linux/fs/f2fs/segment.h
<<
>>
Prefs
   1/*
   2 * fs/f2fs/segment.h
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/blkdev.h>
  12#include <linux/backing-dev.h>
  13
  14/* constant macro */
  15#define NULL_SEGNO                      ((unsigned int)(~0))
  16#define NULL_SECNO                      ((unsigned int)(~0))
  17
  18#define DEF_RECLAIM_PREFREE_SEGMENTS    5       /* 5% over total segments */
  19#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS        4096    /* 8GB in maximum */
  20
  21/* L: Logical segment # in volume, R: Relative segment # in main area */
  22#define GET_L2R_SEGNO(free_i, segno)    (segno - free_i->start_segno)
  23#define GET_R2L_SEGNO(free_i, segno)    (segno + free_i->start_segno)
  24
  25#define IS_DATASEG(t)   (t <= CURSEG_COLD_DATA)
  26#define IS_NODESEG(t)   (t >= CURSEG_HOT_NODE)
  27
  28#define IS_CURSEG(sbi, seg)                                             \
  29        ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||      \
  30         (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||     \
  31         (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||     \
  32         (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||      \
  33         (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||     \
  34         (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
  35
  36#define IS_CURSEC(sbi, secno)                                           \
  37        ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /              \
  38          sbi->segs_per_sec) || \
  39         (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /             \
  40          sbi->segs_per_sec) || \
  41         (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /             \
  42          sbi->segs_per_sec) || \
  43         (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /              \
  44          sbi->segs_per_sec) || \
  45         (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /             \
  46          sbi->segs_per_sec) || \
  47         (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /             \
  48          sbi->segs_per_sec))   \
  49
  50#define MAIN_BLKADDR(sbi)       (SM_I(sbi)->main_blkaddr)
  51#define SEG0_BLKADDR(sbi)       (SM_I(sbi)->seg0_blkaddr)
  52
  53#define MAIN_SEGS(sbi)  (SM_I(sbi)->main_segments)
  54#define MAIN_SECS(sbi)  (sbi->total_sections)
  55
  56#define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
  57#define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
  58
  59#define MAX_BLKADDR(sbi)        (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
  60#define SEGMENT_SIZE(sbi)       (1ULL << (sbi->log_blocksize +          \
  61                                        sbi->log_blocks_per_seg))
  62
  63#define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) +                    \
  64         (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
  65
  66#define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
  67        (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
  68
  69#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)     ((blk_addr) - SEG0_BLKADDR(sbi))
  70#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
  71        (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
  72#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)                             \
  73        (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
  74
  75#define GET_SEGNO(sbi, blk_addr)                                        \
  76        (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?          \
  77        NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
  78                GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
  79#define GET_SECNO(sbi, segno)                                   \
  80        ((segno) / sbi->segs_per_sec)
  81#define GET_ZONENO_FROM_SEGNO(sbi, segno)                               \
  82        ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
  83
  84#define GET_SUM_BLOCK(sbi, segno)                               \
  85        ((sbi->sm_info->ssa_blkaddr) + segno)
  86
  87#define GET_SUM_TYPE(footer) ((footer)->entry_type)
  88#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
  89
  90#define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
  91        (segno % sit_i->sents_per_block)
  92#define SIT_BLOCK_OFFSET(segno)                                 \
  93        (segno / SIT_ENTRY_PER_BLOCK)
  94#define START_SEGNO(segno)              \
  95        (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
  96#define SIT_BLK_CNT(sbi)                        \
  97        ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
  98#define f2fs_bitmap_size(nr)                    \
  99        (BITS_TO_LONGS(nr) * sizeof(unsigned long))
 100
 101#define SECTOR_FROM_BLOCK(blk_addr)                                     \
 102        (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
 103#define SECTOR_TO_BLOCK(sectors)                                        \
 104        (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
 105#define MAX_BIO_BLOCKS(sbi)                                             \
 106        ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
 107
 108/*
 109 * indicate a block allocation direction: RIGHT and LEFT.
 110 * RIGHT means allocating new sections towards the end of volume.
 111 * LEFT means the opposite direction.
