i->free_segmap, 0xff, bitmap_size);
2271        memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2272
2273        /* init free segmap information */
2274        free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2275        free_i->free_segments = 0;
2276        free_i->free_sections = 0;
2277        spin_lock_init(&free_i->segmap_lock);
2278        return 0;
2279}
2280
2281static int build_curseg(struct f2fs_sb_info *sbi)
2282{
2283        struct curseg_info *array;
2284        int i;
2285
2286        array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2287        if (!array)
2288                return -ENOMEM;
2289
2290        SM_I(sbi)->curseg_array = array;
2291
2292        for (i = 0; i < NR_CURSEG_TYPE; i++) {
2293                mutex_init(&array[i].curseg_mutex);
2294                array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2295                if (!array[i].sum_blk)
2296                        return -ENOMEM;
2297                init_rwsem(&array[i].journal_rwsem);
2298                array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2299                                                        GFP_KERNEL);
2300                if (!array[i].journal)
2301                        return -ENOMEM;
2302                array[i].segno = NULL_SEGNO;
2303                array[i].next_blkoff = 0;
2304        }
2305        return restore_curseg_summaries(sbi);
2306}
2307
2308static void build_sit_entries(struct f2fs_sb_info *sbi)
2309{
2310        struct sit_info *sit_i = SIT_I(sbi);
2311        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2312        struct f2fs_journal *journal = curseg->journal;
2313        struct seg_entry *se;
2314        struct f2fs_sit_entry sit;
2315        int sit_blk_cnt = SIT_BLK_CNT(sbi);
2316        unsigned int i, start, end;
2317        unsigned int readed, start_blk = 0;
2318        int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
2319
2320        do {
2321                readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2322
2323                start = start_blk * sit_i->sents_per_block;
2324                end = (start_blk + readed) * sit_i->sents_per_block;
2325
2326                for (; start < end && start < MAIN_SEGS(sbi); start++) {
2327                        struct f2fs_sit_block *sit_blk;
2328                        struct page *page;
2329
2330                        se = &sit_i->sentries[start];
2331                        page = get_current_sit_page(sbi, start);
2332                        sit_blk = (struct f2fs_sit_block *)page_address(page);
2333                        sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2334                        f2fs_put_page(page, 1);
2335
2336                        check_block_count(sbi, start, &sit);
2337                        seg_info_from_raw_sit(se, &sit);
2338
2339                        /* build discard map only one time */
2340                        if (f2fs_discard_en(sbi)) {
2341                                memcpy(se->discard_map, se->cur_valid_map,
2342                                                        SIT_VBLOCK_MAP_SIZE);
2343                                sbi->discard_blks += sbi->blocks_per_seg -
2344                                                        se->valid_blocks;
2345                        }
2346
2347                        if (sbi->segs_per_sec > 1)
2348                                get_sec_entry(sbi, start)->valid_blocks +=
2349                                                        se->valid_blocks;
2350                }
2351                start_blk += readed;
2352        } while (start_blk < sit_blk_cnt);
2353
2354        down_read(&curseg->journal_rwsem);
2355        for (i = 0; i < sits_in_cursum(journal); i++) {
2356                unsigned int old_valid_blocks;
2357
2358                start = le32_to_cpu(segno_in_journal(journal, i));
2359                se = &sit_i->sentries[start];
2360                sit = sit_in_journal(journal, i);
2361
2362                old_valid_blocks = se->valid_blocks;
2363
2364                check_block_count(sbi, start, &sit);
2365                seg_info_from_raw_sit(se, &sit);
2366
2367                if (f2fs_discard_en(sbi)) {
2368                        memcpy(se->discard_map, se->cur_valid_map,
2369                                                SIT_VBLOCK_MAP_SIZE);
2370                        sbi->discard_blks += old_valid_blocks -
2371                                                se->valid_blocks;
2372                }
2373
2374                if (sbi->segs_per_sec > 1)
2375                        get_sec_entry(sbi, start)->valid_blocks +=
2376                                se->valid_blocks - old_valid_blocks;
2377        }
2378        up_read(&curseg->journal_rwsem);
2379}
2380
2381static void init_free_segmap(struct f2fs_sb_info *sbi)
2382{
2383        unsigned int start;
2384        int type;
2385
2386        for (start = 0; start < MAIN_SEGS(sbi); start++) {
2387                struct seg_entry *sentry = get_seg_entry(sbi, start);
2388                if (!sentry->valid_blocks)
2389                        __set_free(sbi, start);
2390        }
2391
2392        /* set use the current segments */