 112 */
 113enum {
 114        ALLOC_RIGHT = 0,
 115        ALLOC_LEFT
 116};
 117
 118/*
 119 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
 120 * LFS writes data sequentially with cleaning operations.
 121 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
 122 */
 123enum {
 124        LFS = 0,
 125        SSR
 126};
 127
 128/*
 129 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
 130 * GC_CB is based on cost-benefit algorithm.
 131 * GC_GREEDY is based on greedy algorithm.
 132 */
 133enum {
 134        GC_CB = 0,
 135        GC_GREEDY
 136};
 137
 138/*
 139 * BG_GC means the background cleaning job.
 140 * FG_GC means the on-demand cleaning job.
 141 * FORCE_FG_GC means on-demand cleaning job in background.
 142 */
 143enum {
 144        BG_GC = 0,
 145        FG_GC,
 146        FORCE_FG_GC,
 147};
 148
 149/* for a function parameter to select a victim segment */
 150struct victim_sel_policy {
 151        int alloc_mode;                 /* LFS or SSR */
 152        int gc_mode;                    /* GC_CB or GC_GREEDY */
 153        unsigned long *dirty_segmap;    /* dirty segment bitmap */
 154        unsigned int max_search;        /* maximum # of segments to search */
 155        unsigned int offset;            /* last scanned bitmap offset */
 156        unsigned int ofs_unit;          /* bitmap search unit */
 157        unsigned int min_cost;          /* minimum cost */
 158        unsigned int min_segno;         /* segment # having min. cost */
 159};
 160
 161struct seg_entry {
 162        unsigned int type:6;            /* segment type like CURSEG_XXX_TYPE */
 163        unsigned int valid_blocks:10;   /* # of valid blocks */
 164        unsigned int ckpt_valid_blocks:10;      /* # of valid blocks last cp */
 165        unsigned int padding:6;         /* padding */
 166        unsigned char *cur_valid_map;   /* validity bitmap of blocks */
 167        /*
 168         * # of valid blocks and the validity bitmap stored in the the last
 169         * checkpoint pack. This information is used by the SSR mode.
 170         */
 171        unsigned char *ckpt_valid_map;  /* validity bitmap of blocks last cp */
 172        unsigned char *discard_map;
 173        unsigned long long mtime;       /* modification time of the segment */
 174};
 175
 176struct sec_entry {
 177        unsigned int valid_blocks;      /* # of valid blocks in a section */
 178};
 179
 180struct segment_allocation {
 181        void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
 182};
 183
 184/*
 185 * this value is set in page as a private data which indicate that
 186 * the page is atomically written, and it is in inmem_pages list.
 187 */
 188#define ATOMIC_WRITTEN_PAGE             ((unsigned long)-1)
 189
 190#define IS_ATOMIC_WRITTEN_PAGE(page)                    \
 191                (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
 192
 193struct inmem_pages {
 194        struct list_head list;
 195        struct page *page;
 196        block_t old_addr;               /* for revoking when fail to commit */
 197};
 198
 199struct sit_info {
 200        const struct segment_allocation *s_ops;
 201
 202        block_t sit_base_addr;          /* start block address of SIT area */
 203        block_t sit_blocks;             /* # of blocks used by SIT area */
 204        block_t written_valid_blocks;   /* # of valid blocks in main area */
 205        char *sit_bitmap;               /* SIT bitmap pointer */
 206        unsigned int bitmap_size;       /* SIT bitmap size */
 207
 208        unsigned long *tmp_map;                 /* bitmap for temporal use */
 209        unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
 210        unsigned int dirty_sentries;            /* # of dirty sentries */
 211        unsigned int sents_per_block;           /* # of SIT entries per block */
 212        struct mutex sentry_lock;               /* to protect SIT cache */
 213        struct seg_entry *sentries;             /* SIT segment-level cache */
 214        struct sec_entry *sec_entries;          /* SIT section-level cache */
 215
 216        /* for cost-benefit algorithm in cleaning procedure */
 217        unsigned long long elapsed_time;        /* elapsed time after mount */
 218        unsigned long long mounted_time;        /* mount time */
 219        unsigned long long min_mtime;           /* min. modification time */
 220        unsigned long long max_mtime;           /* max. modification time */
 221};
 222
 223struct free_segmap_info {
 224        unsigned int start_segno;       /* start segment number logically */
 225        unsigned int free_segments;     /* # of free segments */
 226        unsigned int free_sections;     /* # of free sections */
 227        spinlock_t segmap_lock;         /* free segmap lock */
 228        unsigned long *free_segmap;     /* free segment bitmap */
 229        unsigned long *free_secmap;     /* free section bitmap */
 230};
 231
 232/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
 233enum dirty_type {
 234        DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
 235        DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
 236        DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
 237        DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
 238        DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
 239        DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
 240        DIRTY,                  /* to count # of dirty segments */
 241        PRE,                    /* to count # of entirely obsolete segments */
 242        NR_DIRTY_TYPE
 243};
 244
 245struct dirty_seglist_info {
 246        const struct victim_selection *v_ops;   /* victim selction operation */
 247        unsigned long *dirty_segmap[NR_DIRTY_TYPE];
 248        struct mutex seglist_lock;              /* lock for segment bitmaps */
 249        int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
 250        unsigned long *victim_secmap;           /* background GC victims */
 251};
 252
 253/* victim selection function for cleaning and SSR */
 254struct victim_selection {
 255        int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
 256                                                        int, int, char);
 257};
 258
 259/* for active log information */
 260struct curseg_info {
 261        struct mutex curseg_mutex;              /* lock for consistency */
 262        struct f2fs_summary_block *sum_blk;     /* cached summary block */
 263        struct rw_semaphore journal_rwsem;      /* protect journal area */
 264        struct f2fs_journal *journal;           /* cached journal info */
 265        unsigned char alloc_type;               /* current allocation type */
 266        unsigned int segno;                     /* current segment number */
 267        unsigned short next_blkoff;             /* next block offset to write */
 268        unsigned int zone;                      /* current zone number */
 269        unsigned int next_segno;                /* preallocated segment */
 270};
 271
 272struct sit_entry_set {
 273        struct list_head set_list;      /* link with all sit sets */
 274        unsigned int start_segno;       /* start segno of sits in set */
 275        unsigned int entry_cnt;         /* the # of sit entries in set */
 276};
 277
 278/*
 279 * inline functions
 280 */
 281static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
 282{
 283        return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
 284}
 285
 286static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
 287                                                unsigned int segno)
 288{
 289        struct sit_info *sit_i = SIT_I(sbi);
 290        return &sit_i->sentries[segno];
 291}
 292
 293static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
 294                                                unsigned int segno)
 295{
 296        struct sit_info *sit_i = SIT_I(sbi);
 297        return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
 298}
 299
 300static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
 301                                unsigned int segno, int section)
 302{
 303        /*
 304         * In order to get # of valid blocks in a section instantly from many
 305         * segments, f2fs manages two counting structures separately.
 306         */
 307        if (section > 1)
 308                return get_sec_entry(sbi, segno)->valid_blocks;
 309        else
 310                return get_seg_entry(sbi, segno)->valid_blocks;
 311}
 312
 313static inline void seg_info_from_raw_sit(struct seg_entry *se,
 314                                        struct f2fs_sit_entry *rs)
 315{
 316        se->valid_blocks = GET_SIT_VBLOCKS(rs);
 317        se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
 318        memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 319        memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 320        se->type = GET_SIT_TYPE(rs);
 321        se->mtime = le64_to_cpu(rs->mtime);
 322}
 323
 324static inline void seg_info_to_raw_sit(struct seg_entry *se,
 325                                        struct f2fs_sit_entry *rs)
 326{
 327        unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
 328                                        se->valid_blocks;
 329        rs->vblocks = cpu_to_le16(raw_vblocks);
 330        memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
 331        memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 332        se->ckpt_valid_blocks = se->valid_blocks;
 333        rs->mtime = cpu_to_le64(se->mtime);
 334}
 335
 336static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
 337                unsigned int max, unsigned int segno)
 338{
 339        unsigned int ret;
 340        spin_lock(&free_i->segmap_lock);
 341        ret = find_next_bit(free_i->free_segmap, max, segno);
 342        spin_unlock(&free_i->segmap_lock);
 343        return ret;
 344}
 345
 346static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
 347{
 348        struct free_segmap_info *free_i = FREE_I(sbi);
 349        unsigned int secno = segno / sbi->segs_per_sec;
 350        unsigned int start_segno = secno * sbi->segs_per_sec;
 351        unsigned int next;
 352
 353        spin_lock(&free_i->segmap_lock);
 354        clear_bit(segno, free_i->free_segmap);
 355        free_i->free_segments++;
 356
 357        next = find_next_bit(free_i->free_segmap,
 358                        start_segno + sbi->segs_per_sec, start_segno);
 359        if (next >= start_segno + sbi->segs_per_sec) {
 360                clear_bit(secno, free_i->free_secmap);
 361                free_i->free_sections++;