2393        for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2394                struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2395                __set_test_and_inuse(sbi, curseg_t->segno);
2396        }
2397}
2398
2399static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2400{
2401        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2402        struct free_segmap_info *free_i = FREE_I(sbi);
2403        unsigned int segno = 0, offset = 0;
2404        unsigned short valid_blocks;
2405
2406        while (1) {
2407                /* find dirty segment based on free segmap */
2408                segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2409                if (segno >= MAIN_SEGS(sbi))
2410                        break;
2411                offset = segno + 1;
2412                valid_blocks = get_valid_blocks(sbi, segno, 0);
2413                if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2414                        continue;
2415                if (valid_blocks > sbi->blocks_per_seg) {
2416                        f2fs_bug_on(sbi, 1);
2417                        continue;
2418                }
2419                mutex_lock(&dirty_i->seglist_lock);
2420                __locate_dirty_segment(sbi, segno, DIRTY);
2421                mutex_unlock(&dirty_i->seglist_lock);
2422        }
2423}
2424
2425static int init_victim_secmap(struct f2fs_sb_info *sbi)
2426{
2427        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2428        unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2429
2430        dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2431        if (!dirty_i->victim_secmap)
2432                return -ENOMEM;
2433        return 0;
2434}
2435
2436static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2437{
2438        struct dirty_seglist_info *dirty_i;
2439        unsigned int bitmap_size, i;
2440
2441        /* allocate memory for dirty segments list information */
2442        dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2443        if (!dirty_i)
2444                return -ENOMEM;
2445
2446        SM_I(sbi)->dirty_info = dirty_i;
2447        mutex_init(&dirty_i->seglist_lock);
2448
2449        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2450
2451        for (i = 0; i < NR_DIRTY_TYPE; i++) {
2452                dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2453                if (!dirty_i->dirty_segmap[i])
2454                        return -ENOMEM;
2455        }
2456
2457        init_dirty_segmap(sbi);
2458        return init_victim_secmap(sbi);
2459}
2460
2461/*
2462 * Update min, max modified time for cost-benefit GC algorithm
2463 */
2464static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2465{
2466        struct sit_info *sit_i = SIT_I(sbi);
2467        unsigned int segno;
2468
2469        mutex_lock(&sit_i->sentry_lock);
2470
2471        sit_i->min_mtime = LLONG_MAX;
2472
2473        for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2474                unsigned int i;
2475                unsigned long long mtime = 0;
2476
2477                for (i = 0; i < sbi->segs_per_sec; i++)
2478                        mtime += get_seg_entry(sbi, segno + i)->mtime;
2479
2480                mtime = div_u64(mtime, sbi->segs_per_sec);
2481
2482                if (sit_i->min_mtime > mtime)
2483                        sit_i->min_mtime = mtime;
2484        }
2485        sit_i->max_mtime = get_mtime(sbi);
2486        mutex_unlock(&sit_i->sentry_lock);
2487}
2488
2489int build_segment_manager(struct f2fs_sb_info *sbi)
2490{
2491        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2492        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2493        struct f2fs_sm_info *sm_info;
2494        int err;
2495
2496        sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2497        if (!sm_info)
2498                return -ENOMEM;
2499
2500        /* init sm info */
2501        sbi->sm_info = sm_info;
2502        sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2503        sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2504        sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2505        sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2506        sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2507        sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2508        sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2509        sm_info->rec_prefree_segments = sm_info->main_segments *
2510                                        DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2511        if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
2512                sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
2513
2514        if (!test_opt(sbi, LFS))
2515                sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2516        sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2517        sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2518
2519        INIT_LIST_HEAD(&sm_info->discard_list);
2520        INIT_LIST_HEAD(&sm_info->wait_list);
2521        sm_info->nr_discards = 0;
2522        sm_info->max_discards = 0;
2523
2524        sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2525
2526        INIT_LIST_HEAD(&sm_info->sit_entry_set);
2527
2528        if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2529                err = create_flush_cmd_control(sbi);