 362        }
 363        spin_unlock(&free_i->segmap_lock);
 364}
 365
 366static inline void __set_inuse(struct f2fs_sb_info *sbi,
 367                unsigned int segno)
 368{
 369        struct free_segmap_info *free_i = FREE_I(sbi);
 370        unsigned int secno = segno / sbi->segs_per_sec;
 371        set_bit(segno, free_i->free_segmap);
 372        free_i->free_segments--;
 373        if (!test_and_set_bit(secno, free_i->free_secmap))
 374                free_i->free_sections--;
 375}
 376
 377static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
 378                unsigned int segno)
 379{
 380        struct free_segmap_info *free_i = FREE_I(sbi);
 381        unsigned int secno = segno / sbi->segs_per_sec;
 382        unsigned int start_segno = secno * sbi->segs_per_sec;
 383        unsigned int next;
 384
 385        spin_lock(&free_i->segmap_lock);
 386        if (test_and_clear_bit(segno, free_i->free_segmap)) {
 387                free_i->free_segments++;
 388
 389                next = find_next_bit(free_i->free_segmap,
 390                                start_segno + sbi->segs_per_sec, start_segno);
 391                if (next >= start_segno + sbi->segs_per_sec) {
 392                        if (test_and_clear_bit(secno, free_i->free_secmap))
 393                                free_i->free_sections++;
 394                }
 395        }
 396        spin_unlock(&free_i->segmap_lock);
 397}
 398
 399static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
 400                unsigned int segno)
 401{
 402        struct free_segmap_info *free_i = FREE_I(sbi);
 403        unsigned int secno = segno / sbi->segs_per_sec;
 404        spin_lock(&free_i->segmap_lock);
 405        if (!test_and_set_bit(segno, free_i->free_segmap)) {
 406                free_i->free_segments--;
 407                if (!test_and_set_bit(secno, free_i->free_secmap))
 408                        free_i->free_sections--;
 409        }
 410        spin_unlock(&free_i->segmap_lock);
 411}
 412
 413static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
 414                void *dst_addr)
 415{
 416        struct sit_info *sit_i = SIT_I(sbi);
 417        memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
 418}
 419
 420static inline block_t written_block_count(struct f2fs_sb_info *sbi)
 421{
 422        return SIT_I(sbi)->written_valid_blocks;
 423}
 424
 425static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
 426{
 427        return FREE_I(sbi)->free_segments;
 428}
 429
 430static inline int reserved_segments(struct f2fs_sb_info *sbi)
 431{
 432        return SM_I(sbi)->reserved_segments;
 433}
 434
 435static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
 436{
 437        return FREE_I(sbi)->free_sections;
 438}
 439
 440static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
 441{
 442        return DIRTY_I(sbi)->nr_dirty[PRE];
 443}
 444
 445static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
 446{
 447        return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
 448                DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
 449                DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
 450                DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
 451                DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
 452                DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
 453}
 454
 455static inline int overprovision_segments(struct f2fs_sb_info *sbi)
 456{
 457        return SM_I(sbi)->ovp_segments;
 458}
 459
 460static inline int overprovision_sections(struct f2fs_sb_info *sbi)
 461{
 462        return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
 463}
 464
 465static inline int reserved_sections(struct f2fs_sb_info *sbi)
 466{
 467        return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
 468}
 469
 470static inline bool need_SSR(struct f2fs_sb_info *sbi)
 471{
 472        int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 473        int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 474
 475        if (test_opt(sbi, LFS))
 476                return false;
 477
 478        return free_sections(sbi) <= (node_secs + 2 * dent_secs +
 479                                                reserved_sections(sbi) + 1);
 480}
 481
 482static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
 483                                        int freed, int needed)
 484{
 485        int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 486        int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 487
 488        node_secs += get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 489
 490        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 491                return false;
 492
 493        return (free_sections(sbi) + freed) <=
 494                (node_secs + 2 * dent_secs + reserved_sections(sbi) + needed);
 495}
 496
 497static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
 498{
 499        return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
 500}
 501
 502static inline int utilization(struct f2fs_sb_info *sbi)
 503{
 504        return div_u64((u64)valid_user_blocks(sbi) * 100,
 505                                        sbi->user_block_count);
 506}
 507
 508/*
 509 * Sometimes f2fs may be better to drop out-of-place update policy.
 510 * And, users can control the policy through sysfs entries.
 511 * There are five policies with triggering conditions as follows.
 512 * F2FS_IPU_FORCE - all the time,
 513 * F2FS_IPU_SSR - if SSR mode is activated,
 514 * F2FS_IPU_UTIL - if FS utilization is over threashold,
 515 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
 516 *                     threashold,
 517 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
 518 *                     storages. IPU will be triggered only if the # of dirty
 519 *                     pages over min_fsync_blocks.
 520 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
 521 */
 522#define DEF_MIN_IPU_UTIL        70
 523#define DEF_MIN_FSYNC_BLOCKS    8
 524
 525enum {
 526        F2FS_IPU_FORCE,
 527        F2FS_IPU_SSR,
 528        F2FS_IPU_UTIL,
 529        F2FS_IPU_SSR_UTIL,
 530        F2FS_IPU_FSYNC,
 531};
 532
 533static inline bool need_inplace_update(struct inode *inode)
 534{
 535        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 536        unsigned int policy = SM_I(sbi)->ipu_policy;
 537
 538        /* IPU can be done only for the user data */
 539        if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
 540                return false;
 541
 542        if (test_opt(sbi, LFS))
 543                return false;
 544
 545        if (policy & (0x1 << F2FS_IPU_FORCE))
 546                return true;
 547        if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
 548                return true;
 549        if (policy & (0x1 << F2FS_IPU_UTIL) &&
 550                        utilization(sbi) > SM_I(sbi)->min_ipu_util)
 551                return true;
 552        if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
 553                        utilization(sbi) > SM_I(sbi)->min_ipu_util)
 554                return true;
 555
 556        /* this is only set during fdatasync */
 557        if (policy & (0x1 << F2FS_IPU_FSYNC) &&
 558                        is_inode_flag_set(inode, FI_NEED_IPU))
 559                return true;
 560
 561        return false;
 562}
 563
 564static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
 565                int type)
 566{
 567        struct curseg_info *curseg = CURSEG_I(sbi, type);
 568        return curseg->segno;
 569}
 570
 571static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
 572                int type)
 573{
 574        struct curseg_info *curseg = CURSEG_I(sbi, type);
 575        return curseg->alloc_type;
 576}
 577
 578static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
 579{
 580        struct curseg_info *curseg = CURSEG_I(sbi, type);
 581        return curseg->next_blkoff;
 582}
 583
 584static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
 585{
 586        f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
 587}
 588
 589static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
 590{
 591        BUG_ON(blk_addr < SEG0_BLKADDR(sbi)
 592                        || blk_addr >= MAX_BLKADDR(sbi));
 593}
 594
 595/*
 596 * Summary block is always treated as an invalid block
 597 */
 598static inline void check_block_count(struct f2fs_sb_info *sbi,
 599                int segno, struct f2fs_sit_entry *raw_sit)
 600{
 601#ifdef CONFIG_F2FS_CHECK_FS
 602        bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
 603        int valid_blocks = 0;
 604        int cur_pos = 0, next_pos;
 605
 606        /* check bitmap with valid block count */
 607        do {
 608                if (is_valid) {
 609                        next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
 610                                        sbi->blocks_per_seg,
 611                                        cur_pos);
 612                        valid_blocks += next_pos - cur_pos;
 613                } else
 614                        next_pos = find_next_bit_le(&raw_sit->valid_map,
 615                                        sbi->blocks_per_seg,
 616                                        cur_pos);
 617                cur_pos = next_pos;
 618                is_valid = !is_valid;
 619        } while (cur_pos < sbi->blocks_per_seg);
 620        BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
 621#endif
 622        /* check segment usage, and check boundary of a given segment number */