2530                if (err)
2531                        return err;
2532        }
2533
2534        err = build_sit_info(sbi);
2535        if (err)
2536                return err;
2537        err = build_free_segmap(sbi);
2538        if (err)
2539                return err;
2540        err = build_curseg(sbi);
2541        if (err)
2542                return err;
2543
2544        /* reinit free segmap based on SIT */
2545        build_sit_entries(sbi);
2546
2547        init_free_segmap(sbi);
2548        err = build_dirty_segmap(sbi);
2549        if (err)
2550                return err;
2551
2552        init_min_max_mtime(sbi);
2553        return 0;
2554}
2555
2556static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2557                enum dirty_type dirty_type)
2558{
2559        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2560
2561        mutex_lock(&dirty_i->seglist_lock);
2562        kvfree(dirty_i->dirty_segmap[dirty_type]);
2563        dirty_i->nr_dirty[dirty_type] = 0;
2564        mutex_unlock(&dirty_i->seglist_lock);
2565}
2566
2567static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2568{
2569        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2570        kvfree(dirty_i->victim_secmap);
2571}
2572
2573static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2574{
2575        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2576        int i;
2577
2578        if (!dirty_i)
2579                return;
2580
2581        /* discard pre-free/dirty segments list */
2582        for (i = 0; i < NR_DIRTY_TYPE; i++)
2583                discard_dirty_segmap(sbi, i);
2584
2585        destroy_victim_secmap(sbi);
2586        SM_I(sbi)->dirty_info = NULL;
2587        kfree(dirty_i);
2588}
2589
2590static void destroy_curseg(struct f2fs_sb_info *sbi)
2591{
2592        struct curseg_info *array = SM_I(sbi)->curseg_array;
2593        int i;
2594
2595        if (!array)
2596                return;
2597        SM_I(sbi)->curseg_array = NULL;
2598        for (i = 0; i < NR_CURSEG_TYPE; i++) {
2599                kfree(array[i].sum_blk);
2600                kfree(array[i].journal);
2601        }
2602        kfree(array);
2603}
2604
2605static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2606{
2607        struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2608        if (!free_i)
2609                return;
2610        SM_I(sbi)->free_info = NULL;
2611        kvfree(free_i->free_segmap);
2612        kvfree(free_i->free_secmap);
2613        kfree(free_i);
2614}
2615
2616static void destroy_sit_info(struct f2fs_sb_info *sbi)
2617{
2618        struct sit_info *sit_i = SIT_I(sbi);
2619        unsigned int start;
2620
2621        if (!sit_i)
2622                return;
2623
2624        if (sit_i->sentries) {
2625                for (start = 0; start < MAIN_SEGS(sbi); start++) {
2626                        kfree(sit_i->sentries[start].cur_valid_map);
2627                        kfree(sit_i->sentries[start].ckpt_valid_map);
2628                        kfree(sit_i->sentries[start].discard_map);
2629                }
2630        }
2631        kfree(sit_i->tmp_map);
2632
2633        kvfree(sit_i->sentries);
2634        kvfree(sit_i->sec_entries);
2635        kvfree(sit_i->dirty_sentries_bitmap);
2636
2637        SM_I(sbi)->sit_info = NULL;
2638        kfree(sit_i->sit_bitmap);
2639        kfree(sit_i);
2640}
2641
2642void destroy_segment_manager(struct f2fs_sb_info *sbi)
2643{
2644        struct f2fs_sm_info *sm_info = SM_I(sbi);
2645
2646        if (!sm_info)
2647                return;
2648        destroy_flush_cmd_control(sbi);
2649        destroy_dirty_segmap(sbi);
2650        destroy_curseg(sbi);
2651        destroy_free_segmap(sbi);
2652        destroy_sit_info(sbi);
2653        sbi->sm_info = NULL;
2654        kfree(sm_info);
2655}
2656
2657int __init create_segment_manager_caches(void)
2658{
2659        discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2660                        sizeof(struct discard_entry));
2661        if (!discard_entry_slab)
2662                goto fail;
2663
2664        bio_entry_slab = f2fs_kmem_cache_create("bio_entry",
2665                        sizeof(struct bio_entry));
2666        if (!bio_entry_slab)
2667                goto destroy_discard_entry;
2668
2669        sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2670                        sizeof(struct sit_entry_set));
2671        if (!sit_entry_set_slab)
2672                goto destroy_bio_entry;
2673
2674        inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2675                        sizeof(struct inmem_pages));
2676        if (!inmem_entry_slab)
2677                goto destroy_sit_entry_set;
2678        return 0;
2679
2680destroy_sit_entry_set:
2681        kmem_cache_destroy(sit_entry_set_slab);
2682destroy_bio_entry:
2683        kmem_cache_destroy(bio_entry_slab);
2684destroy_discard_entry:
2685        kmem_cache_destroy(discard_entry_slab);
2686fail:
2687        return -ENOMEM;
2688}
2689
2690void destroy_segment_manager_caches(void)
2691{
2692        kmem_cache_destroy(sit_entry_set_slab);
2693        kmem_cache_destroy(bio_entry_slab);
2694        kmem_cache_destroy(discard_entry_slab);
2695        kmem_cache_destroy(inmem_entry_slab);
2696}
2697