 623        f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
 624                                        || segno > TOTAL_SEGS(sbi) - 1);
 625}
 626
 627static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
 628                                                unsigned int start)
 629{
 630        struct sit_info *sit_i = SIT_I(sbi);
 631        unsigned int offset = SIT_BLOCK_OFFSET(start);
 632        block_t blk_addr = sit_i->sit_base_addr + offset;
 633
 634        check_seg_range(sbi, start);
 635
 636        /* calculate sit block address */
 637        if (f2fs_test_bit(offset, sit_i->sit_bitmap))
 638                blk_addr += sit_i->sit_blocks;
 639
 640        return blk_addr;
 641}
 642
 643static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
 644                                                pgoff_t block_addr)
 645{
 646        struct sit_info *sit_i = SIT_I(sbi);
 647        block_addr -= sit_i->sit_base_addr;
 648        if (block_addr < sit_i->sit_blocks)
 649                block_addr += sit_i->sit_blocks;
 650        else
 651                block_addr -= sit_i->sit_blocks;
 652
 653        return block_addr + sit_i->sit_base_addr;
 654}
 655
 656static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
 657{
 658        unsigned int block_off = SIT_BLOCK_OFFSET(start);
 659
 660        f2fs_change_bit(block_off, sit_i->sit_bitmap);
 661}
 662
 663static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
 664{
 665        struct sit_info *sit_i = SIT_I(sbi);
 666        return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
 667                                                sit_i->mounted_time;
 668}
 669
 670static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
 671                        unsigned int ofs_in_node, unsigned char version)
 672{
 673        sum->nid = cpu_to_le32(nid);
 674        sum->ofs_in_node = cpu_to_le16(ofs_in_node);
 675        sum->version = version;
 676}
 677
 678static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
 679{
 680        return __start_cp_addr(sbi) +
 681                le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
 682}
 683
 684static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
 685{
 686        return __start_cp_addr(sbi) +
 687                le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
 688                                - (base + 1) + type;
 689}
 690
 691static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
 692{
 693        if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
 694                return true;
 695        return false;
 696}
 697
 698static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
 699{
 700        struct block_device *bdev = sbi->sb->s_bdev;
 701        struct request_queue *q = bdev_get_queue(bdev);
 702        return SECTOR_TO_BLOCK(queue_max_sectors(q));
 703}
 704
 705/*
 706 * It is very important to gather dirty pages and write at once, so that we can
 707 * submit a big bio without interfering other data writes.
 708 * By default, 512 pages for directory data,
 709 * 512 pages (2MB) * 3 for three types of nodes, and
 710 * max_bio_blocks for meta are set.
 711 */
 712static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
 713{
 714        if (sbi->sb->s_bdi->wb.dirty_exceeded)
 715                return 0;
 716
 717        if (type == DATA)
 718                return sbi->blocks_per_seg;
 719        else if (type == NODE)
 720                return 8 * sbi->blocks_per_seg;
 721        else if (type == META)
 722                return 8 * MAX_BIO_BLOCKS(sbi);
 723        else
 724                return 0;
 725}
 726
 727/*
 728 * When writing pages, it'd better align nr_to_write for segment size.
 729 */
 730static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
 731                                        struct writeback_control *wbc)
 732{
 733        long nr_to_write, desired;
 734
 735        if (wbc->sync_mode != WB_SYNC_NONE)
 736                return 0;
 737
 738        nr_to_write = wbc->nr_to_write;
 739
 740        if (type == NODE)
 741                desired = 2 * max_hw_blocks(sbi);
 742        else
 743                desired = MAX_BIO_BLOCKS(sbi);
 744
 745        wbc->nr_to_write = desired;
 746        return desired - nr_to_write;
 747}
 748